1
|
Wang Y, Li D, Xu K, Wang G, Zhang F. Copper homeostasis and neurodegenerative diseases. Neural Regen Res 2025; 20:3124-3143. [PMID: 39589160 PMCID: PMC11881714 DOI: 10.4103/nrr.nrr-d-24-00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 07/27/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024] Open
Abstract
Copper, one of the most prolific transition metals in the body, is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations. Copper homeostasis is meticulously maintained through a complex network of copper-dependent proteins, including copper transporters (CTR1 and CTR2), the two copper ion transporters the Cu -transporting ATPase 1 (ATP7A) and Cu-transporting beta (ATP7B), and the three copper chaperones ATOX1, CCS, and COX17. Disruptions in copper homeostasis can lead to either the deficiency or accumulation of copper in brain tissue. Emerging evidence suggests that abnormal copper metabolism or copper binding to various proteins, including ceruloplasmin and metallothionein, is involved in the pathogenesis of neurodegenerative disorders. However, the exact mechanisms underlying these processes are not known. Copper is a potent oxidant that increases reactive oxygen species production and promotes oxidative stress. Elevated reactive oxygen species levels may further compromise mitochondrial integrity and cause mitochondrial dysfunction. Reactive oxygen species serve as key signaling molecules in copper-induced neuroinflammation, with elevated levels activating several critical inflammatory pathways. Additionally, copper can bind aberrantly to several neuronal proteins, including alpha-synuclein, tau, superoxide dismutase 1, and huntingtin, thereby inducing neurotoxicity and ultimately cell death. This study focuses on the latest literature evaluating the role of copper in neurodegenerative diseases, with a particular focus on copper-containing metalloenzymes and copper-binding proteins in the regulation of copper homeostasis and their involvement in neurodegenerative disease pathogenesis. By synthesizing the current findings on the functions of copper in oxidative stress, neuroinflammation, mitochondrial dysfunction, and protein misfolding, we aim to elucidate the mechanisms by which copper contributes to a wide range of hereditary and neuronal disorders, such as Wilson's disease, Menkes' disease, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Potential clinically significant therapeutic targets, including superoxide dismutase 1, D-penicillamine, and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline, along with their associated therapeutic agents, are further discussed. Ultimately, we collate evidence that copper homeostasis may function in the underlying etiology of several neurodegenerative diseases and offer novel insights into the potential prevention and treatment of these diseases based on copper homeostasis.
Collapse
Affiliation(s)
- Yuanyuan Wang
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Daidi Li
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Kaifei Xu
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Guoqing Wang
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Feng Zhang
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| |
Collapse
|
2
|
Liu K, Li L, He Y, Zhang S, You H, Wang P. Hepatic progenitor cells reprogrammed from mouse fibroblasts repopulate hepatocytes in Wilson's disease mice. Stem Cell Res Ther 2025; 16:131. [PMID: 40069754 PMCID: PMC11899129 DOI: 10.1186/s13287-025-04253-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Wilson's disease (WD) is a genetic disorder that impairs the excretion of copper in hepatocytes and results in excessive copper deposition in multiple organs. The replacement of disordered hepatocytes with functional hepatocytes can serve as a lifelong therapeutic strategy for the treatment of WD. The aim of this study was to determine the hepatocyte repopulation effects of fibroblast-derived hepatic progenitor cells in the treatment of WD. METHODS Induced hepatic progenitor cells (iHPCs) were generated through direct reprogramming of adult mouse fibroblasts infected with lentivirus carrying both the Foxa3 and Hnf4α genes. These iHPCs were subsequently identified and transplanted into copper-overload WD mice with the Atp7b (H1071Q) mutation via caudal vein injection. RESULTS After lentivirus infection, the fibroblasts transformed into Foxa3- and Hnf4α-overexpressing cobblestone-like cells with reduced expression of fibroblast markers and increased expression of epithelial cell and hepatic progenitor cell markers, i.e., iHPCs. Sixteen weeks after transplantation into WD mice, approximately 2% of hepatocytes were derived from iHPCs, and these iHPC-derived hepatocytes expressed a tight junction-associated protein of the bile canal, tight junction protein 1 (Zo1). There was a decrease in the serum copper concentration and relative activity of serum ceruloplasmin at weeks 4 and 8 after iHPCs transplantation compared with those of WD fed mice administered saline or fibroblasts. Furthermore, iHPC transplantation markedly reduced the proportion of CD8+ T lymphocytes and natural killer cells compared with those in fibroblast-transplanted WD mice and downregulated the transcription of the inflammatory cytokines, including tumor necrosis factor α (Tnfα), interleukin 1β (IL-1β), and IL-6, compared with those in WD mice and in fibroblast-transplanted WD mice. CONCLUSION iHPCs reprogrammed from adult fibroblasts can repopulate hepatocytes and exert therapeutic effects in WD mice, representing a potential replacement therapy for clinical application.
Collapse
Affiliation(s)
- Kai Liu
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Beijing, 100050, China.
- Beijing Clinical Research Institute, Beijing, 100050, China.
| | - Li Li
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
| | - Yu He
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
| | - Song Zhang
- Beijing Clinical Research Institute, Beijing, 100050, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China.
| | - Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China.
| |
Collapse
|
3
|
Socha P, Jańczyk W, Zanetto A, Burra P, Czlonkowska A, Debray D, Ferenci P, Merle U, Nicastro E, Poujois A, Schmidt H, Tsochatzis E. EASL-ERN Clinical Practice Guidelines on Wilson's disease. J Hepatol 2025; 82:S0168-8278(24)02706-5. [PMID: 40089450 DOI: 10.1016/j.jhep.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 03/17/2025]
Abstract
Wilson's disease is an autosomal recessive disorder of copper metabolism which affects the liver, brain and other organs. Diagnosis is based on: clinical features; biochemical tests, including plasma ceruloplasmin concentration, 24-h urinary copper excretion, copper content in the liver; and molecular analysis. Leipzig score and additionally relative exchangeable copper determination are recommended for diagnosis. Pharmacological therapy comprises chelating agents (penicillamine, trientine) and zinc salts, while only chelators are recommended for significant liver disease. Monitoring is based on clinical symptoms, liver tests and copper metabolism (urinary copper excretion, exchangeable copper) to detect poor compliance and over/under-treatment. Acute liver failure is challenging as making a diagnosis is difficult and pharmacological therapy may not be sufficient to save life. Liver transplantation has a well-defined role in Wilsonian acute hepatic failure but may also be considered in neurological disease.
Collapse
|
4
|
Hake G, Mhaske A, Shukla R, Flora SJS. Copper-Induced Neurodegenerative Disorders and Therapeutic Potential of Curcumin-Loaded Nanoemulsion. TOXICS 2025; 13:108. [PMID: 39997923 PMCID: PMC11862003 DOI: 10.3390/toxics13020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025]
Abstract
Copper accumulation in neurons induces oxidative stress, disrupts mitochondrial activity, and accelerates neuronal death, which is central to the pathophysiology of neurodegenerative diseases like Wilson disease. Standard treatments for copper toxicity, such as D-penicillamine, trientine, and chloroquine, are frequently associated with severe side effects, creating a need for safer therapeutic alternatives. To address this, we developed a curcumin-loaded nanoemulsion (CUR-NE) using the spontaneous emulsification technique, aimed at enhancing the bioavailability and therapeutic efficacy of curcumin. The optimized nanoemulsion displayed a particle size of 76.42 nm, a zeta potential of -20.4 mV, and a high encapsulation efficiency of 93.69%, with a stable and uniform structure. The in vitro tests on SH-SY5Y neuroblastoma cells demonstrated that CUR-NE effectively protected against copper-induced toxicity, promoting significant cellular uptake. Pharmacokinetic studies revealed that CUR-NE exhibited a longer half-life and extended circulation time compared to free curcumin. Additionally, pharmacodynamic evaluations, including biochemical assays and histopathological analysis, confirmed that CUR-NE provided superior neuroprotection in copper overload conditions. These results emphasize the ability of CUR-NE to augment the therapeutic effects of curcumin, presenting a novel approach for managing copper-induced neurodegeneration. The study highlights the effectiveness of nanoemulsion-based delivery platforms in improving chelation treatments for neurological diseases.
Collapse
Affiliation(s)
- Govind Hake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Near CRPF Base Camp, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow 226002, India; (G.H.)
| | - Akshada Mhaske
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Near CRPF Base Camp, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow 226002, India; (G.H.)
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Near CRPF Base Camp, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow 226002, India; (G.H.)
| | - Swaran Jeet Singh Flora
- Era College of Pharmacy, Era Lucknow Medical University, Sarfarajgunj, Lucknow Hardoi Road, Lucknow 226002, India
| |
Collapse
|
5
|
Srivastava T, Wanjari N. Copper and its isotopes: a brief overview of its implications in geology, environmental system, and human health. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2024; 60:642-667. [PMID: 39365695 DOI: 10.1080/10256016.2024.2410290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 08/19/2024] [Indexed: 10/06/2024]
Abstract
Copper, a malleable and ductile transition metal, possesses two stable isotopes. These copper isotopic composition data have recently found diverse applications in various fields and disciplines. In geology, copper isotopes serve as tracers that aid in investigating ore formation processes and the mechanisms of copper deposits Likewise, it has emerged as a valuable tracer in polluted environments. In plant biology, copper acts as an essential micronutrient crucial for photosynthesis, respiration, and growth. Copper isotopes contribute to understanding how plants uptake and dispense copper from the soil within their tissues. Similarly, in animals, copper serves as an essential trace element, playing a vital role in growth, white blood cell function, and enzyme activity. In humans, copper acts as an antioxidant, neutralising harmful free radicals within the body. It also helps in maintaining the nervous and immune system. Furthermore, copper isotopes find medical applications, particularly in cancer diagnostics, neurodegenerative diseases, and targeted radiotherapy. However, excessive copper can have detrimental effects in humans such as it can cause liver damage, nausea, and abdominal pain, whilst in plants it can affect the growth of plants, photosynthesis, and membrane permeability. This review emphasises the significance of copper and its isotopes in geology, the environment, and human health.
Collapse
|
6
|
Peng G, Huang Y, Xie G, Tang J. Exploring Copper's role in stroke: progress and treatment approaches. Front Pharmacol 2024; 15:1409317. [PMID: 39391696 PMCID: PMC11464477 DOI: 10.3389/fphar.2024.1409317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Copper is an important mineral, and moderate copper is required to maintain physiological processes in nervous system including cerebral ischemia/reperfusion (I/R) injury. Over the past few decades, copper induced cell death, named cuprotosis, has attracted increasing attention. Several lines of evidence have confirmed cuprotosis exerts pivotal role in diverse of pathological processes, such as cancer, neurodegenerative diseases, and I/R injury. Therefore, an in-depth understanding of the interaction mechanism between copper-mediated cell death and I/R injury may reveal the significant alterations about cellular copper-mediated homeostasis in physiological and pathophysiological conditions, as well as therapeutic strategies deciphering copper-induced cell death in cerebral I/R injury.
Collapse
Affiliation(s)
- Gang Peng
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan, China
| | - Yongpan Huang
- School of Medicine, Changsha Social Work College, Changsha, Hunan, China
| | - Guangdi Xie
- Department of Neurology, Huitong People’s Hospital, Huitong, Hunan, China
| | - Jiayu Tang
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
7
|
Gromadzka G, Wilkaniec A, Tarnacka B, Hadrian K, Bendykowska M, Przybyłkowski A, Litwin T. The Role of Glia in Wilson's Disease: Clinical, Neuroimaging, Neuropathological and Molecular Perspectives. Int J Mol Sci 2024; 25:7545. [PMID: 39062788 PMCID: PMC11276698 DOI: 10.3390/ijms25147545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Wilson's disease (WD) is inherited in an autosomal recessive manner and is caused by pathogenic variants of the ATP7B gene, which are responsible for impaired copper transport in the cell, inhibition of copper binding to apoceruloplasmin, and biliary excretion. This leads to the accumulation of copper in the tissues. Copper accumulation in the CNS leads to the neurological and psychiatric symptoms of WD. Abnormalities of copper metabolism in WD are associated with impaired iron metabolism. Both of these elements are redox active and may contribute to neuropathology. It has long been assumed that among parenchymal cells, astrocytes have the greatest impact on copper and iron homeostasis in the brain. Capillary endothelial cells are separated from the neuropil by astrocyte terminal legs, putting astrocytes in an ideal position to regulate the transport of iron and copper to other brain cells and protect them if metals breach the blood-brain barrier. Astrocytes are responsible for, among other things, maintaining extracellular ion homeostasis, modulating synaptic transmission and plasticity, obtaining metabolites, and protecting the brain against oxidative stress and toxins. However, excess copper and/or iron causes an increase in the number of astrocytes and their morphological changes observed in neuropathological studies, as well as a loss of the copper/iron storage function leading to macromolecule peroxidation and neuronal loss through apoptosis, autophagy, or cuproptosis/ferroptosis. The molecular mechanisms explaining the possible role of glia in copper- and iron-induced neurodegeneration in WD are largely understood from studies of neuropathology in Parkinson's disease and Alzheimer's disease. Understanding the mechanisms of glial involvement in neuroprotection/neurotoxicity is important for explaining the pathomechanisms of neuronal death in WD and, in the future, perhaps for developing more effective diagnostic/treatment methods.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego 1/3, 01-938 Warsaw, Poland
| | - Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland
| | - Beata Tarnacka
- Department of Rehabilitation, Medical University of Warsaw, Spartańska 1, 02-637 Warsaw, Poland
| | - Krzysztof Hadrian
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland (A.P.)
| | - Maria Bendykowska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis 5, 01-815 Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland (A.P.)
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| |
Collapse
|
8
|
Daniel-Robin T, Kumar P, Benichou B, Combal JP. Characteristics of patients with Wilson disease in the United States: An insurance claims database study. World J Hepatol 2024; 16:791-799. [PMID: 38818282 PMCID: PMC11135267 DOI: 10.4254/wjh.v16.i5.791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Wilson disease (WD) is a progressive, potentially fatal degenerative disease affecting the liver and central nervous system. Given its low prevalence, collecting data on large cohorts of patients with WD is challenging. Comprehensive insurance claims databases provide powerful tools to collect retrospective data on large numbers of patients with rare diseases. AIM To describe patients with WD in the United States, their treatment and clinical outcome, using a large insurance claims database. METHODS This retrospective, longitudinal study was performed in the Clarivate Real-World Data Product database. All patients with ≥ 2 claims associated with an International Classification of Diseases 10 (ICD-10) diagnostic code for WD (E83.01) between 2016 and 2021 were included and followed until death or study end. Patients were divided into two groups by whether or not they were documented to have received a specific treatment for WD. Clinical manifestations, hospitalisations, liver transplantation and death were documented. RESULTS Overall, 5376 patients with an ICD-10 diagnostic code for WD were identified. The mean age at inclusion was 41.2 years and 52.0% were men. A specific WD treatment was documented for 885 patients (15.1%), although the number of patients taking zinc salts may be underestimated due to over the counter purchase. At inclusion, the mean age of patients with a documented treatment was 36.6 ± 17.8 years vs 42.2 ± 19.6 years in those without a documented treatment. During follow-up, 273 patients (5.1%) died. Compared with the American general population, the standardised mortality ratio was 2.19. The proportion of patients with a documented WD-specific treatment who died during follow-up was 4.0% and the mean age at death 52.7 years. CONCLUSION Patients treated for WD in the United States had an excess early mortality compared with the American population. These findings indicate that there is a significant unmet need for effective treatment for WD in the United States.
Collapse
|
9
|
Chen H, Wang X, Zhang J, Xie D. Effect of high-frequency repetitive transcranial magnetic stimulation on cognitive impairment in WD patients based on inverse probability weighting of propensity scores. Front Neurosci 2024; 18:1375234. [PMID: 38660222 PMCID: PMC11039870 DOI: 10.3389/fnins.2024.1375234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Background Hepatolenticular degeneration [Wilson disease (WD)] is an autosomal recessive metabolic disease characterized by copper metabolism disorder. Cognitive impairment is a key neuropsychiatric symptom of WD. At present, there is no effective treatment for WD-related cognitive impairment. Methods In this study, high-frequency repetitive transcranial magnetic stimulation (rTMS) was used to treat WD-related cognitive impairment, and inverse probability weighting of propensity scores was used to correct for confounding factors. The Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Auditory Verbal Learning Test (AVLT), Boston Naming Test (BNT), Clock Drawing Test (CDT) and Trail Making Test (TMT) were used to evaluate overall cognition and specific cognitive domains. Results The MMSE, MoCA and CDT scores after treatment were significantly different from those before treatment (MMSE: before adjustment: OR = 1.404, 95% CI: 1.271-1.537; after adjustment: OR = 1.381, 95% CI: 1.265-1.497, p < 0.001; MoCA: before adjustment: OR = 1.306, 95% CI: 1.122-1.490; after adjustment: OR = 1.286, 95% CI: 1.104; AVLT: OR = 1.161, 95% CI: 1.074-1.248; after adjustment: OR = 1.145, 95% CI: 1.068-1.222, p < 0.05; CDT: OR = 1.524, 95% CI: 1.303-1.745; after adjustment: OR = 1.518, 95% CI: 1.294-1.742, p < 0.001). The BNT and TMT scores after adjustment were not significantly different from those before adjustment (BNT: before adjustment: OR = 1.048, 95% CI: 0.877-1.219; after adjustment: OR = 1.026, 95% CI: 0.863-1.189, p > 0.05; TMT: before adjustment: OR = 0.816, 95% CI: 1.122-1.490; after adjustment: OR = 0.791, 95% CI: 0.406-1.176, p > 0.05). Conclusion High-frequency rTMS can effectively improve cognitive impairment, especially memory and visuospatial ability, in WD patients. The incidence of side effects is low, and the safety is good.
Collapse
Affiliation(s)
- Hong Chen
- The First Clinical Mdical College of Anhui University of Chinese Medicine, Hefei, China
| | - Xie Wang
- The First Clinical Mdical College of Anhui University of Chinese Medicine, Hefei, China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Daojun Xie
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
10
|
Więcek S, Paprocka J. Disorders of Copper Metabolism in Children-A Problem too Rarely Recognized. Metabolites 2024; 14:38. [PMID: 38248841 PMCID: PMC10818781 DOI: 10.3390/metabo14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Copper plays an important role in metabolic processes. Both deficiency and excess of this element have a negative effect and lead to pathological conditions. Copper is a cofactor of many enzymatic reactions. Its concentration depends on the delivery in the diet, the absorption in enterocytes, transport with the participation of ATP7A/ATP7B protein, and proper excretion. Copper homeostasis disorders lead to serious medical conditions such as Menkes disease (MD) and Wilson's disease (WD). A mutation in the ATP7A gene is the cause of Menkes disease, it prevents the supply of copper ions to enzymes dependent on them, such as dopamine β-hydroxylase and lysyl oxidase. This leads to progressive changes in the central nervous system and disorders of the connective tissue. In turn, Wilson's disease is an inherited autosomal recessive disease. It is caused by a mutation of the ATP7B gene encoding the ATP7B protein which means excess copper cannot be removed from the body, leading to the pathological accumulation of this element in the liver and brain. The clinical picture is dominated by the liver, neurological, and/or psychiatric symptoms. Early inclusion of zinc preparations and chelating drugs significantly improves the prognosis in this group of patients. The aim of the study is to analyse, based on the latest literature, the following factors: the etiopathogenesis, clinical picture, diagnostic tests, treatment, prognosis, and complications of disease entities associated with copper disturbances: Menkes disease and Wilson's disease. In addition, it is necessary for general practitioners, neurologists, and gastroenterologists to pay attention to these disease entities because they are recognized too late and too rarely, especially in the paediatric population.
Collapse
Affiliation(s)
- Sabina Więcek
- Department of Paediatrics, Faculty of Medical Sciences, Medical University of Silesia, 40-055 Katowice, Poland
| | - Justyna Paprocka
- Department of Paediatric Neurology, Faculty of Medical Sciences, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
11
|
Wang X, Shao N, Zhang X, Chen H, Chang Z, Xie D, Zhang J. Ferulic Acid Activates SIRT1-Mediated Ferroptosis Signaling Pathway to Improve Cognition Dysfunction in Wilson's Disease. Neuropsychiatr Dis Treat 2023; 19:2681-2696. [PMID: 38077239 PMCID: PMC10710261 DOI: 10.2147/ndt.s443278] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/21/2023] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Wilson's disease (WD), an autosomal recessive genetic disease, is characterized by copper metabolism disorder. WD patients may have a series of cognitive deficits in terms of neurological symptoms. Ferroptosis (FPT), a type of programmed cell death, is involved in the pathological progression of various cognitive disorders, and silent information regulator 1 (SIRT1) is considered to be a key factor in FPT. Ferulic acid (FA) is a traditional Chinese medicine monomer, with a remarkable effect in the clinical treatment of cognitive impairment-related disease. However, its intrinsic effect on FPT is still unclear. This study aims to investigate the protective effect of FA on cognitive impairment in animal and cell models of WD, and whether the pharmacological mechanism is related to the SIRT1-mediated FPT signaling pathway. METHODS Copper-loaded WD rats and PC12 cells WD were used as models of cognitive dysfunction in vivo and in vitro, respectively. Morris Water Maze (MWM) was used to evaluate the spatial exploration and memory abilities of rats. HE staining was used to observe neuronal damage in the CA1 region of the rat hippocampus. Immunofluorescence (IF) was used to detect the expression of GPX4 protein. Transmission electron microscopy (TEM) was used to observe the ultrastructure of neurons. The levels of Fe2+, MDA, SOD, GSH, 4HNE, and ROS were detected. Western blot and qRT-PCR were used to detect the protein and mRNA levels of SIRT1, Nrf2, SCL7A11, and GPX4. RESULTS In the WD copper-loaded model rats, MWM, TEM, and IF results showed that FA could promote the repair of learning and memory function, improve the morphological damage to hippocampal neurons, and maintain mitochondria integrity. In the PC12 cell experiment, the MTT method showed that FA increased the viability of copper-overloaded cell models. Western blot and qRT-PCR results confirmed that FA significantly increased the expression of proteins and mRNA in SIRT1, Nrf2, SCL7A11, and GPX4. In addition, FA reversed the expression of oxidative stress-related indicators, including MDA, SOD, GSH, 4HNE, and ROS. CONCLUSION FA alleviates hippocampal neuronal injury by activating SIRT1-mediated FPT, providing a valuable candidate for traditional Chinese medicine monomer for the clinical therapeutics of WD cognitive impairment.
Collapse
Affiliation(s)
- Xie Wang
- The First Clinical Medical College of Anhui University of Chinese Medicine, Hefei, 230038, People’s Republic of China
| | - Nan Shao
- The First Clinical Medical College of Anhui University of Chinese Medicine, Hefei, 230038, People’s Republic of China
| | - Xiaoyan Zhang
- The First Clinical Medical College of Anhui University of Chinese Medicine, Hefei, 230038, People’s Republic of China
| | - Hong Chen
- The First Clinical Medical College of Anhui University of Chinese Medicine, Hefei, 230038, People’s Republic of China
| | - Ze Chang
- Xiyuan Hospital of China Academy of Traditional Chinese Medicine, Beijing, 100091, People’s Republic of China
| | - Daojun Xie
- Department of Neurology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
| | - Juan Zhang
- Department of Neurology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, People’s Republic of China
| |
Collapse
|
12
|
Antos A, Członkowska A, Smolinski L, Bembenek J, Przybyłkowski A, Skowrońska M, Kurkowska-Jastrzębska I, Litwin T. Early neurological deterioration in Wilson's disease: a systematic literature review and meta-analysis. Neurol Sci 2023; 44:3443-3455. [PMID: 37311952 PMCID: PMC10495500 DOI: 10.1007/s10072-023-06895-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Neurological deterioration, soon after anti-copper treatment initiation, is problematic in the management of Wilson's disease (WD) and yet reports in the literature are limited. The aim of our study was to systematically assess the data according to early neurological deteriorations in WD, its outcome and risk factors. METHODS Using PRISMA guidelines, a systematic review of available data on early neurological deteriorations was performed by searching the PubMed database and reference lists. Random effects meta-analytic models summarized cases of neurological deterioration by disease phenotype. RESULTS Across the 32 included articles, 217 cases of early neurological deterioration occurred in 1512 WD patients (frequency 14.3%), most commonly in patients with neurological WD (21.8%; 167/763), rarely in hepatic disease (1.3%; 5/377), and with no cases among asymptomatic individuals. Most neurological deterioration occurred in patients treated with d-penicillamine (70.5%; 153/217), trientine (14.2%; 31/217) or zinc salts (6.9%; 15/217); the data did not allow to determine if that reflects how often treatments were chosen as first line therapy or if the risk of deterioration differed with therapy. Symptoms completely resolved in 24.2% of patients (31/128), resolved partially in 27.3% (35/128), did not improve in 39.8% (51/128), with 11 patients lost to follow-up. CONCLUSIONS Given its occurrence in up to 21.8% of patients with neurological WD in this meta-analysis of small studies, there is a need for further investigations to distinguish the natural time course of WD from treatment-related early deterioration and to develop a standard definition for treatment-induced effects.
Collapse
Affiliation(s)
- Agnieszka Antos
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland
| | - Anna Członkowska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland
| | - Lukasz Smolinski
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland
| | - Jan Bembenek
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Marta Skowrońska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland
| | - Iwona Kurkowska-Jastrzębska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland.
| |
Collapse
|
13
|
Antos A, Członkowska A, Bembenek J, Kurkowska-Jastrzębska I, Litwin T. D-Penicillamine-Induced Myasthenia Gravis-A Probable Complication of Wilson's Disease Treatment-A Case Report and Systematic Review of the Literature. Life (Basel) 2023; 13:1715. [PMID: 37629572 PMCID: PMC10455431 DOI: 10.3390/life13081715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Wilson's disease (WD) is a genetic disorder with copper accumulation in various tissues leading to related clinical symptoms (mainly hepatic and neuropsychiatric) which can be in 85% of patients successfully treated with anti-copper agents. However, during WD treatment neurological deterioration may occur in several patients. D-penicillamine (DPA) is one of the most frequently used drugs in WD treatment. Despite its efficacy, DPA can produce many adverse drug reactions, which should be recognized early. We present the case of a 51-year-old man diagnosed with the hepatic form of WD and initially treated with DPA in whom after 15 months of treatment, diplopia and evening ptosis occurred. WD treatment non-compliance as well as overtreatment were excluded. Supported by neurological symptoms, a positive edrophonium test, and high serum levels of antibodies against acetylcholine receptors (AChR-Abs), as well as low concentrations of antibodies against muscle-specific kinase (MuSK-Abs), the diagnosis of myasthenia gravis (MG), induced by DPA, was established. DPA was stopped; zinc sulfate for WD and pyridostigmine for MG symptoms were introduced. Diplopia and ptosis subsided after a few days, which supported our diagnosis. During a follow-up visit after 6 months, the patient did not present any MG symptoms. AChR-Abs level gradually decreased and MuSK-Abs were no longer detected. Pyridostigmine was stopped, and within 9 months of follow-up, the neurological symptoms of MG did not reoccur. The authors discussed the patient's neurological deterioration, performed a systematic review of DPA-induced MG in WD and concluded that MG is a rare and usually reversible complication of DPA treatment. DPA-induced MG generally occurs 2-12 months after treatment initiation and ocular symptoms predominate. Response to pyridostigmine treatment is good and MG symptoms usually reverse within one year after DPA treatment cessation. However, symptoms may persist in some cases where DPA treatment is only a trigger factor for MG occurrence.
Collapse
Affiliation(s)
- Agnieszka Antos
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland; (A.A.); (A.C.); (I.K.-J.)
| | - Anna Członkowska
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland; (A.A.); (A.C.); (I.K.-J.)
| | - Jan Bembenek
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland;
| | - Iwona Kurkowska-Jastrzębska
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland; (A.A.); (A.C.); (I.K.-J.)
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland; (A.A.); (A.C.); (I.K.-J.)
| |
Collapse
|
14
|
Litwin T, Dusek P, Antos A, Członkowska A, Bembenek J. Tackling the neurological manifestations in Wilson's disease - currently available treatment options. Expert Rev Neurother 2023; 23:1249-1259. [PMID: 37842984 DOI: 10.1080/14737175.2023.2268841] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION Wilson's disease (WD) is a potentially treatable, inherited disorder resulting from impaired copper metabolism. Pathological copper accumulation causes a range of symptoms, most commonly hepatic and a wide spectrum of neurological symptoms including tremor, dystonia, chorea, parkinsonism, dysphagia, dysarthria, gait and posture disturbances. To reduce copper overload, anti-copper drugs are used that improve liver function and neurological symptoms in up to 85% of patients. However, in some WD patients, treatment introduction leads to neurological deterioration, and in others, neurological symptoms persist with no improvement or improvement only after several years of treatment, severely affecting the patient's quality of life. AREAS COVERED This review appraises the evidence on various pharmacological and non-pharmacological therapies, neurosurgical procedures and liver transplantation for the management of neurological WD symptoms. The authors also discuss the neurological symptoms of WD, causes of deterioration and present symptomatic treatment options. EXPERT OPINION Based on case and series reports, current recommendations and expert opinion, WD treatment is focused mainly on drugs leading to negative copper body metabolism (chelators or zinc salts) and copper-restricted diet. Treatment of WD neurological symptoms should follow general recommendations of symptomatic treatment. Patients should be always considered individually, especially in the case of severe, disabling neurological symptoms.
Collapse
Affiliation(s)
- Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Petr Dusek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Agnieszka Antos
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Członkowska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Jan Bembenek
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
15
|
Antos A, Członkowska A, Bembenek J, Skowronska M, Kurkowska-Jastrzębska I, Litwin T. Blood Based Biomarkers of Central Nervous System Involvement in Wilson's Disease. Diagnostics (Basel) 2023; 13:diagnostics13091554. [PMID: 37174946 PMCID: PMC10177361 DOI: 10.3390/diagnostics13091554] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Wilson's disease (WD) is an inherited disorder of copper metabolism with clinical symptoms related to pathological copper accumulation, which are mainly hepatic and/or neuropsychiatric. The disease is potentially treatable with pharmacological agents (chelators or zinc salts). As such, key factors for a favorable treatment outcome are early diagnosis and anti-copper treatment initiation as well as appropriate treatment monitoring for safety and efficacy. Despite the generally favorable outcome in most treated patients, almost 10% of the general population of WD patients and about 25% of patients in the group with initial neurological phenotype of disease experience early neurological deterioration. In almost 50% of patients with neurological symptoms, the symptoms persist. A search for new treatment modalities (e.g., gene therapy, molybdenum salts) aims to prevent early neurological deterioration as well as improve treatment outcomes. In addition to evaluating the clinical signs and symptoms of the disease, serum biomarkers for diagnosis and treatment monitoring are very important for WD management. Sensitive serum biomarkers of copper metabolism and liver injury are well described. However, there is a need to establish blood-based biomarkers of central nervous system (CNS) injury to help identify patients at risk of early neurological deterioration and aid in their monitoring. Based on the available literature and studies of WD patients, the authors reviewed serum biomarkers of CNS involvement in WD, as well as their potential clinical significance.
Collapse
Affiliation(s)
- Agnieszka Antos
- Second Department of Neurology, Institute of Psychiatry and Neurology, 9 Sobieskiego Str., 02-957 Warsaw, Poland
| | - Anna Członkowska
- Second Department of Neurology, Institute of Psychiatry and Neurology, 9 Sobieskiego Str., 02-957 Warsaw, Poland
| | - Jan Bembenek
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Marta Skowronska
- Second Department of Neurology, Institute of Psychiatry and Neurology, 9 Sobieskiego Str., 02-957 Warsaw, Poland
| | - Iwona Kurkowska-Jastrzębska
- Second Department of Neurology, Institute of Psychiatry and Neurology, 9 Sobieskiego Str., 02-957 Warsaw, Poland
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, 9 Sobieskiego Str., 02-957 Warsaw, Poland
| |
Collapse
|
16
|
Ziemssen T, Smolinski L, Członkowska A, Akgun K, Antos A, Bembenek J, Kurkowska-Jastrzębska I, Przybyłkowski A, Skowrońska M, Redzia-Ogrodnik B, Litwin T. Serum neurofilament light chain and initial severity of neurological disease predict the early neurological deterioration in Wilson's disease. Acta Neurol Belg 2022:10.1007/s13760-022-02091-z. [PMID: 36098934 PMCID: PMC9469052 DOI: 10.1007/s13760-022-02091-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/01/2022] [Indexed: 12/03/2022]
Abstract
Background In Wilson’s disease (WD), early neurological deterioration after treatment initiation is associated with poor outcomes; however, data on this phenomenon are limited. Our study analysed the frequency and risk factors of early neurological deterioration in WD. Methods Early neurological deterioration, within 6 months from diagnosis, was defined based on the Unified Wilson’s Disease Rating Scale (UWDRS): any increase in part II or an increase of ≥ 4 in part III. In total, 61 newly diagnosed WD patients were included. UWDRS scores, brain magnetic resonance imaging (MRI) scores, copper metabolism parameters, treatment type and serum neuro-filament light chain (sNfL) concentrations at diagnosis were analysed as potential risk factors of early deterioration. Results Early neurological deterioration was observed in 16.3% of all WD patients; all cases of worsening occurred in the neurological phenotype (27.7%). Higher scores were seen in those who deteriorated compared with those who did not for UWDRS part II (4.3 ± 5.0 vs 2.0 ± 5.9; p < 0.05), UWDRS part III (21.5 ± 14.1 vs 9.3 ± 16.4; p < 0.01) and MRI-assessed chronic damage (3.2 ± 1.6 vs 1.4 ± 2.2; p = 0.006); all these variables indicated the initial severity of neurological disease. Pre-treatment sNfL concentrations were significantly higher in patients who deteriorated compared with those who did not (33.2 ± 23.5 vs 27.6 ± 62.7 pg/mL; p < 0.01). In univariate logistic regression amongst all patients, chronic damage MRI scores, UWDRS part III scores and sNfL concentrations predicated early deterioration. In the neurological WD, only sNFL were a significant predictor. In bivariate logistic regression amongst all patients, sNfL remained the only significant predictor of deterioration when corrected for MRI scores. Conclusion sNfL concentrations are a promising biomarker of the risk of early neurological deterioration in WD.
Collapse
Affiliation(s)
- Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Clinic Carl Gustav Carus and Dresden University of Technology, Dresden, Germany
| | - Lukasz Smolinski
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland
| | - Anna Członkowska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland
| | - Katja Akgun
- Center of Clinical Neuroscience, Department of Neurology, University Clinic Carl Gustav Carus and Dresden University of Technology, Dresden, Germany
| | - Agnieszka Antos
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland
| | - Jan Bembenek
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland
| | - Iwona Kurkowska-Jastrzębska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Marta Skowrońska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland
| | | | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland.
| |
Collapse
|
17
|
Rędzia-Ogrodnik B, Członkowska A, Bembenek J, Antos A, Kurkowska-Jastrzębska I, Skowrońska M, Smoliński Ł, Litwin T. Brain magnetic resonance imaging and severity of neurological disease in Wilson's disease - the neuroradiological correlations. Neurol Sci 2022; 43:4405-4412. [PMID: 35275318 DOI: 10.1007/s10072-022-06001-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/06/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Wilson's disease (WD) is a genetic disorder with pathological copper accumulation and associated clinical symptoms in various organs, particularly the liver and brain. Neurological disease is assessed with the clinical Unified Wilson's Disease Rating Scale (UWDRS). There is a lack of quantitative objective markers evaluating brain involvement. Recently, a semiquantitative brain magnetic resonance imaging (MRI) scale has been proposed, which combines acute toxicity and chronic damage measures into a total score. The relationship between MRI brain pathology and the MRI scale with disease form and neurological severity was studied in a large cohort. METHODS We retrospectively assessed 100 newly diagnosed treatment-naïve patients with WD with respect to brain MRI pathology and MRI scores (acute toxicity, chronic damage, and total) and analyzed the relationship with disease form and UWDRS part II (functional impairment) and part III (neurological deficits) scores. RESULTS Most patients had the neurological form of WD (55%) followed by hepatic (31%) and presymptomatic (14%). MRI examination revealed WD-typical abnormalities in 56% of patients, with higher pathology rates in neurological cases (83%) than in hepatic (29%) and presymptomatic (7%) cases. UWDRS part II and III scores correlated with the MRI acute toxicity score (r = 0.55 and 0.55, respectively), chronic damage score (r = 0.39 and 0.45), and total score (0.45 and 0.52) (all P < 0.01). CONCLUSIONS Brain MRI changes may be present even in patients without neurological symptoms, although not frequently. The semiquantitative MRI scale correlated with the UWDRS and appears to be a complementary tool for severity of brain injury assessment in WD patients.
Collapse
Affiliation(s)
| | - Anna Członkowska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland
| | - Jan Bembenek
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland
| | - Agnieszka Antos
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland
| | - Iwona Kurkowska-Jastrzębska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland
| | - Marta Skowrońska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland
| | - Łukasz Smoliński
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland.
| |
Collapse
|
18
|
Litwin T, Bembenek J, Antos A, Przybyłkowski A, Skowrońska M, Kurkowska-Jastrzębska I, Członkowska A. Liver transplantation as a treatment for Wilson's disease with neurological presentation: a systematic literature review. Acta Neurol Belg 2022; 122:505-518. [PMID: 35080708 PMCID: PMC8986686 DOI: 10.1007/s13760-022-01872-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/13/2022] [Indexed: 12/15/2022]
Abstract
Introduction Wilson’s disease (WD) is a potentially treatable, genetic disorder of copper metabolism, with survival similar to healthy populations if controlled. However, in almost 50% of WD patients, neurological symptoms persist despite treatment, and in up to 10% of patients, neurological deterioration is irreversible. International guidelines on WD treatment do not recommend liver transplantation (LT) as a treatment for neurological symptoms in WD. However, such treatment has been assessed in retrospective analyses, case and series reports. We aimed to systematically assess all available evidence on the effectiveness and safety of LT in WD patients with neurological presentation. Methods This systematic literature review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Studies were identified by searching the PubMed database (up to 6 April 2021) and by screening reference lists. Results Based on the systematic literature review, 48 articles were identified, showing outcomes of LT in 302 WD patients with neurological symptoms. Of these patients, major improvement was found in 215 cases (71.2%), with no difference in neurological status before and after LT in 21 cases (6.9%). There were 29 deaths (9.6%), neurological worsening in 24 cases (7.9%), and 13 cases (4.3%) were lost to follow-up. Conclusions The results suggest that LT is a promising method of WD management in patients with severe, neurological symptoms, particularly if the patient has not responded to pharmacological de-coppering treatment. Further studies of LT in these patients are warranted. Supplementary Information The online version contains supplementary material available at 10.1007/s13760-022-01872-w.
Collapse
|
19
|
Ziemssen T, Akgun K, Członkowska A, Antos A, Bembenek J, Kurkowska-Jastrzębska I, Przybyłkowski A, Skowrońska M, Smolinski L, Litwin T. Serum Neurofilament Light Chain as a Biomarker of Brain Injury in Wilson's Disease: Clinical and Neuroradiological Correlations. Mov Disord 2022; 37:1074-1079. [PMID: 35114010 DOI: 10.1002/mds.28946] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Clinical scales and neuroimaging are used to monitor nervous system injury in Wilson's disease, while data on serum markers are scarce. OBJECTIVE To investigate whether serum concentrations of neurofilament light chain (sNfL) correlate with brain injury in Wilson's disease patients. METHODS In 61 treatment-naïve patients, the Unified Wilson's Disease Rating Scale and a validated semiquantitative brain magnetic resonance imaging scale were compared with concentrations of sNfL. RESULTS Concentrations of sNfL were significantly higher in patients with neurological disease compared with patients presenting with other forms (39.7 ± 73.4 pg/mL vs. 13.3 ± 9.2 pg/mL; P < 0.01). Moreover, the sNfL concentration positively correlated with neurological severity scores and with acute and chronic brain damage based on the neuroimaging scale. CONCLUSIONS Neurofilament light chain concentrations may be used as a marker of brain injury in Wilson's disease, in addition to the clinical and neuroimaging disease severity scales. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Clinic Carl Gustav Carus & Dresden University of Technology, Dresden, Germany
| | - Katja Akgun
- Center of Clinical Neuroscience, Department of Neurology, University Clinic Carl Gustav Carus & Dresden University of Technology, Dresden, Germany
| | - Anna Członkowska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Agnieszka Antos
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Jan Bembenek
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Marta Skowrońska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Lukasz Smolinski
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
20
|
Tang S, Bai L, Duan Z, Zheng S. Stem Cells Treatment for Wilson Disease. Curr Stem Cell Res Ther 2022; 17:712-719. [PMID: 34615454 DOI: 10.2174/1574888x16666211006111556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 11/22/2022]
Abstract
Wilson Disease (WD) is a copper excretion disorder, mainly caused by mutations in the ATP7B gene. Pharmacological therapies and liver transplantation are currently the main treatment methods for WD, but they face problems such as drug treatment compliance, adverse reactions, and shortage of liver donors. Stem cell therapy of WD may correct abnormal copper metabolism permanently, which is the focus of current research. In this review, we summarized the latest research on stem cells treatment for WD, as well as current challenges and future expectations.
Collapse
Affiliation(s)
- Shan Tang
- The First Unit, Department of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Li Bai
- The Fourth Unit, Department of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Liver Failure and Artificial Liver Treatment Research, China
| | - Zhongping Duan
- The Fourth Unit, Department of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Sujun Zheng
- The First Unit, Department of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Ott P, Ala A, Askari FK, Czlonkowska A, Hilgers R, Poujois A, Roberts EA, Sandahl TD, Weiss KH, Ferenci P, Schilsky ML. Designing Clinical Trials in Wilson's Disease. Hepatology 2021; 74:3460-3471. [PMID: 34320232 PMCID: PMC9291486 DOI: 10.1002/hep.32074] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Wilson's disease (WD) is an autosomal-recessive disorder caused by ATP7B gene mutations leading to pathological accumulation of copper in the liver and brain. Adoption of initial treatments for WD was based on empirical observations. These therapies are effective, but there are still unmet needs for which treatment modalities are being developed. An increase of therapeutical trials is anticipated. APPROACH AND RESULTS The first Wilson Disease Aarhus Symposium (May 2019) included a workshop on randomized clinical trial design. The authors of the article were organizers or presented during this workshop, and this article presents their consensus on the design of clinical trials for WD, addressing trial population, treatment comparators, inclusion and exclusion criteria, and treatment endpoints. To achieve adequate recruitment of patients with this rare disorder, the study groups should include all clinical phenotypes and treatment-experienced as well as treatment-naïve patients. CONCLUSIONS The primary study endpoint should be clinical or a composite endpoint until appropriate surrogate endpoints are validated. Standardization of clinical trials will permit pooling of data and allow for better treatment comparisons, as well as reduce the future numbers of patients needed per trial.
Collapse
Affiliation(s)
- Peter Ott
- Department of Hepatology and GastroenterologyAarhus UniversityAarhusDenmark
| | - Aftab Ala
- Department of Gastroenterology and HepatologyThe Royal Surrey NHS Foundation TrustGuildfordUnited Kingdom
- Department of Clinical and Experimental MedicineUniversity of SurreyGuildfordUnited Kingdom
- Institute of Liver StudiesKing’s College HospitalLondonUnited Kingdom
| | | | - Anna Czlonkowska
- Second Department of NeurologyInstitute of Psychiatry and NeurologyWarsawPoland
| | | | - Aurélia Poujois
- Neurology Department and National Reference Centre for Wilson’s DiseaseRothschild Foundation HospitalParisFrance
| | - Eve A. Roberts
- Departments of Paediatrics, Medicine, and Pharmacology and ToxicologyUniversity of TorontoTorontoOntarioCanada
| | | | - Karl Heinz Weiss
- Salem Medical CenterHeidelbergGermany
- Department of Internal MedicineIV at University Hospital HeidelbergHeidelbergGermany
| | - Peter Ferenci
- Department of Gastroenterology and HepatologyMedical University of ViennaViennaAustria
| | - Michael L. Schilsky
- Departments of Medicine and SurgeryYale University Medical CenterNew HavenCTUSA
| |
Collapse
|
22
|
Metsla K, Kirss S, Laks K, Sildnik G, Palgi M, Palumaa T, Tõugu V, Palumaa P. α-Lipoic Acid Has the Potential to Normalize Copper Metabolism, Which Is Dysregulated in Alzheimer's Disease. J Alzheimers Dis 2021; 85:715-728. [PMID: 34864665 DOI: 10.3233/jad-215026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is an age-dependent progressive neurodegenerative disorder and the most common cause of dementia. The treatment and prevention of AD present immense yet unmet needs. One of the hallmarks of AD is the formation of extracellular amyloid plaques in the brain, composed of amyloid-β (Aβ) peptides. Besides major amyloid-targeting approach there is the necessity to focus also on alternative therapeutic strategies. One factor contributing to the development of AD is dysregulated copper metabolism, reflected in the intracellular copper deficit and excess of extracellular copper. OBJECTIVE In the current study, we follow the widely accepted hypothesis that the normalization of copper metabolism leads to the prevention or slowing of the disease and search for new copper-regulating ligands. METHODS We used cell culture, ICP MS, and Drosophila melanogaster models of AD. RESULTS We demonstrate that the natural intracellular copper chelator, α-lipoic acid (LA) translocates copper from extracellular to intracellular space in an SH-SY5Y-based neuronal cell model and is thus suitable to alleviate the intracellular copper deficit characteristic of AD neurons. Furthermore, we show that supplementation with LA protects the Drosophila melanogaster models of AD from developing AD phenotype by improving locomotor activity of fruit fly with overexpression of human Aβ with Iowa mutation in the fly brain. In addition, LA slightly weakens copper-induced smooth eye phenotype when amyloid-β protein precursor (AβPP) and beta-site AβPP cleaving enzyme 1 (BACE1) are overexpressed in eye photoreceptor cells. CONCLUSION Collectively, these results provide evidence that LA has the potential to normalize copper metabolism in AD.
Collapse
Affiliation(s)
- Kristel Metsla
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Sigrid Kirss
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Katrina Laks
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Gertrud Sildnik
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Mari Palgi
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Teele Palumaa
- East Tallinn Central Hospital Eye Clinic, Tallinn, Estonia
| | - Vello Tõugu
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Peep Palumaa
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
23
|
Kasztelan-Szczerbinska B, Cichoz-Lach H. Wilson's Disease: An Update on the Diagnostic Workup and Management. J Clin Med 2021; 10:5097. [PMID: 34768617 PMCID: PMC8584493 DOI: 10.3390/jcm10215097] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023] Open
Abstract
Wilson's disease (WD) is a rare autosomal recessive disorder of hepatocellular copper deposition. The diagnostic approach to patients with WD may be challenging and is based on a complex set of clinical findings that derive from patient history, physical examination, as well as laboratory and imaging testing. No single examination can unequivocally confirm or exclude the disease. Timely identification of signs and symptoms using novel biomarkers and modern diagnostic tools may help to reduce treatment delays and improve patient prognosis. The proper way of approaching WD management includes, firstly, early diagnosis and prompt treatment introduction; secondly, careful and lifelong monitoring of patient compliance and strict adherence to the treatment; and, last but not least, screening for adverse effects and evaluation of treatment efficacy. Liver transplantation is performed in about 5% of WD patients who present with acute liver failure at first disease presentation or with signs of decompensation in the course of liver cirrhosis. Increasing awareness of this rare inherited disease among health professionals, emphasizing their training to consider early signs and symptoms of the illness, and strict monitoring are vital strategies for the patient safety and efficacy of WD therapy.
Collapse
Affiliation(s)
- Beata Kasztelan-Szczerbinska
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland;
| | | |
Collapse
|
24
|
Socha P, Czlonkowska A, Janczyk W, Litwin T. Wilson's disease- management and long term outcomes. Best Pract Res Clin Gastroenterol 2021; 56-57:101768. [PMID: 35331405 DOI: 10.1016/j.bpg.2021.101768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/01/2021] [Accepted: 10/08/2021] [Indexed: 01/31/2023]
Abstract
Wilson's disease (WD) is an autosomal recessive genetic disorder of copper metabolism leading to liver or brain injury due to accumulation of copper. Diagnosis is based on: clinical features, biochemical tests including plasma ceruloplasmin concentration, 24h urinary copper excretion, copper content in the liver, and molecular analysis. Pharmacological therapy comprises chelating agents (penicillamine, trientine) and zinc salts which seem to be very effective. Still, poor compliance is a major problem. Adolescents and patients with psychiatric disorders usually have problems with adherence to treatment. As transition is a vulnerable period transition ''training'' should start before the planned transfer, preferably already in early adolescence in cooperation between adult and pediatric clinics. Response to treatment is assessed based on physical examination, normal liver function tests and monitoring of copper metabolism markers. Liver transplantation has a well-defined role in Wilsonian acute hepatic failure according to the prognostic score. The long-term survival in WD patients seems to be very similar as for the general population if disease is early diagnosed and correctly treated. WD patients with a longer delay from diagnosis to therapy and who present with neurological and psychiatric symptoms have worse quality of life.
Collapse
Affiliation(s)
- Piotr Socha
- The Children's Memorial Health Institute, Warsaw, Poland.
| | | | | | - Tomasz Litwin
- Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
25
|
Aaraj S, Khan SA, Ali N, Iqbal Malik MI, Dar FS. Wilson Disease in Children; Chelation Therapy or Liver Transplantation? A 10-Year Experience from Pakistan. Ann Transplant 2021; 26:e932606. [PMID: 34608110 PMCID: PMC8501894 DOI: 10.12659/aot.932606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Wilson disease (WD) is a rare genetic disorder with vast clinical presentations and a higher incidence in areas where consanguinity is common. Most patients can be treated with oral chelation, but some require advanced surgical intervention, like liver transplantation (LT). This study aims to review outcomes of WD patients presenting to a tertiary care center over a period of 10 years. Material/Methods This retrospective analysis was conducted at Shifa International Hospital, Islamabad, Pakistan. Patients <18 years who were diagnosed with WD per ESPAGHAN guidelines from 2010 to 2020 were included. Presentation, diagnosis, treatment, and LT and its complications were recorded. Follow-ups were recorded, and patients were contacted by phone in cases of interrupted follow-up. Frequencies and percentages of variables were calculated. Results A total of 48 patients with WD were identified. Symptomatic disease was seen in 45 patients, with 3 diagnosed on screening. The hepatic form was common (62.2%). Mean age at diagnosis was 9.74 (range 5–17) years, 28 (58.3%) were male, while 17 (35.4%) were female. Urinary copper was increased in all patients (645.82±528.40). Oral treatment with penicillamine was given to 34 (75.5%) patients; 4 (8.9%) died while on oral treatment. Living donor LT was performed in 11 (22.9%) patients, who had a mean King’s Wilson index of 11 (range, 6–14). Currently, all LT patients are alive, with maximum graft survival of 7 years. Conclusions LT offers a promising treatment with good outcomes in pediatric WD. However, timely diagnosis and management with oral chelation therapy can prolong survival without LT.
Collapse
Affiliation(s)
- Sahira Aaraj
- Department of Pediatrics, Shifa Tameer-e-Millat University, Shifa College of Medicine, Islamabad, Pakistan
| | - Sabeen Abid Khan
- Department of Pediatrics, Shifa Tameer-e-Millat University, Shifa College of Medicine, Islamabad, Pakistan
| | - Naurin Ali
- Department of Pediatrics, Shifa Tameer-e-Millat University, Shifa College of Medicine, Islamabad, Pakistan
| | - Munir I Iqbal Malik
- Department of Pediatrics, Shifa Tameer-e-Millat University, Shifa College of Medicine, Shifa International Hospital, Islamabad, Pakistan
| | - Faisal Saud Dar
- Department of Gastroenterology and Liver Transplant, Shifa Tameer-e-Millat University, Shifa College of Medicine, Shifa International Hospital, Islamabad, Pakistan
| |
Collapse
|
26
|
Kumar V, Singh AP, Wheeler N, Galindo CL, Kim JJ. Safety profile of D-penicillamine: a comprehensive pharmacovigilance analysis by FDA adverse event reporting system. Expert Opin Drug Saf 2021; 20:1443-1450. [PMID: 34259127 DOI: 10.1080/14740338.2021.1956460] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND D-penicillamine (D-pen) is a copper-chelating drug and has immune-modulatory properties. D-pen is used to treat rheumatoid arthritis, Wilson's disease, and kidney stones (cystinuria). However, associated adverse events (AEs) of D-pen treatment are frequent and often serious. Therefore, a comprehensive assessment of the safety profile of D-pen is urgently needed. RESEARCH DESIGN AND METHODS We identified and analyzed AEs associated with D-pen between April-1970 to July-2020 from the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS) databases and calculated the reported odds ratio (ROR) with 95% confidence intervals (CI) using the disproportionality analysis. RESULTS A total of 9,150,234 AEs related to drugs were reported in the FAERS database, of which 542 were related to D-Pen. We report that D-pen was associated with dystonia (ROR: 20.52; 95%CI: 12.46-33.80), drug hypersensitivity (ROR: 5.42; 95%CI: 3.72-7.90), pancytopenia (ROR: 10.20; 95%CI: 5.61-18.56), joint swelling (ROR: 9.07; 95%CI: 5.51-14.94), renal-impairment (ROR: 6.68; 95%CI: 3.67-12.15), dysphagia (ROR: 5.05; 95%CI: 2.76-8.89), aggravation of condition (ROR: 4.16; 95%CI: 2.60-6.67), congestive cardiac failure (ROR: 4.04; 95%CI: 2.22-7.35), peripheral edema (ROR: 3.77; 95%CI: 2.17-6.55), tremor (ROR: 3.46; 95%CI: 2.00-6.01), pyrexia (ROR: 3.46; 95%CI: 2.00-6.01), and gait disturbance (ROR: 2.41; 95%CI: 1.29-4.52). CONCLUSIONS Patients taking D-pen require close monitoring of renal function, blood counts, immunity, liver, cardiac function, and neurological function. D-pen suppresses immune system which maximizes the risk of infection.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Anand Prakash Singh
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Nicholas Wheeler
- Department of Biology, Western Kentucky University, Bowling Green, KY, USA
| | - Cristi L Galindo
- Department of Biology, Western Kentucky University, Bowling Green, KY, USA
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
27
|
Zhou ZH, Wu YF, Yan Y, Liu AQ, Yu QY, Peng ZX, Wang GQ, Hong MF. Persistence with medical treatment for Wilson disease in China based on a single center's survey research. Brain Behav 2021; 11:e02168. [PMID: 33949793 PMCID: PMC8213922 DOI: 10.1002/brb3.2168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/08/2021] [Accepted: 04/17/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Wilson's disease (WD) is one of the few hereditary diseases that can be successfully treated with medicines. We conduct this survey research to assess treatment persistence among patients with WD and try to identify what factors affect the treatment persistence. METHODS We employed WeChat which is the most popular social software in China to carry out this anonymous questionnaire research. The questionnaire included medication adherence scale. We also collected available medical records related to demographic and clinical characteristics. All the patients were divided into group of persistence with drug treatment (PDT) and nonpersistence with drug treatment (n-PDT). RESULTS We collected 242 qualified questionnaires. Only 66.5% of patients were PDT during the mean 12.6 years of follow-up. In PDT group, better outcomes were observed: improvement (78.3%) and no change (16.1%) versus those in n-PDT (55.6%; and 28.4%, respectively). In PDT group, only nine patients deteriorated (6.8%) in comparison with 13 patients in n-PDT (16.0%). The adverse events (AEs) in PDT group were significantly less than those in n-PDT group. There were no significant differences in clinical type, gender, age, education level, and family knowledge about WD between the two groups. There were significant differences in AEs and family position toward treatment. CONCLUSION Medication Adherence of Chinese WD patients was low. One third of the patients (33.5%) were unable to PDT, and it had an important negative effect on clinical outcome. AEs and family support had an important impact on treatment persistence.
Collapse
Affiliation(s)
- Zhi-Hua Zhou
- Department of Neurology, The first affiliated hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yun-Fan Wu
- The Second School of Clinical Medicine, Southern Medical University, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yan Yan
- Wilson Disease Centre, Hospital Affiliated to Institute of Neurology, Anhui University of Chinese Traditional Medicine, Hefei, China
| | - Ai-Qun Liu
- Department of Neurology, The first affiliated hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing-Yun Yu
- Department of Neurology, The first affiliated hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhong-Xing Peng
- Department of Neurology, The first affiliated hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Gong-Qiang Wang
- Wilson Disease Centre, Hospital Affiliated to Institute of Neurology, Anhui University of Chinese Traditional Medicine, Hefei, China
| | - Ming-Fan Hong
- Department of Neurology, The first affiliated hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
28
|
Zhang J, Tang LL, Li LY, Cui SW, Jin S, Chen HZ, Yang WM, Xie DJ, Yu GR. Gandouling Tablets Inhibit Excessive Mitophagy in Toxic Milk (TX) Model Mouse of Wilson Disease via Pink1/Parkin Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:3183714. [PMID: 33456485 PMCID: PMC7787754 DOI: 10.1155/2020/3183714] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Gandouling (GDL) tablet is a Chinese patent medicine approved by the National Medical Product Administration, which is used to treat Wilson disease (WD) in China. In this study, we aimed to investigate the effects of GDL on mitophagy in the hippocampus in the toxic milk (TX) mouse model of WD. METHODS Mice were randomly divided into the following four groups: control, Wilson (model group), D-penicillamine (DPA), and GDL groups. The animal behaviors were evaluated by the water maze experiment, traction test, and pole test. Transmission electron microscopy was used for the detection of mitochondrion structure. An enzyme-linked immunosorbent assay (ELISA) was performed for the analysis of the changes in liver function. Colocalization of mitophagy-related proteins was detected by fluorescence microscopy. Western blotting (WB) and reverse transcription-polymerase chain reaction (RT-PCR) were conducted for the detection of protein expression and mRNA levels, respectively. RESULTS Significant reduction in neurological impairments was observed in the WD model group. All of these results were significantly reversed by GDL intervention. Compared with the levels in the Wilson group, the levels of alanine aminotransferase (ALT), aspartate transaminase (AST), total bilirubin (TBIL), and albumin (ALB) changed obviously. Colocalization between mitophagy-related proteins pink1, parkin, and mitochondria was changed significantly. The mitophagy-related mRNA (pink1, parkin, and LC3II) and protein expression levels (pink1, parkin, and the rate of LC3II/LC3I) were decreased significantly, while p62 was remarkably increased after GDL intervention. CONCLUSION Our findings indicated that the neuroprotective mechanism of GDL may occur via the inhibition of excessive mitophagy through the regulation of the pink1/parkin pathway in the TX mouse brain of WD.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Lu-Lu Tang
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Liang-Yong Li
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Shen-Wei Cui
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Shan Jin
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Huai-Zhen Chen
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Wen-Ming Yang
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Dao-Jun Xie
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Gu-Ran Yu
- Department of Neurology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
29
|
Rahman MA, Glasgow JN, Nadeem S, Reddy VP, Sevalkar RR, Lancaster JR, Steyn AJC. The Role of Host-Generated H 2S in Microbial Pathogenesis: New Perspectives on Tuberculosis. Front Cell Infect Microbiol 2020; 10:586923. [PMID: 33330130 PMCID: PMC7711268 DOI: 10.3389/fcimb.2020.586923] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
For centuries, hydrogen sulfide (H2S) was considered primarily as a poisonous gas and environmental hazard. However, with the discovery of prokaryotic and eukaryotic enzymes for H2S production, breakdown, and utilization, H2S has emerged as an important signaling molecule in a wide range of physiological and pathological processes. Hence, H2S is considered a gasotransmitter along with nitric oxide (•NO) and carbon monoxide (CO). Surprisingly, despite having overlapping functions with •NO and CO, the role of host H2S in microbial pathogenesis is understudied and represents a gap in our knowledge. Given the numerous reports that followed the discovery of •NO and CO and their respective roles in microbial pathogenesis, we anticipate a rapid increase in studies that further define the importance of H2S in microbial pathogenesis, which may lead to new virulence paradigms. Therefore, this review provides an overview of sulfide chemistry, enzymatic production of H2S, and the importance of H2S in metabolism and immunity in response to microbial pathogens. We then describe our current understanding of the role of host-derived H2S in tuberculosis (TB) disease, including its influences on host immunity and bioenergetics, and on Mycobacterium tuberculosis (Mtb) growth and survival. Finally, this review discusses the utility of H2S-donor compounds, inhibitors of H2S-producing enzymes, and their potential clinical significance.
Collapse
Affiliation(s)
| | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sajid Nadeem
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vineel P Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ritesh R Sevalkar
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jack R Lancaster
- Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Adrie J C Steyn
- Africa Health Research Institute, Durban, South Africa.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States.,Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
30
|
Castoldi F, Hyvönen MT, Durand S, Aprahamian F, Sauvat A, Malik SA, Baracco EE, Vacchelli E, Opolon P, Signolle N, Lefevre D, Bossut N, Eisenberg T, Dammbrueck C, Pendl T, Kremer M, Lachkar S, Einer C, Michalke B, Zischka H, Madeo F, Keinänen TA, Maiuri MC, Pietrocola F, Kroemer G. Chemical activation of SAT1 corrects diet-induced metabolic syndrome. Cell Death Differ 2020; 27:2904-2920. [PMID: 32376874 PMCID: PMC7494776 DOI: 10.1038/s41418-020-0550-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
The pharmacological targeting of polyamine metabolism is currently under the spotlight for its potential in the prevention and treatment of several age-associated disorders. Here, we report the finding that triethylenetetramine dihydrochloride (TETA), a copper-chelator agent that can be safely administered to patients for the long-term treatment of Wilson disease, exerts therapeutic benefits in animals challenged with hypercaloric dietary regimens. TETA reduced obesity induced by high-fat diet, excessive sucrose intake, or leptin deficiency, as it reduced glucose intolerance and hepatosteatosis, but induced autophagy. Mechanistically, these effects did not involve the depletion of copper from plasma or internal organs. Rather, the TETA effects relied on the activation of an energy-consuming polyamine catabolism, secondary to the stabilization of spermidine/spermine N1-acetyltransferase-1 (SAT1) by TETA, resulting in enhanced enzymatic activity of SAT. All the positive effects of TETA on high-fat diet-induced metabolic syndrome were lost in SAT1-deficient mice. Altogether, these results suggest novel health-promoting effects of TETA that might be taken advantage of for the prevention or treatment of obesity.
Collapse
Affiliation(s)
- Francesca Castoldi
- Centre de Recherche des Cordeliers, INSERM U1138, Team "Metabolism, Cancer & Immunity", Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Mervi T Hyvönen
- School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Sylvère Durand
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Fanny Aprahamian
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Allan Sauvat
- Centre de Recherche des Cordeliers, INSERM U1138, Team "Metabolism, Cancer & Immunity", Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Shoaib A Malik
- Centre de Recherche des Cordeliers, INSERM U1138, Team "Metabolism, Cancer & Immunity", Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Biochemistry, Sargodha Medical College, Sargodha, Pakistan
| | - Elisa Elena Baracco
- Centre de Recherche des Cordeliers, INSERM U1138, Team "Metabolism, Cancer & Immunity", Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Erika Vacchelli
- Centre de Recherche des Cordeliers, INSERM U1138, Team "Metabolism, Cancer & Immunity", Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Paule Opolon
- Department of Experimental Pathology, INSERM Unit U981, Gustave Roussy, Université Paris-Sud Saclay, Villejuif, France
| | - Nicolas Signolle
- Department of Experimental Pathology, INSERM Unit U981, Gustave Roussy, Université Paris-Sud Saclay, Villejuif, France
| | - Déborah Lefevre
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Noelie Bossut
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
- NAWI Graz Central Lab Gracia, NAWI Graz, Graz, Austria
| | - Christopher Dammbrueck
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
- NAWI Graz Central Lab Gracia, NAWI Graz, Graz, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
- NAWI Graz Central Lab Gracia, NAWI Graz, Graz, Austria
| | - Margerie Kremer
- Centre de Recherche des Cordeliers, INSERM U1138, Team "Metabolism, Cancer & Immunity", Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sylvie Lachkar
- Centre de Recherche des Cordeliers, INSERM U1138, Team "Metabolism, Cancer & Immunity", Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Claudia Einer
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764, Neuherberg, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764, Neuherberg, Germany
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764, Neuherberg, Germany
- Technical University Munich, School of Medicine, Institute of Toxicology and Environmental Hygiene, Biedersteiner Strasse 29, D-80802, Munich, Germany
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
- NAWI Graz Central Lab Gracia, NAWI Graz, Graz, Austria
| | - Tuomo A Keinänen
- School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, INSERM U1138, Team "Metabolism, Cancer & Immunity", Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Federico Pietrocola
- Department of Bioscience and Nutrition, Karolinska Institute, Huddinge, Sweden.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM U1138, Team "Metabolism, Cancer & Immunity", Sorbonne Université, Université de Paris, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
31
|
Zhang J, Xiao L, Yang W. Combined sodium Dimercaptopropanesulfonate and zinc versus D-penicillamine as first-line therapy for neurological Wilson's disease. BMC Neurol 2020; 20:255. [PMID: 32593295 PMCID: PMC7320536 DOI: 10.1186/s12883-020-01827-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Even though recent research has achieved significant advancement in the development of therapeutic approaches for Wilson's diseases (WD), the current treatment options available for WD are still limited, especially for WD patients with neurological symptoms. This study is intended to compare the therapeutic approaches for WD patients with neurological symptoms receiving either combined sodium 2, 3-dimercapto-1-propane sulfonate (DMPS) and zinc treatment or D-penicillamine (DPA) monotherapy as first-line therapy, and identify the more effective therapeutic approach. METHODS The case records of 158 patients diagnosed with neurological WD were retrospectively analyzed. These patients treated with intravenous DMPS + Zinc and in combination with oral zinc as a maintenance therapy (Group 1) or DPA alone (Group 2) for 1 year. During the period of treatment, the neurological symptoms of the patients were assessed using the Global Assessment Scale (GAS) and Barthel index. The key hematological and biochemical parameters of the patients (such as the levels of aminotransferase, serum ceruloplasmin, 24-h urine copper excretion), as well as adverse effects were recorded and analyzed. RESULTS Ninety-three patients in Group 1, displayed decreased GAS scores and increased Barthel indexes consistently in comparison with the baseline (P < 0.01). Among them, 82 patients (88.2%) exhibited significant neurological improvement after 1 year, while 8 patients (8.6%) experienced neurological deterioration. Among the 65 patients in Group 2, 37 patients (58.5%) exhibited neurological improvements, while 17 patients (26.2%) experienced neurological deterioration after 1-year follow up. Six patients discontinued their treatment midway due to their exacerbating neurological symptoms. A comprehensive comparison of the effectiveness of the two courses of treatment revealed that patients in group 1 demonstrated a higher improvement ratio (P < 0.01) and lower worsening ratio of the neurological symptoms for the patients (P < 0.01) in comparison to the patients in group 2. Meanwhile, renal function, liver enzyme and blood cell counts remained stabilized in group1. CONCLUSIONS This study indicates that the combined therapeutic approach of DPMS and zinc may be a preferred first-line therapy in treating the neurological symptoms of WD, in comparison to the treatment with DPA.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurology, First Affiliated hospital of Anhui University of Traditional Chinese Medicine, Meishan Road 117, Hefei, 230031 China
| | - Lulu Xiao
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002 Jiangsu Province China
| | - Wenming Yang
- Department of Neurology, First Affiliated hospital of Anhui University of Traditional Chinese Medicine, Meishan Road 117, Hefei, 230031 China
| |
Collapse
|
32
|
The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch 2020; 472:1415-1429. [PMID: 32506322 DOI: 10.1007/s00424-020-02412-2] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/13/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Copper is an essential element in cells; it can act as either a recipient or a donor of electrons, participating in various reactions. However, an excess of copper ions in cells is detrimental as these copper ions can generate free radicals and increase oxidative stress. In multicellular organisms, copper metabolism involves uptake, distribution, sequestration, and excretion, at both the cellular and systemic levels. Mammalian enterocytes take in bioavailable copper ions from the diet in a Ctr1-dependent manner. After incorporation, cuprous ions are delivered to ATP7A, which pumps Cu+ from enterocytes into the blood. Copper ions arrive at the liver through the portal vein and are incorporated into hepatocytes by Ctr1. Then, Cu+ can be secreted into the bile or the blood via the Atox1/ATP7B/ceruloplasmin route. In the bloodstream, this micronutrient can reach peripheral tissues and is again incorporated by Ctr1. In peripheral tissue cells, cuprous ions are either sequestrated by molecules such as metallothioneins or targeted to utilization pathways by chaperons such as Atox1, Cox17, and CCS. Copper metabolism must be tightly controlled in order to achieve homeostasis and avoid disorders. A hereditary or acquired copper unbalance, including deficiency, overload, or misdistribution, may cause or aggravate certain diseases such as Menkes disease, Wilson disease, neurodegenerative diseases, anemia, metabolic syndrome, cardiovascular diseases, and cancer. A full understanding of copper metabolism and its roles in diseases underlies the identification of novel effective therapies for such diseases.
Collapse
|
33
|
Han Y, Dong J, Xu C, Rao R, Shu S, Li G, Cheng N, Wu Y, Yang H, Han Y, Zhong K. Application of 9.4T MRI in Wilson Disease Model TX Mice With Quantitative Susceptibility Mapping to Assess Copper Distribution. Front Behav Neurosci 2020; 14:59. [PMID: 32390811 PMCID: PMC7189732 DOI: 10.3389/fnbeh.2020.00059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/26/2020] [Indexed: 01/14/2023] Open
Abstract
In the current study, we used 9.4-tesla magnetic resonance imaging (9.4T MRI) and inductively coupled plasma mass spectrometry (ICP-MS) to investigate the distribution of copper in the brain samples of a murine model of Wilson's disease (WD) following penicillamine (PCA) treatment. We also evaluated if the distribution of copper in the brain samples of mice was correlated with behavioral symptoms. Results from the behavioral experiments showed that 7 days of PCA treatment decreased the total distance traveled in the open field and the number of rearing and climbing instances among the toxic milk (TX) mice as compared with model group. We also observed that the open arm ratio in the elevated plus-maze (EPM) was reduced, escape latency in the Barnes maze test was increased, and avoidance in the open field was enhanced in TX mice following 14 days of PCA treatment as compared with those in untreated TX mice. We found that PCA treatment for 21-28 days improved the cognitive abilities, exploratory behavior, and movement behavior of TX mice. The PCA-treated mice also exhibited varying degrees of magnetic susceptibilities in the cortex, corpus striatum, hippocampus, and amygdaloid nucleus across the treatment period. Low copper concentrations were found in all of the analyzed brain regions of PCA-treated mice after 21-28 days as compared with the model group (P < 0.05). However, copper concentrations were increased in the primary motor cortex and cerebellum at 7 days post-PCA treatment as compared with those in the model group (P < 0.05). After 14 days of PCA treatment, the copper concentrations in the sensorimotor cortex, corpus striatum, hippocampus, and amygdaloid nucleus were higher than those detected without treatment. The results from a Pearson's correlation analysis revealed that there was a significant (P < 0.05) correlation between copper concentrations and magnetic susceptibility in all of the brain regions that were analyzed. Therefore, our results indicate that copper concentration and magnetic susceptibility are associated with alterations in mood-related behavior, recognition memory, and movement behaviors in TX mice that are treated with PCA. The redistribution of copper in the TX mouse brain during PCA treatment may aggravate changes in behavioral performance.
Collapse
Affiliation(s)
- Yongsheng Han
- Hospital Affiliated to the Institute of Neurology Anhui University of TCM, Hefei, China
| | - Jianjian Dong
- Hospital Affiliated to the Institute of Neurology Anhui University of TCM, Hefei, China.,High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, China
| | - Chenchen Xu
- Hospital Affiliated to the Institute of Neurology Anhui University of TCM, Hefei, China
| | - Rao Rao
- Hospital Affiliated to the Institute of Neurology Anhui University of TCM, Hefei, China
| | - Shan Shu
- Hospital Affiliated to the Institute of Neurology Anhui University of TCM, Hefei, China
| | - Guangda Li
- Hospital Affiliated to the Institute of Neurology Anhui University of TCM, Hefei, China
| | - Nan Cheng
- Hospital Affiliated to the Institute of Neurology Anhui University of TCM, Hefei, China
| | - Yun Wu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, China
| | - Hongyi Yang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, China
| | - Yongzhu Han
- Hospital Affiliated to the Institute of Neurology Anhui University of TCM, Hefei, China
| | - Kai Zhong
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, China
| |
Collapse
|
34
|
Baldari S, Di Rocco G, Toietta G. Current Biomedical Use of Copper Chelation Therapy. Int J Mol Sci 2020; 21:1069. [PMID: 32041110 PMCID: PMC7037088 DOI: 10.3390/ijms21031069] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Copper is an essential microelement that plays an important role in a wide variety of biological processes. Copper concentration has to be finely regulated, as any imbalance in its homeostasis can induce abnormalities. In particular, excess copper plays an important role in the etiopathogenesis of the genetic disease Wilson's syndrome, in neurological and neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases, in idiopathic pulmonary fibrosis, in diabetes, and in several forms of cancer. Copper chelating agents are among the most promising tools to keep copper concentration at physiological levels. In this review, we focus on the most relevant compounds experimentally and clinically evaluated for their ability to counteract copper homeostasis deregulation. In particular, we provide a general overview of the main disorders characterized by a pathological increase in copper levels, summarizing the principal copper chelating therapies adopted in clinical trials.
Collapse
Affiliation(s)
- Silvia Baldari
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy; (S.B.); (G.D.R.)
- Department of Medical Surgical Sciences and Biotechnologies, University of Rome “La Sapienza”, C.so della Repubblica 79, 04100 Latina, Italy
| | - Giuliana Di Rocco
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy; (S.B.); (G.D.R.)
| | - Gabriele Toietta
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy; (S.B.); (G.D.R.)
| |
Collapse
|
35
|
Litwin T, Dusek P, Skowrońska M, Członkowska A. Treatment of Wilson’s disease – an update. Expert Opin Orphan Drugs 2019. [DOI: 10.1080/21678707.2019.1638248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Tomasz Litwin
- 2nd Department of Neurology, Institute Psychiatry and Neurology, Warsaw, Poland
| | - Petr Dusek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Marta Skowrońska
- 2nd Department of Neurology, Institute Psychiatry and Neurology, Warsaw, Poland
| | - Anna Członkowska
- 2nd Department of Neurology, Institute Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
36
|
Laser Ablation Inductively Coupled Plasma Spectrometry: Metal Imaging in Experimental and Clinical Wilson Disease. INORGANICS 2019. [DOI: 10.3390/inorganics7040054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Wilson disease is an inherited disorder caused by mutations in the ATP7B gene resulting in copper metabolism disturbances. As a consequence, copper accumulates in different organs with most common presentation in liver and brain. Chelating agents that nonspecifically chelate copper, and promote its urinary excretion, or zinc salts interfering with the absorption of copper from the gastrointestinal tract, are current medications. Also gene therapy, restoring ATP7B gene function or trials with bis-choline tetrathiomolybdate (WTX101) removing excess copper from intracellular hepatic copper stores and increasing biliary copper excretion, is promising in reducing body’s copper content. Therapy efficacy is mostly evaluated by testing for evidence of liver disease and neurological symptoms, hepatic synthetic functions, indices of copper metabolisms, urinary copper excretions, or direct copper measurements. However, several studies conducted in patients or Wilson disease models have shown that not only the absolute concentration of copper, but also its spatial distribution within the diseased tissue is relevant for disease severity and outcome. Here we discuss laser ablation inductively coupled plasma spectrometry imaging as a novel method for accurate determination of trace element concentrations with high diagnostic sensitivity, spatial resolution, specificity, and quantification ability in experimental and clinical Wilson disease specimens.
Collapse
|