1
|
Kothawade S, Padwal V. Cutting-edge 3D printing in immunosensor design for early cancer detection. Mikrochim Acta 2024; 192:42. [PMID: 39738752 DOI: 10.1007/s00604-024-06880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025]
Abstract
Cancer is a major cause of death globally, and early detection is a key to improving outcomes. Traditional diagnostic methods have limitations such as being invasive and lacking sensitivity. Immunosensors, which detect cancer biomarkers using antibodies, offer a solution with high sensitivity and selectivity. When combined with 3D printing, these immunosensors can be customized to detect specific cancer markers, creating rapid, cost-effective, and scalable diagnostic tools. The article reviews the principles behind immunosensors, different 3D fabrication methods such as Fused Deposition Modeling (FDM) and Stereolithography (SLA), and discusses how functionalization strategies, such as surface modifications, can enhance the sensitivity of these devices. The integration of 3D printing allows for the creation of complex sensor structures, offering advantages such as customization, rapid prototyping, and multi-material printing. These advancements make immunosensors arrays highly promising for early cancer detection, tumor profiling, and personalized medicine. The article also explores challenges like scalability, material biocompatibility, and the need for clinical validation. Future perspectives suggest the potential of integrating nanomaterials, multiplexed detection, and wearable technology to further improve the performance and accessibility of these diagnostic tools.
Collapse
Affiliation(s)
- Sachin Kothawade
- Department of Pharmaceutics, SCSSS's Sitabai, Thite College of Pharmacy, Shirur-412210, Dist-Pune, Maharashtra, India.
| | - Vijaya Padwal
- Department of Pharmaceutics, SCSSS's Sitabai, Thite College of Pharmacy, Shirur-412210, Dist-Pune, Maharashtra, India
| |
Collapse
|
2
|
Zhang J, Li C, An Y, Wang B, Liang G. Comparative analysis of SDC2 and SEPT9 methylation tests in the early detection of colorectal cancer: a systematic review and meta-analysis. Front Med (Lausanne) 2024; 11:1460233. [PMID: 39717169 PMCID: PMC11666333 DOI: 10.3389/fmed.2024.1460233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/18/2024] [Indexed: 12/25/2024] Open
Abstract
Purpose This meta-analysis aimed to evaluate the comparative diagnostic efficacy of Syndecan-2(SDC2) and Septin-9(SEPT9) in the early detection of colorectal cancer (CRC). Methods We searched PubMed, Embase, Web of Science, and Cochrane Library databases to identify available publications up to October 2024. A direct head-to-head comparator analysis were performed using the random-effects model. Subgroup analyses and corresponding meta-regressions focusing on sample source, number of patients, region, study design, and methylated detection methods were conducted. Intra-group and inter-group heterogeneity were assessed by Cochrane Q and I2 statistics. Results Eleven articles involving 1,913 CRC patients and 2,851 healthy people were included in the meta-analysis. The sensitivity of SDC2 was similar compared to SEPT9 for CRC patients (0.67 vs. 0.71, p = 0.61), SDC2 has a similar specificity in comparison to SEPT9 for CRC patients (0.90 vs. 0.91, p = 0.86). In subgroup analysis, stool SDC2 was similar compared to stool SEPT9 for CRC patients (sensitivity of 0.81 vs. 0.80, p = 0.92; specificity of 0.93 vs. 0.91, p = 0.73), plasma SDC2 was similar compared to plasma SEPT9 for CRC patients (sensitivity of 0.57 vs. 0.72, p = 0.27; specificity of 0.90 vs. 0.89, p = 0.89). In the subgroup analysis of clinical staging for colorectal cancer (CRC), the results indicate that there is no significant difference in sensitivity between the two markers for both early (0.7 vs. 0.67, p = 0.64) and advanced (0.76 vs. 0.70, p = 0.23) stages of CRC. Conclusion In our head-to-head comparison meta-analysis, it was found that SDC2 and SEPT9 have similar sensitivity and specificity in the diagnosis of colorectal cancer. However, this result may be influenced by high heterogeneity and further confirmation of this finding is needed through large-scale prospective studies.
Collapse
Affiliation(s)
| | | | | | | | - Guowei Liang
- Department of Clinical Laboratory of Aerospace Center Hospital, Beijing, China
| |
Collapse
|
3
|
Li L, Sun Y. Circulating tumor DNA methylation detection as biomarker and its application in tumor liquid biopsy: advances and challenges. MedComm (Beijing) 2024; 5:e766. [PMID: 39525954 PMCID: PMC11550092 DOI: 10.1002/mco2.766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 11/16/2024] Open
Abstract
Circulating tumor DNA (ctDNA) methylation, an innovative liquid biopsy biomarker, has emerged as a promising tool in early cancer diagnosis, monitoring, and prognosis prediction. As a noninvasive approach, liquid biopsy overcomes the limitations of traditional tissue biopsy. Among various biomarkers, ctDNA methylation has garnered significant attention due to its high specificity and early detection capability across diverse cancer types. Despite its immense potential, the clinical application of ctDNA methylation faces substantial challenges pertaining to sensitivity, specificity, and standardization. In this review, we begin by introducing the basic biology and common detection techniques of ctDNA methylation. We then explore recent advancements and the challenges faced in the clinical application of ctDNA methylation in liquid biopsies. This includes progress in early screening and diagnosis, identification of clinical molecular subtypes, monitoring of recurrence and minimal residual disease (MRD), prediction of treatment response and prognosis, assessment of tumor burden, and determination of tissue origin. Finally, we discuss the future perspectives and challenges of ctDNA methylation detection in clinical applications. This comprehensive overview underscores the vital role of ctDNA methylation in enhancing cancer diagnostic accuracy, personalizing treatments, and effectively monitoring disease progression, providing valuable insights for future research and clinical practice.
Collapse
Affiliation(s)
- Lingyu Li
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for CancersNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Yingli Sun
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for CancersNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| |
Collapse
|
4
|
Wang Z, He Z, Lin R, Feng Z, Li X, Sui X, Gu L, Xia T, Zhou D, Zhao B, Li Y, Li Z, Bai Y. Evaluation of a plasma cell-free DNA methylation test for colorectal cancer diagnosis: a multicenter clinical study. BMC Med 2024; 22:436. [PMID: 39379942 PMCID: PMC11462859 DOI: 10.1186/s12916-024-03662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND A blood-based diagnostic test is a promising strategy for colorectal cancer (CRC). The MethyDT test (IColohunter), which detects methylation levels of NTMT1 and MAP3K14-AS1, exhibited potential in discriminating CRC, but its clinical performance needs to be validated in large-scale populations. METHODS A multicenter, double-blinded, cross-sectional study that enrolled 1194 participants was performed. Plasma samples were collected to detect methylation levels of NTMT1 and MAP3K14-AS1 using quantitative methylation-specific PCR with the MethyDT test, and the accuracy was further evaluated by Sanger sequencing. RESULTS The sensitivities of the MethyDT test for detecting CRC, early stages of CRC (I and II), advanced adenoma (AA), and high-grade intraepithelial neoplasia (HGIN) were 91.2% (95% confidence interval [CI], 88.4-94.0), 87.4% (95% CI, 82.5-92.2), 43.5% (95% CI, 35.7-51.4), and 72.7% (95% CI, 57.5-87.9), respectively. The specificities for participants with non-AA, interfering diseases (ID), and no evidence of disease (NED) were 85.0% (95% CI, 78.8-91.3), 93.7% (95% CI, 91.4-95.9) and 97.3% (95% CI, 90.5-99.7), respectively, and its overall specificity for all-controls was 92.4% (95% CI, 90.3-94.4). The consistency of the MethyDT test with pathology for CRC was high with a kappa value of 0.830 (95% CI, 0.795-0.865). Additionally, the MethyDT test was comparable to Sanger sequencing for detecting methylation with kappa values > 0.97. CONCLUSIONS The MethyDT test demonstrates excellent sensitivity and specificity for CRC and high consistency with Sanger sequencing for methylation, suggesting it may serve as a potential noninvasive diagnostic tool for the detection of CRC. TRIAL REGISTRATION This clinical trial has been registered in ClinicalTrials.gov (NCT05508503).
Collapse
Affiliation(s)
- Zhijie Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zixuan He
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijie Feng
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiuling Li
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Xiangyu Sui
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lun Gu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tian Xia
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Dihan Zhou
- Wuhan Ammunition Life-Tech Co, Ltd, Wuhan, China
| | - Bali Zhao
- Wuhan Ammunition Life-Tech Co, Ltd, Wuhan, China
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Yu Bai
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
5
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
6
|
Tabaeian SP, Eshkiki ZS, Dana F, Fayyaz F, Baniasadi M, Agah S, Masoodi M, Safari E, Sedaghat M, Abedini P, Akbari A. Evaluation of tumor-educated platelet long non-coding RNAs (lncRNAs) as potential diagnostic biomarkers for colorectal cancer. J Cancer Res Ther 2024; 20:1453-1458. [PMID: 38261465 DOI: 10.4103/jcrt.jcrt_1212_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 03/03/2023] [Indexed: 01/25/2024]
Abstract
INTRODUCTION Cancer-derived circulating components are increasingly considered as candidate sources for non-invasive diagnostic biomarkers. This study aimed to investigate the expression of tumor-educated platelet (TEP) long non-coding RNAs (lncRNAs) in colorectal cancer (CRC) patients and determine whether it could be served as a potential tool for CRC diagnosis. MATERIALS AND METHODS Relative quantitative real-time PCR (qRT-PCR) was used to detect the expression levels of three cancer-related platelet-derived lncRNAs CCAT1, HOTTIP, and XIST in 75 CRC patients and 42 healthy controls. Quantitative data were analyzed by SPSS (IBM Corp., Armonk, NY, USA) for comparison of cancer and non-cancer individuals. The receiver operating characteristic (ROC) curve analysis was further performed to assess the diagnostic values of lncRNAs within the CRC patients. RESULTS The expression levels of lncRNAs colon cancer associated transcript 1 (CCAT1) ( P = 0.006) and HOXA transcript at the distal tip (HOTTIP) ( P = 0.049), but not X-inactive specific transcript (XIST) ( P = 0.12), were significantly upregulated in CRC patients compared to healthy individuals. However, there were no significant correlations between platelet lncRNAs and clinicopathological characteristics, including sex, age, tumor location, differentiation, and size (all at P > 0.05). The area under the ROC curve (AUC) of the lncRNA CCAT1 was 0.61 (sensitivity, 71%; specificity, 50%). CONCLUSION TEP lncRNA CCAT1 is detectable in the circulation of CRC patients and could be considered as a potential diagnostic biomarker.
Collapse
Affiliation(s)
- Seidamir Pasha Tabaeian
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shokati Eshkiki
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Dana
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Farimah Fayyaz
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Baniasadi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Masoodi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Safari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Meghdad Sedaghat
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Paria Abedini
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Safarpour H, Ranjbaran J, Erfanian N, Nomiri S, Derakhshani A, Gerarduzzi C, Miraki Feriz A, HosseiniGol E, Saghafi S, Silvestris N. Holistic exploration of CHGA and hsa-miR-137 in colorectal cancer via multi-omic data Integration. Heliyon 2024; 10:e27046. [PMID: 38495181 PMCID: PMC10943347 DOI: 10.1016/j.heliyon.2024.e27046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/14/2023] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
Colorectal cancer (CRC) ranks among the most widespread malignancies globally, with early detection significantly influencing prognosis. Employing a systems biology approach, we aimed to unravel the intricate mRNA-miRNA network linked to CRC pathogenesis, potentially yielding diagnostic biomarkers. Through an integrative analysis of microarray, Bulk RNA-seq, and single-cell RNA-seq data, we explored CRC-related transcriptomes comprehensively. Differential gene expression analysis uncovered crucial genes, while Weighted Gene Co-expression Network Analysis (WGCNA) identified key modules closely linked to CRC. Remarkably, CRC manifested its strongest correlation with the turquoise module, signifying its pivotal role. From the cohort of genes showing high Gene Significance (GS) and Module Membership (MM), and Differential Expression Genes (DEGs), we highlighted the downregulated Chromogranin A (CHGA) as a notable hub gene in CRC. This finding was corroborated by the Human Protein Atlas database, which illustrated decreased CHGA expression in CRC tissues. Additionally, CHGA displayed elevated expression in primary versus metastatic cell lines, as evidenced by the CCLE database. Subsequent RT-qPCR validation substantiated the marked downregulation of CHGA in CRC tissues, reinforcing the significance of our differential expression analysis. Analyzing the Space-Time Gut Cell Atlas dataset underscored specific CHGA expression in epithelial cell subclusters, a trend persisting across developmental stages. Furthermore, our scrutiny of colon and small intestine Enteroendocrine cells uncovered distinct CHGA expression patterns, accentuating its role in CRC pathogenesis. Utilizing the WGCNA algorithm and TargetScan database, we validated the downregulation of hsa-miR-137 in CRC, and integrated assessment highlighted its interplay with CHGA. Our findings advocate hsa-miR-137 and CHGA as promising CRC biomarkers, offering valuable insights into diagnosis and prognosis. Despite proteomic analysis yielding no direct correlation, our multifaceted approach contributes comprehensive understanding of CRC's intricate regulatory mechanisms. In conclusion, this study advances hsa-miR-137 and CHGA as promising CRC biomarkers through an integrated analysis of diverse datasets and network interactions.
Collapse
Affiliation(s)
- Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Javad Ranjbaran
- Department of Clinical Biochemistry, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Nafiseh Erfanian
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Samira Nomiri
- Department of Clinical Biochemistry, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Afshin Derakhshani
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, 70124, Bari, Italy
| | - Casimiro Gerarduzzi
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Adib Miraki Feriz
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Edris HosseiniGol
- Department of Computer Engineering, University of Birjand, Birjand, Iran
| | - Samira Saghafi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Internal Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, Messina, Italy
| |
Collapse
|
8
|
Masoud A, Mohamadynejad P. Identification of lncRNA PCAT19 as potential novel biomarker for colorectal cancer. Gene 2024; 891:147828. [PMID: 37748628 DOI: 10.1016/j.gene.2023.147828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Long non-coding RNAs have been implicated in biological processes, and are dysregulated in types of cancer. Studies have shown that PCAT19 and CKMT2-AS1 lncRNAs promote tumor growth, invasion, and metastasis by regulating signaling pathways and modulating the gene expression. This study investigated the expression levels of lncRNAs PCAT19 and CKMT2-AS1 in colorectal tumors and normal tissues. First, Using GEPIA2 database, we compared the expression level of target lncRNAs between primary colon adenocarcinoma tumor and normal tissues. Then, the expression levels of lncRNAs PCAT19 and CKMT2-AS1 were detected in 35 colorectal tumors and paired adjacent tissues using qRT-PCR. A receiver operating characteristic (ROC) curve was used to evaluate the value of these lncRNAs as biomarkers. Statistical analysis based on GEPIA2 showed that both lncRNAs PCAT19 and CKMT2-AS1 were significantly decreased in colon adenocarcinoma compared to the normal group (P < 0.001). Experimental analysis showed that the expression level of lncRNA PCAT19 was decreased in colorectal tumors (p < 0.0001) compared to normal tissues. While the expression level of lncRNA CKMT2-AS1 did not change in tumor tissues, it decreased in non-metastatic tumors compared to normal tissues (p = 0.04). The significantly downregulation of lncRNA PCAT19 expression in both metastatic and non-metastatic colorectal tumors compared to normal tissue suggests that PCAT19 may play a role in the carcinogenesis and progression of colorectal cancer and may provide potential therapeutic targets for colorectal cancer. Based on the results of ROC curve analysis, lncRNA PCAT19 may also serves as a novel potential good biomarker in diagnosis colorectal cancer (AUC = 0.94, p < 0.0001) but no significant was found for lncRNA CKMT2-AS1 (p > 0.05).
Collapse
Affiliation(s)
- Atousa Masoud
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Parisa Mohamadynejad
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
9
|
Bagheri R, Ghorbian M, Ghorbian S. Tumor circulating biomarkers in colorectal cancer. Cancer Treat Res Commun 2023; 38:100787. [PMID: 38194840 DOI: 10.1016/j.ctarc.2023.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024]
Abstract
CRC is a major global health concern and is responsible for a significant number of cancer-related deaths each year. The successful treatment of CRC becomes more difficult when it goes undetected until it has advanced to a later stage. Diagnostic biomarkers can play a critical role in the early detection of CRC, which leads to improved patient outcomes and increased survival rates. It is important to develop reliable biomarkers for the early detection of CRC to enable timely diagnosis and treatment. To date, CRC detection methods such as endoscopy, blood, and stool tests are imperfect and often only identify cases in the later stages of the disease. To overcome these limitations, researchers are turning to molecular biomarkers as a promising avenue for improving CRC detection. Diagnostic information can be provided more reliably through a noninvasive approach using biomarkers such as mRNA, circulating cell-free DNA, micro-RNA, long non-coding RNA, and proteins. These biomarkers can be found in blood, tissue, feces, and volatile organic compounds. The identification of molecular biomarkers with high sensitivity and specificity for early detection of CRC that are safe, cost-effective, and easily measurable remains a significant challenge for researchers. In this article, we will explore the latest advancements in blood-based diagnostic biomarkers for CRC and their potential impact on improving patient survival rates.
Collapse
Affiliation(s)
- Raana Bagheri
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Mohsen Ghorbian
- Department of Computer Engineering, Qom Branch, Islamic Azad University, Qom, Iran
| | - Saeid Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran.
| |
Collapse
|
10
|
Zhang Y, Wang JW, Su X, Li JE, Wei XF, Yang JR, Gao S, Fan YC, Wang K. F-box protein 43 promoter methylation as a novel biomarker for hepatitis B virus-associated hepatocellular carcinoma. Front Microbiol 2023; 14:1267844. [PMID: 38029156 PMCID: PMC10652413 DOI: 10.3389/fmicb.2023.1267844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) has a high prevalence and poor prognosis worldwide. Therefore, it is urgent to find effective and timely diagnostic markers. The objective of this study was to evaluate the diagnostic value of F-box protein 43 promoter methylation in peripheral blood mononuclear cells (PBMCs) for HCC. METHOD A total of 247 participants were included in this study, comprising individuals with 123 hepatitis B virus-associated HCC, 79 chronic hepatitis B, and 45 healthy controls. F-box protein 43 methylation and mRNA levels in PBMCs were detected by MethyLight and quantitative real-time PCR. RESULT F-box protein 43 promoter methylation levels were significantly lower in HCC PBMCs than the chronic hepatitis B (P < 0.001) and healthy control PBMCs (P < 0.001). Relative mRNA expression levels of F-box protein 43 in HCC PBMCs were significantly higher than those in chronic hepatitis B (P < 0.001) and healthy control PBMCs (P < 0.001). Receiver operating characteristic analysis of F-box protein 43 promoter methylation levels yielded an area under curve (AUC) of 0.793 with 76.42% sensitivity and 68.35% specificity when differentiating HCC from chronic hepatitis. These values for the F-box protein 43 promoter methylation level were superior to those of the alpha-fetoprotein serum (AFP) level (AUC: 0.780, sensitivity: 47.97%, and specificity: 96.20%), with increments in values for the combination of F-box protein 43 promoter methylation AFP levels (AUC: 0.888, sensitivity: 76.42%, and specificity: 86.08%). CONCLUSION Hypomethylation of the F-box protein 43 promoter in PBMCs is a promising biochemical marker for HBV-associated HCC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing-Wei Wang
- Department of Hepatology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Xing Su
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jin-E Li
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Xue-Fei Wei
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie-Ru Yang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Hepatology Institute of Shandong University, Shandong University, Jinan, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Hepatology Institute of Shandong University, Shandong University, Jinan, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Department of Hepatology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
- Hepatology Institute of Shandong University, Shandong University, Jinan, China
| |
Collapse
|
11
|
Yang L, Zeng X, Yang G, Li Y, Pan Y. Predictive value of circulating tumor cell counts during the treatment of cancer: interactions with the blood microenvironment. Int J Clin Oncol 2023; 28:1011-1022. [PMID: 37243775 DOI: 10.1007/s10147-023-02355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/05/2023] [Indexed: 05/29/2023]
Abstract
OBJECTIVE This study aimed to evaluate the prognostic value of circulating tumor cell (CTC) in tumor patients during treatment. METHODS This study retrospectively analyzed clinical data obtained from 174 cancer patients during treatment. The relationship between the CTC counts and clinicopathological variables was analyzed. A ROC curve was applied to determine the optimal cut-off values and assess the predictive ability of the prognostic indicators. The overall survival (OS) for different prognostic factors was calculated using the Kaplan-Meier method, and the difference between the survival curves was then compared using the log-rank test. Cox regression model was used to investigate the effect of independent factors on patients' survival. RESULTS The CTC-positive rate was positively correlated with the clinicopathological variables of TNM stage, tumor differentiation, serum CEA level, and ki-67%. In the differential analysis of hematological microenvironment parameters in CTC-positive and CTC-negative samples, the complete blood count, blood biological chemistry, tumor markers (CEA, CA19-9, CA72-4), and lymphocyte subpopulation were statistically significant. The results of the ROC curve analysis indicated that the serum CEA level was the best diagnostic indicator to discriminate the CTC count in tumor patients. Additionally, the results of the univariate and multivariate analyses of OS in relation to clinical variables revealed that the CTC counts were an independent prognostic factor for unfavorable OS. CONCLUSION The CTC counts in patients with tumors undergoing treatment were significantly correlated with hematological microenvironment parameters. The detection of CTCs may therefore be used as an indicator of tumor prognosis.
Collapse
Affiliation(s)
- Liu Yang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Xiaojiao Zeng
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Gui Yang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
12
|
Circulating Tumor DNA Methylation Biomarkers for Characterization and Determination of the Cancer Origin in Malignant Liver Tumors. Cancers (Basel) 2023; 15:cancers15030859. [PMID: 36765815 PMCID: PMC9913861 DOI: 10.3390/cancers15030859] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Malignant liver tumors include primary malignant liver tumors and liver metastases. They are among the most common malignancies worldwide. The disease has a poor prognosis and poor overall survival, especially with liver metastases. Therefore, early detection and differentiation between malignant liver tumors are critical for patient treatment selection. The detection of cancer and the prediction of its origin is possible with a DNA methylation profile of the tumor DNA compared to that of normal cells, which reflects tissue differentiation and malignant transformation. New technologies enable the characterization of the tumor methylome in circulating tumor DNA (ctDNA), providing a variety of new ctDNA methylation biomarkers, which can provide additional information to clinical decision-making. Our review of the literature provides insight into methylation changes in ctDNA from patients with common malignant liver tumors and can serve as a starting point for further research.
Collapse
|
13
|
Mirza S, Bhadresha K, Mughal MJ, McCabe M, Shahbazi R, Ruff P, Penny C. Liquid biopsy approaches and immunotherapy in colorectal cancer for precision medicine: Are we there yet? Front Oncol 2023; 12:1023565. [PMID: 36686736 PMCID: PMC9853908 DOI: 10.3389/fonc.2022.1023565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths globally, with nearly half of patients detected in the advanced stages. This is due to the fact that symptoms associated with CRC often do not appear until the cancer has reached an advanced stage. This suggests that CRC is a cancer with a slow progression, making it curable and preventive if detected in its early stage. Therefore, there is an urgent clinical need to improve CRC early detection and personalize therapy for patients with this cancer. Recently, liquid biopsy as a non-invasive or nominally invasive approach has attracted considerable interest for its real-time disease monitoring capability through repeated sample analysis. Several studies in CRC have revealed the potential for liquid biopsy application in a real clinical setting using circulating RNA/miRNA, circulating tumor cells (CTCs), exosomes, etc. However, Liquid biopsy still remains a challenge since there are currently no promising results with high specificity and specificity that might be employed as optimal circulatory biomarkers. Therefore, in this review, we conferred the plausible role of less explored liquid biopsy components like mitochondrial DNA (mtDNA), organoid model of CTCs, and circulating cancer-associated fibroblasts (cCAFs); which may allow researchers to develop improved strategies to unravel unfulfilled clinical requirements in CRC patients. Moreover, we have also discussed immunotherapy approaches to improve the prognosis of MSI (Microsatellite Instability) CRC patients using neoantigens and immune cells in the tumor microenvironment (TME) as a liquid biopsy approach in detail.
Collapse
Affiliation(s)
- Sheefa Mirza
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kinjal Bhadresha
- Hematology/Oncology Division, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Muhammed Jameel Mughal
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Science, The George Washington University, Washington, DC, United States
| | - Michelle McCabe
- Department of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - Reza Shahbazi
- Hematology/Oncology Division, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Paul Ruff
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,*Correspondence: Clement Penny,
| |
Collapse
|
14
|
Blood-based DNA methylation signatures in cancer: A systematic review. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166583. [PMID: 36270476 DOI: 10.1016/j.bbadis.2022.166583] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
DNA methylation profiles are in dynamic equilibrium via the initiation of methylation, maintenance of methylation and demethylation, which control gene expression and chromosome stability. Changes in DNA methylation patterns play important roles in carcinogenesis and primarily manifests as hypomethylation of the entire genome and the hypermethylation of individual loci. These changes may be reflected in blood-based DNA, which provides a non-invasive means for cancer monitoring. Previous blood-based DNA detection objects primarily included circulating tumor DNA/cell-free DNA (ctDNA/cfDNA), circulating tumor cells (CTCs) and exosomes. Researchers gradually found that methylation changes in peripheral blood mononuclear cells (PBMCs) also reflected the presence of tumors. Blood-based DNA methylation is widely used in early diagnosis, prognosis prediction, dynamic monitoring after treatment and other fields of clinical research on cancer. The reversible methylation of genes also makes them important therapeutic targets. The present paper summarizes the changes in DNA methylation in cancer based on existing research and focuses on the characteristics of the detection objects of blood-based DNA, including ctDNA/cfDNA, CTCs, exosomes and PBMCs, and their application in clinical research.
Collapse
|
15
|
Acar HZ, Özer N. The implication of molecular markers in the early stage diagnosis of colorectal cancers and precancerous lesions. TURKISH JOURNAL OF BIOCHEMISTRY 2022; 47:691-703. [DOI: 10.1515/tjb-2022-0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
Mortality can be significantly reduced if noninvasive molecular markers that are effective in the diagnosis of both early colorectal cancers and precancerous lesions are used in screening tests.In this study, our aim is to review the studies conducted with molecular markers obtained noninvasively for diagnosis in early-stage colorectal cancer and precancerous lesions and to reveal the most efficient and cost-effective ones.In our study, it has been shown by analyzing noninvasive molecular markers used in the diagnosis of early-stage colorectal cancers and precancerous lesions, that high rates of effective diagnosis can be obtained after given screening processes, even if these are relatively less effective. In particular, miR-21 in faeces and plasma has been found to be the most efficient and cost-effective biomarker.In order to reduce mortality in colorectal cancers, screening tests should be performed with molecular markers that are effective in early-stage colorectal cancers. However, novel biomarkers are also needed to detect both early colorectal cancers and precancerous lesions. When miR-21 analysis in stool and plasma is widely used as a screening test for early-stage colorectal cancer and precancerous lesions, early diagnosis rates can be significantly increased and mortality rates reduced.
Collapse
Affiliation(s)
- Hasan Zafer Acar
- Department of General Surgery, Faculty of Medicine , Girne American University , Mersin , Turkey
| | - Nazmi Özer
- Department of Biochemistry, Faculty of Pharmacy , Girne American University , Mersin , Turkey
| |
Collapse
|
16
|
Ranjbaran J, Safarpour H, Nomiri S, Tavakoli T, Rezaei Z, Salmani F, Larki P, Chamani E. Experimental validation of in silico analysis estimated the reverse effect of upregulated
hsa‐miR
‐106a‐5p and
hsa‐miR
‐223‐3p on
SLC4A4
gene expression in Iranian patients with colorectal adenocarcinoma by
RT‐qPCR. Cancer Med 2022; 12:7005-7018. [PMID: 36468451 PMCID: PMC10067115 DOI: 10.1002/cam4.5499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 12/10/2022] Open
Abstract
BACKGROUND AND METHODS Colorectal cancer (CRC) is considered one of the most common malignancies worldwide. The diagnosis and prognosis of the patients are very poor. In this study, we used in-silico analysis and experimental techniques to investigate novel co-expression genes and their associated miRNA networks in CRC. For this purpose, we conducted a comprehensive transcriptome analysis using online bulk and single-cell RNA-seq datasets. We then validated the results on tissue samples from cancerous and adjacent normal tissues from CRC patients by RT-qPCR. RESULTS Using a weighted gene co-expression network algorithm, we identified SLC4A4 as a significantly downregulated hub gene in the CRC. The single-cell analysis indicated that the expression level of SLC4A4 in Paneth cells is higher than in other cell populations. Further computational analysis suggested hsa-miR-223-3p and hsa-miR-106a-5p as two specific hub-miRNAs for the SLC4A4 gene. RT-qPCR analysis showed a 2.60-fold downregulation of SLC4A4. Moreover, hsa-miR-223-3p and hsa-miR-106a-5p showed an increased expression level of 5.58-fold and 9.66-fold in CRC samples, respectively. Based on the marginal model analysis, by increasing the expression of hsa-miR-106a-5p, the average expression of the SLC4A4 gene significantly decreased by 103 units. Furthermore, ROC curves analysis indicated statistically significant for diagnostic ability of SLC4A4 (AUC: 0.94, Sensitivity: 95.5%, Specificity: 95.5%) and hsa-miR-106a-5p (AUC: 0.72, Sensitivity: 72.7%, Specificity: 100%). CONCLUSION This study provides a framework of co-expression gene modules and miRNAs of CRC, which identifies some important biomarkers for CRC pathogenicity and diagnosis. Further experimental evidence will be required to support this study and validate the precise molecular pathways.
Collapse
Affiliation(s)
- Javad Ranjbaran
- Department of Clinical Biochemistry, School of Medicine Birjand University of Medical Sciences Birjand Iran
| | - Hossein Safarpour
- Cellular and Molecular Research Center Birjand University of Medical Sciences Birjand Iran
| | - Samira Nomiri
- Department of Clinical Biochemistry, School of Medicine Birjand University of Medical Sciences Birjand Iran
| | - Tahmine Tavakoli
- Department of Internal Medicine, School of Medicine Birjand University of Medical Sciences Birjand Iran
| | - Zohreh Rezaei
- Department of Biology, Faculty of Sciences University of Sistan and Balouchestan Zahedan Iran
| | - Fatemeh Salmani
- Department of Epidemiology and Biostatistics, Social Determinants of Health Research Center, Faculty of Health Birjand University of Medical Sciences Birjand Iran
| | - Pegah Larki
- Department of Molecular Genetics, Genomic Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Elham Chamani
- Department of Clinical Biochemistry, School of Medicine Birjand University of Medical Sciences Birjand Iran
| |
Collapse
|
17
|
Sur D, Advani S, Braithwaite D. MicroRNA panels as diagnostic biomarkers for colorectal cancer: A systematic review and meta-analysis. Front Med (Lausanne) 2022; 9:915226. [PMID: 36419785 PMCID: PMC9676370 DOI: 10.3389/fmed.2022.915226] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
Background Circulating microRNAs (miRNA) have emerged as promising diagnostic biomarkers for several diseases, including cancer. However, the diagnostic accuracy of miRNA panels in colorectal cancer (CRC) remains inconsistent and there is still lack of meta-analyses to determine whether miRNA panels can serve as robust biomarkers for CRC diagnosis. Methods This study performed a systematic review and meta-analysis to evaluate the clinical utility of miRNA panels as potential biomarkers for the diagnosis of CRC. The investigation systematically searched PubMed, Medline, Web of Science, Cochrane Library, and Google Scholar (21-year span, between 2000 and 2021) to retrieve articles reporting the diagnostic role of miRNA panels in detecting CRC. Diagnostic meta-analysis of miRNA panels used diverse evaluation indicators, including sensitivity, specificity, Positive Likelihood Ratio (PLR), Negative Likelihood Ratio (NLR), Diagnostic Odds Ratio (DOR), and the area under the curve (AUC) values. Results Among the 313 articles identified, 20 studies met the inclusion criteria. The pooled estimates of miRNA panels for the diagnosis of CRC were 0.85 (95% CI: 0.84-0.86), 0.79 (95% CI: 0.78-0.80), 4.06 (95% CI: 3.89-4.23), 0.20 (95% CI: 0.19-0.20), 22.50 (95% CI: 20.81-24.32) for sensitivity, specificity, PLR, NLR, and DOR, respectively. Moreover, the summary receiver operating characteristics (SROC) curve revealed an AUC value of 0.915 (95% CI: 0.914-0.916), suggesting an outstanding diagnostic accuracy for overall miRNA panels. Subgroup and meta-regression analyses demonstrated that miRNA panels have the highest diagnostic accuracy within serum samples, rather than in other sample-types - with a sensitivity, specificity, PLR, NLR, DOR, and AUC of 0.87, 0.86, 7.33, 0.13, 55.29, and 0.943, respectively. Sensitivity analysis revealed that DOR values did not differ markedly, which indicates that the meta-analysis had strong reliability. Furthermore, this study demonstrated no proof of publication bias for DOR values analyzed using Egger's regression test (P > 0.05) and funnel plot. Interestingly, miR-15b, miR-21 and miR-31 presented the best diagnostic accuracy values for CRC with sensitivity, specificity, PLR, NLR, DOR, and AUC values of 0.95, 0.94, 17.19, 0.05, 324.81, and 0.948, respectively. Conclusion This study's findings indicated that miRNA panels, particularly serum-derived miRNA panels, can serve as powerful and promising biomarkers for early CRC screening. Systematic review registration [www.crd.york.ac.uk/prospero], identifier [CRD42021268172].
Collapse
Affiliation(s)
- Daniel Sur
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă” Cluj-Napoca, Cluj-Napoca, Romania,11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Haţieganu”, Cluj-Napoca, Romania,*Correspondence: Daniel Sur,
| | - Shailesh Advani
- Department of Oncology, Georgetown University School of Medicine, Washington, DC, United States,Terasaki Institute of Biomedical Innovation, Los Angeles, CA, United States
| | - Dejana Braithwaite
- Department of Epidemiology, University of Florida College of Public Health and Health Professions, Gainesville, FL, United States,University of Florida Health Cancer Center, Gainesville, FL, United States,Department of Aging and Geriatric Research, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
18
|
Galoș D, Gorzo A, Balacescu O, Sur D. Clinical Applications of Liquid Biopsy in Colorectal Cancer Screening: Current Challenges and Future Perspectives. Cells 2022; 11:3493. [PMID: 36359889 PMCID: PMC9657568 DOI: 10.3390/cells11213493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) represents the third most prevalent cancer worldwide and a leading cause of mortality among the population of western countries. However, CRC is frequently a preventable malignancy due to various screening tests being available. While failing to obtain real-time data, current screening methods (either endoscopic or stool-based tests) also require disagreeable preparation protocols and tissue sampling through invasive procedures, rendering adherence to CRC screening programs suboptimal. In this context, the necessity for novel, less invasive biomarkers able to identify and assess cancer at an early stage is evident. Liquid biopsy comes as a promising minimally invasive diagnostic tool, able to provide comprehensive information on tumor heterogeneity and dynamics during carcinogenesis. This review focuses on the potential use of circulating tumor cells (CTCs), circulating nucleic acids (CNAs) and extracellular vesicles as emerging liquid biopsy markers with clinical application in the setting of CRC screening. The review also examines the opportunity to implement liquid biopsy analysis during everyday practice and provides highlights on clinical trials researching blood tests designed for early cancer diagnosis. Additionally, the review explores potential applications of liquid biopsies in the era of immunotherapy.
Collapse
Affiliation(s)
- Diana Galoș
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
| | - Alecsandra Gorzo
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
| | - Daniel Sur
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
- Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania
| |
Collapse
|
19
|
Zhao L, Li M, Zhang S, Liu Y. Plasma-Methylated SEPT9 for the Noninvasive Diagnosis of Gastric Cancer. J Clin Med 2022; 11:jcm11216399. [PMID: 36362627 PMCID: PMC9656015 DOI: 10.3390/jcm11216399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/09/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background. Gastric cancer (GC) is one of the most prevalent cancers globally. This study was designed to evaluate the potential performance of plasma SEPT9 methylation (mSEPT9) as a noninvasive biomarker for the diagnosis of GC. Methods. A total of 182 participants, i.e., 60 patients with GC, 39 with chronic superficial gastritis (CSG), 27 with chronic atrophic gastritis (CAG), 30 with gastric ulcer (GU), and 26 with gastric polys (GP), were recruited. The mSEPT9 level was measured using real-time polymerase chain reaction. Results. As a diagnostic target, mSEPT9 (1/3 algorithm) had a sensitivity of 48.33 (95% confidence interval (CI): 35.40–61.48%) and a specificity of 86.89% (95% CI: 79.28–92.09%), and mSEPT9 (2/3 algorithm) had a sensitivity of 33.33 (95% CI: 22.02–46.79%) and a specificity of 98.36% (95% CI: 93.61–99.72%). The area under the receiver operating characteristic curve (ROC) curve of mSEPT9 was 0.698 (95% CI: 0.609–0.787) for the differentiation of GC from benign gastric diseases. The effectiveness of mSEPT9 (1/3 algorithm) was superior to that of CEA, CA19-9, and CA72-4. mSEPT9 was positively correlated with T, N, M, and the clinical stage of GC. Conclusions. Plasma mSEPT9 might serve as a useful and noninvasive biomarker for the diagnosis of GC.
Collapse
Affiliation(s)
- Luyao Zhao
- Department of Gastroenterology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Muran Li
- Department of Gastroenterology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Yandi Liu
- Department of Gastroenterology, Tianjin Union Medical Center, Tianjin 300121, China
- Correspondence:
| |
Collapse
|
20
|
Bayo Calero J, Castaño López MA, Casado Monge PG, Díaz Portillo J, Bejarano García A, Navarro Roldán F. Analysis of blood markers for early colorectal cancer diagnosis. J Gastrointest Oncol 2022; 13:2259-2268. [PMID: 36388660 PMCID: PMC9660082 DOI: 10.21037/jgo-21-747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/20/2022] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a very common tumor worldwide. Its mortality can be limited by early diagnosis through screening programs. These programs are based on fecal occult blood testing and colonoscopy. Our objective was to find a model based on the determination of blood biomarkers that was efficacious enough to become part of the early diagnosis of CRC. METHODS In a total of 221 patients who underwent a colonoscopy, two types of markers were identified (I) classic: carcinoembryonic antigen (CEA), CA19.9, α-fetoprotein, CA125, CA72.4, and ferritin; and (II) experimental: neutrophil gelatinase-associated lipocalin (NGAL), estimated glomerular filtration rate (EGFR), 8-hydroxydeoxyguanosine (8OHdG), calprotectin, and cysteine-rich 61 (Cyr61). We divided the patients into four groups according to colonoscopy results: a control group (n=83) with normal colonoscopy, a polyp group (n=56), a CRC group (n=45), and an inflammatory disease group (n=37). We built an algorithm based on multivariate logistic regression analysis. RESULTS A total of 51.6% were males, and the median age was 63 years. We designed an algorithm based on the combination of several markers that discriminated CRC patients from the rest of the patients with a performance of 94%, a sensitivity of 95.6%, and a specificity of 80.6%. Discriminating by sex also resulted in two powerful algorithms, although it performed better in males (97% vs. 91%). CONCLUSIONS Our study has devised a predictive model with high efficacy based on the determination of several biomarkers. We think that it could be incorporated into the set of methods used in CRC screening.
Collapse
Affiliation(s)
- Juan Bayo Calero
- Medical Oncology Service, Hospital “Juan Ramón Jiménez”, Huelva, Spain
| | | | | | | | | | - Francisco Navarro Roldán
- Department of Integrated Sciences, Cell Biology, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| |
Collapse
|
21
|
Three-Dimensional Printing and Its Potential to Develop Sensors for Cancer with Improved Performance. BIOSENSORS 2022; 12:bios12090685. [PMID: 36140070 PMCID: PMC9496342 DOI: 10.3390/bios12090685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 12/24/2022]
Abstract
Cancer is the second leading cause of death globally and early diagnosis is the best strategy to reduce mortality risk. Biosensors to detect cancer biomarkers are based on various principles of detection, including electrochemical, optical, electrical, and mechanical measurements. Despite the advances in the identification of biomarkers and the conventional 2D manufacturing processes, detection methods for cancers still require improvements in terms of selectivity and sensitivity, especially for point-of-care diagnosis. Three-dimensional printing may offer the features to produce complex geometries in the design of high-precision, low-cost sensors. Three-dimensional printing, also known as additive manufacturing, allows for the production of sensitive, user-friendly, and semi-automated sensors, whose composition, geometry, and functionality can be controlled. This paper reviews the recent use of 3D printing in biosensors for cancer diagnosis, highlighting the main advantages and advances achieved with this technology. Additionally, the challenges in 3D printing technology for the mass production of high-performance biosensors for cancer diagnosis are addressed.
Collapse
|
22
|
Shen L, Zong W, Feng W, Chen E, Ma S, Yuan J, Wang G, Gu X, Shen X, Ju S. Upregulated Linc01836 in Serum Promisingly Serving as a Diagnostic and Prognostic Biomarker for Colorectal Cancer. Front Pharmacol 2022; 13:840391. [PMID: 35370745 PMCID: PMC8975208 DOI: 10.3389/fphar.2022.840391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives: Colorectal cancer (CRC) is a common carcinoma of the gastrointestinal tract with high incidence and mortality worldwide. Studies have shown that long noncoding RNAs (lncRNAs) play important roles in CRC. Our purpose is to investigate the potential of serum Linc01836 as a diagnostic and prognostic marker in CRC. Methods: We evaluated the expression of Linc01836 via quantitative real-time polymerase chain reaction (qRT-PCR). The serum CEA, CA19-9, Cyfra21-1, and CA72-4 concentrations were measured by Architect I4000 SR. Receiver operating characteristic (ROC) curves were plotted to estimate the diagnostic value in CRC. Relationship between serum Linc01836 expression and clinicopathological characteristics of CRC cases was analyzed via chi-square test. The underlying mechanism of Linc01836 on the development and prognosis in CRC was predicted by bioinformatic analysis. Results: The method of qRT-PCR for Linc01836 detection was confirmed with high precision and specificity. Serum Linc01836 expression in CRC patients was significantly higher than that in healthy donors (p < 0.0001) and benign patients (p < 0.0001), and declined after resection (p < 0.01). High expression of Linc01836 was associated with histological stage (p = 0.002) and lymph node metastasis (p = 0.006). In addition, serum Linc01836 could effectively differentiate CRC patients from the healthy folks, with favorable area under the curve (AUC) of 0.809 (95% CI: 0.757–0.861, p < 0.001). What is more, the combination of serum Linc01836, CEA, and Cyfra21-1 could improve diagnostic sensitivity (92.0%). Linc01836 was averagely located in the nucleus and cytoplasm, suggesting that it might participate in CRC progression and prognosis through the crosstalk among lncRNAs, miRNAs, and mRNAs. Conclusion: Linc01836 may serve as a valuable noninvasive biomarker for population screening, early detection, and clinical surveillance of CRC.
Collapse
Affiliation(s)
- Lei Shen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
- School of Medicine, Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Zong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Feng
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Erlin Chen
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Shuo Ma
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
- School of Medicine, Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jie Yuan
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
- School of Medicine, Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Guihua Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xinliang Gu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
- School of Medicine, Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xianjuan Shen
- School of Medicine, Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Xianjuan Shen, ; Shaoqing Ju,
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Xianjuan Shen, ; Shaoqing Ju,
| |
Collapse
|
23
|
Novel Diagnostic Biomarkers in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23020852. [PMID: 35055034 PMCID: PMC8776048 DOI: 10.3390/ijms23020852] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is still a leading cause of cancer death worldwide. Less than half of cases are diagnosed when the cancer is locally advanced. CRC is a heterogenous disease associated with a number of genetic or somatic mutations. Diagnostic markers are used for risk stratification and early detection, which might prolong overall survival. Nowadays, the widespread use of semi-invasive endoscopic methods and feacal blood tests characterised by suboptimal accuracy of diagnostic results has led to the detection of cases at later stages. New molecular noninvasive tests based on the detection of CRC alterations seem to be more sensitive and specific then the current methods. Therefore, research aiming at identifying molecular markers, such as DNA, RNA and proteins, would improve survival rates and contribute to the development of personalized medicine. The identification of “ideal” diagnostic biomarkers, having high sensitivity and specificity, being safe, cheap and easy to measure, remains a challenge. The purpose of this review is to discuss recent advances in novel diagnostic biomarkers for tumor tissue, blood and stool samples in CRC patients.
Collapse
|
24
|
Liu Z, Tang H, Zhang W, Wang J, Wan L, Li X, Ji Y, Kong N, Zhang Y, Wang J, Fan Z, Guo Q. Coupling of serum CK20 and hyper-methylated CLIP4 as promising biomarker for colorectal cancer diagnosis: from bioinformatics screening to clinical validation. Aging (Albany NY) 2021; 13:26161-26179. [PMID: 34965217 PMCID: PMC8751608 DOI: 10.18632/aging.203804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022]
Abstract
Colorectal cancer (CRC) is one of the most common and lethal malignancies. The identification of minimally invasive and precise biomarkers is an urgent need for the early diagnosis of CRC. Through bioinformatics analysis of 395 CRC tissues and 63 CRC cell lines, CK18, CK20, de-methylated HPDL and hyper-methylated CLIP4 were identified as candidate serum biomarkers. Then, a training cohort consisting of 60 CRC, 30 colorectal adenomas (CA) and 33 healthy controls and a validation cohort consisting of 60 CRC, 30 CA and 30 healthy controls were enrolled. In the training cohort, enzyme-linked immunosorbent assay (ELISA) showed that CK18 and CK20 were all significantly higher in CRC and CA. CK18 diagnosed CRC with 46.67% sensitivity and 87.3% specificity; CK20 diagnosed CRC with 28.33% sensitivity and 90.47% specificity. Methylation-specific PCR (MSP) indicated that de-methylated HPDL and hyper-methylated CLIP4 were significantly detected in CRC and CA. De-methylated HPDL diagnosed CRC with 36.67% sensitivity and 93.65% specificity and hyper-methylated CLIP4 with 73.33% sensitivity and 84.13% specificity. Random combined analysis suggested that CK20/hyper-methylated CLIP4 diagnosed CRC with 91.67% sensitivity and 82.54% specificity. In the validation cohort, CK20 diagnosed CRC with 36.7% sensitivity and 88.3% specificity and hyper-methylated CLIP4 with 80% sensitivity and 85% specificity. CK20/hyper-methylated CLIP4 diagnosed CRC with 95% sensitivity and 81.7% specificity. Compared with serum biomarkers reported before, CK20/hyper-methylated CLIP4 possessed the potential to be a new effective and precise diagnostic biomarker for CRC.
Collapse
Affiliation(s)
- Zhongjian Liu
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Hui Tang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Wen Zhang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jinli Wang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Lilan Wan
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xisha Li
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yuping Ji
- Department of Gastroenterology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Na Kong
- Department of Gastroenterology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Yanfang Zhang
- Department of Gastroenterology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Jiangang Wang
- Department of Gastroenterology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Zhang Fan
- Department of Gastroenterology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Qiang Guo
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
25
|
Palicelli A, Bonacini M, Croci S, Bisagni A, Zanetti E, De Biase D, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, Cañete-Portillo S, Bonasoni MP, Ascani S, De Leo A, Gandhi J, Tafuni A, Melli B. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 7: PD-L1 Expression in Liquid Biopsy. J Pers Med 2021; 11:1312. [PMID: 34945784 PMCID: PMC8709072 DOI: 10.3390/jpm11121312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 02/05/2023] Open
Abstract
Liquid biopsy is an accessible, non-invasive diagnostic tool for advanced prostate cancer (PC) patients, potentially representing a real-time monitoring test for tumor evolution and response to treatment through the analysis of circulating tumor cells (CTCs) and exosomes. We performed a systematic literature review (PRISMA guidelines) to describe the current knowledge about PD-L1 expression in liquid biopsies of PC patients: 101/159 (64%) cases revealed a variable number of PD-L1+ CTCs. Outcome correlations should be investigated in larger series. Nuclear PD-L1 expression by CTCs was occasionally associated with worse prognosis. Treatment (abiraterone, enzalutamide, radiotherapy, checkpoint-inhibitors) influenced PD-L1+ CTC levels. Discordance in PD-L1 status was detected between primary vs. metastatic PC tissue biopsies and CTCs vs. corresponding tumor tissues. PD-L1 is also released by PC cells through soluble exosomes, which could inhibit the T cell function, causing immune evasion. PD-L1+ PC-CTC monitoring and genomic profiling may better characterize the ongoing aggressive PC forms compared to PD-L1 evaluation on primary tumor biopsies/prostatectomy specimens (sometimes sampled a long time before recurrence/progression). Myeloid-derived suppressor cells and dendritic cells (DCs), which may have immune-suppressive effects in tumor microenvironment, have been found in PC patients circulation, sometimes expressing PD-L1. Occasionally, their levels correlated to clinical outcome. Enzalutamide-progressing castration-resistant PC patients revealed increased PD-1+ T cells and circulating PD-L1/2+ DCs.
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.B.); (S.C.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.B.); (S.C.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asunción 1614, Paraguay;
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Alessandro Tafuni
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy;
| | - Beatrice Melli
- Fertility Center, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
| |
Collapse
|
26
|
Hu M, Wang Z, Wu Z, Ding P, Pei R, Wang Q, Xing C. Circulating tumor cells in colorectal cancer in the era of precision medicine. J Mol Med (Berl) 2021; 100:197-213. [PMID: 34802071 PMCID: PMC8770420 DOI: 10.1007/s00109-021-02162-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the main causes of cancer-related morbidity and mortality across the globe. Although serum biomarkers such as carcinoembryonic antigen (CEA) and carbohydrate antigen 19–9 (CA-199) have been prevalently used as biomarkers in various cancers, they are neither very sensitive nor highly specific. Repeated tissue biopsies at different times of the disease can be uncomfortable for cancer patients. Additionally, the existence of tumor heterogeneity and the results of local biopsy provide limited information about the overall tumor biology. Against this backdrop, it is necessary to look for reliable and noninvasive biomarkers of CRC. Circulating tumor cells (CTCs), which depart from a primary tumor, enter the bloodstream, and imitate metastasis, have a great potential for precision medicine in patients with CRC. Various efficient CTC isolation platforms have been developed to capture and identify CTCs. The count of CTCs, as well as their biological characteristics and genomic heterogeneity, can be used for the early diagnosis, prognosis, and prediction of treatment response in CRC. This study reviewed the existing CTC isolation techniques and their applications in the clinical diagnosis and treatment of CRC. The study also presented their limitations and provided future research directions.
Collapse
Affiliation(s)
- Mingchao Hu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.,Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215228, China
| | - Zhili Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zeen Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Pi Ding
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Qiang Wang
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215228, China.
| | - Chungen Xing
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
27
|
Goyal N, Singh M, Sagar N, Khurana N, Singh I. Association of E-cadherin & vimentin expression with clinicopathological parameters in lingual squamous cell carcinomas & their role in incomplete epithelial mesenchymal transition. Indian J Med Res 2021; 153:484-491. [PMID: 34380795 PMCID: PMC8354043 DOI: 10.4103/ijmr.ijmr_1409_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Background & objectives: Lingual squamous cell carcinomas (SCC) pose a major public health burden in India. Epithelial-mesenchymal transition (EMT) is the conversion of an epithelial cell to a mesenchymal phenotype at the invasive front (IF) enhancing invasiveness of these cells which may be studied using immunohistochemistry. The objective of this study was to assess the expression of E-cadherin and vimentin at the IF, and their correlation with the histological risk assessment score, clinicopathological parameters and lymph node metastasis. Methods: Thirty consecutive untreated patients diagnosed as lingual SCC who underwent hemiglossectomy over one year formed the study group. The immunohistochemical expression of E-cadherin and vimentin in the periphery as well as the centre of tumour islands was correlated with clinicopathological parameters, Brandwein-Gensler risk assessment score and lymph node metastasis, along with a correlation between the coexpression of two markers at the IF. Results: Loss of E-cadherin expression was seen at IF in 83.3 per cent (25/30) cases. Out of these, 20 per cent (5/25) showed a corresponding gain in vimentin expression (complete epithelial-mesenchymal transition) and 80 per cent (20/25) did not. Overall, 16.6 per cent (5/30) cases showed complete EMT. However, no correlation between E- cadherin and vimentin expression at the IF was found. No statistical significance was found between E-cadherin loss and vimentin gain at the IF, with the various parameters or the risk score. Interpretation & conclusions: The present study suggests that the cells at IF may metastasize even without a gain in vimentin expression (without classical EMT), as cohesive clusters showing incomplete EMT (E-cadh-/Vim-).
Collapse
Affiliation(s)
- Neelakshi Goyal
- Department of Pathology, Maulana Azad Medical College, New Delhi, India
| | - Meeta Singh
- Department of Pathology, Maulana Azad Medical College, New Delhi, India
| | - Nishant Sagar
- Department of Pathology, Maulana Azad Medical College, New Delhi, India
| | - Nita Khurana
- Department of Pathology, Maulana Azad Medical College, New Delhi, India
| | - Ishwar Singh
- Department of Otolaryngology, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
28
|
Lianidou E. Detection and relevance of epigenetic markers on ctDNA: recent advances and future outlook. Mol Oncol 2021; 15:1683-1700. [PMID: 33942482 PMCID: PMC8169441 DOI: 10.1002/1878-0261.12978] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/24/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Liquid biopsy, a minimally invasive approach, is a highly powerful clinical tool for the real-time follow-up of cancer and overcomes many limitations of tissue biopsies. Epigenetic alterations have a high potential to provide a valuable source of innovative biomarkers for cancer, owing to their stability, frequency, and noninvasive accessibility in bodily fluids. Numerous DNA methylation markers are now tested in circulating tumor DNA (ctDNA) as potential biomarkers, in various types of cancer. DNA methylation in combination with liquid biopsy is very powerful in identifying circulating epigenetic biomarkers of clinical importance. Blood-based epigenetic biomarkers have a high potential for early detection of cancer since DNA methylation in plasma can be detected early during cancer pathogenesis. In this review, we summarize the latest findings on DNA methylation markers in ctDNA for early detection, prognosis, minimal residual disease, risk of relapse, treatment selection, and resistance, for breast, prostate, lung, and colorectal cancer.
Collapse
Affiliation(s)
- Evi Lianidou
- Analysis of Circulating Tumor CellsLaboratory of Analytical ChemistryDepartment of ChemistryUniversity of AthensGreece
| |
Collapse
|
29
|
Sun J, Xu J, Sun C, Zheng M, Li Y, Zhu S, Zhang S. Screening and Prognostic Value of Methylated Septin9 and its Association With Clinicopathological and Molecular Characteristics in Colorectal Cancer. Front Mol Biosci 2021; 8:568818. [PMID: 34095214 PMCID: PMC8173126 DOI: 10.3389/fmolb.2021.568818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
Screening of CRC continues to show poor compliance of endoscopy examination. The detection of mSEPT9 in peripheral blood is among the safe and simple early screening methods for CRC. The issue of how to elucidate whether detection of mSEPT9 in peripheral blood can effectively improve compliance of endoscopy and increase the early diagnosis rate of CRC and the relationship between levels of mSEPT9 in the peripheral blood and clinical stage, pathological classification, and expression of characteristic molecules in CRC remains unsolved. A total of 7759 individuals participated in the study that was performed using a questionnaire for screening of high-risk CRC. The endoscopic detection compliance of individuals with high-risk CRC who underwent the fecal occult blood test (FOBT) or mSEPT9 test was compared based on the results of the questionnaire. Additionally, correlation of mSEPT9 levels in the peripheral blood with clinicopathological features, mutation status of TP53, mismatch repair deficiency (dMMR), and KRAS/NRAS/BRAF/PIK3CA genotype was analyzed, and association of biomarkers with cancer-specific survival (CSS) and time to recurrence (TTR) was compared. We also detected levels of mSEPT9 in the peripheral blood of patients with CRC 7 days after surgery and compared the prognostic value of mSEPT9 with CEA. Results of our study showed that the mSEPT9 test could improve compliance of endoscopy and indicated a higher percentage of patients with positive mSEPT9 willing to undergo endoscopy detection than in those with positive FOBT. The specificity and sensitivity of mSEPT9 were better than that of FOBT for the detection of CRC. mSEPT9 was associated with the TNM stage, dMMR, and mutations in TP53, BRAF, and PIK3CA. A Ct value of mSEPT9 ≤ 37.5 was significantly related to poor CSS. mSEPT9 could affect association of dMMR and BRAF and PIK3CA mutations with CSS in a specific stage of CRC. The positive rate of mSEPT9 after surgery was found to correlate with poor TTR, and sensitivity was higher than CEA. The combination of mSEPT9 with CEA had a better prognostic value than that of mSEPT9 alone. The level of mSEPT9 was related to dMMR, mutations in TP53, BRAF, and PIK3CA, and was an effective biomarker for the prognosis of patients with CRC.
Collapse
Affiliation(s)
- Jie Sun
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Jinling Xu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Chao Sun
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Siwei Zhu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
30
|
Gallardo-Gómez M, De Chiara L, Álvarez-Chaver P, Cubiella J. Colorectal cancer screening and diagnosis: omics-based technologies for development of a non-invasive blood-based method. Expert Rev Anticancer Ther 2021; 21:723-738. [PMID: 33507120 DOI: 10.1080/14737140.2021.1882858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Colorectal cancer (CRC) is one of the most important health problems in the Western world. In order to reduce the burden of the disease, two strategies are proposed: screening and prompt detection in symptomatic patients. Although diagnosis and prevention are mainly based on colonoscopy, fecal hemoglobin detection has been widely implemented as a noninvasive strategy. Various studies aiming to discover blood-based biomarkers have recently emerged.Areas covered: The burgeoning omics field provides diverse high-throughput approaches for CRC blood-based biomarker discovery. In this review, we appraise the most robust and commonly used technologies within the fields of genomics, transcriptomics, epigenomics, proteomics, and metabolomics, together with their targeted validation approaches. We summarize the transference process from the discovery phase until clinical translation. Finally, we review the best candidate biomarkers and their potential clinical applicability.Expert opinion: Some available biomarkers are promising, especially in the field of epigenomics: DNA methylation and microRNA. Transference requires the joint collaboration of basic researchers, intellectual property experts, technology transfer officers and clinicians. Blood-based biomarkers will be selected not only based on their diagnostic accuracy and cost but also on their reliability, applicability to clinical analysis laboratories and their acceptance by the population.
Collapse
Affiliation(s)
- María Gallardo-Gómez
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.,Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Loretta De Chiara
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.,Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Paula Álvarez-Chaver
- Proteomics Unit, Service of Structural Determination, Proteomics and Genomics, Center for Scientific and Technological Research Support (CACTI), University of Vigo, Vigo, Spain
| | - Joaquin Cubiella
- Department of Gastroenterology, Hospital Universitario De Ourense, Ourense, Spain.,Instituto De Investigación Sanitaria Galicia Sur, Ourense, Spain.,Centro De Investigación Biomédica En Red Enfermedades Hepáticas Y Digestivas, Ourense, Spain
| |
Collapse
|
31
|
Pinzani P, D'Argenio V, Del Re M, Pellegrini C, Cucchiara F, Salvianti F, Galbiati S. Updates on liquid biopsy: current trends and future perspectives for clinical application in solid tumors. Clin Chem Lab Med 2021; 59:1181-1200. [PMID: 33544478 DOI: 10.1515/cclm-2020-1685] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/20/2021] [Indexed: 01/19/2023]
Abstract
Despite advances in screening and therapeutics cancer continues to be one of the major causes of morbidity and mortality worldwide. The molecular profile of tumor is routinely assessed by surgical or bioptic samples, however, genotyping of tissue has inherent limitations: it represents a single snapshot in time and it is subjected to spatial selection bias owing to tumor heterogeneity. Liquid biopsy has emerged as a novel, non-invasive opportunity of detecting and monitoring cancer in several body fluids instead of tumor tissue. Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), RNA (mRNA and microRNA), microvesicles, including exosomes and tumor "educated platelets" were recently identified as a source of genomic information in cancer patients which could reflect all subclones present in primary and metastatic lesions allowing sequential monitoring of disease evolution. In this review, we summarize the currently available information concerning liquid biopsy in breast cancer, colon cancer, lung cancer and melanoma. These promising issues still need to be standardized and harmonized across laboratories, before fully adopting liquid biopsy approaches into clinical practice.
Collapse
Affiliation(s)
- Pamela Pinzani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Valeria D'Argenio
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Rome, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Marzia Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cristina Pellegrini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Federico Cucchiara
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Salvianti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Silvia Galbiati
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
32
|
Park Y, Jun HR, Choi HW, Hwang DW, Lee JH, Song KB, Lee W, Kwon J, Ha SH, Jun E, Kim SC. Circulating tumour cells as an indicator of early and systemic recurrence after surgical resection in pancreatic ductal adenocarcinoma. Sci Rep 2021; 11:1644. [PMID: 33462311 PMCID: PMC7814057 DOI: 10.1038/s41598-020-80383-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Early recurrence in pancreatic ductal adenocarcinoma (PDAC) is a decisive factor in determining a patient's prognosis. We determined in our current study whether circulating tumour cells (CTCs) exist in the blood of PDAC patients and can be used as a predictor of recurrence patterns (i.e. time and site) after surgical resection. Between December 2017 and November 2018, the mononuclear cell layer was obtained from the peripheral blood of 36 patients diagnosed with PDAC. CTCs were then isolated using the CD-PRIME™ platform and detected via immunostaining. The patient records were analyzed to correlate these data with survival and recurrence patterns. Twelve patients were CTC-positive (33.3%) and showed a significantly frequent rate of systemic recurrence (distant metastases and peritoneal dissemination) (p = 0.025). On multi-variable logistic regression analysis, CTC positivity was an independent risk factor for early recurrence (p = 0.027) and for systemic recurrence (p = 0.033). In summary, the presence or absence of CTC in the blood of the patients with PDAC could help predict the recurrence pattern after surgery. PDAC patients with CTC positivity at tumour diagnosis should therefore undergo a comprehensive strategy for systemic therapy and active monitoring to detect possible early recurrence.
Collapse
MESH Headings
- Aged
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Carcinoma, Pancreatic Ductal/blood
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/surgery
- Humans
- Male
- Middle Aged
- Neoplasm Recurrence, Local/blood
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/surgery
- Neoplastic Cells, Circulating/pathology
- Prognosis
- Survival Rate
Collapse
Affiliation(s)
- Yejong Park
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hye Ryeong Jun
- Biomedical Engineering Research Center, Asan Medical Center, Seoul, Republic of Korea
| | - Hwi Wan Choi
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Republic of Korea
| | - Dae Wook Hwang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Hoon Lee
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ki Byung Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Woohyung Lee
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jaewoo Kwon
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Su Hyeon Ha
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eunsung Jun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Republic of Korea.
| | - Song Cheol Kim
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Matsushita D, Arigami T, Okubo K, Sasaki K, Noda M, Kita Y, Mori S, Uenosono Y, Ohtsuka T, Natsugoe S. The Diagnostic and Prognostic Value of a Liquid Biopsy for Esophageal Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2020; 12:3070. [PMID: 33096708 PMCID: PMC7589026 DOI: 10.3390/cancers12103070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/11/2022] Open
Abstract
Esophageal cancer is among the most aggressive diseases, and circulating tumor cells (CTCs) have been recognized as novel biomarkers for various cancers over the past two decades, including esophageal cancer. CTCs might provide crucial clinical information for predicting cancer prognosis, monitoring therapeutic responses or recurrences, or elucidating the mechanism of metastasis. The isolation of CTCs is among the applications of a "liquid biopsy". There are various technologies for liquid biopsies, and they are classified into two main methods: cytometric or non-cytometric techniques. Here, we review a total of 57 eligible articles to summarize various technologies for the use of a liquid biopsy in esophageal cancer and perform a meta-analysis to assess the clinical utility of liquid biopsies as a prognostic and diagnostic biomarker technique. For prognostic evaluation, the pooled hazard ratio in the cytometric assay is relatively higher than that of the non-cytometric assay. On the other hand, a combination of multiple molecules, using a non-cytometric assay, might be a favorable biomarker technique for the early diagnosis of esophageal cancer. Although determining strong evidence for a biomarker by using a liquid biopsy is still challenging, our meta-analysis might be a milestone for the future development of liquid biopsies in use with esophageal cancer.
Collapse
Affiliation(s)
- Daisuke Matsushita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (K.O.); (K.S.); (M.N.); (Y.K.); (S.M.); (T.O.)
| | - Takaaki Arigami
- Department of Onco-biological Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan;
| | - Keishi Okubo
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (K.O.); (K.S.); (M.N.); (Y.K.); (S.M.); (T.O.)
| | - Ken Sasaki
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (K.O.); (K.S.); (M.N.); (Y.K.); (S.M.); (T.O.)
| | - Masahiro Noda
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (K.O.); (K.S.); (M.N.); (Y.K.); (S.M.); (T.O.)
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (K.O.); (K.S.); (M.N.); (Y.K.); (S.M.); (T.O.)
| | - Shinichiro Mori
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (K.O.); (K.S.); (M.N.); (Y.K.); (S.M.); (T.O.)
| | - Yoshikazu Uenosono
- Department of Surgery, Jiaikai Imamura General Hospital, Kagoshima 890-0064, Japan;
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (K.O.); (K.S.); (M.N.); (Y.K.); (S.M.); (T.O.)
| | - Shoji Natsugoe
- Department of Surgery, Gyokushoukai Kajiki Onsen Hospital, Aira 899-5241, Japan;
| |
Collapse
|
34
|
Zhao W, Qiu L, Liu H, Xu Y, Zhan M, Zhang W, Xin Y, He X, Yang X, Bai J, Xiao J, Guan Y, Li Q, Chang L, Yi X, Li Y, Chen X, Lu L. Circulating tumor DNA as a potential prognostic and predictive biomarker during interventional therapy of unresectable primary liver cancer. J Gastrointest Oncol 2020; 11:1065-1077. [PMID: 33209498 PMCID: PMC7657842 DOI: 10.21037/jgo-20-409] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Imaging and alpha fetoprotein (AFP) measurement are used as surveillance methods during interventional therapy in patients with unresectable liver cancer, but their accuracy has been challenged in patients receiving drug perfusion therapy. Circulating tumor DNA (ctDNA) can reflect tumor load and treatment efficacy. Studies of the prognostic value of ctDNA in unresectable liver cancer are needed. METHODS Forty-two patients with unresectable liver cancer were prospective enrolled in this study. Pre-treatment, in-treatment plasma samples and available matched tissue samples were collected. Targeted-capture sequencing of 1,021 genes that are frequently mutated in solid tumors. RESULTS Targeted-capture sequencing of 1,021 genes that are frequently mutated in solid tumors revealed that the most frequently mutated genes in ctDNA were TP53 (52.4%) and TERT (35.7%). The ctDNA abundance was more closely correlated with tumor size than the AFP level and was also related to BCLC stage (P<0.001). Gene mutations profile in ctDNA with progressed disease. PD patients were enriched in TP53 mutation group compared with TP53 wildtype group (P=0.0221). Moreover, interventional therapy was more effective in patients without TP53 mutation (OS: P=0.0589; PFS: 0.0411). The dynamic change of ctDNA showed consistent or more sensitivity than imaging for evaluating treatment response. The tumor mutation burden was highly consistent between tissue and blood samples (P<0.0001). CONCLUSIONS ctDNA was a reliable biomarker to assist in diagnosis and evaluation of prognosis and treatment efficacy in advanced liver cancer. Considering that biopsy is unnecessary when advanced liver cancer is diagnosed, ctDNA may be an ideal biomarker for evaluating tumor mutation burden prior to immunotherapy.
Collapse
Affiliation(s)
- Wei Zhao
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Lige Qiu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
- 2 Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Huajiang Liu
- Department of Intervention Therapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ying Xu
- Department of Computer Science and Technology, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Wei Zhang
- 2 Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Yongjie Xin
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Xu He
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Xiangyu Yang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Jing Bai
- Geneplus-Beijing Institute, Beijing, China
| | - Jing Xiao
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Yanfang Guan
- Department of Computer Science and Technology, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
- Geneplus-Beijing Institute, Beijing, China
| | - Qiyang Li
- 2 Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | | | - Xin Yi
- Geneplus-Beijing Institute, Beijing, China
| | - Yong Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Xudong Chen
- 2 Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| |
Collapse
|
35
|
Peng W, Sha H, Sun X, Zou R, Zhu Y, Zhou G, Feng J. Role and mechanism of miR-187 in human cancer. Am J Transl Res 2020; 12:4873-4884. [PMID: 33042395 PMCID: PMC7540151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs, approximately 22 nucleotides in length, and involved in the post-transcriptional regulation of gene expression. MiRNAs play fundamental roles in many biological processes such as the development and progression of tumors. In this review, we briefly describe the expression of miR-187 in various types of cancer and discuss the role of miR-187 in cancer development and drug resistance. It is also possible to take miR-187 as an important indicator of diagnosis and prognosis of tumors.
Collapse
Affiliation(s)
- Weiwei Peng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Huanhuan Sha
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Xun Sun
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Renrui Zou
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Yue Zhu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Guoren Zhou
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| |
Collapse
|
36
|
Sharafeldin M, Kadimisetty K, Bhalerao KS, Chen T, Rusling JF. 3D-Printed Immunosensor Arrays for Cancer Diagnostics. SENSORS 2020; 20:s20164514. [PMID: 32806676 PMCID: PMC7472114 DOI: 10.3390/s20164514] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022]
Abstract
Detecting cancer at an early stage of disease progression promises better treatment outcomes and longer lifespans for cancer survivors. Research has been directed towards the development of accessible and highly sensitive cancer diagnostic tools, many of which rely on protein biomarkers and biomarker panels which are overexpressed in body fluids and associated with different types of cancer. Protein biomarker detection for point-of-care (POC) use requires the development of sensitive, noninvasive liquid biopsy cancer diagnostics that overcome the limitations and low sensitivities associated with current dependence upon imaging and invasive biopsies. Among many endeavors to produce user-friendly, semi-automated, and sensitive protein biomarker sensors, 3D printing is rapidly becoming an important contemporary tool for achieving these goals. Supported by the widely available selection of affordable desktop 3D printers and diverse printing options, 3D printing is becoming a standard tool for developing low-cost immunosensors that can also be used to make final commercial products. In the last few years, 3D printing platforms have been used to produce complex sensor devices with high resolution, tailored towards researchers’ and clinicians’ needs and limited only by their imagination. Unlike traditional subtractive manufacturing, 3D printing, also known as additive manufacturing, has drastically reduced the time of sensor and sensor array development while offering excellent sensitivity at a fraction of the cost of conventional technologies such as photolithography. In this review, we offer a comprehensive description of 3D printing techniques commonly used to develop immunosensors, arrays, and microfluidic arrays. In addition, recent applications utilizing 3D printing in immunosensors integrated with different signal transduction strategies are described. These applications include electrochemical, chemiluminescent (CL), and electrochemiluminescent (ECL) 3D-printed immunosensors. Finally, we discuss current challenges and limitations associated with available 3D printing technology and future directions of this field.
Collapse
Affiliation(s)
- Mohamed Sharafeldin
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA; (M.S.); (K.S.B.); (T.C.)
| | - Karteek Kadimisetty
- LifeSensors Inc., 271 Great Valley Parkway, Suite 100, Malvern, PA 19355, USA;
| | - Ketki S. Bhalerao
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA; (M.S.); (K.S.B.); (T.C.)
| | - Tianqi Chen
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA; (M.S.); (K.S.B.); (T.C.)
| | - James F. Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA; (M.S.); (K.S.B.); (T.C.)
- Department of Surgery and Neag Cancer Center, UConn Health, Farmington, CT 06032, USA
- School of Chemistry, National University of Ireland at Galway, Galway H91 TK33, Ireland
- Correspondence:
| |
Collapse
|
37
|
Zhang Y, Wu X, He L, Meng C, Du S, Bao J, Zheng Y. Applications of hyperspectral imaging in the detection and diagnosis of solid tumors. Transl Cancer Res 2020; 9:1265-1277. [PMID: 35117471 PMCID: PMC8798535 DOI: 10.21037/tcr.2019.12.53] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/28/2019] [Indexed: 11/09/2022]
Abstract
Hyperspectral imaging (HSI) is an emerging new technology in solid tumor diagnosis and detection. It incorporates traditional imaging and spectroscopy together to obtain both spatial and spectral information from tissues simultaneously in a non-invasive manner. This imaging modality is based on the principle that different tissues inherit different spectral reflectance responses that present as unique spectral fingerprints. HSI captures those composition-specific fingerprints to identify cancerous and normal tissues. It becomes a promising tool for performing tumor diagnosis and detection from the label-free histopathological examination to real-time intraoperative assistance. This review introduces the basic principles of HSI and summarizes its methodology and recent advances in solid tumor detection. In particular, the advantages of HSI applied to solid tumors are highlighted to show its potential for clinical use.
Collapse
Affiliation(s)
- Yating Zhang
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoqian Wu
- Department of Liver Surgery, Peking Union Medicine Collage Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Li He
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chan Meng
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medicine Collage Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Jie Bao
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Yongchang Zheng
- Department of Liver Surgery, Peking Union Medicine Collage Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
38
|
Danese E, Montagnana M, Lippi G. Combining old and new strategies for colorectal cancer screening. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:67. [PMID: 32175360 PMCID: PMC7049030 DOI: 10.21037/atm.2019.11.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/25/2019] [Indexed: 08/30/2023]
Affiliation(s)
- Elisa Danese
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | | | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|