1
|
Pacchiarini G, Geraldini F, De Cassai A, Aviani Fulvio G, Boscolo A, Zarantonello F, Navalesi P, Munari M. Awake prone positioning in a patient with respiratory impairment due to subarachnoid hemorrhage: a case report. J Med Case Rep 2025; 19:255. [PMID: 40437593 PMCID: PMC12121058 DOI: 10.1186/s13256-025-05311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 05/08/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Prone positioning has been shown to be an effective rescue strategy in severe acute respiratory distress syndrome and was widely used during the coronavirus disease 2019 pandemic, both in mechanically ventilated and in awake patients. Subarachnoid hemorrhage is often associated with respiratory failure. Prone positioning has been used in brain-injured patients, but concerns relating to neurological complications from intracranial hypertension still remain. CASE PRESENTATION We report the case of a 59-year-old Italian patient with subarachnoid hemorrhage who safely underwent awake prone positioning after deterioration of respiratory function. CONCLUSIONS In this report, we show that awake pronation is possible in patients with subarachnoid hemorrhage. However, careful monitoring of Intracranial pressure and clinical examination may be the keys to successful application of this procedure.
Collapse
Affiliation(s)
| | - Federico Geraldini
- Sant'Antonio Anesthesia and Intensive Care Unit, University-Hospital of Padua, Padua, Italy
| | - Alessandro De Cassai
- Department of Medicine, University of Padua, Padua, Italy.
- Anesthesia and Intensive Care Unit, University-Hospital of Padua, Padua, Italy.
| | | | - Annalisa Boscolo
- Department of Medicine, University of Padua, Padua, Italy
- Anesthesia and Intensive Care Unit, University-Hospital of Padua, Padua, Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | | | - Paolo Navalesi
- Department of Medicine, University of Padua, Padua, Italy
- Anesthesia and Intensive Care Unit, University-Hospital of Padua, Padua, Italy
| | - Marina Munari
- Sant'Antonio Anesthesia and Intensive Care Unit, University-Hospital of Padua, Padua, Italy
| |
Collapse
|
2
|
Liu L, Wang S, Jiang L, Wang J, Chen J, Zhang H, Wang Y. Molecular hydrogen mitigates traumatic brain injury-induced lung injury via NLRP3 inflammasome inhibition. BMC Chem 2025; 19:138. [PMID: 40405232 PMCID: PMC12100871 DOI: 10.1186/s13065-025-01513-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 05/13/2025] [Indexed: 05/24/2025] Open
Abstract
INTRODUCTION Hydrogen gas has demonstrated significant antioxidant and anti-inflammatory properties, suggesting potential therapeutic benefits in TBI. METHODS We subjected to controlled cortical impact in mice to construct TBI model. They received an intraperitoneal injection of MCC950, a selective NLRP3 inhibitor, at 10 mg/kg 30 min before TBI. Inhalation of 2% H2 is adopted in TBI mice for 60 min, starting 1 and 6 h post-TBI. 24 h after H2 inhalation, we extracted tissues and analyzed injury related changes. The H2 levels in arterial and venous were tracked after inhalation. Lung tissue was examined for histopathological changes and apoptosis using H&E and TUNEL assays. The total protein in the BALF, oxygenation index, lung wet-to-dry weight ratio, and lung MPO activity were measured to evaluate the severity of TBI-induced lung injury. Protein and mRNA levels of NLRP3, ASC, Caspase-1, IL-18, and IL-1β in the lung tissue were quantified using western blotting and quantitative PCR. The expression changes and distribution status of NLRP3 and Caspase-1 were examined by immunofluorescence and immunohistochemistry staining. RESULTS Significant lung injury at 24 h post-TBI got significantly reduced by treatment of 2% H2. TBI activated the NLRP3 inflammasome, increasing NLRP3, ASC, and caspase-1 levels, to lead to higher IL-1β and IL-18 secretion in the lungs. Blocking NLRP3 reduced lung damage from TBI, and its combination with 2% H2 provided better protection than either treatment alone. CONCLUSIONS 2% H2 can protect against TBI-induced lung injury by inhibiting NLRP3 inflammasome activation, thereby alleviating inflammation and inhibiting apoptosis.
Collapse
Affiliation(s)
- Lingling Liu
- Department of Anesthesiology, Tianjin Huanhu Hospital, NO. 6 Jizhao Road, Jinnan District, Tianjin, 300350, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenrative Diseases, Tianjin, 300350, China
| | - Shuzhi Wang
- Department of Cardiac Function, Tianjin Thoracic Hospital, Tianjin Institute of Cardiovascular Diseases, Tianjin, 300222, China
| | - Lianhao Jiang
- Department of Anesthesiology, Tianjin Huanhu Hospital, NO. 6 Jizhao Road, Jinnan District, Tianjin, 300350, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenrative Diseases, Tianjin, 300350, China
| | - Jiwei Wang
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenrative Diseases, Tianjin, 300350, China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Jun Chen
- Department of Anesthesiology, Tianjin Huanhu Hospital, NO. 6 Jizhao Road, Jinnan District, Tianjin, 300350, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenrative Diseases, Tianjin, 300350, China
| | - Hongtao Zhang
- Department of Anesthesiology, Tianjin Huanhu Hospital, NO. 6 Jizhao Road, Jinnan District, Tianjin, 300350, China.
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenrative Diseases, Tianjin, 300350, China.
| | - Yuanlin Wang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Rd, Heping District, Tianjin, 300052, China.
| |
Collapse
|
3
|
Kelly-Hedrick M, Liu S, Hatfield J, Soto AL, Bartlett AM, Heo HJ, O’Callaghan E, Arulraja E, Kaplan S, Ohnuma T, Krishnamoorthy V, Colton K, Komisarow J. Management of traumatic brain injury and acute respiratory distress syndrome-What evidence exists? A scoping review. J Intensive Care Soc 2025; 26:205-222. [PMID: 39834359 PMCID: PMC11742134 DOI: 10.1177/17511437241311398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Introduction Up to 20% of patients with traumatic brain injury (TBI) develop acute respiratory distress syndrome (ARDS), which is associated with increased odds of mortality. Guideline-based treatment for ARDS includes "lung protective" ventilation strategies, some of which are in opposition to "brain protective" strategies used for ventilation with patients with TBI. We conducted a scoping review of ventilation management strategies with clinical outcomes among patients with TBI and ARDS. Methods We searched three databases (MEDLINE, Embase, Web of Science) using a systematic search strategy. We included any studies of patients with TBI and ARDS with ventilation strategies including PEEP, oxygenation, prone positioning, recruitment maneuvers, pulmonary vasodilators (e.g., nitric oxide), high frequency oscillatory ventilation (HFOV), and extracorporeal membrane oxygenation (ECMO). All clinical outcomes were included. Extracted data included details about sample (age, gender), study design, inclusion/exclusion criteria, intervention details, and outcomes. Results The search returned 10,514 articles, 35 of which met final inclusion criteria. Interventions studied included ECMO (n = 13 articles), HFOV (n = 4), PEEP interventions (n = 3), prone positioning (n = 3), vasodilators (n = 4), and other lung recruitment maneuvers (n = 9). No randomized controlled trials were identified; studies were mostly case reports (n = 18/35, 51%) and series (n = 7/35, 20%), with some cohort studies (n = 5/35, 14%) and non-randomized experimental trials (n = 5/35, 14%), all at single institutions. Outcomes included physiologic changes (e.g., change in cerebrodynamics or hemodynamics with intervention) and clinical outcomes such as mortality, complications, or neurologic recovery. Five studies (14%) included pediatric patients. Discussion In this scoping review of ventilatory strategies for patients with concurrent TBI and ARDS, we found variation in heterogeneity of study design, interventions, and outcomes. Studies were mostly case report/series and observational studies, seriously limiting our ability to draw conclusions about effectiveness of interventions. Targeted areas of further research are discussed.
Collapse
Affiliation(s)
- Margot Kelly-Hedrick
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC, USA
- Duke University School of Medicine, Durham, NC, USA
| | - Sunny Liu
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC, USA
- Duke University School of Medicine, Durham, NC, USA
| | - Jordan Hatfield
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC, USA
- Department of Neurosurgery, Duke University, Durham, NC, USA
| | | | | | - Helen J. Heo
- Duke University School of Medicine, Durham, NC, USA
| | | | | | - Samantha Kaplan
- Duke University Medical Center Library and Archives, Durham, NC, USA
| | - Tetsu Ohnuma
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC, USA
- Anesthesiology, Duke University, Durham, NC, USA
| | - Vijay Krishnamoorthy
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC, USA
- Anesthesiology, Duke University, Durham, NC, USA
- Population Health Sciences, Duke University, Durham, NC, USA
| | | | - Jordan Komisarow
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC, USA
- Department of Neurosurgery, Duke University, Durham, NC, USA
| |
Collapse
|
4
|
Zochios V, Yusuff H, Schmidt M. Personalizing Permissive Hypercapnia in Acute Severe Respiratory Failure. J Cardiothorac Vasc Anesth 2025; 39:355-359. [PMID: 39721922 DOI: 10.1053/j.jvca.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Affiliation(s)
- Vasileios Zochios
- Department of Cardiothoracic Critical Care Medicine and ECMO Unit, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester, UK; Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
| | - Hakeem Yusuff
- Department of Cardiothoracic Critical Care Medicine and ECMO Unit, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester, UK; Department of Respiratory Sciences, University of Leicester, Leicester, UK; National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, Leicester, UK
| | - Matthieu Schmidt
- Sorbonne Université, INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, AP-HP, Service de médecine intensive-réanimation, Institut de Cardiologie, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
5
|
Feng SN, Diaz-Cruz C, Cinotti R, Asehnoune K, Schultz MJ, Shrestha GS, Sanches PR, Robba C, Cho SM. Impact of Country Income Level on Outcomes in Patients with Acute Brain Injury Requiring Invasive Mechanical Ventilation: A Secondary Analysis of the ENIO Study. Neurocrit Care 2025:10.1007/s12028-024-02198-6. [PMID: 39776347 DOI: 10.1007/s12028-024-02198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Invasive mechanical ventilation can present complex challenges for patients with acute brain injury (ABI) in middle-income countries (MICs). We characterized the impact of country income level on weaning strategies and outcomes in patients with ABI. METHODS A secondary analysis was performed on a registry of critically ill patients with ABI admitted to 73 intensive care units (ICUs) in 18 countries from 2018 to 2020. Patients were classified as high-income country (HIC) or MIC. The primary outcome was ICU mortality. Secondary outcomes were days to first extubation, tracheostomy, extubation failure, ICU length of stay, and hospital mortality. Multivariable analyses were adjusted for clinically preselected covariates such as age, sex, body mass index, neurological severity, comorbidities, and ICU management. Extubation and tracheostomy outcomes were also adjusted for arterial blood gas values and ventilatory settings. RESULTS Of 1512 patients (median age = 54 years, 66% male), 1170 (77%) were from HICs, and 342 (23%) were from MICs. Median age was significantly lower in MICs [35 (range 26-52) vs. 58 (range 45-68) years in HICs]. Neurosurgical procedures (47.7% vs. 38.2%) and decompressive craniectomy (30.7% vs. 15.9%) were more common in MICs, whereas intracranial pressure monitoring (12.0% vs. 51.5%) and external ventricular drain (7.6% vs. 35.6%) were less common. Compared with HICs, patients from MICs had 2.27 times the odds of ICU mortality [p = 0.009, 95% confidence interval (CI) 1.22-4.21]. Frequency of extubation failure was lower in MICs but not significant after adjustment. Patients from MICs had 3.38 times the odds of tracheostomy (p ≤ 0.001, 95% CI 2.28-5.01), 5.59 days shorter mean ICU stay (p < 0.001, 95% CI - 7.82 to - 3.36), and 1.96 times the odds of hospital mortality (p = 0.011, 95% CI 1.17-3.30). CONCLUSIONS In an international registry of patients with ABI requiring invasive mechanical ventilation, MICs had higher odds of ICU mortality, tracheostomy placement, and hospital mortality compared with HICs, which may be due to difference in neurocritical care resources and management.
Collapse
Affiliation(s)
- Shi Nan Feng
- Division of Neuroscience Critical Care, Departments of Neurology, Neurosurgery, and Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Camilo Diaz-Cruz
- Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Raphael Cinotti
- Department of Anesthesia and Critical Care, Centre Hospitalier Universitaire Nantes, Nantes Université, Hôtel Dieu, Nantes, France
- Unité Mixte de Recherche 1246 Methods in Patient-Centered Outcomes & Health Research, University of Nantes, University of Tours, Institut National de La Santé et de La Recherche Médicale, Nantes, France
| | - Karim Asehnoune
- Department of Anesthesia and Critical Care, Centre Hospitalier Universitaire Nantes, Nantes Université, Hôtel Dieu, Nantes, France
| | - Marcus J Schultz
- Department of Clinical Medicine, University of Oxford Nufeld, Oxford, UK
- Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Gentle S Shrestha
- Department of Critical Care Medicine, Tribhuvan University Teaching Hospital, Maharajgunj, Kathmandu, Nepal
| | - Paula R Sanches
- Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Chiara Robba
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Science and Integrated Diagnostic, University of Genova, Genoa, Italy
| | - Sung-Min Cho
- Division of Neuroscience Critical Care, Departments of Neurology, Neurosurgery, and Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Yan A, Torpey A, Morrisroe E, Andraous W, Costa A, Bergese S. Clinical Management in Traumatic Brain Injury. Biomedicines 2024; 12:781. [PMID: 38672137 PMCID: PMC11048642 DOI: 10.3390/biomedicines12040781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
Traumatic brain injury is one of the leading causes of morbidity and mortality worldwide and is one of the major public healthcare burdens in the US, with millions of patients suffering from the traumatic brain injury itself (approximately 1.6 million/year) or its repercussions (2-6 million patients with disabilities). The severity of traumatic brain injury can range from mild transient neurological dysfunction or impairment to severe profound disability that leaves patients completely non-functional. Indications for treatment differ based on the injury's severity, but one of the goals of early treatment is to prevent secondary brain injury. Hemodynamic stability, monitoring and treatment of intracranial pressure, maintenance of cerebral perfusion pressure, support of adequate oxygenation and ventilation, administration of hyperosmolar agents and/or sedatives, nutritional support, and seizure prophylaxis are the mainstays of medical treatment for severe traumatic brain injury. Surgical management options include decompressive craniectomy or cerebrospinal fluid drainage via the insertion of an external ventricular drain. Several emerging treatment modalities are being investigated, such as anti-excitotoxic agents, anti-ischemic and cerebral dysregulation agents, S100B protein, erythropoietin, endogenous neuroprotectors, anti-inflammatory agents, and stem cell and neuronal restoration agents, among others.
Collapse
Affiliation(s)
- Amy Yan
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.Y.); (A.T.); (W.A.); (A.C.)
| | - Andrew Torpey
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.Y.); (A.T.); (W.A.); (A.C.)
| | - Erin Morrisroe
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Wesam Andraous
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.Y.); (A.T.); (W.A.); (A.C.)
| | - Ana Costa
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.Y.); (A.T.); (W.A.); (A.C.)
| | - Sergio Bergese
- Department of Anesthesiology and Neurological Surgery, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
7
|
Ziaka M, Exadaktylos A. Pathophysiology of acute lung injury in patients with acute brain injury: the triple-hit hypothesis. Crit Care 2024; 28:71. [PMID: 38454447 PMCID: PMC10918982 DOI: 10.1186/s13054-024-04855-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
It has been convincingly demonstrated in recent years that isolated acute brain injury (ABI) may cause severe dysfunction of peripheral extracranial organs and systems. Of all potential target organs and systems, the lung appears to be the most vulnerable to damage after ABI. The pathophysiology of the bidirectional brain-lung interactions is multifactorial and involves inflammatory cascades, immune suppression, and dysfunction of the autonomic system. Indeed, the systemic effects of inflammatory mediators in patients with ABI create a systemic inflammatory environment ("first hit") that makes extracranial organs vulnerable to secondary procedures that enhance inflammation, such as mechanical ventilation (MV), surgery, and infections ("second hit"). Moreover, accumulating evidence supports the knowledge that gut microbiota constitutes a critical superorganism and an organ on its own, potentially modifying various physiological functions of the host. Furthermore, experimental and clinical data suggest the existence of a communication network among the brain, gastrointestinal tract, and its microbiome, which appears to regulate immune responses, gastrointestinal function, brain function, behavior, and stress responses, also named the "gut-microbiome-brain axis." Additionally, recent research evidence has highlighted a crucial interplay between the intestinal microbiota and the lungs, referred to as the "gut-lung axis," in which alterations during critical illness could result in bacterial translocation, sustained inflammation, lung injury, and pulmonary fibrosis. In the present work, we aimed to further elucidate the pathophysiology of acute lung injury (ALI) in patients with ABI by attempting to develop the "double-hit" theory, proposing the "triple-hit" hypothesis, focused on the influence of the gut-lung axis on the lung. Particularly, we propose, in addition to sympathetic hyperactivity, blast theory, and double-hit theory, that dysbiosis and intestinal dysfunction in the context of ABI alter the gut-lung axis, resulting in the development or further aggravation of existing ALI, which constitutes the "third hit."
Collapse
Affiliation(s)
- Mairi Ziaka
- Clinic for Geriatric Medicine, Center for Geriatric Medicine and Rehabilitation, Kantonsspital Baselland, Bruderholz, Switzerland.
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Chan WH, Huang SM, Chiu YL. Pulmonary Effects of Traumatic Brain Injury in Mice: A Gene Set Enrichment Analysis. Int J Mol Sci 2024; 25:3018. [PMID: 38474264 DOI: 10.3390/ijms25053018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/24/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Acute lung injury occurs in 20-25% of cases following traumatic brain injury (TBI). We investigated changes in lung transcriptome expression post-TBI using animal models and bioinformatics. Employing unilateral controlled cortical impact for TBI, we conducted microarray analysis after lung acquisition, followed by gene set enrichment analysis of differentially expressed genes. Our findings indicate significant upregulation of inflammation-related genes and downregulation of nervous system genes. There was enhanced infiltration of adaptive immune cells, evidenced by positive enrichment in Lung-Th1, CD4, and CD8 T cells. Analysis using the Tabula Sapiens database revealed enrichment in lung-adventitial cells, pericytes, myofibroblasts, and fibroblasts, indicating potential effects on lung vasculature and fibrosis. Gene set enrichment analysis linked TBI to lung diseases, notably idiopathic pulmonary hypertension. A Venn diagram overlap analysis identified a common set of 20 genes, with FOSL2 showing the most significant fold change. Additionally, we observed a significant increase in ADRA1A→IL6 production post-TBI using the L1000 library. Our study highlights the impact of brain trauma on lung injury, revealing crucial gene expression changes related to immune cell infiltration, cytokine production, and potential alterations in lung vasculature and fibrosis, along with a specific spectrum of disease influence.
Collapse
Affiliation(s)
- Wei-Hung Chan
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114201, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 114201, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City 114201, Taiwan
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei City 114201, Taiwan
| |
Collapse
|
9
|
Kuzmanović J, Savić S, Bogdanović M, Martinović T, Bumbaširević V, Stevović TK. Micromorphological features and interleukin 6, 8, and 18 expressions in post-mortem lung tissue in cases with acute respiratory distress syndrome. Forensic Sci Med Pathol 2024; 20:1-7. [PMID: 36809485 DOI: 10.1007/s12024-022-00572-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2022] [Indexed: 02/23/2023]
Abstract
The purpose of this study was to analyze the presence of interleukins 6, 8, and 18 in post-mortem lung tissue of subjects deceased due to polytrauma. In addition to this, we have described different micromorphological features of lung tissue in ARDS cases associated with fatal traffic trauma. A total of 18 autopsy cases with ARDS after polytrauma and 15 control autopsy cases were analyzed in this study. From every subject, we collected one sample for each lung lobe. All of the histological sections were analyzed by using light microscopy, and for the purpose of ultrastructural analysis, we used transmission electron microscopy. Representative sections were further processed by way of immunohistochemistry analysis. Quantification of IL-6, IL-8, and IL-18-positive cells was conducted by applying the IHC score. We noticed that all samples of ARDS cases exhibited elements of the proliferative phase. Immunohistochemical analysis of lung tissue in patients with ARDS showed strong positive staining for IL-6 (2.8 ± 0.7), IL-8 (2.2 ± 1.3), and IL-18 (2.7 ± 1.2), while staining of the control samples resulted in no positivity to low/moderate positivity (for IL-6 1.4 ± 0.5; for IL-8 0.1 ± 0.4; for IL-18 0.6 ± 0.9). Only IL-6 correlated negatively with the patients' age (r = -0.6805, p < 0.01). In this study, we described microstructural changes in lung sections of ARDS cases and control cases, as well as interleukins' expression, demonstrating that autopsy material is as informing as tissue samples collected by performing open lung biopsy.
Collapse
Affiliation(s)
- Jelena Kuzmanović
- Pathology Department, University Medical Centre Zvezdara, Belgrade, Serbia
| | - Slobodan Savić
- Institute of Forensic Medicine "Dr Milovan Milovanovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milenko Bogdanović
- Institute of Forensic Medicine "Dr Milovan Milovanovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Tamara Martinović
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Bumbaširević
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Tamara Kravić Stevović
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Flatley M, Sams VG, Biscotti M, Deshpande SJ, Usman AA, Cannon JW. ECMO in trauma care: What you need to know. J Trauma Acute Care Surg 2024; 96:186-194. [PMID: 37843631 PMCID: PMC12068791 DOI: 10.1097/ta.0000000000004152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
ABSTRACT Over the past 10 years, extracorporeal membrane oxygenation (ECMO) use in trauma patients has increased significantly. This includes adult and pediatric trauma patients and even combat casualties. Most ECMO applications are in a venovenous (VV ECMO) configuration for acute hypoxemic respiratory failure or anatomic injuries that require pneumonectomy or extreme lung rest in a patient with insufficient respiratory reserve. In this narrative review, we summarize the most common indications for VV ECMO and other forms of ECMO support used in critically injured patients, underscore the importance of early ECMO consultation or regional referral, review the technical aspects of ECMO cannulation and management, and examine the expected outcomes for these patients. In addition, we evaluate the data where it exists to try to debunk some common myths surrounding ECMO management.
Collapse
Affiliation(s)
- Meaghan Flatley
- Department of Surgery, Brooke Army Medical Center, Fort Sam Houston, Texas, USA
| | - Valerie G. Sams
- Department of Surgery, Division of Trauma and Surgical Critical Care, The University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Mauer Biscotti
- Department of Surgery, Columbia University Medical Center, New York, New York, USA
| | - Shyam J. Deshpande
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Asad A. Usman
- Penn Anesthesiology and Critical Care Penn Presbyterian, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeremy W. Cannon
- Department of Surgery, Division of Traumatology, Surgical Critical Care & Emergency Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Surgery, F. Edward Hébert School of Medicine at the Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Austin SE, Galvagno SM, Podell JE, Teeter WA, Kundi R, Haase DJ, Taylor BS, Betzold R, Stein DM, Scalea TM, Powell EK. Venovenous extracorporeal membrane oxygenation in patients with traumatic brain injuries and severe respiratory failure: A single-center retrospective analysis. J Trauma Acute Care Surg 2024; 96:332-339. [PMID: 37828680 PMCID: PMC11444359 DOI: 10.1097/ta.0000000000004159] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/22/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Venovenous extracorporeal membrane oxygenation (VV ECMO) can support trauma patients with severe respiratory failure. Use in traumatic brain injury (TBI) may raise concerns of worsening complications from intracranial bleeding. However, VV ECMO can rapidly correct hypoxemia and hypercarbia, possibly preventing secondary brain injury. We hypothesize that adult trauma patients with TBI on VV ECMO have comparable survival with trauma patients without TBI. METHODS A single-center, retrospective cohort study involving review of electronic medical records of trauma admissions between July 1, 2014, and August 30, 2022, with discharge diagnosis of TBI who were placed on VV ECMO during their hospital course was performed. RESULTS Seventy-five trauma patients were treated with VV ECMO; 36 (48%) had TBI. Of those with TBI, 19 (53%) had a hemorrhagic component. Survival was similar between patients with and without a TBI (72% vs. 64%, p = 0.45). Traumatic brain injury survivors had a higher admission Glasgow Coma Scale (7 vs. 3, p < 0.001) than nonsurvivors. Evaluation of prognostic scoring systems on initial head computed tomography demonstrated that TBI VV ECMO survivors were more likely to have a Rotterdam score of 2 (62% vs. 20%, p = 0.03) and no survivors had a Marshall score of ≥4. Twenty-nine patients (81%) had a repeat head computed tomography on VV ECMO with one incidence of expanding hematoma and one new focus of bleeding. Neither patient with a new/worsening bleed received anticoagulation. Survivors demonstrated favorable neurologic outcomes at discharge and outpatient follow-up, based on their mean Rancho Los Amigos Scale (6.5; SD, 1.2), median Cerebral Performance Category (2; interquartile range, 1-2), and median Glasgow Outcome Scale-Extended (7.5; interquartile range, 7-8). CONCLUSION In this series, the majority of TBI patients survived and had good neurologic outcomes despite a low admission Glasgow Coma Scale. Venovenous extracorporeal membrane oxygenation may minimize secondary brain injury and may be considered in select patients with TBI. LEVEL OF EVIDENCE Prognostic and Epidemiological; Level IV.
Collapse
|
12
|
Goldman M, Lucke-Wold B, Katz J, Dawoud B, Dagra A. Respiratory Patterns in Neurological Injury, Pathophysiology, Ventilation Management, and Future Innovations: A Systematic Review. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2023; 8:338-349. [PMID: 38130817 PMCID: PMC10735242 DOI: 10.14218/erhm.2022.00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Traumatic brain injuries (TBI), ischemic stroke, hemorrhagic stroke, brain tumors, and seizures have diverse and sometimes overlapping associated breathing patterns. Homeostatic mechanisms for respiratory control are intertwined with complex neurocircuitry, both centrally and peripherally. This paper summarizes the neurorespiratory control and pathophysiology of its disruption. It also reviews the clinical presentation, ventilatory management, and emerging therapeutics. This review additionally serves to update all recent preclinical and clinical research regarding the spectrum of respiratory dysfunction. Having a solid pathophysiological foundation of disruptive mechanisms would permit further therapeutic development. This novel review bridges experimental/physiological data with bedside management, thus allowing neurosurgeons and intensivists alike to rapidly diagnose and treat respiratory sequelae of acute brain injury.
Collapse
Affiliation(s)
| | | | | | - Bavly Dawoud
- Neurosurgical Resident, University of Illinois, Peoria Illinois, United States
| | - Abeer Dagra
- Research Assistant, University of Florida, Gainesville, United States
| |
Collapse
|
13
|
Fawley JA, Tignanelli CJ, Werner NL, Kasotakis G, Mandell SP, Glass NE, Dries DJ, Costantini TW, Napolitano LM. American Association for the Surgery of Trauma/American College of Surgeons Committee on Trauma clinical protocol for management of acute respiratory distress syndrome and severe hypoxemia. J Trauma Acute Care Surg 2023; 95:592-602. [PMID: 37314843 PMCID: PMC10545067 DOI: 10.1097/ta.0000000000004046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 06/15/2023]
Abstract
LEVEL OF EVIDENCE Therapeutic/Care Management: Level V.
Collapse
|
14
|
Robba C, Camporota L, Citerio G. Acute respiratory distress syndrome complicating traumatic brain injury. Can opposite strategies converge? Intensive Care Med 2023; 49:583-586. [PMID: 37017697 DOI: 10.1007/s00134-023-07043-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/16/2023] [Indexed: 04/06/2023]
Affiliation(s)
- Chiara Robba
- Anesthesia and Intensive Care, IRCCS Policlinico San Martino, Genoa, Italy.
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV 16, Genoa, Italy.
| | - Luigi Camporota
- Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
15
|
Dias C, de Castro A, Gaio R, Silva R, Pereira E, Monteiro E. Lung Injury Risk in Traumatic Brain Injury Managed With Optimal Cerebral Perfusion Pressure Guided-Therapy. J Crit Care Med (Targu Mures) 2023; 9:97-105. [PMID: 37593249 PMCID: PMC10429626 DOI: 10.2478/jccm-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/31/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction Management of traumatic brain injury (TBI) has to counterbalance prevention of secondary brain injury without systemic complications, namely lung injury. The potential risk of developing acute respiratory distress syndrome (ARDS) leads to therapeutic decisions such as fluid balance restriction, high PEEP and other lung protective measures, that may conflict with neurologic outcome. In fact, low cerebral perfusion pressure (CPP) may induce secondary ischemic injury and mortality, but disproportionate high CPP may also increase morbidity and worse lung compliance and hypoxia with the risk of developing ARDS and fatal outcome. The evaluation of cerebral autoregulation at bedside and individualized (optimal CPP) CPPopt-guided therapy, may not only be a relevant measure to protect the brain, but also a safe measure to avoid systemic complications. Aim of the study We aimed to study the safety of CPPopt-guided-therapy and the risk of secondary lung injury association with bad outcome. Methods and results Single-center retrospective analysis of 92 severe TBI patients admitted to the Neurocritical Care Unit managed with CPPopt-guided-therapy by PRx (pressure reactivity index). During the first 10 days, we collected data from blood gas, ventilation and brain variables. Evolution along time was analyzed using linear mixed-effects regression models. 86% were male with mean age 53±21 years. 49% presented multiple trauma and 21% thoracic trauma. At hospital admission, median GCS was 7 and after 3-months GOS was 3. Monitoring data was CPP 86±7mmHg, CPP-CPPopt -2.8±10.2mmHg and PRx 0.03±0.19. The average PFratio (PaO2/FiO2) was 305±88 and driving pressure 15.9±3.5cmH2O. PFratio exhibited a significant quadratic dependence across time and PRx and driving pressure presented significant negative association with PFRatio. CPP and CPPopt did not present significant effect on PFratio (p=0.533; p=0.556). A significant positive association between outcome and the difference CPP-CPPopt was found. Conclusion Management of TBI using CPPopt-guided-therapy was associated with better outcome and seems to be safe regarding the development of secondary lung injury.
Collapse
Affiliation(s)
- Celeste Dias
- Faculty of Medicine, University of Porto, Porto, Portugal
- University Hospital Centre São João, PortoPortugal
| | | | - Rita Gaio
- Faculty of Mathematics, University of Porto, Porto, Portugal
- Centre of Mathematics of the University of Porto, Porto, Portugal
| | - Ricardo Silva
- Faculty of Mathematics, University of Porto, Porto, Portugal
| | | | - Elisabete Monteiro
- Faculty of Medicine, University of Porto, Porto, Portugal
- University Hospital Centre São João, PortoPortugal
| |
Collapse
|
16
|
Schafer CM, Martin-Almedina S, Kurylowicz K, Dufton N, Osuna-Almagro L, Wu ML, Johnson CF, Shah AV, Haskard DO, Buxton A, Willis E, Wheeler K, Turner S, Chlebicz M, Scott RP, Kovats S, Cleuren A, Birdsey GM, Randi AM, Griffin CT. Cytokine-Mediated Degradation of the Transcription Factor ERG Impacts the Pulmonary Vascular Response to Systemic Inflammatory Challenge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527788. [PMID: 36798267 PMCID: PMC9934599 DOI: 10.1101/2023.02.08.527788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Background During infectious diseases, pro-inflammatory cytokines transiently destabilize interactions between adjacent vascular endothelial cells (ECs) to facilitate the passage of immune molecules and cells into tissues. However, in the lung the resulting vascular hyperpermeability can lead to organ dysfunction. Previous work identified the transcription factor ERG as a master regulator of endothelial homeostasis. Here we investigate whether the sensitivity of pulmonary blood vessels to cytokine-induced destabilization is due to organotypic mechanisms affecting the ability of endothelial ERG to protect lung ECs from inflammatory injury. Methods Cytokine-dependent ubiquitination and proteasomal degradation of ERG was analyzed in cultured Human Umbilical Vein ECs (HUVECs). Systemic administration of TNFα or the bacterial cell wall component lipopolysaccharide (LPS) was used to cause a widespread inflammatory challenge in mice; ERG protein levels were assessed by immunoprecipitation, immunoblot, and immunofluorescence. Murine Erg deletion was genetically induced in ECs ( Erg fl/fl ;Cdh5(PAC)Cre ERT2 ), and multiple organs were analyzed by histology, immunostaining, and electron microscopy. Results In vitro, TNFα promoted the ubiquitination and degradation of ERG in HUVECs, which was blocked by the proteasomal inhibitor MG132. In vivo, systemic administration of TNFα or LPS resulted in a rapid and substantial degradation of ERG within lung ECs, but not ECs of the retina, heart, liver, or kidney. Pulmonary ERG was also downregulated in a murine model of influenza infection. Erg fl/fl ;Cdh5(PAC)-Cre ERT2 mice spontaneously recapitulated aspects of inflammatory challenges, including lung-predominant vascular hyperpermeability, immune cell recruitment, and fibrosis. These phenotypes were associated with a lung-specific decrease in the expression of Tek , a gene target of ERG previously implicated in maintaining pulmonary vascular stability during inflammation. Conclusions Collectively, our data highlight a unique role for ERG in pulmonary vascular function. We propose that cytokine-induced ERG degradation and subsequent transcriptional changes in lung ECs play critical roles in the destabilization of pulmonary blood vessels during infectious diseases.
Collapse
|
17
|
Mechanical Ventilation in Patients with Traumatic Brain Injury: Is it so Different? Neurocrit Care 2023; 38:178-191. [PMID: 36071333 DOI: 10.1007/s12028-022-01593-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/16/2022] [Indexed: 10/14/2022]
Abstract
Patients with traumatic brain injury (TBI) frequently require invasive mechanical ventilation and admission to an intensive care unit. Ventilation of patients with TBI poses unique clinical challenges, and careful attention is required to ensure that the ventilatory strategy (including selection of appropriate tidal volume, plateau pressure, and positive end-expiratory pressure) does not cause significant additional injury to the brain and lungs. Selection of ventilatory targets may be guided by principles of lung protection but with careful attention to relevant intracranial effects. In patients with TBI and concomitant acute respiratory distress syndrome (ARDS), adjunctive strategies include sedation optimization, neuromuscular blockade, recruitment maneuvers, prone positioning, and extracorporeal life support. However, these approaches have been largely extrapolated from studies in patients with ARDS and without brain injury, with limited data in patients with TBI. This narrative review will summarize the existing evidence for mechanical ventilation in patients with TBI. Relevant literature in patients with ARDS will be summarized, and where available, direct data in the TBI population will be reviewed. Next, practical strategies to optimize the delivery of mechanical ventilation and determine readiness for extubation will be reviewed. Finally, future directions for research in this evolving clinical domain will be presented, with considerations for the design of studies to address relevant knowledge gaps.
Collapse
|
18
|
Godoy DA, Murillo-Cabezas F, Suarez JI, Badenes R, Pelosi P, Robba C. "THE MANTLE" bundle for minimizing cerebral hypoxia in severe traumatic brain injury. Crit Care 2023; 27:13. [PMID: 36635711 PMCID: PMC9835224 DOI: 10.1186/s13054-022-04242-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/12/2022] [Indexed: 01/13/2023] Open
Abstract
To ensure neuronal survival after severe traumatic brain injury, oxygen supply is essential. Cerebral tissue oxygenation represents the balance between oxygen supply and consumption, largely reflecting the adequacy of cerebral perfusion. Multiple physiological parameters determine the oxygen delivered to the brain, including blood pressure, hemoglobin level, systemic oxygenation, microcirculation and many factors are involved in the delivery of oxygen to its final recipient, through the respiratory chain. Brain tissue hypoxia occurs when the supply of oxygen is not adequate or when for some reasons it cannot be used at the cellular level. The causes of hypoxia are variable and can be analyzed pathophysiologically following "the oxygen route." The current trend is precision medicine, individualized and therapeutically directed to the pathophysiology of specific brain damage; however, this requires the availability of multimodal monitoring. For this purpose, we developed the acronym "THE MANTLE," a bundle of therapeutical interventions, which covers and protects the brain, optimizing the components of the oxygen transport system from ambient air to the mitochondria.
Collapse
Affiliation(s)
- Daniel Agustin Godoy
- Departamento Medicina Critica. Unidad de Cuidados Neurointensivos, Sanatorio Pasteur, Catamarca, Argentina
| | | | - Jose Ignacio Suarez
- Departments of Anesthesiology and Critical Care Medicine, Neurology, and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Rafael Badenes
- Anesthesiology and Surgical-Trauma Intensive Care, University Clinic Hospital, Valencia, Spain
- Department of Surgery, University of Valencia, Valencia, Spain
- INCLIVA Research Medical Institute, Valencia, Spain
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| |
Collapse
|
19
|
Zhou D, Li T, Fei S, Wang C, Lv Y. The effect of positive end-expiratory pressure on intracranial pressure in obese and non-obese severe brain injury patients: a retrospective observational study. BMC Anesthesiol 2022; 22:388. [PMID: 36522657 PMCID: PMC9753360 DOI: 10.1186/s12871-022-01934-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The effect of positive end-expiratory pressure (PEEP) on intracranial pressure (ICP) had never been studied in obese patients with severe brain injury (SBI). The main aim was to evaluate the effect of PEEP on ICP in SBI patients with mechanical ventilation according to obesity status. METHODS SBI patients admitted to the ICU with mechanical ventilation between 2014 and 2015 were included. Demographic, hemodynamic, arterial blood gas, and ventilator data at the time of the paired PEEP and ICP observations were recorded and compared between obese (body mass index ≥ 30 kg/m2) and non-obese SBI patients. Generalized estimating equation (GEE) model was used to assess the relationship between PEEP and ICP in obese and non-obese SBI patients, respectively. RESULTS Six hundred twenty-seven SBI patients were included, 407 (65%) non-obese and 220 (35%) obese patients. A total of 30,415 paired PEEP and ICP observations were recorded in these patients, 19,566 (64.3%) for non-obese and 10,849 (35.7%) for obese. In the multivariable analysis, a statistically significant relationship between PEEP and ICP was found in obese SBI patients, but not in non-obese ones. For every cmH2O increase in PEEP, there was a 0.19 mmHg increase in ICP (95% CI [0.05, 0.33], P = 0.007) and a 0.15 mmHg decrease in CPP (95% CI [-0.29, -0.01], P = 0.036) in obese SBI patients after adjusting for confounders. CONCLUSIONS The results suggested that, contrary to non-obese SBI patients, the application of PEEP may produce an increase in ICP in obese SBI patients. However, the effect was modest and may be clinically inconsequential.
Collapse
Affiliation(s)
- Dawei Zhou
- grid.24696.3f0000 0004 0369 153XDepartment of Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Tong Li
- grid.24696.3f0000 0004 0369 153XDepartment of Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shuyang Fei
- grid.24696.3f0000 0004 0369 153XDepartment of Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chao Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yi Lv
- grid.24696.3f0000 0004 0369 153XDepartment of Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Mechanical power of ventilation is associated with mortality in neurocritical patients: a cohort study. J Clin Monit Comput 2022; 36:1621-1628. [PMID: 35059914 PMCID: PMC9637601 DOI: 10.1007/s10877-022-00805-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
This study aimed to determine the predictive relevance of mechanical power in the clinical outcomes (such as ICU mortality, hospital mortality, 90-day mortality, length of ICU stay, and number of ventilator-free days at day 28) of neurocritical patients. This is a retrospective cohort analysis of an open-access clinical database known as MIMIC-III. The study included patients who had sustained an acute brain injury and required invasive ventilation for at least 24 h. Demographic parameters, disease severity scores (Glasgow coma scale), comorbidities, vital signs, laboratory parameters and ventilator parameters were collected within the first 24 h of ICU admission. The main outcome was the relationship between MP and ICU mortality. A total of 529 patients were selected for the study. The critical value of MP was 12.16 J/min, with the area under the curve (AUC) of the MP was 0.678 (95% CI 0.637-0.718), and compared to the GCS scores, the MP performed significantly better in discrimination (DeLong's test: p < 0.001). Among these patients elevated MP was associated to higher ICU mortality (OR 1.11; 95% CI 1.06-1.17; p < 0.001), enhanced the risk of hospital mortality, prolonged ICU stay, and decreased the number of ventilator-free days. In the subgroup analysis, high MP was associated with ICU mortality regardless of ARDS (OR 1.01, 95% CI 1.00-1.02, p = 0.009; OR 1.01, 95% CI 1.00-1.02, p = 0.018, respectively) or obesity (OR 1.01, 95% CI 1.00-1.02, p = 0.012; OR 1.01, 95% CI 1.01-1.02, p < 0.001, respectively). In neurocritical care patients undergoing invasive ventilation, elevated MP is linked to higher ICU mortality and a variety of other clinical outcomes.
Collapse
|
21
|
Hatfield J, Ohnuma T, Soto AL, Komisarow JM, Vavilala MS, Laskowitz DT, James ML, Mathew JP, Hernandez AF, Goldstein BA, Treggiari M, Raghunathan K, Krishnamoorthy V. Utilization and Outcomes of Extracorporeal Membrane Oxygenation Following Traumatic Brain Injury in the United States. J Intensive Care Med 2022; 38:440-448. [PMID: 36445019 DOI: 10.1177/08850666221139223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Objectives: Describe contemporary ECMO utilization patterns among patients with traumatic brain injury (TBI) and examine clinical outcomes among TBI patients requiring ECMO. Design: Retrospective cohort study. Setting: Premier Healthcare Database (PHD) between January 2016 to June 2020. Subjects: Adult patients with TBI who were mechanically ventilated and stratified by exposure to ECMO. Results: Among patients exposed to ECMO, we examined the following clinical outcomes: hospital LOS, ICU LOS, duration of mechanical ventilation, and hospital mortality. Of our initial cohort (n = 59,612), 118 patients (0.2%) were placed on ECMO during hospitalization. Most patients were placed on ECMO within the first 2 days of admission (54.3%). Factors associated with ECMO utilization included younger age (OR 0.96, 95% CI (0.95–0.97)), higher injury severity score (ISS) (OR 1.03, 95% CI (1.01–1.04)), vasopressor utilization (2.92, 95% CI (1.90–4.48)), tranexamic acid utilization (OR 1.84, 95% CI (1.12–3.04)), baseline comorbidities (OR 1.06, 95% CI (1.03–1.09)), and care in a teaching hospital (OR 3.04, 95% CI 1.31–7.05). A moderate degree (ICC = 19.5%) of variation in ECMO use was explained at the individual hospital level. Patients exposed to ECMO had longer median (IQR) hospital and ICU length of stay (LOS) [26 days (11–36) versus 9 days (4–8) and 19.5 days (8–32) versus 5 days (2–11), respectively] and a longer median (IQR) duration of mechanical ventilation [18 days (8–31) versus 3 days (2–8)]. Patients exposed to ECMO experienced a hospital mortality rate of 33.9%, compared to 21.2% of TBI patients unexposed to ECMO. Conclusions: ECMO utilization in mechanically ventilated patients with TBI is rare, with significant variation across hospitals. The impact of ECMO on healthcare utilization and hospital mortality following TBI is comparable to non-TBI conditions requiring ECMO. Further research is necessary to better understand the role of ECMO following TBI and identify patients who may benefit from this therapy.
Collapse
Affiliation(s)
- Jordan Hatfield
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, North Carolina
- Duke University School of Medicine, Durham, NC, USA
| | - Tetsu Ohnuma
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, North Carolina
- Department of Anesthesiology, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Alexandria L. Soto
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, North Carolina
- Duke University School of Medicine, Durham, NC, USA
| | - Jordan M. Komisarow
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, North Carolina
- Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Monica S. Vavilala
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Daniel T. Laskowitz
- Department of Anesthesiology, Duke University, Durham, NC, USA
- Department of Neurosurgery, Duke University, Durham, NC, USA
- Department of Neurology, Duke University, Durham, NC, USA
| | - Michael L. James
- Department of Anesthesiology, Duke University, Durham, NC, USA
- Department of Neurology, Duke University, Durham, NC, USA
| | | | | | | | - Miriam Treggiari
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, North Carolina
- Department of Anesthesiology, Duke University, Durham, NC, USA
| | - Karthik Raghunathan
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, North Carolina
- Department of Anesthesiology, Duke University, Durham, NC, USA
- Population Health Sciences, Duke University, Durham, NC, USA
| | - Vijay Krishnamoorthy
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, North Carolina
- Department of Anesthesiology, Duke University, Durham, NC, USA
- Population Health Sciences, Duke University, Durham, NC, USA
| |
Collapse
|
22
|
Humayun M, Premraj L, Shah V, Cho SM. Mechanical ventilation in acute brain injury patients with acute respiratory distress syndrome. Front Med (Lausanne) 2022; 9:999885. [PMID: 36275802 PMCID: PMC9582443 DOI: 10.3389/fmed.2022.999885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is commonly seen in patients with acute brain injury (ABI), with prevalence being as high as 35%. These patients often have additional risk factors for ARDS compared to general critical care patients. Lung injury in ABI occurs secondary to catecholamine surge and neuro-inflammatory processes. ARDS patients benefit from lung protective ventilation using low tidal volumes, permissive hypercapnia, high PEEP, and lower PO2 goals. These strategies can often be detrimental in ABI given the risk of brain hypoxia and elevation of intracranial pressure (ICP). While lung protective ventilation is not contraindicated in ABI, special consideration is warranted to make sure it does not interfere with neurological recovery. Permissive hypercapnia with low lung volumes can be utilized in patients without any ICP issues but those with ICP elevations can benefit from continuous ICP monitoring to personalize PCO2 goals. Hypoxia leads to poor outcomes in ABI, hence the ARDSnet protocol of lower PO2 target (55-80 mmHg) might not be the best practice in patients with concomitant ARDS and ABI. High-normal PO2 levels are reasonable in target in severe ABI with ARDS. Studies have shown that PEEP up to 12 mmHg does not cause significant elevations in ICP and is safe to use in ABI though mean arterial pressure, respiratory system compliance, and cerebral perfusion pressure should be closely monitored. Given most trials investigating therapeutics in ARDS have excluded ABI patients, focused research is needed in the field to advance the care of these patients using evidence-based medicine.
Collapse
Affiliation(s)
- Mariyam Humayun
- Division of Neuroscience Critical Care, Department of Neurology, Neurosurgery, Surgery, Anesthesiology, and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lavienraj Premraj
- School of Medicine, Griffith University, Gold Coast, QLD, Australia
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Vishank Shah
- Division of Neuroscience Critical Care, Department of Neurology, Neurosurgery, Surgery, Anesthesiology, and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sung-Min Cho
- Division of Neuroscience Critical Care, Department of Neurology, Neurosurgery, Surgery, Anesthesiology, and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
23
|
Thakur M, Vasudeva N, Sharma S, Datusalia AK. Plants and their Bioactive Compounds as a Possible Treatment for Traumatic Brain Injury-Induced Multi-Organ Dysfunction Syndrome. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-126021. [PMID: 36045522 DOI: 10.2174/1871527321666220830164432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND & OBJECTIVE Traumatic brain injury is an outcome of the physical or mechanical impact of external forces on the brain. Thus, the silent epidemic has complex pathophysiology affecting the brain along with extracranial or systemic complications in more than one organ system, including the heart, lungs, liver, kidney, gastrointestinal and endocrine system. which is referred to as Multi-Organ Dysfunction Syndrome. It is driven by three interconnected mechanisms such as systemic hyperinflammation, paroxysmal sympathetic hyperactivity, and immunosuppression-induced sepsis. These multifaceted pathologies accelerate the risk of mortality in clinical settings by interfering with the functions of distant organs through hypertension, cardiac arrhythmias, acute lung injury, neurogenic pulmonary edema, reduced gastrointestinal motility, Cushing ulcers, acute liver failure, acute kidney injury, coagulopathy, endocrine dysfunction, and many other impairments. The pharmaceutical treatment approach for this is highly specific in its mode of action and linked to a variety of side effects, including hallucinations, seizures, anaphylaxis, teeth, bone staining, etc. Therefore, alternative natural medicine treatments are widely accepted due to their broad complementary or synergistic effects on the physiological system with minor side effects. CONCLUSION This review is a compilation of the possible mechanisms behind the occurrence of multiorgan dysfunction and reported medicinal plants with organoprotective activity that have not been yet explored against traumatic brain injury and thereby, highlighting the marked possibilities of their effectiveness in the management of multiorgan dysfunction. As a result, we attempted to respond to the hypothesis against the usage of medicinal plants to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Manisha Thakur
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Neeru Vasudeva
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Sunil Sharma
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology/Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, India
| |
Collapse
|
24
|
Siwicka-Gieroba D, Terpilowska S, Robba C, Barud M, Kubik-Komar A, Dabrowski W. The Connection Between Selected Caspases Levels in Bronchoalveolar Lavage Fluid and Severity After Brain Injury. Front Neurol 2022; 13:796238. [PMID: 35665033 PMCID: PMC9161272 DOI: 10.3389/fneur.2022.796238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The interaction between the brain and lungs has been the subject of many clinical reports, while the exact impact of brain injury on the physiology of the respiratory system is still subject to numerous experimental studies. The purpose of this study was to investigate the activation of selected caspases levels in bronchoalveolar lavage fluid (mini BALF) of patients after isolated brain injury and their correlation with the severity of the injury. Methods The analysis was performed on patients who were admitted to the intensive care unit (ICU) for severe isolated brain injury from March 2018 to April 2020. All patients were intubated and mechanically ventilated. Mini BALF was collected within the first 6–8 h after trauma and on days 3 and 7 after admission. The concentrations of selected caspases were determined and correlated with the severity of brain injury evaluated by the Rotterdam CT Score, Glasgow Coma Score, and 28-day mortality. Results Our results showed significantly elevated levels of selected caspases on days 3 and 7 after brain injury, and revealed apoptosis activation during the first 7 days after brain trauma. We found a significant different correlation between the elevation of selected caspases 3, 6, 8, and 9, and the Glasgow Coma Score, Rotterdam CT scale, and 28-day mortality. Conclusions The increased levels of selected caspases in the mini BALF in our patients indicate an intensified activation of apoptosis in the lungs, which is related to brain injury itself via various apoptotic pathways and correlates with the severity of brain injury.
Collapse
Affiliation(s)
- Dorota Siwicka-Gieroba
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, Lublin, Poland
- *Correspondence: Dorota Siwicka-Gieroba
| | | | - Chiara Robba
- Anaesthesia and Intensive Care, Policlinico San Martino, Deputy of the Neurointensive Care Section of European Society of Intensive Care Medicine, Genova, Italy
| | - Małgorzata Barud
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Kubik-Komar
- Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, Lublin, Poland
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
25
|
Wen J, Chen J, Chang J, Wei J. Pulmonary complications and respiratory management in neurocritical care: a narrative review. Chin Med J (Engl) 2022; 135:779-789. [PMID: 35671179 PMCID: PMC9276382 DOI: 10.1097/cm9.0000000000001930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT Neurocritical care (NCC) is not only generally guided by principles of general intensive care, but also directed by specific goals and methods. This review summarizes the common pulmonary diseases and pathophysiology affecting NCC patients and the progress made in strategies of respiratory support in NCC. This review highlights the possible interactions and pathways that have been revealed between neurological injuries and respiratory diseases, including the catecholamine pathway, systemic inflammatory reactions, adrenergic hypersensitivity, and dopaminergic signaling. Pulmonary complications of neurocritical patients include pneumonia, neurological pulmonary edema, and respiratory distress. Specific aspects of respiratory management include prioritizing the protection of the brain, and the goal of respiratory management is to avoid inappropriate blood gas composition levels and intracranial hypertension. Compared with the traditional mode of protective mechanical ventilation with low tidal volume (Vt), high positive end-expiratory pressure (PEEP), and recruitment maneuvers, low PEEP might yield a potential benefit in closing and protecting the lung tissue. Multimodal neuromonitoring can ensure the safety of respiratory maneuvers in clinical and scientific practice. Future studies are required to develop guidelines for respiratory management in NCC.
Collapse
Affiliation(s)
- Junxian Wen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing 100730, China
| | | | | | | |
Collapse
|
26
|
Chacón-Aponte AA, Durán-Vargas ÉA, Arévalo-Carrillo JA, Lozada-Martínez ID, Bolaño-Romero MP, Moscote-Salazar LR, Grille P, Janjua T. Brain-lung interaction: a vicious cycle in traumatic brain injury. Acute Crit Care 2022; 37:35-44. [PMID: 35172526 PMCID: PMC8918716 DOI: 10.4266/acc.2021.01193] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022] Open
Abstract
The brain-lung interaction can seriously affect patients with traumatic brain injury, triggering a vicious cycle that worsens patient prognosis. Although the mechanisms of the interaction are not fully elucidated, several hypotheses, notably the "blast injury" theory or "double hit" model, have been proposed and constitute the basis of its development and progression. The brain and lungs strongly interact via complex pathways from the brain to the lungs but also from the lungs to the brain. The main pulmonary disorders that occur after brain injuries are neurogenic pulmonary edema, acute respiratory distress syndrome, and ventilator-associated pneumonia, and the principal brain disorders after lung injuries include brain hypoxia and intracranial hypertension. All of these conditions are key considerations for management therapies after traumatic brain injury and need exceptional case-by-case monitoring to avoid neurological or pulmonary complications. This review aims to describe the history, pathophysiology, risk factors, characteristics, and complications of brain-lung and lung-brain interactions and the impact of different old and recent modalities of treatment in the context of traumatic brain injury.
Collapse
Affiliation(s)
| | | | | | - Iván David Lozada-Martínez
- Colombian Clinical Research Group in Neurocritical Care, University of Cartagena, Cartagena, Colombia
- Latin American Council of Neurocritical Care (CLaNi), Cartagena, Colombia
- Global Neurosurgery Committee, World Federation of Neurosurgical Societies, Cartagena, Colombia
- Medical and Surgical Research Center, Cartagena, Colombia
| | | | - Luis Rafael Moscote-Salazar
- Colombian Clinical Research Group in Neurocritical Care, University of Cartagena, Cartagena, Colombia
- Latin American Council of Neurocritical Care (CLaNi), Cartagena, Colombia
- Medical and Surgical Research Center, Cartagena, Colombia
| | - Pedro Grille
- Department of Intensive Care, Hospital Maciel, Montevideo, Uruguay
| | - Tariq Janjua
- Department of Intensive Care, Regions Hospital, St. Paul, MN, USA
| |
Collapse
|
27
|
Fan TH, Huang M, Gedansky A, Price C, Robba C, Hernandez AV, Cho SM. Prevalence and Outcome of Acute Respiratory Distress Syndrome in Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Lung 2021; 199:603-610. [PMID: 34779897 PMCID: PMC8590970 DOI: 10.1007/s00408-021-00491-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/26/2021] [Indexed: 11/01/2022]
Abstract
OBJECTIVES Acute respiratory distress syndrome (ARDS) in patients with traumatic brain injury (TBI) is associated with increased mortality. Information on the prevalence of ARDS and its neurological outcome after TBI is sparse. We aimed to systematically review the prevalence, risk factors, and outcome of ARDS in TBI population. DATA SOURCES PubMed and four other databases (Embase, Cochrane Library, Web of Science Core Collection, and Scopus) from inception to July 6, 2020. STUDY SELECTION Randomized controlled trials (RCTs) and observational studies in patients older than 18 years old. DATA EXTRACTION Two independent reviewers extracted the data. Study quality was assessed by the Cochrane Risk of Bias tool for RCTs, the Newcastle-Ottawa Scale for cohort and case-control studies. Good neurological outcome was defined as Glasgow Outcome Scale ≥ 4. Random-effects meta-analyses were conducted to estimate pooled outcome prevalence and their 95% confidence intervals (CI). DATA SYNTHESIS We included 20 studies (n = 2830) with median age of 44 years (interquartile range [IQR] = 35-47, 64% male) and 79% (n = 2237) suffered severe TBI. In meta-analysis, 19% patients (95% CI = 0.13-0.27, I2 = 93%) had ARDS after TBI. The median time from TBI to ARDS was 3 days (IQR = 2-5). Overall survival at discharge for the TBI cohort was 70% (95% CI = 0.64-0.75; I2 = 85%) and good neurological outcome at any time was achieved in 31% of TBI patients (95% CI = 0.23-0.40; I2 = 88%). TBI cohort without ARDS had higher survival (67% vs. 57%, p = 0.01) and good neurological outcomes (34% vs. 23%, p = 0.02) compared to those with ARDS. We did not find any specific risk factors for developing ARDS. CONCLUSION In this meta-analysis, approximately one in five patients had ARDS shortly after TBI with the median time of 3 days. The presence of ARDS was associated with worse neurological outcome and mortality in TBI. Further research on prevention and intervention strategy of TBI-associated ARDS is warranted.
Collapse
Affiliation(s)
- Tracey H Fan
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Merry Huang
- Department of Neurology, Cleveland Clinic, Neurological Institute, Cleveland, OH, USA
| | - Aron Gedansky
- Department of Neurology, Cleveland Clinic, Neurological Institute, Cleveland, OH, USA
| | - Carrie Price
- Albert S. Cook Library, Towson University, Towson, MD, USA
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Adrian V Hernandez
- Health Outcomes, Policy, and Evidence Synthesis (HOPES) Group, Department of Pharmacy Practice, University of Connecticut School of Pharmacy, Storrs, Mansfield, CT, USA
- Unidad de Revisiones Sistemáticas y Meta-Análisis (URSIGET), Vicerrectorado de Investigación, Universidad San Ignacio de Loyola (USIL), Lima, Peru
| | - Sung-Min Cho
- Division of Neuroscience Critical Care, Departments of Neurology, Neurosurgery, Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, Johns Hopkins University, 600 N. Wolfe Street, Phipps 455, Baltimore, MD, 21287, USA.
| |
Collapse
|
28
|
Acevedo-Aguilar L, Gaitán-Herrera G, Reina-Rivero R, Lozada-Martínez ID, Bohorquez-Caballero A, Paéz-Escallón N, Del Pilar Zambrano-Arenas MD, Ortega-Sierra MG, Moscote-Salazar LR, Janjua T. Pulmonary injury as a predictor of cerebral hypoxia in traumatic brain injury: from physiology to physiopathology. J Neurosurg Sci 2021; 66:251-257. [PMID: 34763389 DOI: 10.23736/s0390-5616.21.05468-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Traumatic brain injury is caused by mechanical forces impacting the skull and its internal structures and constitutes one of the main causes of morbidity and mortality in the world. Clinically, severe traumatic brain injury is associated with the development of acute lung injury and so far, few studies have evaluated the cellular, molecular and immunological mechanisms involved in this pathophysiological process. Knowing and investigating these mechanisms allows us to correlate pulmonary injury as a predictor of cerebral hypoxia in traumatic brain injury and to use this finding in decision making during clinical practice. This review aims to provide evidence on the importance of the pathophysiology of traumatic brain injury-acute lung injury, and thus confirm its role as a predictor of cerebral hypoxia, helping to establish an appropriate therapeutic strategy to improve functional outcomes and reduce mortality.
Collapse
Affiliation(s)
- Laura Acevedo-Aguilar
- Medical and Surgical Research Center, School of Medicine, University of Cartagena, Cartagena, Colombia
| | - Gustavo Gaitán-Herrera
- Medical and Surgical Research Center, School of Medicine, University of Cartagena, Cartagena, Colombia
| | - Randy Reina-Rivero
- Medical and Surgical Research Center, School of Medicine, University of Cartagena, Cartagena, Colombia
| | - Ivan D Lozada-Martínez
- Medical and Surgical Research Center, School of Medicine, University of Cartagena, Cartagena, Colombia - .,Colombian Clinical Research Group in Neurocritical Care, School of Medicine, University of Cartagena, Cartagena, Colombia.,Latin American Council of Neurocritical Care, Cartagena, Colombia.,Future Surgeons Chapter, Colombian Surgery Association, Bogotá, Colombia
| | | | | | | | - Michael G Ortega-Sierra
- Medical and Surgical Research Center, School of Medicine, Corporación Universitaria Rafael Nuñez, Cartagena, Colombia
| | - Luis R Moscote-Salazar
- Medical and Surgical Research Center, School of Medicine, University of Cartagena, Cartagena, Colombia.,Colombian Clinical Research Group in Neurocritical Care, School of Medicine, University of Cartagena, Cartagena, Colombia.,Latin American Council of Neurocritical Care, Cartagena, Colombia
| | - Tariq Janjua
- Intensive Care, Regions Hospital, Saint Paul, MN, USA
| |
Collapse
|
29
|
Robba C, Ball L, Nogas S, Battaglini D, Messina A, Brunetti I, Minetti G, Castellan L, Rocco PRM, Pelosi P. Effects of Positive End-Expiratory Pressure on Lung Recruitment, Respiratory Mechanics, and Intracranial Pressure in Mechanically Ventilated Brain-Injured Patients. Front Physiol 2021; 12:711273. [PMID: 34733173 PMCID: PMC8558243 DOI: 10.3389/fphys.2021.711273] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/09/2021] [Indexed: 01/17/2023] Open
Abstract
Background: The pathophysiological effects of positive end-expiratory pressure (PEEP) on respiratory mechanics, lung recruitment, and intracranial pressure (ICP) in acute brain-injured patients have not been completely elucidated. The primary aim of this study was to assess the effects of PEEP augmentation on respiratory mechanics, quantitative computed lung tomography (qCT) findings, and its relationship with ICP modifications. Secondary aims included the assessment of the correlations between different factors (respiratory mechanics and qCT features) with the changes of ICP and how these factors at baseline may predict ICP response after greater PEEP levels. Methods: A prospective, observational study included mechanically ventilated patients with acute brain injury requiring invasive ICP and who underwent two-PEEP levels lung CT scan. Respiratory system compliance (Crs), arterial partial pressure of carbon dioxide (PaCO2), mean arterial pressure (MAP), data from qCT and ICP were obtained at PEEP 5 and 15 cmH2O. Results: Sixteen examinations (double PEEP lung CT and neuromonitoring) in 15 patients were analyzed. The median age of the patients was 54 years (interquartile range, IQR = 39–65) and 53% were men. The median Glasgow Coma Scale (GCS) at intensive care unit (ICU) admission was 8 (IQR = 3–12). Median alveolar recruitment was 2.5% of total lung weight (−1.5 to 4.7). PEEP from 5 to 15 cmH2O increased ICP [median values from 14.0 (11.2–17.5) to 23.5 (19.5–26.8) mmHg, p < 0.001, respectively]. The amount of recruited lung tissue on CT was inversely correlated with the change (Δ) in ICP (rho = −0.78; p = 0.0006). Additionally, ΔCrs (rho = −0.77, p = 0.008), ΔPaCO2 (rho = 0.81, p = 0.0003), and ΔMAP (rho = −0.64, p = 0.009) were correlated with ΔICP. Baseline Crs was not predictive of ICP response to PEEP. Conclusions: The main factors associated with increased ICP after PEEP augmentation included reduced Crs, lower MAP and lung recruitment, and increased PaCO2, but none of these factors was able to predict, at baseline, ICP response to PEEP. To assess the potential benefits of increased PEEP in patients with acute brain injury, hemodynamic status, respiratory mechanics, and lung morphology should be taken into account.
Collapse
Affiliation(s)
- Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neurosciences, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Lorenzo Ball
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neurosciences, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Stefano Nogas
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neurosciences, Genoa, Italy
| | - Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neurosciences, Genoa, Italy
| | - Antonio Messina
- Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Iole Brunetti
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neurosciences, Genoa, Italy
| | - Giuseppe Minetti
- Radiology Department San Martino Policlinico Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neurosciences, Genoa, Italy
| | - Lucio Castellan
- Radiology Department San Martino Policlinico Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neurosciences, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neurosciences, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| |
Collapse
|
30
|
Ziaka M, Exadaktylos A. Brain-lung interactions and mechanical ventilation in patients with isolated brain injury. Crit Care 2021; 25:358. [PMID: 34645485 PMCID: PMC8512596 DOI: 10.1186/s13054-021-03778-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022] Open
Abstract
During the last decade, experimental and clinical studies have demonstrated that isolated acute brain injury (ABI) may cause severe dysfunction of peripheral extracranial organs and systems. Of all potential target organs and systems, the lung appears to be the most vulnerable to damage after brain injury (BI). The pathophysiology of these brain–lung interactions are complex and involve neurogenic pulmonary oedema, inflammation, neurodegeneration, neurotransmitters, immune suppression and dysfunction of the autonomic system. The systemic effects of inflammatory mediators in patients with BI create a systemic inflammatory environment that makes extracranial organs vulnerable to secondary procedures that enhance inflammation, such as mechanical ventilation (MV), surgery and infections. Indeed, previous studies have shown that in the presence of a systemic inflammatory environment, specific neurointensive care interventions—such as MV—may significantly contribute to the development of lung injury, regardless of the underlying mechanisms. Although current knowledge supports protective ventilation in patients with BI, it must be born in mind that ABI-related lung injury has distinct mechanisms that involve complex interactions between the brain and lungs. In this context, the role of extracerebral pathophysiology, especially in the lungs, has often been overlooked, as most physicians focus on intracranial injury and cerebral dysfunction. The present review aims to fill this gap by describing the pathophysiology of complications due to lung injuries in patients with a single ABI, and discusses the possible impact of MV in neurocritical care patients with normal lungs.
Collapse
Affiliation(s)
- Mairi Ziaka
- Department of Internal Medicine, Thun General Hospital, Thun, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
31
|
Ballesteros MA, Suberviola Cañas B, Sánchez Arguiano MJ, Sánchez-Moreno L, Miñambres E. Refractory hypoxemia in critical trauma patient. Usefulness of extra-corporeal membrane oxygenation. Cir Esp 2021; 99:690-692. [PMID: 34629311 DOI: 10.1016/j.cireng.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/30/2020] [Indexed: 11/27/2022]
Affiliation(s)
- María A Ballesteros
- Servicio de Medicina Intensiva, Hospital Universitario «Marqués de Valdecilla»-IDIVAL, Santander, Spain.
| | - Borja Suberviola Cañas
- Servicio de Medicina Intensiva, Hospital Universitario «Marqués de Valdecilla»-IDIVAL, Santander, Spain
| | | | - Laura Sánchez-Moreno
- Servicio de Cirugía Torácica, Hospital Universitario «Marqués de Valdecilla»-IDIVAL, Santander, Spain
| | - Eduardo Miñambres
- Servicio de Medicina Intensiva, Hospital Universitario «Marqués de Valdecilla»-IDIVAL, Santander, Spain; Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
32
|
Lomeli M, Dominguez Cenzano L, Torres L, Chavarría U, Poblano M, Tendillo F, Blanch L, Mancebo J. Reclutamiento alveolar agresivo en el SDRA: más sombras que luces. Med Intensiva 2021. [DOI: 10.1016/j.medin.2020.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Krishnamoorthy V, Komisarow JM, Laskowitz DT, Vavilala MS. Multiorgan Dysfunction After Severe Traumatic Brain Injury: Epidemiology, Mechanisms, and Clinical Management. Chest 2021; 160:956-964. [PMID: 33460623 PMCID: PMC8448997 DOI: 10.1016/j.chest.2021.01.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/10/2020] [Accepted: 01/07/2021] [Indexed: 01/20/2023] Open
Abstract
Traumatic brain injury (TBI) is a major global health problem and a major contributor to morbidity and mortality following multisystem trauma. Extracranial organ dysfunction is common after severe TBI and significantly impacts clinical care and outcomes following injury. Despite this, extracranial organ dysfunction remains an understudied topic compared with organ dysfunction in other critical care paradigms. In this review, we will: 1) summarize the epidemiology of extracranial multiorgan dysfunction following severe TBI; 2) examine relevant mechanisms that may be involved in the development of multi-organ dysfunction following severe TBI; and 3) discuss clinical management strategies to care for these complex patients.
Collapse
Affiliation(s)
- Vijay Krishnamoorthy
- Department of Anesthesiology, Duke University, Chapel Hill, NC; Critical Care and Perioperative Population Health Research Unit, Department of Anesthesiology, Duke University, Chapel Hill, NC.
| | - Jordan M Komisarow
- Critical Care and Perioperative Population Health Research Unit, Department of Anesthesiology, Duke University, Chapel Hill, NC; Department of Neurosurgery, Duke University, Chapel Hill, NC
| | | | - Monica S Vavilala
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA
| |
Collapse
|
34
|
Robba C, Citerio G, Taccone FS, Galimberti S, Rebora P, Vargiolu A, Pelosi P. Multicentre observational study on practice of ventilation in brain injured patients: the VENTIBRAIN study protocol. BMJ Open 2021; 11:e047100. [PMID: 34380722 PMCID: PMC8359464 DOI: 10.1136/bmjopen-2020-047100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Mechanical ventilatory is a crucial element of acute brain injured patients' management. The ventilatory goals to ensure lung protection during acute respiratory failure may not be adequate in case of concomitant brain injury. Therefore, there are limited data from which physicians can draw conclusions regarding optimal ventilator management in this setting. METHODS AND ANALYSIS This is an international multicentre prospective observational cohort study. The aim of the 'multicentre observational study on practice of ventilation in brain injured patients'-the VENTIBRAIN study-is to describe the current practice of ventilator settings and mechanical ventilation in acute brain injured patients. Secondary objectives include the description of ventilator settings among different countries, and their association with outcomes. Inclusion criteria will be adult patients admitted to the intensive care unit (ICU) with a diagnosis of traumatic brain injury or cerebrovascular diseases (intracranial haemorrhage, subarachnoid haemorrhage, ischaemic stroke), requiring intubation and mechanical ventilation and admission to the ICU. Exclusion criteria will be the following: patients aged <18 years; pregnant patients; patients not intubated or not mechanically ventilated or receiving only non-invasive ventilation. Data related to clinical examination, neuromonitoring if available, ventilator settings and arterial blood gases will be recorded at admission and daily for the first 7 days and then at day 10 and 14. The Glasgow Outcome Scale Extended on mortality and neurological outcome will be collected at discharge from ICU, hospital and at 6 months follow-up. ETHICS AND DISSEMINATION The study has been approved by the Ethic committee of Brianza at the Azienda Socio Sanitaria Territoriale-Monza. Data will be disseminated to the scientific community by abstracts submitted to the European Society of Intensive Care Medicine annual conference and by original articles submitted to peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT04459884.
Collapse
Affiliation(s)
- Chiara Robba
- Anesthesia and Intensive Care, Policlinico San Martino, IRCCS for Oncology and Neuroscience, Genova, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, University of Genoa, Genova, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, Università Miano - Bicocca, Milano, Italy
- Neuroscience Department, NeuroIntensive Care Unit, Hospital San Gerardo, ASST Monza, Monza, Italy
| | - Fabio S Taccone
- Dpt of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Stefania Galimberti
- School of Medicine and Surgery, Università Miano - Bicocca, Milano, Italy
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Paola Rebora
- School of Medicine and Surgery, Università Miano - Bicocca, Milano, Italy
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Alessia Vargiolu
- School of Medicine and Surgery, Università Miano - Bicocca, Milano, Italy
| | - Paolo Pelosi
- Anesthesia and Intensive Care, Policlinico San Martino, IRCCS for Oncology and Neuroscience, Genova, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, University of Genoa, Genova, Italy
| |
Collapse
|
35
|
Aggressive alveolar recruitment in ARDS: More shadows than lights. Med Intensiva 2021; 45:431-436. [PMID: 34238723 DOI: 10.1016/j.medine.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/18/2020] [Indexed: 12/16/2022]
Abstract
Alveolar recruitment in acute respiratory distress syndrome (ARDS) is defined as the penetration of gas into previously unventilated areas or poorly ventilated areas. Alveolar recruitment during recruitment maneuvering (RM) depends on the duration of the maneuver, the recruitable lung tissue, and the balance between the recruitment of collapsed areas and over-insufflation of the ventilated areas. Alveolar recruitment is estimated using computed tomography of the lung and, at the patient bedside, through assessment of the recruited volume using pressure-volume curves and assessing lung morphology with pulmonary ultrasound and/or impedance tomography. The scientific evidence on RM in patients with ARDS remains subject to controversy. Randomized studies on ARDS have shown no benefit or have even reflected an increase in mortality. The routine use of RM is therefore not recommended.
Collapse
|
36
|
Robba C, Ball L, Battaglini D, Cardim D, Moncalvo E, Brunetti I, Bassetti M, Giacobbe DR, Vena A, Patroniti N, Rocco PRM, Matta BF, Pelosi P. Early effects of ventilatory rescue therapies on systemic and cerebral oxygenation in mechanically ventilated COVID-19 patients with acute respiratory distress syndrome: a prospective observational study. Crit Care 2021; 25:111. [PMID: 33741052 PMCID: PMC7978164 DOI: 10.1186/s13054-021-03537-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In COVID-19 patients with acute respiratory distress syndrome (ARDS), the effectiveness of ventilatory rescue strategies remains uncertain, with controversial efficacy on systemic oxygenation and no data available regarding cerebral oxygenation and hemodynamics. METHODS This is a prospective observational study conducted at San Martino Policlinico Hospital, Genoa, Italy. We included adult COVID-19 patients who underwent at least one of the following rescue therapies: recruitment maneuvers (RMs), prone positioning (PP), inhaled nitric oxide (iNO), and extracorporeal carbon dioxide (CO2) removal (ECCO2R). Arterial blood gas values (oxygen saturation [SpO2], partial pressure of oxygen [PaO2] and of carbon dioxide [PaCO2]) and cerebral oxygenation (rSO2) were analyzed before (T0) and after (T1) the use of any of the aforementioned rescue therapies. The primary aim was to assess the early effects of different ventilatory rescue therapies on systemic and cerebral oxygenation. The secondary aim was to evaluate the correlation between systemic and cerebral oxygenation in COVID-19 patients. RESULTS Forty-five rescue therapies were performed in 22 patients. The median [interquartile range] age of the population was 62 [57-69] years, and 18/22 [82%] were male. After RMs, no significant changes were observed in systemic PaO2 and PaCO2 values, but cerebral oxygenation decreased significantly (52 [51-54]% vs. 49 [47-50]%, p < 0.001). After PP, a significant increase was observed in PaO2 (from 62 [56-71] to 82 [76-87] mmHg, p = 0.005) and rSO2 (from 53 [52-54]% to 60 [59-64]%, p = 0.005). The use of iNO increased PaO2 (from 65 [67-73] to 72 [67-73] mmHg, p = 0.015) and rSO2 (from 53 [51-56]% to 57 [55-59]%, p = 0.007). The use of ECCO2R decreased PaO2 (from 75 [75-79] to 64 [60-70] mmHg, p = 0.009), with reduction of rSO2 values (59 [56-65]% vs. 56 [53-62]%, p = 0.002). In the whole population, a significant relationship was found between SpO2 and rSO2 (R = 0.62, p < 0.001) and between PaO2 and rSO2 (R0 0.54, p < 0.001). CONCLUSIONS Rescue therapies exert specific pathophysiological mechanisms, resulting in different effects on systemic and cerebral oxygenation in critically ill COVID-19 patients with ARDS. Cerebral and systemic oxygenation are correlated. The choice of rescue strategy to be adopted should take into account both lung and brain needs. Registration The study protocol was approved by the ethics review board (Comitato Etico Regione Liguria, protocol n. CER Liguria: 23/2020).
Collapse
Affiliation(s)
- Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- IRCCS for Oncology and Neuroscience, Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- IRCCS for Oncology and Neuroscience, Ospedale Policlinico San Martino, Genoa, Italy
| | - Denise Battaglini
- IRCCS for Oncology and Neuroscience, Ospedale Policlinico San Martino, Genoa, Italy
| | - Danilo Cardim
- Department of Neurology, University of Texas, Austin, USA
| | - Emanuela Moncalvo
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Iole Brunetti
- IRCCS for Oncology and Neuroscience, Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa , Italy
- Infectious Diseases Unit, IRCCS for Oncology and Neuroscience, Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniele R. Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa , Italy
- Infectious Diseases Unit, IRCCS for Oncology and Neuroscience, Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Vena
- Infectious Diseases Unit, IRCCS for Oncology and Neuroscience, Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicolò Patroniti
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- IRCCS for Oncology and Neuroscience, Ospedale Policlinico San Martino, Genoa, Italy
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio De Janeiro, Brazil
| | - Basil F. Matta
- Neurocritical Care Unit, Addenbrooke’s Hospital, Cambridge, UK
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- IRCCS for Oncology and Neuroscience, Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
37
|
Teng YD, Zafonte RD. Prelude to the special issue on novel neurocircuit, cellular and molecular targets for developing functional rehabilitation therapies of neurotrauma. Exp Neurol 2021; 341:113689. [PMID: 33745921 DOI: 10.1016/j.expneurol.2021.113689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 11/15/2022]
Abstract
The poor endogenous recovery capacity and other impediments to reinstating sensorimotor or autonomic function after adult neurotrauma have perplexed modern neuroscientists, bioengineers, and physicians for over a century. However, despite limited improvement in options to mitigate acute pathophysiological sequalae, the past 20 years have witnessed marked progresses in developing efficacious rehabilitation strategies for chronic spinal cord and brain injuries. The achievement is mainly attributable to research advancements in elucidating neuroplastic mechanisms for the potential to enhance clinical prognosis. Innovative cross-disciplinary studies have established novel therapeutic targets, theoretical frameworks, and regiments to attain treatment efficacy. This Special Issue contained eight papers that described experimental and human data along with literature reviews regarding the essential roles of the conventionally undervalued factors in neural repair: systemic inflammation, neural-respiratory inflammasome axis, modulation of glutamatergic and monoaminergic neurotransmission, neurogenesis, nerve transfer, recovery neurobiology components, and the spinal cord learning, respiration and central pattern generator neurocircuits. The focus of this work was on how to induce functional recovery from manipulating these underpinnings through their interactions with secondary injury events, peripheral and supraspinal inputs, neuromusculoskeletal network, and interventions (i.e., activity training, pharmacological adjuncts, electrical stimulation, and multimodal neuromechanical, brain-computer interface [BCI] and robotic assistance [RA] devices). The evidence suggested that if key neurocircuits are therapeutically reactivated, rebuilt, and/or modulated under proper sensory feedback, neurological function (e.g., cognition, respiration, limb movement, locomotion, etc.) will likely be reanimated after neurotrauma. The efficacy can be optimized by individualizing multimodal rehabilitation treatments via BCI/RA-integrated drug administration and neuromechanical protheses.
Collapse
Affiliation(s)
- Yang D Teng
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Neurotrauma Recovery Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA, USA; Spaulding Research Institute, Spaulding Rehabilitation Hospital Network, Boston, MA, USA.
| | - Ross D Zafonte
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Neurotrauma Recovery Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA, USA; Spaulding Research Institute, Spaulding Rehabilitation Hospital Network, Boston, MA, USA.
| |
Collapse
|
38
|
Kerr NA, de Rivero Vaccari JP, Weaver C, Dietrich WD, Ahmed T, Keane RW. Enoxaparin Attenuates Acute Lung Injury and Inflammasome Activation after Traumatic Brain Injury. J Neurotrauma 2021; 38:646-654. [PMID: 32669032 PMCID: PMC7898405 DOI: 10.1089/neu.2020.7257] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) patients frequently develop cardiopulmonary system complications such as acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). However, the mechanism by which TBI causes ALI/ARDS is not fully understood. Here, we used a severe TBI model to examine the effects of a low-molecular-weight heparin, enoxaparin, on inflammasome activation and lung injury damage. We investigated whether enoxaparin inhibits ALI and inflammasome signaling protein expression in the brain and lungs after TBI in mice. C57/BL6 mice were subjected to severe TBI and were treated with vehicle or 1 mg/kg of enoxaparin 30 min after injury. Lung and brain tissue were collected 24 h post-TBI and were analyzed by immunoblotting for expression of the inflammasome proteins, caspase-1 and interleukin (IL)-1β. In addition, lung tissue was collected for histological analysis to determine ALI scoring and neutrophil and macrophage infiltration post-injury. Our data show that severe TBI induces increased expression of inflammasome proteins caspase-1 and IL-1β in the brain and lungs of mice after injury. Treatment with enoxaparin attenuated inflammasome expression in the brain and lungs 24 h after injury. Enoxaparin significantly decreased ALI score as well as neutrophil and macrophage infiltration in lungs at 24 h after injury. This study demonstrates that enoxaparin attenuates ALI and inhibits inflammasome expression in the brain and lungs after TBI. These findings support the hypothesis that inhibition of the neural-respiratory inflammasome axis that is activated after TBI may have therapeutic potential.
Collapse
Affiliation(s)
- Nadine A. Kerr
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Cailey Weaver
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - W. Dalton Dietrich
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Tahir Ahmed
- Pulmonary Division, Mount Sinai Medical Center, Miami Beach, Florida, USA
| | - Robert W. Keane
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
39
|
Robba C, Poole D, McNett M, Asehnoune K, Bösel J, Bruder N, Chieregato A, Cinotti R, Duranteau J, Einav S, Ercole A, Ferguson N, Guerin C, Siempos II, Kurtz P, Juffermans NP, Mancebo J, Mascia L, McCredie V, Nin N, Oddo M, Pelosi P, Rabinstein AA, Neto AS, Seder DB, Skrifvars MB, Suarez JI, Taccone FS, van der Jagt M, Citerio G, Stevens RD. Mechanical ventilation in patients with acute brain injury: recommendations of the European Society of Intensive Care Medicine consensus. Intensive Care Med 2020; 46:2397-2410. [PMID: 33175276 PMCID: PMC7655906 DOI: 10.1007/s00134-020-06283-0] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/05/2020] [Indexed: 12/29/2022]
Abstract
Purpose To provide clinical practice recommendations and generate a research agenda on mechanical ventilation and respiratory support in patients with acute brain injury (ABI). Methods An international consensus panel was convened including 29 clinician-scientists in intensive care medicine with expertise in acute respiratory failure, neurointensive care, or both, and two non-voting methodologists. The panel was divided into seven subgroups, each addressing a predefined clinical practice domain relevant to patients admitted to the intensive care unit (ICU) with ABI, defined as acute traumatic brain or cerebrovascular injury. The panel conducted systematic searches and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) method was used to evaluate evidence and formulate questions. A modified Delphi process was implemented with four rounds of voting in which panellists were asked to respond to questions (rounds 1–3) and then recommendation statements (final round). Strong recommendation, weak recommendation, or no recommendation were defined when > 85%, 75–85%, and < 75% of panellists, respectively, agreed with a statement. Results The GRADE rating was low, very low, or absent across domains. The consensus produced 36 statements (19 strong recommendations, 6 weak recommendations, 11 no recommendation) regarding airway management, non-invasive respiratory support, strategies for mechanical ventilation, rescue interventions for respiratory failure, ventilator liberation, and tracheostomy in brain-injured patients. Several knowledge gaps were identified to inform future research efforts. Conclusions This consensus provides guidance for the care of patients admitted to the ICU with ABI. Evidence was generally insufficient or lacking, and research is needed to demonstrate the feasibility, safety, and efficacy of different management approaches. Electronic supplementary material The online version of this article (10.1007/s00134-020-06283-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chiara Robba
- San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Daniele Poole
- Anesthesia and Intensive Care Operative Unit, S. Martino Hospital, Belluno, Italy
| | - Molly McNett
- Implementation Science, The Helene Fuld Health Trust National Institute for EBP, College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Karim Asehnoune
- Department of Anaesthesia and Critical Care, Hôtel Dieu, University Hospital of Nantes, Nantes, France
| | - Julian Bösel
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Neurology, Klinikum Kassel, Kassel, Germany
| | - Nicolas Bruder
- Anesthesiology-Intensive Care Department, Aix-Marseille University, APHM, CHU Timone, Marseille, France
| | - Arturo Chieregato
- Neurointensive Care Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Raphael Cinotti
- Department of Anaesthesia and Critical Care, Hôpital Guillaume et René Laennec, University Hospital of Nantes, Saint-Herblain, France
| | - Jacques Duranteau
- Department of Anesthesiology and Perioperative Intensive Care Medicine, Bicêtre Hospital, Assistance Publique Hôpitaux de Paris, Paris-Saclay University, Paris, France
| | - Sharon Einav
- Faculty of Medicine, Intensive Care Unit of the Shaare Zedek Medical Centre and Hebrew University, Jerusalem, Israel
| | - Ari Ercole
- University of Cambridge Division of Anaesthesia, Addenbrooke's Hospital, Cambridge, UK
| | - Niall Ferguson
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Claude Guerin
- Medecine Intensive-Réanimation, Hopital Edouard Herriot, University of Lyon, Lyon, France
- INSERM 955, Créteil, France
| | - Ilias I Siempos
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, NY, USA
| | - Pedro Kurtz
- Department of Neurointensive Care, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Nicole P Juffermans
- Department of Intensive Care Medicine, Olvg Hospital, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jordi Mancebo
- Servei Medicina Intensiva, Hospital Sant Pau, Barcelona, Spain
| | - Luciana Mascia
- Alma Mater Studiorum, Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Victoria McCredie
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Nicolas Nin
- Department of Intensive Care Medicine, Hospital Español, Montevideo, Uruguay
| | - Mauro Oddo
- Department of Intensive Care Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Paolo Pelosi
- San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | | | - Ary Serpa Neto
- Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Critical Care Medicine, Hospital Israelita Alberto Einstein, São Paulo, Brazil
| | - David B Seder
- Department of Critical Care Services, Neuroscience Institute, Maine Medical Center, 22 Bramhall Street, Portland, ME, 04102, USA
| | - Markus B Skrifvars
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Meilahden sairaala, Haartmaninkatu 4, 00029 HUS, Helsinki, Finland
| | - Jose I Suarez
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Phipps 455, Baltimore, MD, 21287, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fabio Silvio Taccone
- Department of Intensive Care Medicine, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Mathieu van der Jagt
- Department of Intensive Care, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano - Bicocca, Milan, Italy
| | - Robert D Stevens
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Phipps 455, Baltimore, MD, 21287, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
40
|
Godoy DA, Rovegno M, Lazaridis C, Badenes R. The effects of arterial CO 2 on the injured brain: Two faces of the same coin. J Crit Care 2020; 61:207-215. [PMID: 33186827 DOI: 10.1016/j.jcrc.2020.10.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/08/2020] [Accepted: 10/29/2020] [Indexed: 01/14/2023]
Abstract
Serum levels of carbon dioxide (CO2) closely regulate cerebral blood flow (CBF) and actively participate in different aspects of brain physiology such as hemodynamics, oxygenation, and metabolism. Fluctuations in the partial pressure of arterial CO2 (PaCO2) modify the aforementioned variables, and at the same time influence physiologic parameters in organs such as the lungs, heart, kidneys, and the gastrointestinal tract. In general, during acute brain injury (ABI), maintaining normal PaCO2 is the target to be achieved. Both hypercapnia and hypocapnia may comprise secondary insults and should be avoided during ABI. The risks of hypocapnia mostly outweigh the potential benefits. Therefore, its therapeutic applicability is limited to transient and second-stage control of intracranial hypertension. On the other hand, inducing hypercapnia could be beneficial when certain specific situations require increasing CBF. The evidence supporting this claim is very weak. This review attempts providing an update on the physiology of CO2, its risks, benefits, and potential utility in the neurocritical care setting.
Collapse
Affiliation(s)
- Daniel Agustin Godoy
- Neurointensive Care Unit, Sanatorio Pasteur, Catamarca, Argentina; Intensive Care Unit, Hospital San Juan Bautista, Catamarca, Argentina.
| | - Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Christos Lazaridis
- Neurocritical Care, Departments of Neurology and Neurosurgery, University of Chicago Medical Center, Chicago, IL, USA
| | - Rafael Badenes
- Anesthesiology and Surgical-Trauma Intensive Care, University Clinic Hospital, Valencia, Spain,; Department of Surgery, University of Valencia, Spain; INCLIVA Research Medical Institute, Valencia, Spain
| |
Collapse
|
41
|
Ballesteros MA, Suberviola Cañas B, Sánchez Arguiano MJ, Sánchez-Moreno L, Miñambres E. Refractory hypoxemia in critical trauma patient. Usefulness of extra-corporeal membrane oxygenation. Cir Esp 2020; 99:S0009-739X(20)30279-7. [PMID: 33046225 DOI: 10.1016/j.ciresp.2020.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/03/2020] [Accepted: 08/30/2020] [Indexed: 11/27/2022]
Affiliation(s)
- María A Ballesteros
- Servicio de Medicina Intensiva, Hospital Universitario «Marqués de Valdecilla»-IDIVAL, Santander, España.
| | - Borja Suberviola Cañas
- Servicio de Medicina Intensiva, Hospital Universitario «Marqués de Valdecilla»-IDIVAL, Santander, España
| | | | - Laura Sánchez-Moreno
- Servicio de Cirugía Torácica, Hospital Universitario «Marqués de Valdecilla»-IDIVAL, Santander, España
| | - Eduardo Miñambres
- Servicio de Medicina Intensiva, Hospital Universitario «Marqués de Valdecilla»-IDIVAL, Santander, España; Facultad de Medicina, Universidad de Cantabria, Santander, España
| |
Collapse
|
42
|
Jarrahi A, Ahluwalia M, Khodadadi H, da Silva Lopes Salles E, Kolhe R, Hess DC, Vale F, Kumar M, Baban B, Vaibhav K, Dhandapani KM. Neurological consequences of COVID-19: what have we learned and where do we go from here? J Neuroinflammation 2020; 17:286. [PMID: 32998763 PMCID: PMC7525232 DOI: 10.1186/s12974-020-01957-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
The coronavirus disease-19 (COVID-19) pandemic is an unprecedented worldwide health crisis. COVID-19 is caused by SARS-CoV-2, a highly infectious pathogen that is genetically similar to SARS-CoV. Similar to other recent coronavirus outbreaks, including SARS and MERS, SARS-CoV-2 infected patients typically present with fever, dry cough, fatigue, and lower respiratory system dysfunction, including high rates of pneumonia and acute respiratory distress syndrome (ARDS); however, a rapidly accumulating set of clinical studies revealed atypical symptoms of COVID-19 that involve neurological signs, including headaches, anosmia, nausea, dysgeusia, damage to respiratory centers, and cerebral infarction. These unexpected findings may provide important clues regarding the pathological sequela of SARS-CoV-2 infection. Moreover, no efficacious therapies or vaccines are currently available, complicating the clinical management of COVID-19 patients and emphasizing the public health need for controlled, hypothesis-driven experimental studies to provide a framework for therapeutic development. In this mini-review, we summarize the current body of literature regarding the central nervous system (CNS) effects of SARS-CoV-2 and discuss several potential targets for therapeutic development to reduce neurological consequences in COVID-19 patients.
Collapse
Affiliation(s)
- Abbas Jarrahi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 15th Street, 30912, Augusta, Georgia
| | - Meenakshi Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia
| | - Evila da Silva Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Fernando Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 15th Street, 30912, Augusta, Georgia
| | - Manish Kumar
- Department of Allied Health Science, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapura, Karnataka, India
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 15th Street, 30912, Augusta, Georgia
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 15th Street, 30912, Augusta, Georgia.
| |
Collapse
|
43
|
Robba C, Asgari S, Gupta A, Badenes R, Sekhon M, Bequiri E, Hutchinson PJ, Pelosi P, Gupta A. Lung Injury Is a Predictor of Cerebral Hypoxia and Mortality in Traumatic Brain Injury. Front Neurol 2020; 11:771. [PMID: 32849225 PMCID: PMC7426476 DOI: 10.3389/fneur.2020.00771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/23/2020] [Indexed: 12/19/2022] Open
Abstract
Background: A major contributor to unfavorable outcome after traumatic brain injury (TBI) is secondary brain injury. Low brain tissue oxygen tension (PbtO2) has shown to be an independent predictor of unfavorable outcome. Although PbtO2 provides clinicians with an understanding of the ischemic and non-ischemic derangements of brain physiology, its value does not take into consideration systemic oxygenation that can influence patients' outcomes. This study analyses brain and systemic oxygenation and a number of related indices in TBI patients: PbtO2, partial arterial oxygenation pressure (PaO2), PbtO2/PaO2, ratio of PbtO2 to fraction of inspired oxygen (FiO2), and PaO2/FiO2. The primary aim of this study was to identify independent risk factors for cerebral hypoxia. Secondary goal was to determine whether any of these indices are predictors of mortality outcome in TBI patients. Materials and Methods: A single-centre retrospective cohort study of 70 TBI patients admitted to the Neurocritical Care Unit (NCCU) at Cambridge University Hospital in 2014-2018 and undergoing advanced neuromonitoring including invasive PbtO2 was conducted. Three hundred and three simultaneous measurements of PbtO2, PaO2, PbtO2/PaO2, PbtO2/FiO2, PaO2/FiO2 were collected and mortality at discharge from NCCU was considered as outcome. Generalized estimating equations were used to analyse the longitudinal data. Results: Our results showed PbtO2 of 28 mmHg as threshold to define cerebral hypoxia. PaO2/FiO2 found to be a strong and independent risk factor for cerebral hypoxia when adjusting for confounding factor of intracranial pressure (ICP) with adjusted odds ratio of 1.78, 95% confidence interval of (1.10-2.87) and p-value = 0.019. With respect to TBI outcome, compromised values of PbtO2, PbtO2/PaO2, PbtO2/FiO2, and PaO2/FiO2 were all independent predictors of mortality while considered individually and adjusting for confounding factors of ICP, age, gender, and cerebral perfusion pressure (CPP). However, when considering all the compromised values together, only PaO2/FiO2 became an independent predictor of mortality with adjusted odds ratio of 3.47 (1.20-10.04) and p-value = 0.022. Conclusions: Brain and Lung interaction in TBI patients is a complex interrelationship. PaO2/FiO2 seems to be a major determinant of cerebral hypoxia and mortality. These results confirm the importance of employing ventilator strategies to prevent cerebral hypoxia and improve the outcome in TBI patients.
Collapse
Affiliation(s)
- Chiara Robba
- Anaesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Shadnaz Asgari
- Biomedical Engineering Department, California State University, Long Beach, CA, United States.,Computer Engineering and Computer Science Department, California State University, Long Beach, CA, United States
| | - Amit Gupta
- Emergency Department, Broomfield Hospital, Mid-Essex Hospital Trust, Essex, United Kingdom
| | - Rafael Badenes
- Department of Surgery, University of Valencia, Valencia, Spain
| | - Mypinder Sekhon
- Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Erta Bequiri
- Department of Neurosurgery, Addenbrooke's Hospital, Hills University of Cambridge, Cambridge, United Kingdom.,Department of Physiology and Transplantation, Milan University, Milan, Italy
| | - Peter J Hutchinson
- Department of Neurosurgery, Addenbrooke's Hospital, Hills University of Cambridge, Cambridge, United Kingdom
| | - Paolo Pelosi
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università Degli Studi di Genova, Genoa, Italy
| | - Arun Gupta
- Neurocritical Care Unit, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
44
|
Guzel S, Umay E, Gundogdu I, Bahtiyarca ZT, Cankurtaran D. Effects of diaphragm thickness on rehabilitation outcomes in post-ICU patients with spinal cord and brain injury. Eur J Trauma Emerg Surg 2020; 48:559-565. [PMID: 32601716 PMCID: PMC7322389 DOI: 10.1007/s00068-020-01426-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/19/2020] [Indexed: 10/26/2022]
Abstract
BACKGROUND Intensive care unit (ICU) complications affect outcomes but it remains unknown if the diaphragm thickness affects rehabilitation outcomes after ICU. We conducted a pilot study to evaluate the effect of diaphragm thickness on rehabilitation outcomes of post-ICU patients with spinal cord injury (SCI) and traumatic brain injury (TBI) and to evaluate factors that may be associated with diaphragm atrophy. MATERIALS AND METHODS Fifty-one patients (26 SCI, 25 TBI) who admitted to the rehabilitation clinic from the ICU included in this study. All demographic data were recorded. All participants underwent diaphragmatic ultrasonography evaluation before and after 12 weeks of neurologic rehabilitation program. The diaphragm thickness and outcome parameters were compared in all patient groups and in each patient subgroups. Evaluation parameters of patients before and after treatment were compared in patient subgroups. RESULTS Diaphragm atrophy was found in 14 patients (64%) in TBI group and 12 patients (46%) in SCI group. The diaphragm thickness negatively correlated with the ICU length of stay and positively correlated with the before/after rehabilitation functional scores and the change in functional independence measure scores (p < 0.05). According to the regression analysis; the change in functional independence measure scores was found to be affected by the diaphragm thickness (p < 0.05). CONCLUSIONS The diaphragm thickness may be an effective factor on the rehabilitation process.
Collapse
Affiliation(s)
- Sukran Guzel
- Faculty of Medicine, Physical Medicine and Rehabilitation Clinic, Ankara Hospital, Baskent University, Ankara, Turkey.
| | - Ebru Umay
- Physical Medicine and Rehabilitation Clinic, Ankara Diskapi Yildirim Beyazit Education and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Ibrahım Gundogdu
- Physical Medicine and Rehabilitation Clinic, Ankara Diskapi Yildirim Beyazit Education and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Zeynep Tuba Bahtiyarca
- Physical Medicine and Rehabilitation Clinic, Ankara Diskapi Yildirim Beyazit Education and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Damla Cankurtaran
- Physical Medicine and Rehabilitation Clinic, Ankara Diskapi Yildirim Beyazit Education and Research Hospital, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
45
|
Egbuta C, Mason KP. Recognizing Risks and Optimizing Perioperative Care to Reduce Respiratory Complications in the Pediatric Patient. J Clin Med 2020; 9:jcm9061942. [PMID: 32580323 PMCID: PMC7355459 DOI: 10.3390/jcm9061942] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
There have been significant advancements in the safe delivery of anesthesia as well as improvements in surgical technique; however, the perioperative period can still be high risk for the pediatric patient. Perioperative respiratory complications (PRCs) are some of the most common critical events that can occur in pediatric surgical patients and they can lead to increased length of hospitalization, worsened patient outcomes, and higher hospital and postoperative costs. It is important to determine the various factors that put pediatric patients at increased risk of PRCs. This will allow for more detailed and accurate informed consent, optimized perioperative management strategy, improved allocation of clinical resources, and, hopefully, better patient experience. There are only a few risk prediction models/scoring tools developed for and validated in the pediatric patient population, but they have been useful in helping identify the key factors associated with a high likelihood of developing PRCs. Some of these factors are patient factors, while others are procedure-related factors. Some of these factors may be modified such that the patient’s clinical status is optimized preoperatively to decrease the risk of PRCs occurring perioperatively. Fore knowledge of the factors that are not able to be modified can help guide allocation of perioperative clinical resources such that the negative impact of these non-modifiable factors is buffered. Additional training in pediatric anesthesia or focused expertise in pediatric airway management, vascular access and management of massive hemorrhage should be considered for the perioperative management of the less than 3 age group. Intraoperative ventilation strategy plays a key role in determining respiratory outcomes for both adult and pediatric surgical patients. Key components of lung protective mechanical ventilation strategy such as low tidal volume and moderate PEEP used in the management of acute respiratory distress syndrome (ARDS) in pediatric intensive care units have been adopted in pediatric operating rooms. Adequate post-operative analgesia that balances pain control with appropriate mental status and respiratory drive is important in reducing PRCs.
Collapse
|
46
|
Picetti E, Pelosi P, Taccone FS, Citerio G, Mancebo J, Robba C. VENTILatOry strategies in patients with severe traumatic brain injury: the VENTILO Survey of the European Society of Intensive Care Medicine (ESICM). CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:158. [PMID: 32303255 PMCID: PMC7165367 DOI: 10.1186/s13054-020-02875-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
Background Severe traumatic brain injury (TBI) patients often develop acute respiratory failure. Optimal ventilator strategies in this setting are not well established. We performed an international survey to investigate the practice in the ventilatory management of TBI patients with and without respiratory failure. Methods An electronic questionnaire, including 38 items and 3 different clinical scenarios [arterial partial pressure of oxygen (PaO2)/inspired fraction of oxygen (FiO2) > 300 (scenario 1), 150–300 (scenario 2), < 150 (scenario 3)], was available on the European Society of Intensive Care Medicine (ESICM) website between November 2018 and March 2019. The survey was endorsed by ESICM. Results There were 687 respondents [472 (69%) from Europe], mainly intensivists [328 (48%)] and anesthesiologists [206 (30%)]. A standard protocol for mechanical ventilation in TBI patients was utilized by 277 (40%) respondents and a specific weaning protocol by 198 (30%). The most common tidal volume (TV) applied was 6–8 ml/kg of predicted body weight (PBW) in scenarios 1–2 (72% PaO2/FIO2 > 300 and 61% PaO2/FiO2 150–300) and 4–6 ml/kg/PBW in scenario 3 (53% PaO2/FiO2 < 150). The most common level of highest positive end-expiratory pressure (PEEP) used was 15 cmH2O in patients with a PaO2/FiO2 ≤ 300 without intracranial hypertension (41% if PaO2/FiO2 150–300 and 50% if PaO2/FiO2 < 150) and 10 cmH2O in patients with intracranial hypertension (32% if PaO2/FiO2 150–300 and 33% if PaO2/FiO2 < 150). Regardless of the presence of intracranial hypertension, the most common carbon dioxide target remained 36–40 mmHg whereas the most common PaO2 target was 81–100 mmHg in all the 3 scenarios. The most frequent rescue strategies utilized in case of refractory respiratory failure despite conventional ventilator settings were neuromuscular blocking agents [406 (88%)], recruitment manoeuvres [319 (69%)] and prone position [292 (63%)]. Conclusions Ventilatory management, targets and practice of adult severe TBI patients with and without respiratory failure are widely different among centres. These findings may be helpful to define future investigations in this topic.
Collapse
Affiliation(s)
- Edoardo Picetti
- Department of Anesthesia and Intensive Care, Parma University Hospital, Via Gramsci 14, 43100, Parma, Italy.
| | - Paolo Pelosi
- Department of Anesthesia and Intensive Care, IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan - Bicocca, Monza, Italy
| | - Jordi Mancebo
- Department of Intensive Care, Sant Pau Hospital, Barcelona, Spain
| | - Chiara Robba
- Department of Anesthesia and Intensive Care, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | | |
Collapse
|
47
|
Klocker E, Pietsch C, Pietsch U. [Treatment options for acute respiratory distress syndrome in neurointensive care. Individual management due to enhanced neuromonitoring? : A case report series]. Anaesthesist 2020; 69:421-431. [PMID: 32303783 DOI: 10.1007/s00101-020-00769-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/14/2020] [Accepted: 03/19/2020] [Indexed: 11/25/2022]
Abstract
Severe pulmonary impairment can occur after traumatic brain injury or stroke. The resulting brain-lung interactions represent key points for the treatment and the subsequent outcome of the patient. Established treatment approaches, such as permissive hypercapnia and prone positioning, present the intensive care physician with divergent treatment goals in these patients with partially increased intracranial pressure. This case report series shows the instrument-based and noninstrument-based options for the treatment of acute respiratory distress syndrome (ARDS) in the simultaneous presence of intracranial pathologies. This includes equipment based therapies using extracorporeal CO2 elimination, special positioning maneuvers in specially designed hospital beds and positional maneuvers, such as prone positioning. With enhanced neuromonitoring it is possible to optimally adapt treatment measures focused on the lungs early and before secondary damage to the brain.
Collapse
Affiliation(s)
- E Klocker
- Klinik für Anästhesiologie, Intensiv‑, Rettungs- und Schmerzmedizin, Kantonsspital St. Gallen, 9007, St. Gallen, Schweiz.
| | - C Pietsch
- Klinik für Neurochirurgie, Kantonsspital St. Gallen, St. Gallen, Schweiz
| | - U Pietsch
- Klinik für Anästhesiologie, Intensiv‑, Rettungs- und Schmerzmedizin, Kantonsspital St. Gallen, 9007, St. Gallen, Schweiz
| |
Collapse
|
48
|
Robba C, Hemmes SNT, Serpa Neto A, Bluth T, Canet J, Hiesmayr M, Hollmann MW, Mills GH, Vidal Melo MF, Putensen C, Jaber S, Schmid W, Severgnini P, Wrigge H, Battaglini D, Ball L, Gama de Abreu M, Schultz MJ, Pelosi P. Intraoperative ventilator settings and their association with postoperative pulmonary complications in neurosurgical patients: post-hoc analysis of LAS VEGAS study. BMC Anesthesiol 2020; 20:73. [PMID: 32241266 PMCID: PMC7114790 DOI: 10.1186/s12871-020-00988-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Limited information is available regarding intraoperative ventilator settings and the incidence of postoperative pulmonary complications (PPCs) in patients undergoing neurosurgical procedures. The aim of this post-hoc analysis of the 'Multicentre Local ASsessment of VEntilatory management during General Anaesthesia for Surgery' (LAS VEGAS) study was to examine the ventilator settings of patients undergoing neurosurgical procedures, and to explore the association between perioperative variables and the development of PPCs in neurosurgical patients. METHODS Post-hoc analysis of LAS VEGAS study, restricted to patients undergoing neurosurgery. Patients were stratified into groups based on the type of surgery (brain and spine), the occurrence of PPCs and the assess respiratory risk in surgical patients in Catalonia (ARISCAT) score risk for PPCs. RESULTS Seven hundred eighty-four patients were included in the analysis; 408 patients (52%) underwent spine surgery and 376 patients (48%) brain surgery. Median tidal volume (VT) was 8 ml [Interquartile Range, IQR = 7.3-9] per predicted body weight; median positive end-expiratory pressure (PEEP) was 5 [3 to 5] cmH20. Planned recruitment manoeuvres were used in the 6.9% of patients. No differences in ventilator settings were found among the sub-groups. PPCs occurred in 81 patients (10.3%). Duration of anaesthesia (odds ratio, 1.295 [95% confidence interval 1.067 to 1.572]; p = 0.009) and higher age for the brain group (odds ratio, 0.000 [0.000 to 0.189]; p = 0.031), but not intraoperative ventilator settings were independently associated with development of PPCs. CONCLUSIONS Neurosurgical patients are ventilated with low VT and low PEEP, while recruitment manoeuvres are seldom applied. Intraoperative ventilator settings are not associated with PPCs.
Collapse
Affiliation(s)
- Chiara Robba
- Anaesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Largo Rosanna Benzi 8, 16131, Genoa, Italy.
| | - Sabrine N T Hemmes
- Department of Intensive Care, Amsterdam University Medical Centers, location 'AMC', Amsterdam, The Netherlands
- Department of Anaesthesiology, Amsterdam University Medical Centers, location 'AMC', Amsterdam, The Netherlands
| | - Ary Serpa Neto
- Department of Intensive Care, Amsterdam University Medical Centers, location 'AMC', Amsterdam, The Netherlands
- Department of Critical Care Medicine, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Thomas Bluth
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary engineering group, University Hospital Carl Gustav Carus, Technische Universitat Dresden, Dresden, Germany
| | - Jaume Canet
- Department of Anaesthesiology and Postoperative Care, Hospital Universitari Germans Trials I Pujol, Barcelona, Spain
| | - Michael Hiesmayr
- Division Cardiac, Thoracic, Vascular Anesthesia and Intensive Care, Medical University Vienna, Vienna, Austria
| | - M Wiersma Hollmann
- Department of Anaesthesiology, Amsterdam University Medical Centers, location 'AMC', Amsterdam, The Netherlands
| | - Gary H Mills
- Operating Services, Critical Care and Anaesthesia, Sheffield Teaching Hospitals and University of Sheffield, Sheffield, UK
| | - Marcos F Vidal Melo
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachussetts General Hospital, Boston, MA, USA
| | - Christian Putensen
- Department of Anesthesiology and Intenisve Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Samir Jaber
- Department of Anaesthesia and Intensive Care, Saint Eloi Montpellier University Hospital, and PhyMedExp, University of Montpellier, Montpellier, France
| | - Werner Schmid
- Division Cardiac, Thoracic, Vascular Anesthesia and Intensive Care, Medical University Vienna, Vienna, Austria
| | - Paolo Severgnini
- Department of Biotechnology and Sciences of Life, ASST-Setteleghi Ospedale di circolo e Fondazione Macchi, University of Insubria, Varese, Italy
| | - Hermann Wrigge
- Department of Anesthesiology and Intensive Care Medicine, University of Leipzig, Leipzig, Germany
| | - Denise Battaglini
- Anaesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Largo Rosanna Benzi 8, 16131, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Lorenzo Ball
- Anaesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Largo Rosanna Benzi 8, 16131, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Marcelo Gama de Abreu
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary engineering group, University Hospital Carl Gustav Carus, Technische Universitat Dresden, Dresden, Germany
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam University Medical Centers, location 'AMC', Amsterdam, The Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
| | - Paolo Pelosi
- Anaesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Largo Rosanna Benzi 8, 16131, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| |
Collapse
|
49
|
Racca F, Vianello A, Mongini T, Ruggeri P, Versaci A, Vita GL, Vita G. Practical approach to respiratory emergencies in neurological diseases. Neurol Sci 2020; 41:497-508. [PMID: 31792719 PMCID: PMC7224095 DOI: 10.1007/s10072-019-04163-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023]
Abstract
Many neurological diseases may cause acute respiratory failure (ARF) due to involvement of bulbar respiratory center, spinal cord, motoneurons, peripheral nerves, neuromuscular junction, or skeletal muscles. In this context, respiratory emergencies are often a challenge at home, in a neurology ward, or even in an intensive care unit, influencing morbidity and mortality. More commonly, patients develop primarily ventilatory impairment causing hypercapnia. Moreover, inadequate bulbar and expiratory muscle function may cause retained secretions, frequently complicated by pneumonia, atelectasis, and, ultimately, hypoxemic ARF. On the basis of the clinical onset, two main categories of ARF can be identified: (i) acute exacerbation of chronic respiratory failure, which is common in slowly progressive neurological diseases, such as movement disorders and most neuromuscular diseases, and (ii) sudden-onset respiratory failure which may develop in rapidly progressive neurological disorders including stroke, convulsive status epilepticus, traumatic brain injury, spinal cord injury, phrenic neuropathy, myasthenia gravis, and Guillain-Barré syndrome. A tailored assistance may include manual and mechanical cough assistance, noninvasive ventilation, endotracheal intubation, invasive mechanical ventilation, or tracheotomy. This review provides practical recommendations for prevention, recognition, management, and treatment of respiratory emergencies in neurological diseases, mostly in teenagers and adults, according to type and severity of baseline disease.
Collapse
Affiliation(s)
- Fabrizio Racca
- Department of Anaesthesia and Intensive Care, Sant'Antonio e Biagio e Cesare Arrigo Hospital, Alessandria, Italy
| | - Andrea Vianello
- Respiratory Pathophysiology Division, University of Padua, Padua, Italy
| | - Tiziana Mongini
- Neuromuscular Center, Department of Neurosciences, University of Turin, Turin, Italy
| | - Paolo Ruggeri
- Unit of Pneumology, Department BIOMORF, University of Messina, Messina, Italy
| | - Antonio Versaci
- Intensive Care Unit, AOU Policlinico "G. Martino", Messina, Italy
| | - Gian Luca Vita
- Nemo Sud Clinical Centre for Neuromuscular Disorders, Messina, Italy
| | - Giuseppe Vita
- Nemo Sud Clinical Centre for Neuromuscular Disorders, Messina, Italy.
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| |
Collapse
|
50
|
Risk factors affecting post-traumatic acute respiratory distress syndrome development in thoracic trauma patients. TURK GOGUS KALP DAMAR CERRAHISI DERGISI-TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2020; 27:540-549. [PMID: 32082923 DOI: 10.5606/tgkdc.dergisi.2019.18124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/05/2019] [Indexed: 11/21/2022]
Abstract
Background This study aims to investigate the risk factors affecting post-traumatic acute respiratory distress syndrome development in thoracic trauma patients. Methods This two-centered, retrospective study included 3,080 thoracic trauma patients (2,562 males, 518 females; mean age 33.9±19.4 years; range, 2 months to 91 years) treated between January 2005 and January 2019. Demographic characteristics, mechanisms of injury, traumatic injuries, injury severity score and new injury severity score results, treatments, comorbidities, complications, morbidity and mortality rates, and durations of hospital stay were collected. Data were used to predict the risk factors for development of post-traumatic acute respiratory distress syndrome by univariate and multivariate statistical analysis. Results Acute respiratory distress syndrome was detected in 81 patients. In multivariate logistic regression analysis; age, pulmonary contusion, intracranial hemorrhage, rib fracture (unilateral and four-five pieces), femur and tibia fracture, diabetes mellitus, chronic obstructive pulmonary disease, blood transfusion (≥3 units), high white blood cell count at admission, sepsis, and hepatic injury were detected as independent risk factors (p<0.05). Optimal cutoff points (sensitivity/specificity ratios) for acute respiratory distress syndrome development risk were ≥16 (79%/68%) for injury severity score, ≥27 (90%/68.7%) for new injury severity score, and ≥16,000 (75.3%/71.6%) for admission white blood cell count. New injury severity score was superior than injury severity score to predict the development of acute respiratory distress syndrome. Conclusion Acute respiratory distress syndrome causes significant mortality and morbidity in trauma patients. In addition to the well-known risk factors, diabetes mellitus and chronic obstructive pulmonary disease were independent risk factors. We defined a cutoff value for new injury severity score to predict post-traumatic acute respiratory distress syndrome.
Collapse
|