1
|
Mohamadynejad P, Moghanibashi M, Bagheri K. Identification of novel nuclear pore complex associated proteins in esophageal carcinoma by an integrated bioinformatics analysis. J Biomol Struct Dyn 2024; 42:7221-7232. [PMID: 37504972 DOI: 10.1080/07391102.2023.2240414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
Nucleoporins (NUPs) are components of the nuclear pore complex (NPC) that participate in the nucleocytoplasmic transport of macromolecules as well as in many essential processes that may be led to carcinogenesis. We selected three expression profile microarray datasets from GEO and as well as TCGA data to identify differentially expressed NUPs genes in esophageal carcinoma. Our findings indicated that NUP133, NUP37, NUP43, NUP50, GLE1 and NDC1 are overexpressed in esophageal carcinoma, among which NUP50 and GLE1genes are reported for the first time in esophageal carcinoma. All identified NUPs were also associated with distant metastasis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Parisa Mohamadynejad
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Kambiz Bagheri
- Department of Immunology, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
2
|
Shen Q, Li J, Zhang C, Pan X, Li Y, Zhang X, En G, Pang B. Pan-cancer analysis and experimental validation identify ndc1 as a potential immunological, prognostic and therapeutic biomarker in pancreatic cancer. Aging (Albany NY) 2023; 15:9779-9796. [PMID: 37733696 PMCID: PMC10564436 DOI: 10.18632/aging.205048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023]
Abstract
NDC1 is a transmembrane nucleoporin that participates in cell mitosis. In the field of oncology, NDC1 has shown its potential as a prognostic marker for multiple tumors. However, pan-cancer analysis of NDC1 to fully explore its role in tumors has not been performed and little is reported on its role in pancreatic cancers. In the present study, a pan-cancer analysis of NDC1 was performed using a bioinformatic approach. Survival analysis was performed by univariate Cox regression analysis and Kaplan-Meier survival analysis. Subsequently, the relationship between NDC1 and immune cell infiltration, TMB/MSI and drug sensitivity was analyzed. Moreover, the mechanism of NDC1 in pancreatic cancer were further analyzed by GSEA, GSVA. Finally, we conducted in vitro experiments including MTT, scratch, EdU, and apoptosis assays to explore the function of NDC1 in pancreatic cancer cells. High expression of NDC1 was demonstrated in 28 cancer types. Univariate Cox regression analysis revealed that NDC1 expression was closely associated with the survival outcome of 15 cancer types, and further Kaplan-Meier survival analysis showed negative associations with the progression-free survival in 14 cancers. In addition, a significant association between the NDC1 expression and immune cell infiltration in tumor microenvironment, immune-related genes, common tumor-regulatory and drug sensitivity was observed. Furthermore, NDC1 is abnormally expressed in pancreatic cancer, and is closely related to the prognosis of pancreatic cancer patients and chemosensitivity. The study reveals that NDC1 could be used as a potential immunological, prognostic and therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Qian Shen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junchen Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chuanlong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Pan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiyuan Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ge’er En
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Targeted demethylation at ZNF154 promotor upregulates ZNF154 expression and inhibits the proliferation and migration of Esophageal Squamous Carcinoma cells. Oncogene 2022; 41:4537-4546. [PMID: 36064578 PMCID: PMC9525237 DOI: 10.1038/s41388-022-02366-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/07/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2022]
Abstract
Zinc finger protein 154 (ZNF154) is hypermethylated at the promoter in many epithelial-derived solid tumors. However, its methylation status and function in esophageal squamous carcinoma (ESCC) are poorly understood. We found that the ZNF154 promoter is hypermethylated in ESCC and portends poor prognosis. In addition, ZNF154 functions as a tumor suppressor gene (TSG) in ESCC, and is downregulated by promoter hypermethylation. We established a targeted demethylation strategy based on CRISPR/dCas9 technology and found that the hypermethylation of ZNF154 promoter repressed ZNF154 induction, which in turn promoted the proliferation and migration of ESCC cells in vitro and in vivo. Finally, high-throughput CUT&Tag analysis, GEPIA software and qPCR were used to revealed the role of ZNF154 as a transcription factor to upregulate the expression of ESCC-associated tumor suppressor genes. Taken together, hypermethylation of the ZNF154 promoter plays an important role in the development of ESCC, and epigenetic editing is a promising tool for inhibiting ESCC cells with aberrant DNA methylation.
Collapse
|
4
|
Jiang W, Xie N, Xu C. Characterization of a prognostic model for lung squamous cell carcinoma based on eight stemness index-related genes. BMC Pulm Med 2022; 22:224. [PMID: 35676660 PMCID: PMC9178800 DOI: 10.1186/s12890-022-02011-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background Cancer stem cells (CSCs) are implicated in cancer progression, chemoresistance, and poor prognosis; thus, they may be promising therapeutic targets. In this study, we aimed to investigate the prognostic application of differentially expressed CSC-related genes in lung squamous cell carcinoma (LUSC). Methods The mRNA stemness index (mRNAsi)-related differentially expressed genes (DEGs) in tumors were identified and further categorized by LASSO Cox regression analysis and 1,000-fold cross-validation, followed by the construction of a prognostic score model for risk stratification. The fractions of tumor-infiltrating immune cells and immune checkpoint genes were analyzed in different risk groups. Results We found 404 mRNAsi-related DEGs in LUSC, 77 of which were significantly associated with overall survival. An eight-gene prognostic signature (PPP1R27, TLX2, ANKLE1, TIGD3, AMH, KCNK3, FLRT3, and PPBP) was identified and used to construct a risk score model. The TCGA set was dichotomized into two risk groups that differed significantly (p = 0.00057) in terms of overall survival time (1, 3, 5-year AUC = 0.830, 0.749, and 0.749, respectively). The model performed well in two independent GEO datasets (p = 0.029, 0.033; 1-year AUC = 0747, 0.783; 3-year AUC = 0.746, 0.737; 5-year AUC = 0.706, 0.723). Low-risk patients had markedly increased numbers of CD8+ T cells and M1 macrophages and downregulated immune checkpoint genes compared to the corresponding values in high-risk patients (p < 0.05). Conclusion A stemness-related prognostic model based on eight prognostic genes in LUSC was developed and validated. The results of this study would have prognostic and therapeutic implications. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-02011-0.
Collapse
Affiliation(s)
- Wenfa Jiang
- Thoracic Surgery Department, Ganzhou People's Hospital, 16 MeiGuan Ave, Zhanggong, 341000, Ganzhou, China
| | - Ning Xie
- Thoracic Surgery Department, Ganzhou People's Hospital, 16 MeiGuan Ave, Zhanggong, 341000, Ganzhou, China
| | - Chenyang Xu
- Thoracic Surgery Department, Ganzhou People's Hospital, 16 MeiGuan Ave, Zhanggong, 341000, Ganzhou, China.
| |
Collapse
|
5
|
Bindra D, Mishra RK. In Pursuit of Distinctiveness: Transmembrane Nucleoporins and Their Disease Associations. Front Oncol 2022; 11:784319. [PMID: 34970494 PMCID: PMC8712647 DOI: 10.3389/fonc.2021.784319] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
The bi-directional nucleocytoplasmic shuttling of macromolecules like molecular signals, transcription factors, regulatory proteins, and RNAs occurs exclusively through Nuclear Pore Complex (NPC) residing in the nuclear membrane. This magnanimous complex is essentially a congregation of ~32 conserved proteins termed Nucleoporins (Nups) present in multiple copies and mostly arranged as subcomplexes to constitute a functional NPC. Nups participate in ancillary functions such as chromatin organization, transcription regulation, DNA damage repair, genome stabilization, and cell cycle control, apart from their central role as nucleocytoplasmic conduits. Thus, Nups exert a role in the maintenance of cellular homeostasis. In mammals, precisely three nucleoporins traverse the nuclear membrane, are called transmembrane Nups (TM-Nups), and are involved in multiple cellular functions. Owing to their vital roles in cellular processes and homeostasis, dysregulation of nucleoporin function is implicated in various diseases. The deregulated functioning of TM-Nups can thus act as an opportune window for the development of diseases. Indeed, mounting evidence exhibits a strong association of TM-Nups in cancer and numerous other physiological disorders. These findings have provided much-needed insights into the novel mechanisms of disease progression. While nucleoporin’s functions have often been summarized in the disease context, a focus on TM-Nups has always lacked. This review emphasizes the elucidation of distinct canonical and non-canonical functions of mammalian TM-Nups and the underlying mechanisms of their disease association.
Collapse
Affiliation(s)
- Divya Bindra
- Nups and SUMO Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Ram Kumar Mishra
- Nups and SUMO Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| |
Collapse
|
6
|
Liu X, Su L, Li J, Ou G. Molecular Subclassification Based on Crosstalk Analysis Improves Prediction of Prognosis in Colorectal Cancer. Front Genet 2021; 12:689676. [PMID: 34804112 PMCID: PMC8600263 DOI: 10.3389/fgene.2021.689676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/23/2021] [Indexed: 12/09/2022] Open
Abstract
The poor performance of single-gene lists for prognostic predictions in independent cohorts has limited their clinical use. Here, we employed a pathway-based approach using embedded biological features to identify reproducible prognostic markers as an alternative. We used pathway activity score, sure independence screening, and K-means clustering analyses to identify and cluster colorectal cancer patients into two distinct subgroups, G2 (aggressive) and G1 (moderate). The differences between these two groups with respect to survival, somatic mutation, pathway activity, and tumor-infiltration by immunocytes were compared. These comparisons revealed that the survival rates in the G2 subgroup were significantly reduced compared to that in the G1 subgroup; further, the mutational burden rates in several oncogenes, including KRAS, DCLK1, and EPHA5, were significantly higher in the G2 subgroup than in the G1 subgroup. The enhanced activity of the critical pathways such as MYC and epithelial-mesenchymal transition may also lead to the progression of colorectal cancer. Taken together, we established a novel prognostic classification system that offers meritorious insights into the hallmarks of colorectal cancer.
Collapse
Affiliation(s)
- Xiaohua Liu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lili Su
- School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jingcong Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guoping Ou
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
7
|
Liu X, Su L, Li J, Ou G. Identification of Pathway-Based Biomarkers with Crosstalk Analysis for Overall Survival Risk Prediction in Breast Cancer. Front Genet 2021; 12:689715. [PMID: 34745202 PMCID: PMC8566719 DOI: 10.3389/fgene.2021.689715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, many studies have investigated the role of gene-signature on the prognostic assessment of breast cancer (BC), however, the tumor heterogeneity and sequencing noise have limited the clinical usage of these models. Pathway-based approaches are more stable to the perturbation of certain gene expression. In this study, we constructed a prognostic classifier based on survival-related pathway crosstalk analysis. We estimated pathway’s deregulation scores (PDSs) for samples collected from public databases to select survival-related pathways. After pathway crosstalk analysis, we conducted K-means clustering analysis to cluster the patients into G1 and G2 subgroups. The survival outcome of the G2 subgroup was significantly worse than the G1 subgroup. Internal and external dataset exhibits high consistency with the training dataset. Significant differences were found between G2 and G1 subgroups on pathway activity, gene mutation, immune cell infiltration levels, and in particular immune cells/pathway’s activities were significantly negatively associated with BC patient’s outcomes. In conclusion, we established a novel classifier reflecting the overall survival risk of BC and successfully validated its clinical usage on multiple BC datasets, which could offer clinicians inspiration in formulating the clinical treatment plan.
Collapse
Affiliation(s)
- Xiaohua Liu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lili Su
- School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jingcong Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guoping Ou
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
8
|
Bourova-Flin E, Derakhshan S, Goudarzi A, Wang T, Vitte AL, Chuffart F, Khochbin S, Rousseaux S, Aminishakib P. The combined detection of Amphiregulin, Cyclin A1 and DDX20/Gemin3 expression predicts aggressive forms of oral squamous cell carcinoma. Br J Cancer 2021; 125:1122-1134. [PMID: 34290392 PMCID: PMC8505643 DOI: 10.1038/s41416-021-01491-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/02/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Background Large-scale genetic and epigenetic deregulations enable cancer cells to ectopically activate tissue-specific expression programmes. A specifically designed strategy was applied to oral squamous cell carcinomas (OSCC) in order to detect ectopic gene activations and develop a prognostic stratification test. Methods A dedicated original prognosis biomarker discovery approach was implemented using genome-wide transcriptomic data of OSCC, including training and validation cohorts. Abnormal expressions of silent genes were systematically detected, correlated with survival probabilities and evaluated as predictive biomarkers. The resulting stratification test was confirmed in an independent cohort using immunohistochemistry. Results A specific gene expression signature, including a combination of three genes, AREG, CCNA1 and DDX20, was found associated with high-risk OSCC in univariate and multivariate analyses. It was translated into an immunohistochemistry-based test, which successfully stratified patients of our own independent cohort. Discussion The exploration of the whole gene expression profile characterising aggressive OSCC tumours highlights their enhanced proliferative and poorly differentiated intrinsic nature. Experimental targeting of CCNA1 in OSCC cells is associated with a shift of transcriptomic signature towards the less aggressive form of OSCC, suggesting that CCNA1 could be a good target for therapeutic approaches.
Collapse
Affiliation(s)
- Ekaterina Bourova-Flin
- CNRS UMR 5309/INSERM U1209/University Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France
| | - Samira Derakhshan
- Oral and Maxillofacial Pathology Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Goudarzi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tao Wang
- CNRS UMR 5309/INSERM U1209/University Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France
| | - Anne-Laure Vitte
- CNRS UMR 5309/INSERM U1209/University Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France
| | - Florent Chuffart
- CNRS UMR 5309/INSERM U1209/University Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France
| | - Saadi Khochbin
- CNRS UMR 5309/INSERM U1209/University Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France
| | - Sophie Rousseaux
- CNRS UMR 5309/INSERM U1209/University Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France.
| | - Pouyan Aminishakib
- Oral and Maxillofacial Pathology Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran. .,Cancer Institute Hospital, IKHC, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Ma F, Laster K, Nie W, Liu F, Kim DJ, Lee MH, Bai R, Yang R, Liu K, Dong Z. Heterogeneity Analysis of Esophageal Squamous Cell Carcinoma in Cell Lines, Tumor Tissues and Patient-Derived Xenografts. J Cancer 2021; 12:3930-3944. [PMID: 34093800 PMCID: PMC8176252 DOI: 10.7150/jca.52286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 04/22/2021] [Indexed: 11/05/2022] Open
Abstract
Esophageal Squamous Cell Carcinoma (ESCC) is the predominant type of Esophageal Cancer (EC), accounting for nearly 88% of EC incidents worldwide. Importantly, it is also a life-threatening cancer for patients diagnosed in advanced stages, with only a 20% 5-year survival rate due to a limited number of actionable targets and therapeutic options. Increasing evidence has shown that inter-tumor and intra-tumor heterogeneity are widely distributed across ESCC tumor tissues. In our work, multi-omics data from ESCC cell lines, tumor tissue, normal tissue and Patient-Derived Xenograft (PDX) tissues were analyzed to investigate the heterogeneity among ESCC samples at the DNA, RNA, and protein level. We identified enrichment of ECM-receptor interaction and Focal adhesion pathways from the subset of protein-coding genes with non-silent mutations in ESCC patients. We also found that TP53, TTN, KMT2D, CSMD3, DNAH5, MUC16 and DST are the most frequently mutated genes in ESCC patient samples. Out of the identified genes, TP53 is the most frequently mutated, with 84 distinct non-silent mutation variants. We observed that p.R248Q, p.R175G/H, and p.R273C/H are the most common TP53 mutation variants. The diversity of TP53 mutations reveal its importance in ESCC progression and may also provide promising targets for precision therapeutics. Additionally, we identified the Olfactory transduction as the top signaling pathway, enriched from genes uniquely expressed in The Cancer Genome Atlas (TCGA)-ESCC patient tumor tissues, which may provide implications for the exact roles of the corresponding genes in ESCC. Cyclic nucleotide-gated channel subunit beta 1(CNGB1), a gene belonging to the Olfactory transduction pathway, was found exclusively overexpressed in ESCC. Expression of CNGB1 could serve as a marker, indicating potential diagnostic or therapeutic value. Finally, we investigated heterogeneity in the context of the ESCC PDX model, which is an emerging tool used to predict drug response and recapitulate tumor behavior in vivo. We observed trans-species heterogeneity in as high as 75% of the identified proteins, indicating that the ambiguity of proteins should be addressed by specific strategies to avoid drawing false conclusions. The identification and characterization of gene mutation and expression heterogeneity across different ESCC datasets, including various novel TP53 mutations, ECM-receptor interaction, Focal adhesion, and Olfactory transduction pathways (CNGB1), provide researchers with evidence and implications for accurate research and precision therapeutic development.
Collapse
Affiliation(s)
- Fayang Ma
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, China
| | - Kyle Laster
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, China
| | - Wenna Nie
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, China
| | - Fangfang Liu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, China
| | - Dong Joon Kim
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, China
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, China.,College of Korean Medicine, Dongshin University, Naju-si, Jeollanam-do, 58245, Republic of Korea
| | - Ruihua Bai
- Department of Pathology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450008, China
| | - Rendong Yang
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, China.,Department of Pathology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450008, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, China.,Department of Pathology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450008, China
| |
Collapse
|
10
|
Wang L, Li X, Zhao L, Jiang L, Song X, Qi A, Chen T, Ju M, Hu B, Wei M, He M, Zhao L. Identification of DNA-Repair-Related Five-Gene Signature to Predict Prognosis in Patients with Esophageal Cancer. Pathol Oncol Res 2021; 27:596899. [PMID: 34257547 PMCID: PMC8262199 DOI: 10.3389/pore.2021.596899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022]
Abstract
Esophageal cancer (ESCA) is a leading cause of cancer-related mortality, with poor prognosis worldwide. DNA damage repair is one of the hallmarks of cancer. Loss of genomic integrity owing to inactivation of DNA repair genes can increase the risk of cancer progression and lead to poor prognosis. We aimed to identify a novel gene signature related to DNA repair to predict the prognosis of ESCA patients. Based on gene expression profiles of ESCA patients from The Cancer Genome Atlas and gene set enrichment analysis, 102 genes related to DNA repair were identified as candidates. After stepwise Cox regression analysis, we established a five-gene prognostic model comprising DGCR8, POM121, TAF9, UPF3B, and BCAP31. Kaplan-Meier survival analysis confirmed a strong correlation between the prognostic model and survival. Moreover, we verified the clinical value of the prognostic signature under the influence of different clinical parameters. We found that small-molecule drugs (trametinib, selumetinib, and refametinib) could help to improve patient survival. In summary, our study provides a novel and promising prognostic signature based on DNA-repair-related genes to predict survival of patients with ESCA. Systematic data mining provides a theoretical basis for further exploring the molecular pathogenesis of ESCA and identifying therapeutic targets.
Collapse
Affiliation(s)
- Lin Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Xueping Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Lan Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Aoshuang Qi
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Ting Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Baohui Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
11
|
Identification of the prognostic value of immune gene signature and infiltrating immune cells for esophageal cancer patients. Int Immunopharmacol 2020; 87:106795. [PMID: 32707495 DOI: 10.1016/j.intimp.2020.106795] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Esophageal cancer (ESCA) is one of the deadliest solid malignancies with worse survival rate worldwide. Here, we aimed to establish an immune-gene prognostic signature for predicting patients' survival and providing accurate targets for personalized therapy or immunotherapy. METHODS Gene expression profile of patients with ESCA were download from The Cancer Genome Atlas (TCGA) database (dataset 1: n = 159) and immune-related genes from the ImmPORT database. Dataset 1 was subdivided into two groups (dataset 2: n = 80; dataset 3: n = 79). Kaplan-Meier and receiver operating characteristic (ROC) curves were plotted to validate the predictive effect of the prognostic signature on the three datasets. TIMER and CIBERSORT analysis were used to evaluate the correlation between the prognostic signature and infiltrating immune cells. RESULTS We constructed a prognostic signature composed of six immune genes (HSPA6, S100A12, FABP3, DKK1, OSM and NR2F2). Kaplan-Meier curves validated the good predictive ability of the prognostic signature in datasets 1, 2 and 3 (P = 0.0034, P = 0.0081, and P = 0.0363, respectively). The area under the curve (AUC) of the ROC curves validated the predictive accuracy of the immune signature (AUCs = 0.757, 0.800, and 0.701, respectively). We also revealed the good prognostic value of the immune cells, including activated memory CD4 T cells, T follicular helper cells and monocytes. Potential target drugs, including Olopatadine and Amlexanox, were identified for clinical therapies to improve patients' survival outcomes. CONCLUSION Our study indicated that the immune-related prognostic signature could serve as a novel biomarker for predicting patients' prognosis and providing new immunotherapy targets in ESCA.
Collapse
|
12
|
Li X, Ren Z, Xiong C, Geng J, Li Y, Liu C, Ren C, Liu H. Minichromosome maintenance 6 complex component identified by bioinformatics analysis and experimental validation in esophageal squamous cell carcinoma. Oncol Rep 2020; 44:987-1002. [PMID: 32583000 PMCID: PMC7388536 DOI: 10.3892/or.2020.7658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC), the main subtype of esophageal cancer (EC), is a common lethal type of cancer with a high mortality rate. The aim of the present study was to select key relevant genes and identify potential mechanisms involved in the development of ESCC based on bioinformatics analysis. Minichromosome maintenance 6 complex component (MCM6) has been identified to be upregulated in multiple malignancies; however, its contributions to ESCC remain unclear. For the purposes of the present study, four datasets were downloaded from the Gene Expression Omnibus (GSE63941, GSE26886, GSE17351 and GSE77861), and the intersection of the differentially expressed genes was obtained using a Venn diagram. The protein‑protein interaction was then constructed, and the modules were verified by Cytoscape, in which the key genes have a high connectivity degree with other genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway were subsequently filtered out to analyze the development of ESCC. MCM6, an upregulated gene, was selected and connected with most of the other genes, for further research validation. The expression levels of MCM6 were then assessed using the Oncomine, GEPIA and UALCAN databases and validated in both ESCC tissues samples and cell lines by immunohistochemistry and RT‑qPCR. Cell counting kit‑8 (CCK‑8), flow cytometry, wound healing and Transwell assays were used to determine the proliferation, apoptosis, cell cycle, migration and invasion of ESCC cells. A total of 24 genes were identified by a series of bioinformatics analyses and the results revealed that the genes were associated with DNA replication and cell cycle. Experimental validation revealed that MCM6 expression was significantly elevated in both ESCC tissues and cell lines. The results were consistent with those of bioinformatics analysis. Furthermore, the knockdown of MCM6 inhibited cell proliferation, migration and invasion and promoted cell apoptosis, and made cells arrested in S stage. In summary, the findings of bioinformatics analysis provided a novel hypothesis for ESCC progression. In particular, the aberrantly elevated expression of MCM6 is a potential biomarker for ESCC diagnosis and treatment.
Collapse
Affiliation(s)
- Xuebing Li
- Department of Medical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhenzhen Ren
- Department of Medical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chao Xiong
- Department of Medical Laboratory, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Jie Geng
- Department of Medical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yuqing Li
- Department of Medical Laboratory, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Cong Liu
- Department of Medical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chunfeng Ren
- Department of Medical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hongchun Liu
- Department of Medical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
13
|
Cheng Y, Li L, Qin Z, Li X, Qi F. Identification of castration-resistant prostate cancer-related hub genes using weighted gene co-expression network analysis. J Cell Mol Med 2020; 24:8006-8017. [PMID: 32485038 PMCID: PMC7348158 DOI: 10.1111/jcmm.15432] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the most common malignancy in urinary system and brings heavy burdens in men. We downloaded gene expression profile of mRNA and related clinical data of GSE70768 data set from public database. Weighted gene co‐expression network analysis (WGCNA) was used to identify the relationships between gene modules and clinical features, as well as the candidate genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were developed to investigate the potential functions of related hub genes. Importantly, basic experiments were performed to verify the relationship between hub genes and the phenotype previously identified. Lastly, copy number variation (CNV) analysis was conducted to explore the genetical alteration. WGCNA identified that black module was the most relevant module which was tightly related to castration‐resistant prostate cancer (CRPC) phenotype. KEGG and GO analysis results revealed genes in black module were mainly related to RNA splicing. Additionally, 9 genes were chosen as hub genes and heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1), golgin A8 family member B (GOLGA8B) and mitogen‐activated protein kinase 8 interacting protein 3 (MAPK8IP3) were identified to be associated with PCa progression and prognosis. Moreover, all above three genes were highly expressed in CRPC‐like cells and their suppression led to hindered cell proliferation in vitro. Finally, CNV analysis found that amplification was the main type of alteration of the 3 hub genes. Our study found that HNRNPA2B1, GOLGA8B and MAPK8IP3 were identified to be tightly associated with tumour progression and prognosis, and further researches are needed before clinical application.
Collapse
Affiliation(s)
- Yifei Cheng
- Department of Urologic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Li
- Nanjing Medical University, Nanjing, China
| | - Zongshi Qin
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiao Li
- Department of Urologic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Qi
- Department of Urologic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Engqvist H, Parris TZ, Kovács A, Rönnerman EW, Sundfeldt K, Karlsson P, Helou K. Validation of Novel Prognostic Biomarkers for Early-Stage Clear-Cell, Endometrioid and Mucinous Ovarian Carcinomas Using Immunohistochemistry. Front Oncol 2020; 10:162. [PMID: 32133296 PMCID: PMC7040170 DOI: 10.3389/fonc.2020.00162] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Early-stage (I and II) ovarian carcinoma patients generally have good prognosis. Yet, some patients die earlier than expected. Thus, it is important to stratify early-stage patients into risk groups to identify those in need of more aggressive treatment regimens. The prognostic value of 29 histotype-specific biomarkers identified using RNA sequencing was evaluated for early-stage clear-cell (CCC), endometrioid (EC) and mucinous (MC) ovarian carcinomas (n = 112) using immunohistochemistry on tissue microarrays. Biomarkers with prognostic significance were further evaluated in an external ovarian carcinoma data set using the web-based Kaplan-Meier plotter tool. Here, we provide evidence of aberrant protein expression patterns and prognostic significance of 17 novel histotype-specific prognostic biomarkers [10 for CCC (ARPC2, CCT5, GNB1, KCTD10, NUP155, RPL13A, RPL37, SETD3, SMYD2, TRIO), three for EC (CECR1, KIF26B, PIK3CA), and four for MC (CHEK1, FOXM1, KIF23, PARPBP)], suggesting biological heterogeneity within the histotypes. Combined predictive models comprising the protein expression status of the validated CCC, EC and MC biomarkers together with established clinical markers (age, stage, CA125, ploidy) improved the predictive power in comparison with models containing established clinical markers alone, further strengthening the importance of the biomarkers in ovarian carcinoma. Further, even improved predictive powers were demonstrated when combining these models with our previously identified prognostic biomarkers PITHD1 (CCC) and GPR158 (MC). Moreover, the proteins demonstrated improved risk prediction of CCC-, EC-, and MC-associated ovarian carcinoma survival. The novel histotype-specific prognostic biomarkers may not only improve prognostication and patient stratification of early-stage ovarian carcinomas, but may also guide future clinical therapy decisions.
Collapse
Affiliation(s)
- Hanna Engqvist
- Department of Oncology, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z. Parris
- Department of Oncology, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Elisabeth Werner Rönnerman
- Department of Oncology, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Karin Sundfeldt
- Department of Obstetrics and Gynecology, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Gupta MK, Vadde R. Applications of Computational Biology in Gastrointestinal Malignancies. IMMUNOTHERAPY FOR GASTROINTESTINAL MALIGNANCIES 2020:231-251. [DOI: 10.1007/978-981-15-6487-1_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
16
|
Abstract
Esophageal cancer (EC) seriously threatens human health, and a promising new avenue for EC treatment involves cancer immunotherapy. To improve the efficacy of EC immunotherapy and to develop novel strategies for EC prognosis prediction or clinical treatment, understanding the immune landscapes in EC is required. EC cells harbor abundant tumor antigens, including tumor-associated antigens and neoantigens, which have the ability to initiate dendritic cell-mediated tumor-killing cytotoxic T lymphocytes in the early stage of cancer development. As EC cells battle the immune system, they obtain an ability to suppress antitumor immunity through immune checkpoints, secreted factors, and negative regulatory immune cells. Cancer-associated fibroblasts also contribute to the immune evasion of EC cells. Some factors of the immune landscape in EC tumor microenvironment are associated with cancer development, patient survival, or treatment response. Based on the immune landscape, peptide vaccines, adoptive T cell therapy, and immune checkpoint blockade can be used for EC immunotherapy. Combined strategies are required for better clinical outcome in EC. This review provides directions to design novel and effective strategies for prognosis prediction and immunotherapy in EC.
Collapse
Affiliation(s)
- Tu-Xiong Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology and Shenzhen International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, P. R. China
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology and Shenzhen International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, P. R. China.
| |
Collapse
|
17
|
Yang W, Zhao X, Han Y, Duan L, Lu X, Wang X, Zhang Y, Zhou W, Liu J, Zhang H, Zhao Q, Hong L, Fan D. Identification of hub genes and therapeutic drugs in esophageal squamous cell carcinoma based on integrated bioinformatics strategy. Cancer Cell Int 2019; 19:142. [PMID: 31139019 PMCID: PMC6530124 DOI: 10.1186/s12935-019-0854-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of leading malignant cancers of gastrointestinal tract worldwide. Until now, the involved mechanisms during the development of ESCC are largely unknown. This study aims to explore the driven-genes and biological pathways in ESCC. Methods mRNA expression datasets of GSE29001, GSE20347, GSE100942, and GSE38129, containing 63 pairs of ESCC and non-tumor tissues data, were integrated and deeply analyzed. The bioinformatics approaches include identification of differentially expressed genes (DEGs) and hub genes, gene ontology (GO) terms analysis and biological pathway enrichment analysis, construction and analysis of protein-protein interaction (PPI) network, and miRNA-gene network construction. Subsequently, GEPIA2 database and qPCR assay were utilized to validate the expression of hub genes. DGIdb database was performed to search the candidate drugs for ESCC. Results Finally, 120 upregulated and 26 downregulated DEGs were identified. The functional enrichment of DEGs in ESCC were mainly correlated with cell cycle, DNA replication, deleted in colorectal cancer (DCC) mediated attractive signaling pathway, and Netrin-1 signaling pathway. The PPI network was constructed using STRING software with 146 nodes and 2392 edges. The most significant three modules in PPI were filtered and analyzed. Totally ten genes were selected and considered as the hub genes and nuclear division cycle 80 (NDC80) was closely related to the survival of ESCC patients. DGIdb database predicted 33 small molecules as the possible drugs for treating ESCC. Conclusions In summary, the data may provide new insights into ESCC pathogenesis and treatments. The candidate drugs may improve the efficiency of personalized therapy in future.
Collapse
Affiliation(s)
- Wanli Yang
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Xinhui Zhao
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yu Han
- 2Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lili Duan
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Xin Lu
- 3The School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoqian Wang
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yujie Zhang
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Wei Zhou
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Jinqiang Liu
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Hongwei Zhang
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Qingchuan Zhao
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Liu Hong
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Daiming Fan
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
18
|
Zhang Y, Zhang Y, Zhang L. Expression of cancer-testis antigens in esophageal cancer and their progress in immunotherapy. J Cancer Res Clin Oncol 2019; 145:281-291. [PMID: 30656409 PMCID: PMC6373256 DOI: 10.1007/s00432-019-02840-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/03/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Esophageal cancer is a common disease in China with low survival rate due to no obvious early symptoms and lack of effective screening strategies. Traditional treatments usually do not produce desirable results in patients with advanced esophageal cancer, so immunotherapy which relies on tumor-related antigens is needed to combat low survival rates effectively. Cancer-testis antigens (CTA), a large family of tumor-related antigens, have a strong in vivo immunogenicity and tumor-restricted expressing patterns in normal adult tissues. These two characteristics are ideal features of anticancer immunotherapy targets and, therefore, promoted the development of some studies of CTA-based therapy. To provide ideas for the role of the cancer-testis antigens MAGE-A, NY-ESO-1, LAGE-1, and TTK in esophageal cancer, we summarized their expression, prognostic value, and development in immunotherapy. METHODS The relevant literature from PubMed is reviewed in this study. RESULTS In esophageal cancer, although the relationship between expression of MAGE-A, NY-ESO-1, LAGE-1, and TTK and prognosis value is still in a controversial situation, MAGE-A, NY-ESO-1, LAGE-1, and TTK are highly expressed and can induce specific CTL cells to produce particular killing effect on tumor cells, and some clinical trials have demonstrated that immunotherapy for esophageal cancer patients is effective and safe, which provides a new therapeutic strategy for the treatment of esophageal cancer in the future. CONCLUSION In this review, we summarize expression and prognostic value of MAGE-A, NY-ESO-1, LAGE-1, and TTK in esophageal cancer and point out recent advances in immunotherapy about them.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yuxin Zhang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Li Zhang
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|