1
|
Wu L, Wei D, Chen W, Wu C, Lu Z, Li S, Liu W. Comprehensive Potential of Artificial Intelligence for Predicting PD-L1 Expression and EGFR Mutations in Lung Cancer: A Systematic Review and Meta-Analysis. J Comput Assist Tomogr 2025; 49:101-112. [PMID: 39143665 DOI: 10.1097/rct.0000000000001644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
OBJECTIVE To evaluate the methodological quality and the predictive performance of artificial intelligence (AI) for predicting programmed death ligand 1 (PD-L1) expression and epidermal growth factor receptors (EGFR) mutations in lung cancer (LC) based on systematic review and meta-analysis. METHODS AI studies based on PET/CT, CT, PET, and immunohistochemistry (IHC)-whole-slide image (WSI) were included to predict PD-L1 expression or EGFR mutations in LC. The modified Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was used to evaluate the methodological quality. A comprehensive meta-analysis was conducted to analyze the overall area under the curve (AUC). The Cochrane diagnostic test and I2 statistics were used to assess the heterogeneity of the meta-analysis. RESULTS A total of 45 AI studies were included, of which 10 were used to predict PD-L1 expression and 35 were used to predict EGFR mutations. Based on the analysis using the QUADAS-2 tool, 37 studies achieved a high-quality score of 7. In the meta-analysis of PD-L1 expression levels, the overall AUCs for PET/CT, CT, and IHC-WSI were 0.80 (95% confidence interval [CI], 0.77-0.84), 0.74 (95% CI, 0.69-0.77), and 0.95 (95% CI, 0.93-0.97), respectively. For EGFR mutation status, the overall AUCs for PET/CT, CT, and PET were 0.85 (95% CI, 0.81-0.88), 0.83 (95% CI, 0.80-0.86), and 0.75 (95% CI, 0.71-0.79), respectively. The Cochrane Diagnostic Test revealed an I2 value exceeding 50%, indicating substantial heterogeneity in the PD-L1 and EGFR meta-analyses. When AI was combined with clinicopathological features, the enhancement in predicting PD-L1 expression was not substantial, whereas the prediction of EGFR mutations showed improvement compared to the CT and PET models, albeit not significantly so compared to the PET/CT models. CONCLUSIONS The overall performance of AI in predicting PD-L1 expression and EGFR mutations in LC has promising clinical implications.
Collapse
Affiliation(s)
- Linyong Wu
- From the Department of Medical Ultrasound, Maoming People's Hospital, Maoming
| | - Dayou Wei
- From the Department of Medical Ultrasound, Maoming People's Hospital, Maoming
| | - Wubiao Chen
- Radiology Imaging Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, PR China
| | - Chaojun Wu
- From the Department of Medical Ultrasound, Maoming People's Hospital, Maoming
| | - Zhendong Lu
- Radiology Imaging Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, PR China
| | - Songhua Li
- From the Department of Medical Ultrasound, Maoming People's Hospital, Maoming
| | - Wenci Liu
- Radiology Imaging Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, PR China
| |
Collapse
|
2
|
Benfares A, Mourabiti AY, Alami B, Boukansa S, El Bouardi N, Lamrani MYA, El Fatimi H, Amara B, Serraj M, Mohammed S, Abdeljabbar C, Anass EA, Qjidaa M, Maaroufi M, Mohammed OJ, Hassan Q. Non-invasive, fast, and high-performance EGFR gene mutation prediction method based on deep transfer learning and model stacking for patients with Non-Small Cell Lung Cancer. Eur J Radiol Open 2024; 13:100601. [PMID: 39351523 PMCID: PMC11440319 DOI: 10.1016/j.ejro.2024.100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
Purpose To propose an intelligent, non-invasive, highly precise, and rapid method to predict the mutation status of the Epidermal Growth Factor Receptor (EGFR) to accelerate treatment with Tyrosine Kinase Inhibitor (TKI) for patients with untreated adenocarcinoma Non-Small Cell Lung Cancer. Materials and methods Real-world data from 521 patients with adenocarcinoma NSCLC who performed a CT scan and underwent surgery or pathological biopsy to determine EGFR gene mutation between January 2021 and July 2022, is collected. Solutions to the problems that prevent the model from achieving very high precision, namely: human errors made during the annotation of the database and the low precision of the output decision of the model, are proposed. Thus, among the 521 analyzed cases, only 40 were selected as patients with EGFR gene mutation and 98 cases with wild-type EGFR. Results The proposed model is trained, validated, and tested on 12,040 2D images extracted from the 138 CT scans images where patients were randomly partitioned into training (80 %) and test (20 %) sets. The performance obtained for EGFR gene mutation prediction was 95.22 % for accuracy, 960.2 for F1_score, 95.89 % for precision, 96.92 % for sensitivity, 94.01 % for Cohen kappa, and 98 % for AUC. Conclusion An EGFR gene mutation status prediction method, with high-performance thanks to an intelligent prediction model entrained by highly accurate annotated data is proposed. The outcome of this project will facilitate rapid decision-making when applying a TKI as an initial treatment.
Collapse
Affiliation(s)
- Anass Benfares
- Laboratory of Computer, Signals, Automation and Cognitivism, Dhar El Mehraz Faculty of Sciences, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Abdelali yahya Mourabiti
- Radiology Department of University Hospital Center Hassan II Fez, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Badreddine Alami
- Radiology Department of University Hospital Center Hassan II Fez, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Sara Boukansa
- Laboratory of Anatomic Pathology and Molecular Pathology, University Hospital Center Hassan II, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Nizar El Bouardi
- Radiology Department of University Hospital Center Hassan II Fez, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Moulay Youssef Alaoui Lamrani
- Radiology Department of University Hospital Center Hassan II Fez, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Hind El Fatimi
- Anatomopathological Department, University Hospital Center Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Bouchra Amara
- Pneumology Department, University Hospital Center Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mounia Serraj
- Pneumology Department, University Hospital Center Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Smahi Mohammed
- Thoracic Surgery Department, University Hospital Center Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Cherkaoui Abdeljabbar
- Laboratoire de Technologies Innovantes, Abdelmalek Essaidi University, Tanger, Morocco
| | | | - Mamoun Qjidaa
- Laboratoire de Technologies Innovantes, Abdelmalek Essaidi University, Tanger, Morocco
| | - Mustapha Maaroufi
- Radiology Department of University Hospital Center Hassan II Fez, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Ouazzani Jamil Mohammed
- Laboratory of Intelligent Systems, Energy and Sustainable Development Faculty of Engineering Sciences, Private University of Fez, Fez, Morocco
| | - Qjidaa Hassan
- Laboratory of Intelligent Systems, Energy and Sustainable Development Faculty of Engineering Sciences, Private University of Fez, Fez, Morocco
| |
Collapse
|
3
|
Xu N, Wang J, Dai G, Lu T, Li S, Deng K, Song J. EfficientNet-Based System for Detecting EGFR-Mutant Status and Predicting Prognosis of Tyrosine Kinase Inhibitors in Patients with NSCLC. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1086-1099. [PMID: 38361006 PMCID: PMC11169294 DOI: 10.1007/s10278-024-01022-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
We aimed to develop and validate a deep learning-based system using pre-therapy computed tomography (CT) images to detect epidermal growth factor receptor (EGFR)-mutant status in patients with non-small cell lung cancer (NSCLC) and predict the prognosis of advanced-stage patients with EGFR mutations treated with EGFR tyrosine kinase inhibitors (TKI). This retrospective, multicenter study included 485 patients with NSCLC from four hospitals. Of them, 339 patients from three centers were included in the training dataset to develop an EfficientNetV2-L-based model (EME) for predicting EGFR-mutant status, and the remaining patients were assigned to an independent test dataset. EME semantic features were extracted to construct an EME-prognostic model to stratify the prognosis of EGFR-mutant NSCLC patients receiving EGFR-TKI. A comparison of EME and radiomics was conducted. Additionally, we included patients from The Cancer Genome Atlas lung adenocarcinoma dataset with both CT images and RNA sequencing data to explore the biological associations between EME score and EGFR-related biological processes. EME obtained an area under the curve (AUC) of 0.907 (95% CI 0.840-0.926) on the test dataset, superior to the radiomics model (P = 0.007). The EME and radiomics fusion model showed better (AUC, 0.941) but not significantly increased performance (P = 0.895) compared with EME. In prognostic stratification, the EME-prognostic model achieved the best performance (C-index, 0.711). Moreover, the EME-prognostic score showed strong associations with biological pathways related to EGFR expression and EGFR-TKI efficacy. EME demonstrated a non-invasive and biologically interpretable approach to predict EGFR status, stratify survival prognosis, and correlate biological pathways in patients with NSCLC.
Collapse
Affiliation(s)
- Nan Xu
- School of Health Management, China Medical University, Shenyang, Liaoning, 110122, China
| | - Jiajun Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Gang Dai
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, Anhui, 230036, China
| | - Tao Lu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Shu Li
- School of Health Management, China Medical University, Shenyang, Liaoning, 110122, China
| | - Kexue Deng
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, Anhui, 230036, China
| | - Jiangdian Song
- School of Health Management, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
4
|
Nguyen HS, Ho DKN, Nguyen NN, Tran HM, Tam KW, Le NQK. Predicting EGFR Mutation Status in Non-Small Cell Lung Cancer Using Artificial Intelligence: A Systematic Review and Meta-Analysis. Acad Radiol 2024; 31:660-683. [PMID: 37120403 DOI: 10.1016/j.acra.2023.03.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 05/01/2023]
Abstract
RATIONALE AND OBJECTIVES Recent advancements in artificial intelligence (AI) render a substantial promise for epidermal growth factor receptor (EGFR) mutation status prediction in non-small cell lung cancer (NSCLC). We aimed to evaluate the performance and quality of AI algorithms that use radiomics features in predicting EGFR mutation status in patient with NSCLC. MATERIALS AND METHODS We searched PubMed (Medline), EMBASE, Web of Science, and IEEExplore for studies published up to February 28, 2022. Studies utilizing an AI algorithm (either conventional machine learning [cML] and deep learning [DL]) for predicting EGFR mutations in patients with NSLCL were included. We extracted binary diagnostic accuracy data and constructed a bivariate random-effects model to obtain pooled sensitivity, specificity, and 95% confidence interval. This study is registered with PROSPERO, CRD42021278738. RESULTS Our search identified 460 studies, of which 42 were included. Thirty-five studies were included in the meta-analysis. The AI algorithms exhibited an overall area under the curve (AUC) value of 0.789 and pooled sensitivity and specificity levels of 72.2% and 73.3%, respectively. The DL algorithms outperformed cML in terms of AUC (0.822 vs. 0.775) and sensitivity (80.1% vs. 71.1%), but had lower specificity (70.0% vs. 73.8%, p-value < 0.001) compared to cML. Subgroup analysis revealed that the use of positron-emission tomography/computed tomography, additional clinical information, deep feature extraction, and manual segmentation can improve diagnostic performance. CONCLUSION DL algorithms can serve as a novel method for increasing predictive accuracy and thus have considerable potential for use in predicting EGFR mutation status in patient with NSCLC. We also suggest that guidelines on using AI algorithms in medical image analysis should be developed with a focus on oncologic radiomics.
Collapse
Affiliation(s)
- Hung Song Nguyen
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan (H.S.N., N.N.N.); Department of Pediatrics, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Viet Nam (H.S.N.); Intensive Care Unit Department, Children's Hospital 1, Ho Chi Minh City, Viet Nam (H.S.N.)
| | - Dang Khanh Ngan Ho
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan (D.K.N.H.)
| | - Nam Nhat Nguyen
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan (H.S.N., N.N.N.)
| | - Huy Minh Tran
- Department of Neurosurgery, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam (H.M.T.)
| | - Ka-Wai Tam
- Center for Evidence-based Health Care, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan (K.-W.T.); Cochrane Taiwan, Taipei Medical University, Taipei City, Taiwan (K.-W.T.); Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan (K.-W.T.); Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan (K.-W.T.)
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (N.Q.K.L.); Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 110, Taiwan (N.Q.K.L.); AIBioMed Research Group, Taipei Medical University, Taipei 110, Taiwan (N.Q.K.L.); Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan (N.Q.K.L.).
| |
Collapse
|
5
|
Çalışkan M, Tazaki K. AI/ML advances in non-small cell lung cancer biomarker discovery. Front Oncol 2023; 13:1260374. [PMID: 38148837 PMCID: PMC10750392 DOI: 10.3389/fonc.2023.1260374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths among both men and women, representing approximately 25% of cancer fatalities each year. The treatment landscape for non-small cell lung cancer (NSCLC) is rapidly evolving due to the progress made in biomarker-driven targeted therapies. While advancements in targeted treatments have improved survival rates for NSCLC patients with actionable biomarkers, long-term survival remains low, with an overall 5-year relative survival rate below 20%. Artificial intelligence/machine learning (AI/ML) algorithms have shown promise in biomarker discovery, yet NSCLC-specific studies capturing the clinical challenges targeted and emerging patterns identified using AI/ML approaches are lacking. Here, we employed a text-mining approach and identified 215 studies that reported potential biomarkers of NSCLC using AI/ML algorithms. We catalogued these studies with respect to BEST (Biomarkers, EndpointS, and other Tools) biomarker sub-types and summarized emerging patterns and trends in AI/ML-driven NSCLC biomarker discovery. We anticipate that our comprehensive review will contribute to the current understanding of AI/ML advances in NSCLC biomarker research and provide an important catalogue that may facilitate clinical adoption of AI/ML-derived biomarkers.
Collapse
Affiliation(s)
- Minal Çalışkan
- Translational Science Department, Precision Medicine Function, Daiichi Sankyo, Inc., Basking Ridge, NJ, United States
| | - Koichi Tazaki
- Translational Science Department I, Precision Medicine Function, Daiichi Sankyo, Tokyo, Japan
| |
Collapse
|
6
|
Felfli M, Liu Y, Zerka F, Voyton C, Thinnes A, Jacques S, Iannessi A, Bodard S. Systematic Review, Meta-Analysis and Radiomics Quality Score Assessment of CT Radiomics-Based Models Predicting Tumor EGFR Mutation Status in Patients with Non-Small-Cell Lung Cancer. Int J Mol Sci 2023; 24:11433. [PMID: 37511192 PMCID: PMC10380456 DOI: 10.3390/ijms241411433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Assessment of the quality and current performance of computed tomography (CT) radiomics-based models in predicting epidermal growth factor receptor (EGFR) mutation status in patients with non-small-cell lung carcinoma (NSCLC). Two medical literature databases were systematically searched, and articles presenting original studies on CT radiomics-based models for predicting EGFR mutation status were retrieved. Forest plots and related statistical tests were performed to summarize the model performance and inter-study heterogeneity. The methodological quality of the selected studies was assessed via the Radiomics Quality Score (RQS). The performance of the models was evaluated using the area under the curve (ROC AUC). The range of the Risk RQS across the selected articles varied from 11 to 24, indicating a notable heterogeneity in the quality and methodology of the included studies. The average score was 15.25, which accounted for 42.34% of the maximum possible score. The pooled Area Under the Curve (AUC) value was 0.801, indicating the accuracy of CT radiomics-based models in predicting the EGFR mutation status. CT radiomics-based models show promising results as non-invasive alternatives for predicting EGFR mutation status in NSCLC patients. However, the quality of the studies using CT radiomics-based models varies widely, and further harmonization and prospective validation are needed before the generalization of these models.
Collapse
Affiliation(s)
- Mehdi Felfli
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Yan Liu
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Fadila Zerka
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Charles Voyton
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Alexandre Thinnes
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Sebastien Jacques
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Antoine Iannessi
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
- Centre Antoine Lacassagne, F-06100 Nice, France
| | - Sylvain Bodard
- AP-HP, Service d’Imagerie Adulte, Hôpital Necker Enfants Malades, Université de Paris Cité, F-75015 Paris, France
- CNRS UMR 7371, INSERM U 1146, Laboratoire d’Imagerie Biomédicale, Sorbonne Université, F-75006 Paris, France
| |
Collapse
|
7
|
Mayoral M, Pagano AM, Araujo-Filho JAB, Zheng J, Perez-Johnston R, Tan KS, Gibbs P, Fernandes Shepherd A, Rimner A, Simone II CB, Riely G, Huang J, Ginsberg MS. Conventional and radiomic features to predict pathology in the preoperative assessment of anterior mediastinal masses. Lung Cancer 2023; 178:206-212. [PMID: 36871345 PMCID: PMC10544811 DOI: 10.1016/j.lungcan.2023.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/14/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023]
Abstract
OBJECTIVES The aim of this study was to differentiate benign from malignant tumors in the anterior mediastinum based on computed tomography (CT) imaging characteristics, which could be useful in preoperative planning. Additionally, our secondary aim was to differentiate thymoma from thymic carcinoma, which could guide the use of neoadjuvant therapy. MATERIALS AND METHODS Patients referred for thymectomy were retrospectively selected from our database. Twenty-five conventional characteristics were evaluated by visual analysis, and 101 radiomic features were extracted from each CT. In the step of model training, we applied support vector machines to train classification models. Model performance was assessed using the area under the receiver operating curves (AUC). RESULTS Our final study sample comprised 239 patients, 59 (24.7 %) with benign mediastinal lesions and 180 (75.3 %) with malignant thymic tumors. Among the malignant masses, there were 140 (58.6 %) thymomas, 23 (9.6 %) thymic carcinomas, and 17 (7.1 %) non-thymic lesions. For the benign versus malignant differentiation, the model that integrated both conventional and radiomic features achieved the highest diagnostic performance (AUC = 0.715), in comparison to the conventional (AUC = 0.605) and radiomic-only (AUC = 0.678) models. Similarly, regarding thymoma versus thymic carcinoma differentiation, the model that integrated both conventional and radiomic features also achieved the highest diagnostic performance (AUC = 0.810), in comparison to the conventional (AUC = 0.558) and radiomic-only (AUC = 0.774) models. CONCLUSION CT-based conventional and radiomic features with machine learning analysis could be useful for predicting pathologic diagnoses of anterior mediastinal masses. The diagnostic performance was moderate for differentiating benign from malignant lesions and good for differentiating thymomas from thymic carcinomas. The best diagnostic performance was achieved when both conventional and radiomic features were integrated in the machine learning algorithms.
Collapse
Affiliation(s)
- Maria Mayoral
- Department of Radiology. Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Medical Imaging Department. Hospital Clinic of Barcelona, 170 Villarroel street, Barcelona 08036, Spain.
| | - Andrew M Pagano
- Department of Radiology. Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Jose Arimateia Batista Araujo-Filho
- Department of Radiology. Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Radiology. Hospital Sirio-Libanes, 91 Dona Adma Jafet street, São Paulo 01308-050, Brazil
| | - Junting Zheng
- Department of Epidemiology and Biostatistics. Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Rocio Perez-Johnston
- Department of Radiology. Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Kay See Tan
- Department of Epidemiology and Biostatistics. Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Peter Gibbs
- Department of Radiology. Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Annemarie Fernandes Shepherd
- Department of Radiation Oncology. Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Andreas Rimner
- Department of Radiation Oncology. Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Charles B Simone II
- Department of Radiation Oncology. Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Gregory Riely
- Department of Surgery. Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - James Huang
- Department of Surgery. Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Michelle S Ginsberg
- Department of Radiology. Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
8
|
Xiao Z, Cai H, Wang Y, Cui R, Huo L, Lee EYP, Liang Y, Li X, Hu Z, Chen L, Zhang N. Deep learning for predicting epidermal growth factor receptor mutations of non-small cell lung cancer on PET/CT images. Quant Imaging Med Surg 2023; 13:1286-1299. [PMID: 36915325 PMCID: PMC10006109 DOI: 10.21037/qims-22-760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/08/2022] [Indexed: 02/09/2023]
Abstract
Background Predicting the mutation status of the epidermal growth factor receptor (EGFR) gene based on an integrated positron emission tomography/computed tomography (PET/CT) image of non-small cell lung cancer (NSCLC) is a noninvasive, low-cost method which is valuable for targeted therapy. Although deep learning has been very successful in robotic vision, it is still challenging to predict gene mutations in PET/CT-derived studies because of the small amount of medical data and the different parameters of PET/CT devices. Methods We used the advanced EfficientNet-V2 model to predict the EGFR mutation based on fused PET/CT images. First, we extracted 3-dimensional (3D) pulmonary nodules from PET and CT as regions of interest (ROIs). We then fused each single PET and CT image. The network model was used to predict the mutation status of lung nodules by the new data after fusion, and the model was weighted adaptively. The EfficientNet-V2 model used multiple channels to represent nodules comprehensively. Results We trained the EfficientNet-V2 model through our PET/CT fusion algorithm using a dataset of 150 patients. The prediction accuracy of EGFR and non-EGFR mutations was 86.25% in the training dataset, and the accuracy rate was 81.92% in the validation set. Conclusions Combined with experiments, the demonstrated PET/CT fusion algorithm outperformed radiomics methods in predicting EGFR and non-EGFR mutations in NSCLC.
Collapse
Affiliation(s)
- Zhenghui Xiao
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Southern University of Science and Technology, Shenzhen, China
| | - Haihua Cai
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yue Wang
- Department of PET/CT Center, Cancer Center of Yunnan Province, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruixue Cui
- Nuclear Medicine Department, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Li Huo
- Nuclear Medicine Department, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Elaine Yuen-Phin Lee
- Department of Diagnostic Radiology, Clinical School of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Ying Liang
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Xiaomeng Li
- Department of Electronic and Computer Engineering, the Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhanli Hu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Long Chen
- Department of PET/CT Center, Cancer Center of Yunnan Province, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Na Zhang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
9
|
Yoon HJ, Choi J, Kim E, Um SW, Kang N, Kim W, Kim G, Park H, Lee HY. Deep learning analysis to predict EGFR mutation status in lung adenocarcinoma manifesting as pure ground-glass opacity nodules on CT. Front Oncol 2022; 12:951575. [PMID: 36119545 PMCID: PMC9478848 DOI: 10.3389/fonc.2022.951575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) showed potency as a non-invasive therapeutic approach in pure ground-glass opacity nodule (pGGN) lung adenocarcinoma. However, optimal methods of extracting information about EGFR mutation from pGGN lung adenocarcinoma images remain uncertain. We aimed to develop, validate, and evaluate the clinical utility of a deep learning model for predicting EGFR mutation status in lung adenocarcinoma manifesting as pGGN on computed tomography (CT). METHODS We included 185 resected pGGN lung adenocarcinomas in the primary cohort. The patients were divided into training (n = 125), validation (n = 23), and test sets (n = 37). A preoperative CT-based deep learning model with clinical factors as well as clinical and radiomics models was constructed and applied to the test set. We evaluated the clinical utility of the deep learning model by applying it to 83 GGNs that received EGFR-TKI from an independent cohort (clinical validation set), and treatment response was regarded as the reference standard. RESULTS The prediction efficiencies of each model were compared in terms of area under the curve (AUC). Among the 185 pGGN lung adenocarcinomas, 122 (65.9%) were EGFR-mutant and 63 (34.1%) were EGFR-wild type. The AUC of the clinical, radiomics, and deep learning with clinical models to predict EGFR mutations were 0.50, 0.64, and 0.85, respectively, for the test set. The AUC of deep learning with the clinical model in the validation set was 0.72. CONCLUSIONS Deep learning approach of CT images combined with clinical factors can predict EGFR mutations in patients with lung adenocarcinomas manifesting as pGGN, and its clinical utility was demonstrated in a real-world sample.
Collapse
Affiliation(s)
- Hyun Jung Yoon
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Radiology, Veterans Health Service Medical Center, Seoul, South Korea
| | - Jieun Choi
- Department of Artificial Intelligence, Sungkyunkwan University, Suwon, South Korea
| | - Eunjin Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Sang-Won Um
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
| | - Noeul Kang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Division of Allergy, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Wook Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Geena Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Ho Yun Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
10
|
Multiple instance learning for lung pathophysiological findings detection using CT scans. Med Biol Eng Comput 2022; 60:1569-1584. [PMID: 35386027 DOI: 10.1007/s11517-022-02526-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/17/2022] [Indexed: 10/18/2022]
Abstract
Lung diseases affect the lives of billions of people worldwide, and 4 million people, each year, die prematurely due to this condition. These pathologies are characterized by specific imagiological findings in CT scans. The traditional Computer-Aided Diagnosis (CAD) approaches have been showing promising results to help clinicians; however, CADs normally consider a small part of the medical image for analysis, excluding possible relevant information for clinical evaluation. Multiple Instance Learning (MIL) approach takes into consideration different small pieces that are relevant for the final classification and creates a comprehensive analysis of pathophysiological changes. This study uses MIL-based approaches to identify the presence of lung pathophysiological findings in CT scans for the characterization of lung disease development. This work was focus on the detection of the following: Fibrosis, Emphysema, Satellite Nodules in Primary Lesion Lobe, Nodules in Contralateral Lung and Ground Glass, being Fibrosis and Emphysema the ones with more outstanding results, reaching an Area Under the Curve (AUC) of 0.89 and 0.72, respectively. Additionally, the MIL-based approach was used for EGFR mutation status prediction - the most relevant oncogene on lung cancer, with an AUC of 0.69. The results showed that this comprehensive approach can be a useful tool for lung pathophysiological characterization.
Collapse
|
11
|
Silva F, Pereira T, Neves I, Morgado J, Freitas C, Malafaia M, Sousa J, Fonseca J, Negrão E, Flor de Lima B, Correia da Silva M, Madureira AJ, Ramos I, Costa JL, Hespanhol V, Cunha A, Oliveira HP. Towards Machine Learning-Aided Lung Cancer Clinical Routines: Approaches and Open Challenges. J Pers Med 2022; 12:480. [PMID: 35330479 PMCID: PMC8950137 DOI: 10.3390/jpm12030480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 12/15/2022] Open
Abstract
Advancements in the development of computer-aided decision (CAD) systems for clinical routines provide unquestionable benefits in connecting human medical expertise with machine intelligence, to achieve better quality healthcare. Considering the large number of incidences and mortality numbers associated with lung cancer, there is a need for the most accurate clinical procedures; thus, the possibility of using artificial intelligence (AI) tools for decision support is becoming a closer reality. At any stage of the lung cancer clinical pathway, specific obstacles are identified and "motivate" the application of innovative AI solutions. This work provides a comprehensive review of the most recent research dedicated toward the development of CAD tools using computed tomography images for lung cancer-related tasks. We discuss the major challenges and provide critical perspectives on future directions. Although we focus on lung cancer in this review, we also provide a more clear definition of the path used to integrate AI in healthcare, emphasizing fundamental research points that are crucial for overcoming current barriers.
Collapse
Affiliation(s)
- Francisco Silva
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FCUP—Faculty of Science, University of Porto, 4169-007 Porto, Portugal
| | - Tania Pereira
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
| | - Inês Neves
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- ICBAS—Abel Salazar Biomedical Sciences Institute, University of Porto, 4050-313 Porto, Portugal
| | - Joana Morgado
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
| | - Cláudia Freitas
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Mafalda Malafaia
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FEUP—Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Joana Sousa
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
| | - João Fonseca
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FEUP—Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Eduardo Negrão
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
| | - Beatriz Flor de Lima
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
| | - Miguel Correia da Silva
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
| | - António J. Madureira
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Isabel Ramos
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - José Luis Costa
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Venceslau Hespanhol
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - António Cunha
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- UTAD—University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Hélder P. Oliveira
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FCUP—Faculty of Science, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
12
|
Huang X, Sun Y, Tan M, Ma W, Gao P, Qi L, Lu J, Yang Y, Wang K, Chen W, Jin L, Kuang K, Duan S, Li M. Three-Dimensional Convolutional Neural Network-Based Prediction of Epidermal Growth Factor Receptor Expression Status in Patients With Non-Small Cell Lung Cancer. Front Oncol 2022; 12:772770. [PMID: 35186727 PMCID: PMC8848731 DOI: 10.3389/fonc.2022.772770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
Objectives EGFR testing is a mandatory step before targeted therapy for non-small cell lung cancer patients. Combining some quantifiable features to establish a predictive model of EGFR expression status, break the limitations of tissue biopsy. Materials and Methods We retrospectively analyzed 1074 patients of non-small cell lung cancer with complete reports of EGFR gene testing. Then manually segmented VOI, captured the clinicopathological features, analyzed traditional radiology features, and extracted radiomic, and deep learning features. The cases were randomly divided into training and test set. We carried out feature screening; then applied the light GBM algorithm, Resnet-101 algorithm, logistic regression to develop sole models, and fused models to predict EGFR mutation conditions. The efficiency of models was evaluated by ROC and PRC curves. Results We successfully established Modelclinical, Modelradiomic, ModelCNN (based on clinical-radiology, radiomic and deep learning features respectively), Modelradiomic+clinical (combining clinical-radiology and radiomic features), and ModelCNN+radiomic+clinical (combining clinical-radiology, radiomic, and deep learning features). Among the prediction models, ModelCNN+radiomic+clinical showed the highest performance, followed by ModelCNN, and then Modelradiomic+clinical. All three models were able to accurately predict EGFR mutation with AUC values of 0.751, 0.738, and 0.684, respectively. There was no significant difference in the AUC values between ModelCNN+radiomic+clinical and ModelCNN. Further analysis showed that ModelCNN+radiomic+clinical effectively improved the efficacy of Modelradiomic+clinical and showed better efficacy than ModelCNN. The inclusion of clinical-radiology features did not effectively improve the efficacy of Modelradiomic. Conclusions Either deep learning or radiomic signature-based models can provide a fairly accurate non-invasive prediction of EGFR expression status. The model combined both features effectively enhanced the performance of radiomic models and provided marginal enhancement to deep learning models. Collectively, fusion models offer a novel and more reliable way of providing the efficacy of currently developed prediction models, and have far-reaching potential for the optimization of noninvasive EGFR mutation status prediction methods.
Collapse
Affiliation(s)
- Xuemei Huang
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, Shanghai, China
| | - Yingli Sun
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, Shanghai, China
| | - Mingyu Tan
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, Shanghai, China
| | - Weiling Ma
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, Shanghai, China
| | - Pan Gao
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, Shanghai, China
| | - Lin Qi
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, Shanghai, China
| | - Jinjuan Lu
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, Shanghai, China
| | - Yuling Yang
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, Shanghai, China
| | - Kun Wang
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, Shanghai, China
| | - Wufei Chen
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, Shanghai, China
| | - Liang Jin
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, Shanghai, China
| | | | - Shaofeng Duan
- Precision Health Institution, GE Healthcare, Shanghai, China
| | - Ming Li
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, Shanghai, China
| |
Collapse
|
13
|
Gui D, Song Q, Song B, Li H, Wang M, Min X, Li A. AIR-Net: A novel multi-task learning method with auxiliary image reconstruction for predicting EGFR mutation status on CT images of NSCLC patients. Comput Biol Med 2021; 141:105157. [PMID: 34953355 DOI: 10.1016/j.compbiomed.2021.105157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 11/26/2022]
Abstract
Automated and accurate EGFR mutation status prediction using computed tomography (CT) imagery is of great value for tailoring optimal treatments to non-small cell lung cancer (NSCLC) patients. However, existing deep learning based methods usually adopt a single task learning strategy to design and train EGFR mutation status prediction models with limited training data, which may be insufficient to learn distinguishable representations for promoting prediction performance. In this paper, a novel multi-task learning method named AIR-Net is proposed to precisely predict EGFR mutation status on CT images. First, an auxiliary image reconstruction task is effectively integrated with EGFR mutation status prediction, aiming at providing extra supervision at the training phase. Particularly, we adequately employ multi-level information in a shared encoder to generate more comprehensive representations of tumors. Second, a powerful feature consistency loss is further introduced to constrain semantic consistency of original and reconstructed images, which contributes to enhanced image reconstruction and offers more effective regularization to AIR-Net during training. Performance analysis of AIR-Net indicates that auxiliary image reconstruction plays an essential role in identifying EGFR mutation status. Furthermore, extensive experimental results demonstrate that our method achieves favorable performance against other competitive prediction methods. All the results executed in this study suggest that the effectiveness and superiority of AIR-Net in precisely predicting EGFR mutation status of NSCLC.
Collapse
Affiliation(s)
- Dongqi Gui
- School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China.
| | - Qilong Song
- Department of Radiology, Anhui Chest Hospital, Hefei, 230022, China.
| | - Biao Song
- Department of Radiology, Anhui Chest Hospital, Hefei, 230022, China.
| | - Haichun Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China.
| | - Minghui Wang
- School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China.
| | - Xuhong Min
- Department of Radiology, Anhui Chest Hospital, Hefei, 230022, China.
| | - Ao Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
14
|
La Greca Saint-Esteven A, Vuong D, Tschanz F, van Timmeren JE, Dal Bello R, Waller V, Pruschy M, Guckenberger M, Tanadini-Lang S. Systematic Review on the Association of Radiomics with Tumor Biological Endpoints. Cancers (Basel) 2021; 13:cancers13123015. [PMID: 34208595 PMCID: PMC8234501 DOI: 10.3390/cancers13123015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022] Open
Abstract
Radiomics supposes an alternative non-invasive tumor characterization tool, which has experienced increased interest with the advent of more powerful computers and more sophisticated machine learning algorithms. Nonetheless, the incorporation of radiomics in cancer clinical-decision support systems still necessitates a thorough analysis of its relationship with tumor biology. Herein, we present a systematic review focusing on the clinical evidence of radiomics as a surrogate method for tumor molecular profile characterization. An extensive literature review was conducted in PubMed, including papers on radiomics and a selected set of clinically relevant and commonly used tumor molecular markers. We summarized our findings based on different cancer entities, additionally evaluating the effect of different modalities for the prediction of biomarkers at each tumor site. Results suggest the existence of an association between the studied biomarkers and radiomics from different modalities and different tumor sites, even though a larger number of multi-center studies are required to further validate the reported outcomes.
Collapse
Affiliation(s)
- Agustina La Greca Saint-Esteven
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
- Correspondence:
| | - Diem Vuong
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Fabienne Tschanz
- Laboratory of Applied Radiobiology, Department of Radiation Oncology, University of Zurich, 8091 Zurich, Switzerland; (F.T.); (V.W.); (M.P.)
| | - Janita E. van Timmeren
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Verena Waller
- Laboratory of Applied Radiobiology, Department of Radiation Oncology, University of Zurich, 8091 Zurich, Switzerland; (F.T.); (V.W.); (M.P.)
| | - Martin Pruschy
- Laboratory of Applied Radiobiology, Department of Radiation Oncology, University of Zurich, 8091 Zurich, Switzerland; (F.T.); (V.W.); (M.P.)
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| |
Collapse
|
15
|
Dong Y, Hou L, Yang W, Han J, Wang J, Qiang Y, Zhao J, Hou J, Song K, Ma Y, Kazihise NGF, Cui Y, Yang X. Multi-channel multi-task deep learning for predicting EGFR and KRAS mutations of non-small cell lung cancer on CT images. Quant Imaging Med Surg 2021; 11:2354-2375. [PMID: 34079707 PMCID: PMC8107307 DOI: 10.21037/qims-20-600] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 01/27/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Predicting the mutation statuses of 2 essential pathogenic genes [epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma (KRAS)] in non-small cell lung cancer (NSCLC) based on CT is valuable for targeted therapy because it is a non-invasive and less costly method. Although deep learning technology has realized substantial computer vision achievements, CT imaging being used to predict gene mutations remains challenging due to small dataset limitations. METHODS We propose a multi-channel and multi-task deep learning (MMDL) model for the simultaneous prediction of EGFR and KRAS mutation statuses based on CT images. First, we decomposed each 3D lung nodule into 9 views. Then, we used the pre-trained inception-attention-resnet model for each view to learn the features of the nodules. By combining 9 inception-attention-resnet models to predict the types of gene mutations in lung nodules, the models were adaptively weighted, and the proposed MMDL model could be trained end-to-end. The MMDL model utilized multiple channels to characterize the nodule more comprehensively and integrate patient personal information into our learning process. RESULTS We trained the proposed MMDL model using a dataset of 363 patients collected by our partner hospital and conducted a multi-center validation on 162 patients in The Cancer Imaging Archive (TCIA) public dataset. The accuracies for the prediction of EGFR and KRAS mutations were, respectively, 79.43% and 72.25% in the training dataset and 75.06% and 69.64% in the validation dataset. CONCLUSIONS The experimental results demonstrated that the proposed MMDL model outperformed the latest methods in predicting EGFR and KRAS mutations in NSCLC.
Collapse
Affiliation(s)
- Yunyun Dong
- School of Software, Taiyuan University of Technology, Taiyuan, China
- School of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Lina Hou
- Department of Radiology, Shanxi Province Cancer Hospital, Taiyuan, China
| | - Wenkai Yang
- School of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Jiahao Han
- School of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Jiawen Wang
- School of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Yan Qiang
- School of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Juanjuan Zhao
- School of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Jiaxin Hou
- School of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Kai Song
- School of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Yulan Ma
- School of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | | | - Yanfen Cui
- Department of Radiology, Shanxi Province Cancer Hospital, Taiyuan, China
| | - Xiaotang Yang
- Department of Radiology, Shanxi Province Cancer Hospital, Taiyuan, China
| |
Collapse
|
16
|
Combining radiomic phenotypes of non-small cell lung cancer with liquid biopsy data may improve prediction of response to EGFR inhibitors. Sci Rep 2021; 11:9984. [PMID: 33976268 PMCID: PMC8113313 DOI: 10.1038/s41598-021-88239-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Among non-small cell lung cancer (NSCLC) patients with therapeutically targetable tumor mutations in epidermal growth factor receptor (EGFR), not all patients respond to targeted therapy. Combining circulating-tumor DNA (ctDNA), clinical variables, and radiomic phenotypes may improve prediction of EGFR-targeted therapy outcomes for NSCLC. This single-center retrospective study included 40 EGFR-mutant advanced NSCLC patients treated with EGFR-targeted therapy. ctDNA data included number of mutations and detection of EGFR T790M. Clinical data included age, smoking status, and ECOG performance status. Baseline chest CT scans were analyzed to extract 429 radiomic features from each primary tumor. Unsupervised hierarchical clustering was used to group tumors into phenotypes. Kaplan–Meier (K–M) curves and Cox proportional hazards regression were modeled for progression-free survival (PFS) and overall survival (OS). Likelihood ratio test (LRT) was used to compare fit between models. Among 40 patients (73% women, median age 62 years), consensus clustering identified two radiomic phenotypes. For PFS, the model combining radiomic phenotypes with ctDNA and clinical variables had c-statistic of 0.77 and a better fit (LRT p = 0.01) than the model with clinical and ctDNA variables alone with a c-statistic of 0.73. For OS, adding radiomic phenotypes resulted in c-statistic of 0.83 versus 0.80 when using clinical and ctDNA variables (LRT p = 0.08). Both models showed separation of K–M curves dichotomized by median prognostic score (p < 0.005). Combining radiomic phenotypes, ctDNA, and clinical variables may enhance precision oncology approaches to managing advanced non-small cell lung cancer with EGFR mutations.
Collapse
|
17
|
Wang Y, Yu Y, Han W, Zhang YJ, Jiang L, Xue HD, Lei J, Jin ZY, Yu JC. CT Radiomics for Distinction of Human Epidermal Growth Factor Receptor 2 Negative Gastric Cancer. Acad Radiol 2021; 28:e86-e92. [PMID: 32303442 DOI: 10.1016/j.acra.2020.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
RATIONALE AND OBJECTIVES The purpose of this study was to investigate the role of computed tomography (CT) radiomics for the prediction of the human epidermal growth factor 2 (HER2) status in patients with gastric cancer. METHODS One hundred and thirty two consecutive patients with advanced gastric cancer undergoing radical gastrectomy were retrospectively reviewed. All patients received preoperative contrast CT examination, and immunohistochemistry results of their HER2 status were available. All the subjects were randomly divided into a training cohort (n = 90) and a test cohort (n = 42). Arterial phase (AP) and portal phase (PP) contrast CT images were retrieved for tumor segmentation and feature extraction. Receiver operating characteristics (ROC) curves and area under the curve (AUC) were used to evaluate the performance of the radiomics classifiers. RESULTS Among the 132 patients, a total of 99 patients were HER2 negative, and the remaining 33 patients were border line or positive. The AP radiomics model could distinguish HER2-negative cases with an AUC of 0.756 (95% confidence interval [CI]: 0.656-0.840) in the training cohort, which was confirmed in the test cohort with AUC of 0.830 (95% CI: 0.678-0.930). The PP radiomics model showed AUCs of 0.715 (95% CI: 0.612-0.804) and 0.718 (95% CI: 0.554-0.849) in the training and test cohort for distinction of negative HER2 cases, respectively. CONCLUSION Radiomics models based on standard-of-care CT images hold promise for distinguishing HER2-negative gastric cancer.
Collapse
|
18
|
Liu Z, Wu K, Wu B, Tang X, Yuan H, Pang H, Huang Y, Zhu X, Luo H, Qi Y. Imaging genomics for accurate diagnosis and treatment of tumors: A cutting edge overview. Biomed Pharmacother 2020; 135:111173. [PMID: 33383370 DOI: 10.1016/j.biopha.2020.111173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Imaging genomics refers to the establishment of the connection between invasive gene expression features and non-invasive imaging features. Tumor imaging genomics can not only understand the macroscopic phenotype of tumor, but also can deeply analyze the cellular and molecular characteristics of tumor tissue. In recent years, tumor imaging genomics has been a key in the field of medicine. The incidence of cancer in China has increased significantly, which is the main reason of disease death of urban residents. With the rapid development of imaging medicine, depending on imaging genomics, many experts have made remarkable achievements in tumor screening and diagnosis, prognosis evaluation, new treatment targets and understanding of tumor biological mechanism. This review analyzes the relationship between tumor radiology and gene expression, which provides a favorable direction for clinical staging, prognosis evaluation and accurate treatment of tumors.
Collapse
Affiliation(s)
- Zhen Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Kefeng Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Binhua Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Xiaoning Tang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Huiqing Yuan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Hao Pang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Yongmei Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Xiao Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.
| | - Hui Luo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.
| | - Yi Qi
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.
| |
Collapse
|
19
|
Sollini M, Bartoli F, Marciano A, Zanca R, Slart RHJA, Erba PA. Artificial intelligence and hybrid imaging: the best match for personalized medicine in oncology. Eur J Hybrid Imaging 2020; 4:24. [PMID: 34191197 PMCID: PMC8218106 DOI: 10.1186/s41824-020-00094-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022] Open
Abstract
Artificial intelligence (AI) refers to a field of computer science aimed to perform tasks typically requiring human intelligence. Currently, AI is recognized in the broader technology radar within the five key technologies which emerge for their wide-ranging applications and impact in communities, companies, business, and value chain framework alike. However, AI in medical imaging is at an early phase of development, and there are still hurdles to take related to reliability, user confidence, and adoption. The present narrative review aimed to provide an overview on AI-based approaches (distributed learning, statistical learning, computer-aided diagnosis and detection systems, fully automated image analysis tool, natural language processing) in oncological hybrid medical imaging with respect to clinical tasks (detection, contouring and segmentation, prediction of histology and tumor stage, prediction of mutational status and molecular therapies targets, prediction of treatment response, and outcome). Particularly, AI-based approaches have been briefly described according to their purpose and, finally lung cancer-being one of the most extensively malignancy studied by hybrid medical imaging-has been used as illustrative scenario. Finally, we discussed clinical challenges and open issues including ethics, validation strategies, effective data-sharing methods, regulatory hurdles, educational resources, and strategy to facilitate the interaction among different stakeholders. Some of the major changes in medical imaging will come from the application of AI to workflow and protocols, eventually resulting in improved patient management and quality of life. Overall, several time-consuming tasks could be automatized. Machine learning algorithms and neural networks will permit sophisticated analysis resulting not only in major improvements in disease characterization through imaging, but also in the integration of multiple-omics data (i.e., derived from pathology, genomic, proteomics, and demographics) for multi-dimensional disease featuring. Nevertheless, to accelerate the transition of the theory to practice a sustainable development plan considering the multi-dimensional interactions between professionals, technology, industry, markets, policy, culture, and civil society directed by a mindset which will allow talents to thrive is necessary.
Collapse
Affiliation(s)
- Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
- Humanitas Clinical and Research Center, Rozzano (Milan), Italy
| | - Francesco Bartoli
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Andrea Marciano
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Roberta Zanca
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Riemer H J A Slart
- University Medical Center Groningen, Medical Imaging Center, University of Groningen, Groningen, The Netherlands
- Faculty of Science and Technology, Biomedical Photonic Imaging, University of Twente, Enschede, The Netherlands
| | - Paola A Erba
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
- University Medical Center Groningen, Medical Imaging Center, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
20
|
Rossi G, Barabino E, Fedeli A, Ficarra G, Coco S, Russo A, Adamo V, Buemi F, Zullo L, Dono M, De Luca G, Longo L, Dal Bello MG, Tagliamento M, Alama A, Cittadini G, Pronzato P, Genova C. Radiomic Detection of EGFR Mutations in NSCLC. Cancer Res 2020; 81:724-731. [PMID: 33148663 DOI: 10.1158/0008-5472.can-20-0999] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/04/2020] [Accepted: 10/26/2020] [Indexed: 11/16/2022]
Abstract
Radiomics is defined as the use of automated or semi-automated post-processing and analysis of multiple features derived from imaging exams. Extracted features might generate models able to predict the molecular profile of solid tumors. The aim of this study was to develop a predictive algorithm to define the mutational status of EGFR in treatment-naïve patients with advanced non-small cell lung cancer (NSCLC). CT scans from 109 treatment-naïve patients with NSCLC (21 EGFR-mutant and 88 EGFR-wild type) underwent radiomics analysis to develop a machine learning model able to recognize EGFR-mutant from EGFR-WT patients via CT scans. A "test-retest" approach was used to identify stable radiomics features. The accuracy of the model was tested on an external validation set from another institution and on a dataset from the Cancer Imaging Archive (TCIA). The machine learning model that considered both radiomic and clinical features (gender and smoking status) reached a diagnostic accuracy of 88.1% in our dataset with an AUC at the ROC curve of 0.85, whereas the accuracy values in the datasets from TCIA and the external institution were 76.6% and 83.3%, respectively. Furthermore, 17 distinct radiomics features detected at baseline CT scan were associated with subsequent development of T790M during treatment with an EGFR inhibitor. In conclusion, our machine learning model was able to identify EGFR-mutant patients in multiple validation sets with globally good accuracy, especially after data optimization. More comprehensive training sets might result in further improvement of radiomics-based algorithms. SIGNIFICANCE: These findings demonstrate that data normalization and "test-retest" methods might improve the performance of machine learning models on radiomics images and increase their reliability when used on external validation datasets.
Collapse
Affiliation(s)
- Giovanni Rossi
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università degli Studi di Sassari, Sassari, Italy
| | - Emanuele Barabino
- Interventional Angiography, Ospedale Santa Corona, Pietra Ligure, Italy
| | - Alessandro Fedeli
- Dipartimento di Ingegneria Navale, Elettrica, Elettronica e delle Telecomunicazioni, Università degli Studi di Genova, Genova, Italy
| | - Gianluca Ficarra
- Diagnostic Imaging and Interventional Radiology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Simona Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Alessandro Russo
- A.O. Papardo and Department of Human Pathology, University of Messina, Messina, Italy
| | - Vincenzo Adamo
- A.O. Papardo and Department of Human Pathology, University of Messina, Messina, Italy
| | - Francesco Buemi
- A.O. Papardo and Department of Human Pathology, University of Messina, Messina, Italy
| | - Lodovica Zullo
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Mariella Dono
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Giuseppa De Luca
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Luca Longo
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Marco Tagliamento
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Angela Alama
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Paolo Pronzato
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Carlo Genova
- UOC Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy. .,Dipartimento di Medicina Interna e Specialità Mediche (DiMI), Facoltà di Medicina e Chirurgia, Università degli Studi di Genova, Genova, Italy
| |
Collapse
|
21
|
Wang Y, Wang Y, Guo C, Xie X, Liang S, Zhang R, Pang W, Huang L. Cancer genotypes prediction and associations analysis from imaging phenotypes: a survey on radiogenomics. Biomark Med 2020; 14:1151-1164. [PMID: 32969248 DOI: 10.2217/bmm-2020-0248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this paper, we present a survey on the progress of radiogenomics research, which predicts cancer genotypes from imaging phenotypes and investigates the associations between them. First, we present an overview of the popular technology modalities for obtaining diagnostic medical images. Second, we summarize recently used methodologies for radiogenomics analysis, including statistical analysis, radiomics and deep learning. And then, we give a survey on the recent research based on several types of cancers. Finally, we discuss these studies and propose possible future research directions. In conclusion, we have identified strong correlations between cancer genotypes and imaging phenotypes. In addition, with the rapid growth of medical data, deep learning models show great application potential for radiogenomics.
Collapse
Affiliation(s)
- Yao Wang
- Key Laboratory of Symbol Computation & Knowledge Engineering, Ministry of Education, College of Computer Science & Technology, Jilin University, Changchun, 130012, PR China
| | - Yan Wang
- Key Laboratory of Symbol Computation & Knowledge Engineering, Ministry of Education, College of Computer Science & Technology, Jilin University, Changchun, 130012, PR China.,School of Artificial Intelligence, Jilin University, Changchun 130012, PR China
| | - Chunjie Guo
- Department of Radiology, The First Hospital of Jilin University, Changchun 130012, PR China
| | - Xuping Xie
- Key Laboratory of Symbol Computation & Knowledge Engineering, Ministry of Education, College of Computer Science & Technology, Jilin University, Changchun, 130012, PR China
| | - Sen Liang
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310058, PR China
| | - Ruochi Zhang
- School of Artificial Intelligence, Jilin University, Changchun 130012, PR China
| | - Wei Pang
- School of Mathematical & Computer Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Lan Huang
- Key Laboratory of Symbol Computation & Knowledge Engineering, Ministry of Education, College of Computer Science & Technology, Jilin University, Changchun, 130012, PR China.,Zhuhai Laboratory of Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Department of Computer Science & Technology, Zhuhai College of Jilin University, Zhuhai 519041, China
| |
Collapse
|
22
|
Li S, Luo T, Ding C, Huang Q, Guan Z, Zhang H. Detailed identification of epidermal growth factor receptor mutations in lung adenocarcinoma: Combining radiomics with machine learning. Med Phys 2020; 47:3458-3466. [PMID: 32416013 DOI: 10.1002/mp.14238] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/15/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
- Shu Li
- School of Medical Informatics China Medical University Shenyang Liaoning 110122 China
| | - Ting Luo
- Department of Radiology Liaoning Cancer Hospital & Institute Shenyang Liaoning 110042 China
| | - Changwei Ding
- Department of Radiology Shengjing Hospital of China Medical University Shenyang Liaoning 110004 China
| | - Qinlai Huang
- School of Medical Informatics China Medical University Shenyang Liaoning 110122 China
| | - Zhihao Guan
- Institute of Medical Information & Library Chinese Academy of Medical Sciences Beijing100005 China
| | - Hao Zhang
- School of Medical Informatics China Medical University Shenyang Liaoning 110122 China
| |
Collapse
|
23
|
Khawaja A, Bartholmai BJ, Rajagopalan S, Karwoski RA, Varghese C, Maldonado F, Peikert T. Do we need to see to believe?-radiomics for lung nodule classification and lung cancer risk stratification. J Thorac Dis 2020; 12:3303-3316. [PMID: 32642254 PMCID: PMC7330769 DOI: 10.21037/jtd.2020.03.105] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/11/2020] [Indexed: 12/31/2022]
Abstract
Despite multiple recent advances, the diagnosis and management of lung cancer remain challenging and it continues to be the deadliest malignancy. In 2011, the National Lung Screening Trial (NLST) reported 20% reduction in lung cancer related mortality using annual low dose chest computed tomography (CT). These results led to the approval and nationwide establishment of lung cancer CT-based lung cancer screening programs. These findings have been further validated by the recently published Nederlands-Leuvens Longkanker Screenings Onderzoek (NELSON) and Multicentric Italian Lung Detection (MILD) trials, the latter showing benefit of screening even beyond the 5 years. However, the implementation of lung cancer screening has been impeded by several challenges, including the differentiation between benign and malignant nodules, the large number of false positive studies and the detection of indolent, potentially clinically insignificant lung cancers (overdiagnosis). Hence, the development of non-invasive strategies to accurately classify and risk stratify screen-detected pulmonary nodules in order to individualize clinical management remains a high priority area of research. Radiomics is a recently coined term which refers to the process of imaging feature extraction and quantitative analysis of clinical diagnostic images to characterize the nodule phenotype beyond what is possible with conventional radiologist assessment. Even though it is still in early phase, several studies have already demonstrated that radiomics approaches are potentially useful for lung nodule classification, risk stratification, individualized management and prediction of overall prognosis. The goal of this review is to summarize the current literature regarding the radiomics of screen-detected lung nodules, highlight potential challenges and discuss its clinical application along with future goals and challenges.
Collapse
Affiliation(s)
- Ali Khawaja
- Divison of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Cyril Varghese
- Divison of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Fabien Maldonado
- Division of Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN, USA
| | - Tobias Peikert
- Divison of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
24
|
Ninatti G, Kirienko M, Neri E, Sollini M, Chiti A. Imaging-Based Prediction of Molecular Therapy Targets in NSCLC by Radiogenomics and AI Approaches: A Systematic Review. Diagnostics (Basel) 2020; 10:E359. [PMID: 32486314 PMCID: PMC7345054 DOI: 10.3390/diagnostics10060359] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
The objective of this systematic review was to analyze the current state of the art of imaging-derived biomarkers predictive of genetic alterations and immunotherapy targets in lung cancer. We included original research studies reporting the development and validation of imaging feature-based models. The overall quality, the standard of reporting and the advancements towards clinical practice were assessed. Eighteen out of the 24 selected articles were classified as "high-quality" studies according to the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). The 18 "high-quality papers" adhered to Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) with a mean of 62.9%. The majority of "high-quality" studies (16/18) were classified as phase II. The most commonly used imaging predictors were radiomic features, followed by visual qualitative computed tomography (CT) features, convolutional neural network-based approaches and positron emission tomography (PET) parameters, all used alone or combined with clinicopathologic features. The majority (14/18) were focused on the prediction of epidermal growth factor receptor (EGFR) mutation. Thirty-five imaging-based models were built to predict the EGFR status. The model's performances ranged from weak (n = 5) to acceptable (n = 11), to excellent (n = 18) and outstanding (n = 1) in the validation set. Positive outcomes were also reported for the prediction of ALK rearrangement, ALK/ROS1/RET fusions and programmed cell death ligand 1 (PD-L1) expression. Despite the promising results in terms of predictive performance, image-based models, suffering from methodological bias, require further validation before replacing traditional molecular pathology testing.
Collapse
Affiliation(s)
- Gaia Ninatti
- Humanitas University, Pieve Emanuele, 20090 Milan, Italy; (G.N.); (A.C.)
| | | | - Emanuele Neri
- Department of Translational Research, Diagnostic Radiology 3, University of Pisa, 56126 Pisa, Italy;
| | - Martina Sollini
- Humanitas University, Pieve Emanuele, 20090 Milan, Italy; (G.N.); (A.C.)
- Humanitas Clinical and Research Center-IRCCS, Rozzano, 20089 Milan, Italy
| | - Arturo Chiti
- Humanitas University, Pieve Emanuele, 20090 Milan, Italy; (G.N.); (A.C.)
- Humanitas Clinical and Research Center-IRCCS, Rozzano, 20089 Milan, Italy
| |
Collapse
|
25
|
Hong D, Xu K, Zhang L, Wan X, Guo Y. Radiomics Signature as a Predictive Factor for EGFR Mutations in Advanced Lung Adenocarcinoma. Front Oncol 2020; 10:28. [PMID: 32082997 PMCID: PMC7005234 DOI: 10.3389/fonc.2020.00028] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose: To develop and validate a radiomic signature to identify EGFR mutations in patients with advanced lung adenocarcinoma. Methods: This study involved 201 patients with advanced lung adenocarcinoma (140 in the training cohort and 61 in the validation cohort). A total of 396 features were extracted from manual segmentation based on enhanced and non-enhance CT imaging after image preprocessing. The Lasso algorithm was used for feature selection, 6 machine learning methods were used to construct radiomics models. Receiver operating characteristic (ROC) curve analysis was applied to evaluate the performance of the radiomic signature between different data and methods. A nomogram was developed using clinical factors and the radiomics signature, then it was analyzed based on its discriminatory ability and calibration. Decision curve analysis (DCA) was implemented to evaluate the clinical utility. Results: Ten features for contrast data and eleven features for non-contrast data were selected through LASSO algorithm. The performance of the radiomics signature for contrast images was better than that for non-contrast images in all of the 6 different machine learning methods. Finally, the best radiomics signature was built with logistic regression method based on enhanced CT imaging with an area under the curve (AUC) of 0.851 (95% CI, 0.750 to 0.951) in the validation cohort. A nomogram was developed using the radiomics signature and sex with a C-index of 0.908 (95%CI, 0.862 to 0.954) in the training cohort and 0.835 (95% CI, 0.825 to 0.845) in the validation cohort. It showed good discrimination and calibration (Hosmer-Lemeshow test, P = 0.621 for the training cohort and P = 0.605 for the validation cohort). Conclusion: Radiomics signature can help to distinguish between EGFR positive and wild type advanced lung adenocarcinomas.
Collapse
Affiliation(s)
- Duo Hong
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Ke Xu
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Lina Zhang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaoting Wan
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Yan Guo
- GE Healthcare, Shanghai, China
| |
Collapse
|
26
|
Radiation-induced lung injury patterns and the misdiagnosis after SBRT of lung cancer. Eur J Radiol 2019; 121:108708. [DOI: 10.1016/j.ejrad.2019.108708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
|
27
|
Bogowicz M, Vuong D, Huellner MW, Pavic M, Andratschke N, Gabrys HS, Guckenberger M, Tanadini-Lang S. CT radiomics and PET radiomics: ready for clinical implementation? THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2019; 63:355-370. [PMID: 31527578 DOI: 10.23736/s1824-4785.19.03192-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Today, rapid technical and clinical developments result in an increasing number of treatment options for oncological diseases. Thus, decision support systems are needed to offer the right treatment to the right patient. Imaging biomarkers hold great promise in patient-individual treatment guidance. Routinely performed for diagnosis and staging, imaging datasets are expected to hold more information than used in the clinical practice. Radiomics describes the extraction of a large number of meaningful quantitative features from medical images, such as computed tomography (CT) and positron emission tomography (PET). Due to the non-invasive nature and ability to capture 3D image-based heterogeneity, radiomic features are potential surrogate markers of the cancer phenotype. Several radiomic studies are published per day, owing to encouraging results of many radiomics-based patient outcome models. Despite this comparably large number of studies, radiomics is mainly studied in proof of principle concept. Hence, a translation of radiomics from a hot topic research field into an essential clinical decision-making tool is lacking, but of high clinical interest. EVIDENCE ACQUISITION Herein, we present a literature review addressing the clinical evidence of CT and PET radiomics. An extensive literature review was conducted in PubMed, including papers on robustness and clinical applications. EVIDENCE SYNTHESIS We summarize image-modality related influences on the robustness of radiomic features and provide an overview of clinical evidence reported in the literature. Today, more evidence has been provided for CT imaging, however, PET imaging offers the promise of direct imaging of biological processes and functions. We provide a summary of future research directions, which needs to be addressed in order to successfully introduce radiomics into clinical medicine. In comparison to CT, more focus should be directed towards harmonization of PET acquisition and reconstruction protocols, which is important for transferable modelling. CONCLUSIONS Both CT and PET radiomics are promising pre-treatment and intra-treatment biomarkers for outcome prediction. Most studies are performed in retrospective setting, however their validation in prospective data collections is ongoing.
Collapse
Affiliation(s)
- Marta Bogowicz
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland -
| | - Diem Vuong
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Matea Pavic
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Hubert S Gabrys
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Xiong J, Li X, Lu L, Lawrence SH, Fu X, Zhao J, Zhao B. Implementation strategy of a CNN model affects the performance of CT assessment of EGFR mutation status in lung cancer patients. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2019; 7:64583-64591. [PMID: 32953368 PMCID: PMC7500487 DOI: 10.1109/access.2019.2916557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To compare CNN models implemented using different strategies in the CT assessment of EGFR mutation status in patients with lung adenocarcinoma. METHODS 1,010 consecutive lung adenocarcinoma patients with known EGFR mutation status were randomly divided into a training set (n=810) and a testing set (n=200). CNN models were constructed based on ResNet-101 architecture but implemented using different strategies: dimension filters (2D/3D), input sizes (small/middle/large and their fusion), slicing methods (transverse plane only and arbitrary multi-view planes), and training approaches (from scratch and fine-tuning a pre-trained CNN). The performance of the CNN models was compared using AUC. RESULTS The fusion approach yielded consistently better performance than other input sizes, although the effect often did not reach statistical significance. Multi-view slicing was significantly superior to the transverse method when fine-tuning a pre-trained 2D CNN but not a CNN trained from scratch. The 3D CNN was significantly better than the 2D transverse plane method but only marginally better than the multi-view slicing method when trained from scratch. The highest performance (AUC=0.838) was achieved for the fine-tuned 2D CNN model when built using the fusion input size and multi-view slicing method. CONCLUSION The assessment of EGFR mutation status in patients is more accurate when CNN models use more spatial information and are fine-tuned by transfer learning. Our finding about implementation strategy of a CNN model could be a guidance to other medical 3D images applications. Compared with other published studies which used medical images to identify EGFR mutation status, our CNN model achieved the best performance in a biggest patient cohort.
Collapse
Affiliation(s)
- Junfeng Xiong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
- Department of Radiology, Columbia University Medical Center, NY 10032 USA
| | - Xiaoyang Li
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Lin Lu
- Department of Radiology, Columbia University Medical Center, NY 10032 USA
| | | | - Xiaolong Fu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Jun Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Binsheng Zhao
- Department of Radiology, Columbia University Medical Center, NY 10032 USA
| |
Collapse
|