1
|
Wei Y, Li X, Sha Z, Liu J, Wu G, Zhou T, Lin C, Xie Y, Bao Y, Luo Q, Ling T, Pan W, Xie Y, Zhang N, Jin Q, Wu L. Exosomal Prolactin-Induced Protein Inhibits the Activation of cGMP/PKG Pathway Mediated by ATP2B2 to Promote Myocardial Fibrosis in Atrial Fibrillation. Antioxid Redox Signal 2025. [PMID: 40094760 DOI: 10.1089/ars.2024.0723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Aims: Myocardial fibrosis is an important medium for atrial fibrillation (AF). Exosomes have been demonstrated to affect the development of AF. This study explored the molecular mechanism of exosomes from patients with AF (AF-exo) mediating myocardial fibrosis and thus affecting the development of AF. Results: Prolactin-induced protein (PIP) is highly expressed in AF-exo. AF-exo promoted the proliferation and activation of cardiac fibroblasts (CFs) as well as the migration and endothelial-to-mesenchymal transition (EndMT) of human umbilical vein endothelial cells (HUVECs). However, the effect of AF-exo on CFs and HUVECs was mitigated by PIP-specific short hairpin RNA (shPIP). Adeno-associated virus (AAV)-shPIP reduced the incidence and duration of AF in rats, and improved myocardial fibrosis and collagen deposition. ATPase plasma membrane Ca2+ transporting 2 (ATP2B2) overexpression or inhibition reverses the role of PIP or shPIP in CFs, HUVECs, and AF rats. Activation of the cyclic guanosine monophosphate/protein kinase G (cGMP/PKG) pathway is beneficial to alleviate myocardial fibrosis, but this effect is mitigated by shATP2B2. Innovation: Our investigation substantiates the pivotal role of the PIP/ATP2B2 axis in both HUVEC myocardial fibrosis and EndMT progression. Our findings suggest that AF-exo can suppress the activation of the cGMP/PKG pathway mediated by ATP2B2 through exosomal PIP, thus promoting myocardial fibrosis, indicating potential targets for novel antifibrotic drug development targeting either PIP or ATP2B2. Conclusion: Exosomal PIP can inhibit the activation of cGMP/PKG pathway mediated by ATP2B2, thus promoting the development of AF. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Yue Wei
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Li
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zimo Sha
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingmeng Liu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanhua Wu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Taojie Zhou
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changjian Lin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Xie
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangyang Bao
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingzhi Luo
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyou Ling
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqi Pan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yucai Xie
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Jin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liqun Wu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Ameer SF, Elsaka M, Kahtoon S, Kerzabi RI, Casu G, Giordo R, Zayed H, Pintus G. Exploring the role of exosomes in the pathogenesis and treatment of cardiomyopathies: A comprehensive literature review. Life Sci 2024; 357:123063. [PMID: 39299384 DOI: 10.1016/j.lfs.2024.123063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Exosomes, a subset of small extracellular vesicles that play a crucial role in intercellular communication, have garnered significant attention for their potential applications in the diagnosis and treatment of cardiomyopathies. Cardiomyopathies, which encompass a spectrum of heart muscle disorders, present complex challenges in diagnosis and management. Understanding the role of exosomes in the etiology of cardiomyopathies such as dilated cardiomyopathy (DCM), restrictive cardiomyopathy (RCM), arrhythmogenic cardiomyopathy (AC), and hypertrophic cardiomyopathy (HCM) may open new possibilities for therapeutic intervention and diagnosis. Exosomes have indeed demonstrated promise as diagnostic biomarkers, particularly in identifying cardiac conditions such as atrial fibrillation (AF) and in the timely classification of high-risk patients with different forms of cardiomyopathy. In DCM, exosomes have been implicated in mediating pathological responses in cardiomyocytes, potentially exacerbating disease progression. Moreover, in RCM, AC, and HCM, exosomes present significant potential as diagnostic biomarkers and therapeutic targets, offering insights into disease pathogenesis and potential avenues for intervention. Understanding the influence of exosomes on disease progression and identifying the specific molecular pathways involved in cardiomyopathy pathogenesis may significantly advance diagnostic and treatment strategies. While key findings highlight the multifaceted role of exosomes in cardiomyopathy, they also emphasize the need for further research to elucidate molecular mechanisms and translate findings into clinical practice. This review highlights the evolving landscape of exosome research in cardiomyopathies and underscores the importance of ongoing investigations to harness the full potential of exosomes in improving patient outcomes.
Collapse
Affiliation(s)
- Shadiya Fawzul Ameer
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Manar Elsaka
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Summaiya Kahtoon
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Rabia-Illhem Kerzabi
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Gavino Casu
- Clinical and Interventional Cardiology, Sassari University Hospital, Sassari, Italy
| | - Roberta Giordo
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar.
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.
| |
Collapse
|
3
|
Samani SL, Barlow SC, Freeburg LA, Catherwood GM, Churillo AM, Jones TL, Altomare D, Ji H, Shtutman M, Zile MR, Shazly T, Spinale FG. Heart failure with preserved ejection fraction in pigs causes shifts in posttranscriptional checkpoints. Am J Physiol Heart Circ Physiol 2024; 327:H1272-H1285. [PMID: 39240258 PMCID: PMC11560071 DOI: 10.1152/ajpheart.00551.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
Left ventricular pressure overload (LVPO) can lead to heart failure with a preserved ejection fraction (HFpEF) and LV chamber stiffness (LV Kc) is a hallmark. This project tested the hypothesis that the development of HFpEF due to an LVPO stimulus will alter posttranscriptional regulation, specifically microRNAs (miRs). LVPO was induced in pigs (n = 9) by sequential ascending aortic cuff and age- and weight-matched pigs (n = 6) served as controls. LV function was measured by echocardiography and LV Kc by speckle tracking. LV myocardial miRs were quantified using an 84-miR array. Treadmill testing and natriuretic peptide-A (NPPA) mRNA levels in controls and LVPO were performed (n = 10, n = 9, respectively). LV samples from LVPO and controls (n = 6, respectively) were subjected to RNA sequencing. LV mass and Kc increased by over 40% with LVPO (P < 0.05). A total of 30 miRs shifted with LVPO of which 11 miRs correlated to LV Kc (P < 0.05) that mapped to functional domains relevant to Kc such as fibrosis and calcium handling. LVPO resulted in reduced exercise tolerance (oxygen saturation, respiratory effort) and NPPA mRNA levels increased by fourfold (P < 0.05). RNA analysis identified several genes that mapped to specific miRs that were altered with LVPO. In conclusion, a specific set of miRs are changed in a large animal model consistent with the HFpEF phenotype, were related to LV stiffness properties, and several miRs mapped to molecular pathways that may hold relevance in terms of prognosis and therapeutic targets.NEW & NOTEWORTHY Heart failure with preserved ejection fraction (HFpEF) is an ever-growing cause for the HF burden. HFpEF is particularly difficult to treat as the mechanisms responsible for this specific form of HF are poorly understood. Using a relevant large animal model, this study uncovered a unique molecular signature with the development of HFpEF that regulates specific biological pathways relevant to the progression of this ever-growing cause of HF.
Collapse
Affiliation(s)
- Stephanie L Samani
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States
- Columbia Veteran Affairs Health Care System, Columbia, South Carolina, United States
| | - Shayne C Barlow
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Lisa A Freeburg
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States
- Columbia Veteran Affairs Health Care System, Columbia, South Carolina, United States
| | - Grayson M Catherwood
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Amelia M Churillo
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States
- Columbia Veteran Affairs Health Care System, Columbia, South Carolina, United States
| | - Traci L Jones
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Diego Altomare
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States
| | - Hao Ji
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States
| | - Michael Shtutman
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States
| | - Michael R Zile
- Division of Cardiology, Ralph H. Johnson Department of Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Tarek Shazly
- College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, United States
| | - Francis G Spinale
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, South Carolina, United States
- Columbia Veteran Affairs Health Care System, Columbia, South Carolina, United States
| |
Collapse
|
4
|
Janský P, Kaplan V, Šrámková T, Kolman F, Kloudová P, Benešová K, Olšerová A, Kešnerová P, Magerová H, Šulc V, Halmová H, Kmetonyová S, Paulasová-Schwabová J, Šarbochová I, Maťoška V, Tomek A. MicroRNAs and other biomarkers of atrial fibrillation in ischemic stroke patients. Medicine (Baltimore) 2024; 103:e40165. [PMID: 39470526 PMCID: PMC11521022 DOI: 10.1097/md.0000000000040165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024] Open
Abstract
This study aimed to evaluate the ability of selected microRNAs as biomarkers of atrial fibrillation (AF) in ischemic stroke patients in comparison with other established biochemical biomarkers. A prospective case-control study of consecutive ischemic stroke patients with AF admitted to a comprehensive stroke center was conducted. The control group consisted of patients with ischemic stroke with no AF detected on prolonged (at least 3 weeks) Holter ECG monitoring. As potential biomarkers of AF, we analyzed the plasma levels of microRNAs (miR-21, miR-29b, miR-133b, miR-142-5p, miR-150, miR-499, and miR-223-3p) and 13 biochemical biomarkers at admission. The predictive accuracy of biomarkers was assessed by calculating the area under the receiver operating characteristic curve. The data of 117 patients were analyzed (61 with AF, 56 with no AF, 46% men, median age 73 years, median National Institutes of Health Stroke Scale 6). Biochemical biomarkers (N-terminal pro-B-type natriuretic peptide [NT-proBNP], high-sensitivity cardiac troponin I, fibrinogen, C-reactive protein, eGFR, and total triglycerides) were significantly associated with AF. NT-proBNP had the best diagnostic performance for AF with area under the receiver operating characteristic curve 0.92 (95%, CI 0.86-0.98); a cutoff value of >528 ng/L had a sensitivity of 79% and a specificity of 97%. None of the other biomarkers, including microRNAs, was associated with AF. Conventional biochemical biomarkers (NT-proBNP, high-sensitivity cardiac troponin I, fibrinogen, C-reactive protein, eGFR, and triglycerides), but not microRNAs (miR-21, miR-29b, miR-133b, miR-142-5p, miR-150, miR-499, and miR-223-3p) were significantly associated with AF in our ischemic stroke cohort.
Collapse
Affiliation(s)
- Petr Janský
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital Motol, Prague, Czech Republic
| | - Vojtěch Kaplan
- Department of Clinical Biochemistry, Hematology and Immunology, Na Homolce Hospital, Prague, Czech Republic
| | - Tereza Šrámková
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital Motol, Prague, Czech Republic
| | - Filip Kolman
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital Motol, Prague, Czech Republic
| | - Petra Kloudová
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital Motol, Prague, Czech Republic
| | - Kateřina Benešová
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital Motol, Prague, Czech Republic
| | - Anna Olšerová
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital Motol, Prague, Czech Republic
| | - Petra Kešnerová
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital Motol, Prague, Czech Republic
| | - Hana Magerová
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital Motol, Prague, Czech Republic
| | - Vlastimil Šulc
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital Motol, Prague, Czech Republic
| | - Hana Halmová
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital Motol, Prague, Czech Republic
| | - Silvia Kmetonyová
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital Motol, Prague, Czech Republic
| | - Jaroslava Paulasová-Schwabová
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital Motol, Prague, Czech Republic
| | - Ivana Šarbochová
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital Motol, Prague, Czech Republic
| | - Václav Maťoška
- Department of Clinical Biochemistry, Hematology and Immunology, Na Homolce Hospital, Prague, Czech Republic
| | - Aleš Tomek
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
5
|
Bernáth-Nagy D, Kalinyaprak MS, Giannitsis E, Ábrahám P, Leuschner F, Frey N, Krohn JB. Circulating extracellular vesicles as biomarkers in the diagnosis, prognosis and therapy of cardiovascular diseases. Front Cardiovasc Med 2024; 11:1425159. [PMID: 39314768 PMCID: PMC11417624 DOI: 10.3389/fcvm.2024.1425159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Cardiovascular disease (CVD) ranks among the primary contributors to worldwide mortality. Hence, the importance of constant research on new circulating biomarkers for the improvement of early diagnosis and prognostication of different CVDs and the development and refinement of therapeutic measures is critical. Extracellular vesicles (EV) have a great potential as diagnostic and prognostic markers, as they represent their parent cell by enclosing cell-specific molecules, which can differ in quality and quantity based on cell state. Assuming that all cell types of the cardiovascular system are capable of releasing EV into circulation, an emerging body of evidence has investigated the potential role of serum- or plasma-derived EV in CVD. Comprehensive research has unveiled alterations in EV quantity and EV-bound cargo in the form of RNA, proteins and lipids in the context of common CVDs such as coronary artery disease, atrial fibrillation, heart failure or inflammatory heart diseases, highlighting their diagnostic and prognostic relevance. In numerous in vitro and in vivo models, EV also showed promising therapeutic potential. However, translation of EV studies to a preclinical or clinical setting has proven to be challenging. This review is intended to provide an overview of the most relevant studies in the field of serum or plasma-derived EV.
Collapse
Affiliation(s)
- Dominika Bernáth-Nagy
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
| | - Melek Sükran Kalinyaprak
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
| | - Evangelos Giannitsis
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
| | - Pál Ábrahám
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
| | - Florian Leuschner
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Jona Benjamin Krohn
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
6
|
Caño-Carrillo S, Castillo-Casas JM, Franco D, Lozano-Velasco E. Unraveling the Signaling Dynamics of Small Extracellular Vesicles in Cardiac Diseases. Cells 2024; 13:265. [PMID: 38334657 PMCID: PMC10854837 DOI: 10.3390/cells13030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Effective intercellular communication is essential for cellular and tissue balance maintenance and response to challenges. Cellular communication methods involve direct cell contact or the release of biological molecules to cover short and long distances. However, a recent discovery in this communication network is the involvement of extracellular vesicles that host biological contents such as proteins, nucleic acids, and lipids, influencing neighboring cells. These extracellular vesicles are found in body fluids; thus, they are considered as potential disease biomarkers. Cardiovascular diseases are significant contributors to global morbidity and mortality, encompassing conditions such as ischemic heart disease, cardiomyopathies, electrical heart diseases, and heart failure. Recent studies reveal the release of extracellular vesicles by cardiovascular cells, influencing normal cardiac function and structure. However, under pathological conditions, extracellular vesicles composition changes, contributing to the development of cardiovascular diseases. Investigating the loading of molecular cargo in these extracellular vesicles is essential for understanding their role in disease development. This review consolidates the latest insights into the role of extracellular vesicles in diagnosis and prognosis of cardiovascular diseases, exploring the potential applications of extracellular vesicles in personalized therapies, shedding light on the evolving landscape of cardiovascular medicine.
Collapse
Affiliation(s)
| | | | | | - Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (S.C.-C.); (J.M.C.-C.); (D.F.)
| |
Collapse
|
7
|
Amirzadeh Gougheri K, Ahmadi A, Ahmadabadi MG, Babajani A, Yazdanpanah G, Bahrami S, Hassani M, Niknejad H. Exosomal Cargo: Pro-angiogeneic, anti-inflammatory, and regenerative effects in ischemic and non-ischemic heart diseases - A comprehensive review. Biomed Pharmacother 2023; 168:115801. [PMID: 37918257 DOI: 10.1016/j.biopha.2023.115801] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Heart diseases are the primary cause of mortality and morbidity worldwide which inflict a heavy social and economic burden. Among heart diseases, most deaths are due to myocardial infarction (MI) or heart attack, which occurs when a decrement in blood flow to the heart causes injury to cardiac tissue. Despite several available diagnostic, therapeutic, and prognostic approaches, heart disease remains a significant concern. Exosomes are a kind of small extracellular vesicles released by different types of cells that play a part in intercellular communication by transferring bioactive molecules important in regenerative medicine. Many studies have reported the diagnostic, therapeutic, and prognostic role of exosomes in various heart diseases. Herein, we reviewed the roles of exosomes as new emerging agents in various types of heart diseases, including ischemic heart disease, cardiomyopathy, arrhythmia, and valvular disease, focusing on pathogenesis, therapeutic, diagnostic, and prognostic roles in different areas. We have also mentioned different routes of exosome delivery to target tissues, the effects of preconditioning and modification on exosome's capability, exosome production in compliance with good manufacturing practice (GMP), and their ongoing clinical applications in various medical contexts to shed light on possible clinical translation.
Collapse
Affiliation(s)
- Kowsar Amirzadeh Gougheri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, MC 648, Chicago, IL 60612, USA
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Mohammad Hassani
- Department of Vascular and Endovascular Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Xu Y, Wan W, Zeng H, Xiang Z, Li M, Yao Y, Li Y, Bortolanza M, Wu J. Exosomes and their derivatives as biomarkers and therapeutic delivery agents for cardiovascular diseases: Situations and challenges. J Transl Int Med 2023; 11:341-354. [PMID: 38130647 PMCID: PMC10732499 DOI: 10.2478/jtim-2023-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Microvesicles known as exosomes have a diameter of 40 to 160 nm and are derived from small endosomal membranes. Exosomes have attracted increasing attention over the past ten years in part because they are functional vehicles that can deliver a variety of lipids, proteins, and nucleic acids to the target cells they encounter. Because of this function, exosomes may be used for the diagnosis, prognosis and treatment of many diseases. All throughout the world, cardiovascular diseases (CVDs) continue to be a significant cause of death. Because exosomes are mediators of communication between cells, which contribute to many physiological and pathological aspects, they may aid in improving CVD therapies as biomarkers for diagnosing and predicting CVDs. Many studies demonstrated that exosomes are associated with CVDs, such as coronary artery disease, heart failure, cardiomyopathy and atrial fibrillation. Exosomes participate in the progression or inhibition of these diseases mainly through the contents they deliver. However, the application of exosomes in diferent CVDs is not very mature. So further research is needed in this field.
Collapse
Affiliation(s)
- Yunyang Xu
- Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Weimin Wan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| | - Huixuan Zeng
- Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Mo Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| | - Yiwen Yao
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66424Homburg, Germany
| | - Yuan Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| | - Mariza Bortolanza
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66424Homburg, Germany
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| |
Collapse
|
9
|
Elsakka EGE, Abulsoud AI, El-Mahdy HA, Ismail A, Elballal MS, Mageed SSA, Khidr EG, Mohammed OA, Sarhan OM, Elkhawaga SY, El-Husseiny AA, Abdelmaksoud NM, El-Demerdash AA, Shahin RK, Midan HM, Elrebehy MA, Doghish AA, Doghish AS. miRNAs orchestration of cardiovascular diseases - Particular emphasis on diagnosis, and progression. Pathol Res Pract 2023; 248:154613. [PMID: 37327567 DOI: 10.1016/j.prp.2023.154613] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
MicroRNAs (miRNAs; miRs) are small non-coding ribonucleic acids sequences vital in regulating gene expression. They are significant in many biological and pathological processes and are even detectable in various body fluids such as serum, plasma, and urine. Research has demonstrated that the irregularity of miRNA in multiplying cardiac cells is linked to developmental deformities in the heart's structure. It has also shown that miRNAs are crucial in diagnosing and progressing several cardiovascular diseases (CVDs). The review covers the function of miRNAs in the pathophysiology of CVD. Additionally, the review provides an overview of the potential role of miRNAs as disease-specific diagnostic and prognostic biomarkers for human CVD, as well as their biological implications in CVD.
Collapse
Affiliation(s)
- Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Omnia M Sarhan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | | | - Aya A El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ayman A Doghish
- Department of Cardiovascular & Thoracic Surgery, Ain-Shams University Hospital, Faculty of Medicine, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
10
|
Xue Z, Zhu J, Liu J, Wang L, Ding J. Research progress of non-coding RNA in atrial fibrillation. Front Cardiovasc Med 2023; 10:1210762. [PMID: 37522088 PMCID: PMC10379658 DOI: 10.3389/fcvm.2023.1210762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Atrial fibrillation (AF) is a common arrhythmia in clinic, and its incidence is increasing year by year. In today's increasingly prevalent society, ageing poses a huge challenge to global healthcare systems. AF not only affects patients' quality of life, but also causes thrombosis, heart failure and other complications in severe cases. Although there are some measures for the diagnosis and treatment of AF, specific serum markers and targeted therapy are still lacking. In recent years, ncRNAs have become a hot topic in cardiovascular disease research. These ncRNAs are not only involved in the occurrence and development of AF, but also in pathophysiological processes such as myocardial infarction and atherosclerosis, and are potential biomarkers of cardiovascular diseases. We believe that the understanding of the pathophysiological mechanism of AF and the study of diagnosis and treatment targets can form a more systematic diagnosis and treatment framework of AF and provide convenience for individuals with AF and the society.
Collapse
|
11
|
Desantis V, Potenza MA, Sgarra L, Nacci C, Scaringella A, Cicco S, Solimando AG, Vacca A, Montagnani M. microRNAs as Biomarkers of Endothelial Dysfunction and Therapeutic Target in the Pathogenesis of Atrial Fibrillation. Int J Mol Sci 2023; 24:5307. [PMID: 36982382 PMCID: PMC10049145 DOI: 10.3390/ijms24065307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
The pathophysiology of atrial fibrillation (AF) may involve atrial fibrosis/remodeling and dysfunctional endothelial activities. Despite the currently available treatment approaches, the progression of AF, its recurrence rate, and the high mortality risk of related complications underlay the need for more advanced prognostic and therapeutic strategies. There is increasing attention on the molecular mechanisms controlling AF onset and progression points to the complex cell to cell interplay that triggers fibroblasts, immune cells and myofibroblasts, enhancing atrial fibrosis. In this scenario, endothelial cell dysfunction (ED) might play an unexpected but significant role. microRNAs (miRNAs) regulate gene expression at the post-transcriptional level. In the cardiovascular compartment, both free circulating and exosomal miRNAs entail the control of plaque formation, lipid metabolism, inflammation and angiogenesis, cardiomyocyte growth and contractility, and even the maintenance of cardiac rhythm. Abnormal miRNAs levels may indicate the activation state of circulating cells, and thus represent a specific read-out of cardiac tissue changes. Although several unresolved questions still limit their clinical use, the ease of accessibility in biofluids and their prognostic and diagnostic properties make them novel and attractive biomarker candidates in AF. This article summarizes the most recent features of AF associated with miRNAs and relates them to potentially underlying mechanisms.
Collapse
Affiliation(s)
- Vanessa Desantis
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Maria Assunta Potenza
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Luca Sgarra
- General Hospital “F. Miulli” Acquaviva delle Fonti, 70021 Bari, Italy
| | - Carmela Nacci
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Antonietta Scaringella
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Sebastiano Cicco
- Department of Precision and Regenerative Medicine and Ionian Area, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Precision and Regenerative Medicine and Ionian Area, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Angelo Vacca
- Department of Precision and Regenerative Medicine and Ionian Area, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Monica Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| |
Collapse
|
12
|
Ganekal P, Vastrad B, Kavatagimath S, Vastrad C, Kotrashetti S. Bioinformatics and Next-Generation Data Analysis for Identification of Genes and Molecular Pathways Involved in Subjects with Diabetes and Obesity. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020309. [PMID: 36837510 PMCID: PMC9967176 DOI: 10.3390/medicina59020309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
Background and Objectives: A subject with diabetes and obesity is a class of the metabolic disorder. The current investigation aimed to elucidate the potential biomarker and prognostic targets in subjects with diabetes and obesity. Materials and Methods: The next-generation sequencing (NGS) data of GSE132831 was downloaded from Gene Expression Omnibus (GEO) database. Functional enrichment analysis of DEGs was conducted with ToppGene. The protein-protein interactions network, module analysis, target gene-miRNA regulatory network and target gene-TF regulatory network were constructed and analyzed. Furthermore, hub genes were validated by receiver operating characteristic (ROC) analysis. A total of 872 DEGs, including 439 up-regulated genes and 433 down-regulated genes were observed. Results: Second, functional enrichment analysis showed that these DEGs are mainly involved in the axon guidance, neutrophil degranulation, plasma membrane bounded cell projection organization and cell activation. The top ten hub genes (MYH9, FLNA, DCTN1, CLTC, ERBB2, TCF4, VIM, LRRK2, IFI16 and CAV1) could be utilized as potential diagnostic indicators for subjects with diabetes and obesity. The hub genes were validated in subjects with diabetes and obesity. Conclusion: This investigation found effective and reliable molecular biomarkers for diagnosis and prognosis by integrated bioinformatics analysis, suggesting new and key therapeutic targets for subjects with diabetes and obesity.
Collapse
Affiliation(s)
- Prashanth Ganekal
- Department of General Medicine, Basaveshwara Medical College, Chitradurga 577501, Karnataka, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag 582101, Karnataka, India
| | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E. College of Pharmacy, Belagavi 590010, Karnataka, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
- Correspondence: ; Tel.: +91-9480073398
| | - Shivakumar Kotrashetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
13
|
Cui J, Li Y, Zhu M, Liu Y, Liu Y. Analysis of the Research Hotspot of Exosomes in Cardiovascular Disease: A Bibliometric-based Literature Review. Curr Vasc Pharmacol 2023; 21:316-345. [PMID: 37779407 DOI: 10.2174/0115701611249727230920042944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE To investigate the current status and development trend of research on exosomes in cardiovascular disease (CVD) using bibliometric analysis and to elucidate trending research topics. METHODS Research articles on exosomes in CVD published up to April 2022 were retrieved from the Web of Science database. Data were organized using Microsoft Office Excel 2019. CiteSpace 6.1 and VOSviewer 1.6.18 were used for bibliometric analysis and result visualization. RESULTS Overall, 256 original research publications containing 190 fundamental research publications and 66 clinical research publications were included. "Extracellular vesicle" was the most frequent research keyword, followed by "microrna," "apoptosis," and "angiogenesis." Most publications were from China (187, 73.05%), followed by the United States (57, 22.27%), the United Kingdom (7, 2.73%), and Japan (7, 2.73%). A systematic review of the publications revealed that myocardial infarction and stroke were the most popular topics and that exosomes and their contents, such as microRNAs (miRNAs), play positive roles in neuroprotection, inhibition of autophagy and apoptosis, promotion of angiogenesis, and protection of cardiomyocytes. CONCLUSION Research on exosomes in CVD has attracted considerable attention, with China having the most published studies. Fundamental research has focused on CVD pathogenesis; exosomes regulate the progression of CVD through biological processes, such as the inflammatory response, autophagy, and apoptosis. Clinical research has focused on biomarkers for CVD; studies on using miRNAs in exosomes as disease markers for diagnosis could become a future trend.
Collapse
Affiliation(s)
- Jing Cui
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiwen Li
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengmeng Zhu
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfei Liu
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Second Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Shan L, Chen J, Sun Y, Pan Y, Wang C, Wang Y, Zhang Y. Advances of Liquid Biopsy for Diagnosis of Atrial Fibrillation and Its Recurrence After Ablation in Clinical Application. Methods Mol Biol 2023; 2695:351-365. [PMID: 37450131 DOI: 10.1007/978-1-0716-3346-5_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Atrial fibrillation (AF) is a common arrhythmia disease with high morbidity in clinical practice and leads to stroke, heart failure, peripheral embolism, and other severe complications. With aging of the society, AF has become one of the biggest public health challenges. Effective treatments including antiarrhythmic drugs, electrical cardioversion, and ablation (with or without catheters) can alleviate the symptoms of AF. Ablation is the most effective method for the treatment of persistent AF, but cannot cure all patients. Recurrence of AF is a realistic and unavoidable problem. For early predicting and warning of AF and its recurrence, liquid biopsy for accurate molecular analysis of biofluids is a new strategy with potential value and easy sampling and can detect genetic and epigenetic polymorphisms, especially microRNAs. In this review, liquid biopsy is constructed as a new powerful way for diagnosing AF and predicting its recurrence, contributing to the treatment of AF.
Collapse
Affiliation(s)
- Lingtong Shan
- Department of Thoracic Surgery, Sheyang County People's Hospital, Yancheng, Jiangsu, People's Republic of China
| | - Jiapeng Chen
- Xinglin College, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Yangyang Sun
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Yilin Pan
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Chong Wang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuliang Wang
- Department of Immunology, Nanjing Medical University, Nanjing, China.
| | - Yangyang Zhang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Hao H, Dai C, Han X, Li Y. A novel therapeutic strategy for alleviating atrial remodeling by targeting exosomal miRNAs in atrial fibrillation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119365. [PMID: 36167158 DOI: 10.1016/j.bbamcr.2022.119365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/29/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Atrial fibrillation (AF) is one of the most frequent cardiac arrhythmias, and atrial remodeling is related to the progression of AF. Although several therapeutic approaches have been presented in recent years, the continuously increasing mortality rate suggests that more advanced strategies for treatment are urgently needed. Exosomes regulate pathological processes through intercellular communication mediated by microribonucleic acid (miRNA) in various cardiovascular diseases (CVDs). Exosomal miRNAs associated with signaling pathways have added more complexity to an already complex direct cell-to-cell interaction. Exosome delivery of miRNAs is involved in cardiac regeneration and cardiac protection. Recent studies have found that exosomes play a critical role in the diagnosis and treatment of cardiac fibrosis. By improving exosome stability and modifying surface epitopes, specific pharmaceutical agents can be supplied to improve tropism and targeting to cells and tissues in vivo. Exosomes harboring miRNAs may have clinical utility in cell-free therapeutic approaches and may serve as prognostic and diagnostic biomarkers for AF. Currently, limitations challenge pharmaceutic design, therapeutic utility and in vivo targeted delivery to patients. The aim of this article is to review the developmental features of AF associated with exosomal miRNAs and relate them to underlying mechanisms.
Collapse
Affiliation(s)
- Hongting Hao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Chenguang Dai
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Xuejie Han
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yue Li
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China; NHC Key Laboratory of Cell Translation, Harbin Medical University, Heilongjiang 150001, China; Key Laboratory of Hepatosplenic Surgery, Harbin Medical University, Ministry of Education, Harbin 150001, China; Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin 150001, China; Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Harbin 150081, China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, China.
| |
Collapse
|
16
|
Xu J, Wang W, Wang Y, Zhu Z, Li D, Wang T, Liu K. Progress in research on the role of exosomal miRNAs in the diagnosis and treatment of cardiovascular diseases. Front Genet 2022; 13:929231. [PMID: 36267409 PMCID: PMC9577319 DOI: 10.3389/fgene.2022.929231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
Cardiovascular diseases are the most common diseases threatening the health of the elderly, and the incidence and mortality rates associated with cardiovascular diseases remain high and are increasing gradually. Studies on the treatment and prevention of cardiovascular diseases are underway. Currently, several research groups are studying the role of exosomes and biomolecules incorporated by exosomes in the prevention, diagnosis, and treatment of clinical diseases, including cardiovascular diseases. Now, based on the results of published studies, this review discusses the characteristics, separation, extraction, and identification of exosomes, specifically the role of exosomal miRNAs in atherosclerosis, myocardial injury and infarction, heart failure, aortic dissection, myocardial fibrosis, ischemic reperfusion, atrial fibrillation, and other diseases. We believe that the observations noted in this article will aid in the prevention, diagnosis, and treatment of cardiovascular diseases.
Collapse
|
17
|
Procyk G, Bilicki D, Balsam P, Lodziński P, Grabowski M, Gąsecka A. Extracellular Vesicles in Atrial Fibrillation—State of the Art. Int J Mol Sci 2022; 23:ijms23147591. [PMID: 35886937 PMCID: PMC9325220 DOI: 10.3390/ijms23147591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
Abstract
Extracellular vesicles are particles released from cells and delimited by a lipid bilayer. They have been widely studied, including extensive investigation in cardiovascular diseases. Many scientists have explored their role in atrial fibrillation. Patients suffering from atrial fibrillation have been evidenced to present altered levels of these particles as well as changed amounts of their contents such as micro-ribonucleic acids (miRs). Although many observations have been made so far, a large randomized clinical trial is needed to assess the previous findings. This review aims to thoroughly summarize current research regarding extracellular vesicles in atrial fibrillation.
Collapse
Affiliation(s)
- Grzegorz Procyk
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (P.B.); (P.L.); (M.G.); (A.G.)
- Correspondence: ; Tel.: +48-723-488-305
| | - Dominik Bilicki
- Faculty of Medicine, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Paweł Balsam
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (P.B.); (P.L.); (M.G.); (A.G.)
| | - Piotr Lodziński
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (P.B.); (P.L.); (M.G.); (A.G.)
| | - Marcin Grabowski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (P.B.); (P.L.); (M.G.); (A.G.)
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (P.B.); (P.L.); (M.G.); (A.G.)
| |
Collapse
|
18
|
Xiang K, Akram M, Elbossaty WF, Yang J, Fan C. Exosomes in atrial fibrillation: therapeutic potential and role as clinical biomarkers. Heart Fail Rev 2022; 27:1211-1221. [PMID: 34251579 DOI: 10.1007/s10741-021-10142-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/21/2022]
Abstract
Atrial fibrillation (AF), the most common cardiac arrhythmia, is a global epidemic. AF can cause heart failure and myocardial infarction and increase the risk of stroke, disability, and thromboembolic events. AF is becoming increasingly ubiquitous and is associated with increased morbidity and mortality at higher ages, resulting in an increasing threat to human health as well as substantial medical and social costs. Currently, treatment strategies for AF focus on controlling heart rate and rhythm with medications to restore and maintain sinus rhythm, but this approach has limitations. Catheter ablation is not entirely satisfactory and does not address the issues underlying AF. Research exploring the mechanisms causing AF is urgently needed for improved prevention, diagnosis, and treatment of AF. Exosomes are small vesicles (30-150 nm) released by cells that transmit information between cells. MicroRNAs in exosomes play an important role in the pathogenesis of AF and are established as a biomarker for AF. In this review, a summary of the role of exosomes in AF is presented. The role of exosomes and microRNAs in AF occurrence, their therapeutic potential, and their potential role as clinical biomarkers is considered. A better understanding of exosomes has the potential to improve the prognosis of AF patients worldwide, reducing the global medical burden of this disease.
Collapse
Affiliation(s)
- Kun Xiang
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Jinfu Yang
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China.
| |
Collapse
|
19
|
Siwaponanan P, Kaewkumdee P, Phromawan W, Udompunturak S, Chomanee N, Udol K, Pattanapanyasat K, Krittayaphong R. Increased expression of six-large extracellular vesicle-derived miRNAs signature for nonvalvular atrial fibrillation. J Transl Med 2022; 20:4. [PMID: 34980172 PMCID: PMC8722074 DOI: 10.1186/s12967-021-03213-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022] Open
Abstract
Backgrounds Non-valvular atrial fibrillation (AF) is the most common type of cardiac arrhythmia. AF is caused by electrophysiological abnormalities and alteration of atrial tissues, which leads to the generation of abnormal electrical impulses. Extracellular vesicles (EVs) are membrane-bound vesicles released by all cell types. Large EVs (lEVs) are secreted by the outward budding of the plasma membrane during cell activation or cell stress. lEVs are thought to act as vehicles for miRNAs to modulate cardiovascular function, and to be involved in the pathophysiology of cardiovascular diseases (CVDs), including AF. This study identified lEV-miRNAs that were differentially expressed between AF patients and non-AF controls. Methods lEVs were isolated by differential centrifugation and characterized by Nanoparticle Tracking Analysis (NTA), Transmission Electron Microscopy (TEM), flow cytometry and Western blot analysis. For the discovery phase, 12 AF patients and 12 non-AF controls were enrolled to determine lEV-miRNA profile using quantitative reverse transcription polymerase chain reaction array. The candidate miRNAs were confirmed their expression in a validation cohort using droplet digital PCR (30 AF, 30 controls). Bioinformatics analysis was used to predict their target genes and functional pathways. Results TEM, NTA and flow cytometry demonstrated that lEVs presented as cup shape vesicles with a size ranging from 100 to 1000 nm. AF patients had significantly higher levels of lEVs at the size of 101–200 nm than non-AF controls. Western blot analysis was used to confirm EV markers and showed the high level of cardiomyocyte expression (Caveolin-3) in lEVs from AF patients. Nineteen miRNAs were significantly higher (> twofold, p < 0.05) in AF patients compared to non-AF controls. Six highly expressed miRNAs (miR-106b-3p, miR-590-5p, miR-339-3p, miR-378-3p, miR-328-3p, and miR-532-3p) were selected to confirm their expression. Logistic regression analysis showed that increases in the levels of these 6 highly expressed miRNAs associated with AF. The possible functional roles of these lEV-miRNAs may involve in arrhythmogenesis, cell apoptosis, cell proliferation, oxygen hemostasis, and structural remodeling in AF. Conclusion Increased expression of six lEV-miRNAs reflects the pathophysiology of AF that may provide fundamental knowledge to develop the novel biomarkers for diagnosis or monitoring the patients with the high risk of AF. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03213-6.
Collapse
Affiliation(s)
- Panjaree Siwaponanan
- Siriraj Center of Research Excellence for Microparticle and Exosome in Diseases, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pontawee Kaewkumdee
- Division of Cardiology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wilasinee Phromawan
- Division of Cardiology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suthipol Udompunturak
- Division of Clinical Epidemiology, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nusara Chomanee
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kamol Udol
- Department of Preventive and Social Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kovit Pattanapanyasat
- Siriraj Center of Research Excellence for Microparticle and Exosome in Diseases, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rungroj Krittayaphong
- Division of Cardiology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
20
|
Chen C, Chen Q, Cheng K, Zou T, Pang Y, Ling Y, Xu Y, Zhu W. Exosomes and Exosomal Non-coding RNAs Are Novel Promises for the Mechanism-Based Diagnosis and Treatments of Atrial Fibrillation. Front Cardiovasc Med 2021; 8:782451. [PMID: 34926627 PMCID: PMC8671698 DOI: 10.3389/fcvm.2021.782451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia worldwide and has a significant impact on human health and substantial costs. Currently, there is a lack of accurate biomarkers for the diagnosis and prognosis of AF. Moreover, the long-term efficacy of the catheter ablation in the AF is unsatisfactory. Therefore, it is necessary to explore new biomarkers and treatment strategies for the mechanism-based AF. Exosomes are nano-sized biovesicles released by nearly all types of cells. Since the AF would be linked to the changes of the atrial cells and their microenvironment, and the AF would strictly influence the exosomal non-coding RNAs (exo-ncRNAs) expression, which makes them as attractive diagnostic and prognostic biomarkers for the AF. Simultaneously, the exo-ncRNAs have been found to play an important role in the mechanisms of the AF and have potential therapeutic prospects. Although the role of the exo-ncRNAs in the AF is being actively investigated, the evidence is still limited. Furthermore, there is a lack of consensus regarding the most appropriate approach for exosome isolation and characterization. In this article, we reviewed the new methodologies available for exosomes biogenesis, isolation, and characterization, and then discussed the mechanism of the AF and various levels and types of exosomes relevant to the AF, with the special emphasis on the exo-ncRNAs in the diagnosis, prognosis, and treatment of the mechanism-based AF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenqing Zhu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Yao Y, He S, Wang Y, Cao Z, Liu D, Fu Y, Chen H, Wang X, Zhao Q. Blockade of Exosome Release Suppresses Atrial Fibrillation by Alleviating Atrial Fibrosis in Canines With Prolonged Atrial Pacing. Front Cardiovasc Med 2021; 8:699175. [PMID: 34722652 PMCID: PMC8553970 DOI: 10.3389/fcvm.2021.699175] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/15/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Clinical studies have shown that exosomes are associated with atrial fibrillation (AF). However, the roles and underlying mechanisms remain unclear. Hence, this study aimed to investigate the function of exosomes in AF development. Methods: Twenty beagles were randomly divided into the sham group (n = 6), the pacing group (n = 7), and the pacing + GW4869 group (n = 7). The pacing and GW4869 groups underwent rapid atrial pacing (450 beats/min) for 7 days. The GW4869 group received intravenous GW4869 injection (an inhibitor of exosome biogenesis/release, 0.3 mg/kg, once a day) during pacing. Electrophysiological measurements, transmission electron microscopy, nanoparticle tracking analysis, western blotting, RT-PCR, Masson's staining, and immunohistochemistry were performed in this study. Results: Rapid atrial pacing increased the release of plasma and atrial exosomes. GW4869 treatment markedly suppressed AF inducibility and reduced the release of exosomes. After 7 days of pacing, the expression of transforming growth factor-β1 (TGF-β1), collagen I/III, and matrix metalloproteinases was enhanced in the atrium, and the levels of microRNA-21-5p (miR-21-5p) were upregulated in both plasma exosomes and the atrium, while the tissue inhibitor of metalloproteinase 3 (TIMP3), a target of miR-21-5p, showed a lower expression in the atrium. The administration of GW4869 abolished these effects. Conclusions: The blockade of exosome release with GW4869 suppressed AF by alleviating atrial fibrosis in a canine model, which was probably related to profibrotic miR-21-5p enriched in exosomes and its downstream TIMP3/TGF-β1 pathway.
Collapse
Affiliation(s)
- Yajun Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shanqing He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Youcheng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Dishiwen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yuntao Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Huiyu Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
22
|
Dai W, Chao X, Jiang Z, Zhong G. lncRNA KCNQ1OT1 may function as a competitive endogenous RNA in atrial fibrillation by sponging miR‑223‑3p. Mol Med Rep 2021; 24:870. [PMID: 34698362 PMCID: PMC8569515 DOI: 10.3892/mmr.2021.12510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/01/2021] [Indexed: 11/26/2022] Open
Abstract
Atrial fibrillation (AF) is one of the most common forms of cardiac arrhythmia. Novel evidence has indicated that a competing endogenous RNA (ceRNA) mechanism may occur in AF. The present study aimed to identify differentially expressed microRNAs (miRNAs/miRs) in AF and predict their targeting long non-coding RNAs (lncRNAs) to identify a potential ceRNA network involved in AF using bioinformatics analysis. The GSE68475 microarray dataset was downloaded from the Gene Expression Omnibus database and differentially expressed miRNAs in AF were obtained. In addition, right atrial appendage (RAA) tissues from patients with AF were collected to determine the expression levels of the miRNAs identified following bioinformatics analysis using reverse transcription-quantitative PCR (n=8 per group). Subsequently, Gene Ontology (GO) functional term and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analyses of the target genes of differentially expressed miRNAs of interest were performed. The potential upstream lncRNAs targeting the identified miRNAs were predicted using bioinformatics analysis. A dual luciferase reporter assay was used to verify the existence of a targeted relationship between the differentially expressed miRNA and lncRNA of interest. The results identified 43 differentially expressed miRNAs, including 23 upregulated miRNAs. The trends in the expression levels of miR-223-3p were inconsistent between the microarray data and those recorded in the RAA tissues from patients with persistent AF. Therefore, miR-223-3p was selected as the miRNA of interest for further investigations. The target gene of miR-233-3p was found to be enriched in 57 GO terms and 21 KEGG signaling pathways. According to the bioinformatics prediction, 69 lncRNAs targeting miR-223-3p were identified, including the lncRNA growth arrest-specific transcript 5, lncRNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) and lncRNA MYC-induced long non-coding RNA. The results from dual luciferase assay confirmed that miR-223-3p was a direct target of KCNQ1OT1. A ceRNA regulatory relationship may exist between KCNQ1OT1 and miR-223-3p in AF, providing therefore a novel potential research target for further studies.
Collapse
Affiliation(s)
- Weiran Dai
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xiaoying Chao
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhiyuan Jiang
- Department of Hypertension, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Guoqiang Zhong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
23
|
MicroRNAs sequencing of plasma exosomes derived from patients with atrial fibrillation: miR-124-3p promotes cardiac fibroblast activation and proliferation by regulating AXIN1. J Physiol Biochem 2021; 78:85-98. [PMID: 34495485 DOI: 10.1007/s13105-021-00842-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/31/2021] [Indexed: 01/04/2023]
Abstract
MicroRNAs (miRNAs) play an important role in the pathogenesis of atrial fibrillation (AF). Exosomal miRNAs may develop as promising biomarkers for AF. To explore significant exosomal miRNAs in AF, plasma exosomes were extracted from 3 patients with AF and 3 patients with sinus rhythm (SR), respectively. Differential expression of exosomal miRNAs were screened by high-throughput sequencing analysis and verified by qRT-PCR from 40 patients with AF and 40 patients with SR. The target genes prediction, biological function, and signaling pathways analysis were conducted by miRanda software, gene ontology (GO), and KEGG analysis. The results showed that there were 40 differently expressed exosomal miRNAs from AF patients compared with SR patients, of which 13 miRNAs were upregulated and 27 miRNAs were downregulated. qRT-PCR validation demonstrated that miR-124-3p, miR-378d, miR-2110, and miR-3180-3p were remarkably upregulated, while miR-223-5p, miR-574-3p, miR-125a-3p, and miR-1299 were downregulated. To explore the function of miR-124-3p associated with AF, plasma exosomes derived from AF patients were co-incubated with rat myocardial fibroblasts. The expression of miR-124-3p was upregulated in myocardial fibroblasts. The viability and proliferation of myocardial fibroblasts were elevated by transfecting with miR-124-3p overexpression plasmids using CCK8 and immunofluorescence-staining methods. AXIN1 was verified to be the target of miR-124-3p by luciferase assay in vitro. Expression of AXIN1 was reduced, while β-catenin, Collagen 1, and α-SMA were increased in myocardial fibroblasts with miR-124-3p overexpression. In conclusion, these findings suggested that circulating exosomal miRNAs may serve as novel biomarkers for AF, and miR-124-3p promotes fibroblast activation and proliferation through regulating WNT/β-catenin signaling pathway via AXIN1.
Collapse
|
24
|
Chen Y, Chen X, Li H, Li Y, Cheng D, Tang Y, Sang H. Serum extracellular vesicles containing MIAT induces atrial fibrosis, inflammation and oxidative stress to promote atrial remodeling and atrial fibrillation via blockade of miR-485-5p-mediated CXCL10 inhibition. Clin Transl Med 2021; 11:e482. [PMID: 34459123 PMCID: PMC8329545 DOI: 10.1002/ctm2.482] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/03/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Atrial fibrillation (AF), a supraventricular arrhythmia that impairs cardiac function, is a main source of morbidity and mortality. Serum-derived extracellular vesicles (EVs) have been identified to carry potential biomarker or target for the diagnosis and treatment of AF. We intended to dissect out the role of lncRNA MIAT enriched in serum-derived EVs in AF. METHODS MIAT expression was quantified in EVs isolated from serum samples of AF patients. Mouse and cell models of AF were developed after angiotensin II (Ang II) induction. Relationship between MIAT, miR-485-5p, and CXCL10 was identified. Ectopic expression and depletion assays were implemented in Ang II-treated mice or HL-1 cells, or those co-cultured with serum-derived EVs to explore the roles of EV-carried MIAT. RESULTS MIAT was upregulated in EVs from serum samples of AF patients. Further analysis indicated that MIAT enriched in serum-derived EVs promoted atrial fibrosis, inflammation and oxidative stress, and aggravated the atrial remodeling and resultant AF. Mechanistically, MIAT bound to miR-485-5p and weakened its inhibitory role on the target CXCL10, which was responsible for the role of serum-derived EV containing MIAT in cellular fibrosis, oxidative stress and inflammation, and atrial remodeling in vivo. CONCLUSIONS In conclusion, serum-derived EV containing MIAT facilitates atrial remodeling and exacerbates the AF by abolishing the miR-485-5p-mediated CXCL10 inhibition. This finding aids in the deeper understanding about the pathophysiology of AF.
Collapse
Affiliation(s)
- Yingwei Chen
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouP.R. China
| | - Xiaojie Chen
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouP.R. China
| | - Haiyu Li
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouP.R. China
| | - Yunpeng Li
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouP.R. China
| | - Dong Cheng
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouP.R. China
| | - Yi Tang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouP.R. China
| | - Haiqiang Sang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouP.R. China
| |
Collapse
|
25
|
Huang S, Deng Y, Xu J, Liu J, Liu L, Fan C. The Role of Exosomes and Their Cargos in the Mechanism, Diagnosis, and Treatment of Atrial Fibrillation. Front Cardiovasc Med 2021; 8:712828. [PMID: 34395566 PMCID: PMC8355361 DOI: 10.3389/fcvm.2021.712828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022] Open
Abstract
Atrial fibrillation (AF) is the most common persistent arrhythmia, but the mechanism of AF has not been fully elucidated, and existing approaches to diagnosis and treatment face limitations. Recently, exosomes have attracted considerable interest in AF research due to their high stability, specificity and cell-targeting ability. The aim of this review is to summarize recent literature, analyze the advantages and limitations of exosomes, and to provide new ideas for their use in understanding the mechanism and improving the diagnosis and treatment of AF.
Collapse
Affiliation(s)
- Shengyuan Huang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yating Deng
- Xiangya Medical College of Central South University, Changsha, China
| | - Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Jiachen Liu
- Xiangya Medical College of Central South University, Changsha, China
| | - Liming Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Chen X, Cao J, Ge Z, Xia Z. Correlation and integration of circulating miRNA and peripheral whole blood gene expression profiles in patients with venous thromboembolism. Bioengineered 2021; 12:2352-2363. [PMID: 34077299 PMCID: PMC8806583 DOI: 10.1080/21655979.2021.1935401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The main aim of this work was to evaluate differential expression and biological functions of circulating miRNA and whole peripheral blood (PB) genes in patients affected by venous thromboembolism (VTE) and in healthy subjects. Circulating miRNA sequences and PB expression profiles were obtained from GEO datasets. Ten miRNAs with the most significant differential expression rate (dif-miRNA) were subjected to miRbase to confirm their identity. Dif-miRNA targets were predicted by TargetScan and aligned with differentially expressed genes to obtain overlapping co-genes. Biological functions of co-genes were analyzed by Gene Ontology and KEGG analysis. Interaction network of dif-miRNAs, co-genes, and their downstream pathways were studied by analyzing protein-protein interaction (PPI) clusters (STRING) and determining the crucial hubs (Cytoscape).MiR-522-3p and miR-134 dif-miRNAs are involved in protein translation and apoptosis by regulating their respective co-genes in PB. Co-genes are present in nucleolus and extracellular exosomes and are involved in oxidative phosphorylation and ribosome/poly(A)-RNA organization. The predicted PPI network covered 107 clustered genes and 220 marginal joints, where ten hub genes participating in PPIs were found. All these hub genes were down-regulated in VTE patients. Our study identifies new miRNAs as potential biological markers and therapeutic targets for VTE.
Collapse
Affiliation(s)
- Xiaonan Chen
- Emergency and Acute Critical Care Department, Huashan Hospital North, Fudan University, Shanghai, China
| | - Jun Cao
- Emergency and Acute Critical Care Department, Huashan Hospital North, Fudan University, Shanghai, China
| | - Zi Ge
- Emergency and Acute Critical Care Department, Huashan Hospital North, Fudan University, Shanghai, China
| | - Zhijie Xia
- Emergency and Acute Critical Care Department, Huashan Hospital North, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Cha S, Seo EH, Lee SH, Kim KS, Oh CS, Moon JS, Kim JK. MicroRNA Expression in Extracellular Vesicles from Nasal Lavage Fluid in Chronic Rhinosinusitis. Biomedicines 2021; 9:biomedicines9050471. [PMID: 33925835 PMCID: PMC8145239 DOI: 10.3390/biomedicines9050471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are nanovesicles of endocytic origin released by cells and found in human bodily fluids. EVs contain both mRNA and microRNA (miRNA), which can be shuttled between cells, indicating their role in cell communication. This study investigated whether nasal secretions contain EVs and whether these EVs contain RNA. EVs were isolated from nasal lavage fluid (NLF) using sequential centrifugation. EVs were characterized and EV sizes were identified by transmission electron microscopy (TEM). In addition, EV miRNA expression was different in the chronic rhinosinusitis without nasal polyp (CRSsNP) and chronic rhinosinusitis with nasal polyp (CRSwNP) groups. The Kyoto encyclopedia gene and genome database (KEGG) database was used to identify pathways associated with changed miRNAs in each analysis group. Twelve miRNAs were differentially expressed in NLF-EVs of CRS patients versus HCs. In addition, eight miRNAs were differentially expressed in NLF-EVs of CRSwNP versus CRSsNP patients. The mucin-type O-glycan biosynthesis was a high-ranked predicted pathway in CRS patients versus healthy controls (HCs), and the Transforming growth factor beta (TGF-β) signaling pathway was a high-ranked predicted pathway in CRSwNP versus CRSsNP patients. We demonstrated the presence of and differences in NLF-EV miRNAs between CRS patients and HCs. These findings open up a broad and novel area of research on CRS pathophysiology as driven by miRNA cell communication.
Collapse
Affiliation(s)
- Seungbin Cha
- Department of Infection and Immunology, Konkuk University School of Medicine, Seoul 05030, Korea; (S.C.); (S.H.L.)
| | - Eun-Hye Seo
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05030, Korea; (E.-H.S.); (C.-S.O.)
| | - Seung Hyun Lee
- Department of Infection and Immunology, Konkuk University School of Medicine, Seoul 05030, Korea; (S.C.); (S.H.L.)
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05030, Korea; (E.-H.S.); (C.-S.O.)
| | - Kyung Soo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul 06973, Korea;
| | - Chung-Sik Oh
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05030, Korea; (E.-H.S.); (C.-S.O.)
- Department of Anesthesiology and Pain Medicine, Konkuk University School of Medicine, Konkuk University Medical Center, Seoul 05030, Korea
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea;
| | - Jin Kook Kim
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05030, Korea; (E.-H.S.); (C.-S.O.)
- Departments of Otorhinolaryngology-Head & Neck Surgery, Konkuk University School of Medicine, Konkuk University Medical Center, Seoul 05030, Korea
- Correspondence: ; Tel.: +82-2-2030-7662
| |
Collapse
|
28
|
Circulatory miR-155 correlation with platelet and neutrophil recovery after autologous hematopoietic stem cell transplantation, a multivariate analysis. Int J Hematol 2021; 114:235-245. [PMID: 33895969 DOI: 10.1007/s12185-021-03154-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
The involvement of microRNAs in the regulation of hematopoietic stem cells paves the way for their use in the management of autologous HSC transplantation (AHSCT). We aimed to evaluate the predictive value of circulatory microRNAs in extracellular vesicles (EVs) and plasma in platelet and neutrophil engraftment. Circulatory miR-125b, mir-126, miR-150, and miR-155 expression was assessed in isolated EVs and plasma in samples collected from AHSCT candidates. Multivariate analysis, COX models, and ROC assessment were performed to evaluate the predictive values of these microRNAs in platelet and neutrophil engraftment. miR-155 expression following conditioning with other clinical factors such as chemotherapy courses after diagnosis was the most significant predictors of platelet/neutrophil engraftment. A CD34+ cell count ≥ 3.5 × 106/kg combined with miR-155 could be used as an engraftment predictor; however, in cases where the CD34+ cell count was < 3.5 × 106/kg, this parameter lost its predictive value for engraftment and could be replaced by miR-155. The correlation between miR-155 and platelet/neutrophil engraftment even with lower numbers of CD34+ cells suggests the importance of this microRNA in the prediction of AHSCT outcome. Moreover, miR-155 could be utilized in therapeutic approaches to provide a better outcome for patients undergoing AHSCT.
Collapse
|
29
|
Abstract
Extracellular vesicles (EVs) have received considerable attention in biological and clinical research due to their ability to mediate cell-to-cell communication. Based on their size and secretory origin, EVs are categorized as exosomes, microvesicles, and apoptotic bodies. Increasing number of studies highlight the contribution of EVs in the regulation of a wide range of normal cellular physiological processes, including waste scavenging, cellular stress reduction, intercellular communication, immune regulation, and cellular homeostasis modulation. Altered circulating EV level, expression pattern, or content in plasma of patients with cardiovascular disease (CVD) may serve as diagnostic and prognostic biomarkers in diverse cardiovascular pathologies. Due to their inherent characteristics and physiological functions, EVs, in turn, have become potential candidates as therapeutic agents. In this review, we discuss the evolving understanding of the role of EVs in CVD, summarize the current knowledge of EV-mediated regulatory mechanisms, and highlight potential strategies for the diagnosis and therapy of CVD. We also attempt to look into the future that may advance our understanding of the role of EVs in the pathogenesis of CVD and provide novel insights into the field of translational medicine.
Collapse
Affiliation(s)
- Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| | - Xue Zou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, PR China
| | - Pedro A Jose
- Division of Renal Disease & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, PR China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou, PR China.
| |
Collapse
|
30
|
Zhao Z, Liu G, Zhang H, Ruan P, Ge J, Liu Q. BIRC5, GAJ5, and lncRNA NPHP3-AS1 Are Correlated with the Development of Atrial Fibrillation-Valvular Heart Disease. Int Heart J 2021; 62:153-161. [PMID: 33518654 DOI: 10.1536/ihj.20-238] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this study was to explore the pivotal genes or lncRNAs involved in the progression of atrial fibrillation (AF) -valvular heart disease (VHD). The mRNA profiling GSE113013 was obtained from the Gene Expression Omnibus database. The identification of differentially expressed genes (DEGs) and differentially expressed long non-coding RNAs (DElncRNAs) was performed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were carried out for DEGs. Then, the construction of the protein-protein interaction (PPI) network was conducted. An lncRNA-miRNA-target ceRNA network was constructed after obtaining microRNAs (miRNA) related to DElncRNAs. Ultimately, key disease-related genes were screened. A total of 399 DEGs and 145 DElncRNAs were obtained. There were 283 nodes and 588 interaction pairs in the PPI network, and synaptosome-associated protein 25 (SNAP25) had higher degrees (degree = 22) in the PPI network. There were 65 interaction pairs in the ceRNA network. Here, Baculoviral IAP Repeat Containing 5 (BIRC5) was regulated by hsa-miR-1285-3p, which was regulated by lncRNA NPHP3-AS1. Gap Junction Protein Alpha 5 (GAJ5) was regulated by hsa-miR-4505, hsa-miR-1972, and hsa-miR-1199-5p. In particular, GAJ5 was enriched in the function of ion transmembrane transport regulation, whereas BIRC5 was enriched in the function of apoptosis-multiple species pathway. Similarly, Potassium Inwardly Rectifying Channel Subfamily J Member 6 (KCNJ6) was enriched in the function of an ion channel complex. VENN analysis identified BIRC5 and GJA5 as key AF-related genes. KCNJ6, SNAP25, GJA5, BIRC5, hsa-miR-1285-3p, and lncRNA NPHP3-AS1 were likely to be associated with AF-VHD development.
Collapse
Affiliation(s)
- Zhiwei Zhao
- Department of Cardiovascular Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China
| | - Guiqing Liu
- Department of Cardiovascular Surgery, Hammersmith Hospital, Imperial College Healthcare NHS Trust
| | - Haiyang Zhang
- Department of Cardiovascular Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China
| | - Peng Ruan
- Department of Cardiovascular Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China
| | - Jianjun Ge
- Department of Cardiovascular Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China
| | - Qiang Liu
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China
| |
Collapse
|
31
|
Ravelli F, Masè M. MicroRNAs: New contributors to mechano-electric coupling and atrial fibrillation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 159:146-156. [PMID: 33011190 DOI: 10.1016/j.pbiomolbio.2020.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 09/17/2020] [Accepted: 09/27/2020] [Indexed: 12/29/2022]
Abstract
Atrial fibrillation (AF) is a multifactorial disease, which often occurs in the presence of underlying cardiac abnormalities and is supported by electrophysiological and structural alterations, generally referred to as atrial remodeling. Abnormal substrates are commonly encountered in various conditions that predispose to AF, such as hypertension, heart failure, obesity, and sleep apnea, in which atrial stretch plays a key mechanistic role. Emerging evidence suggests a role for microRNAs (small non-coding RNAs) in the pathogenesis of AF, where they can act as post-transcriptional regulators of the genes involved in atrial remodeling. This review summarizes the experimental and clinical evidence that supports the role of microRNAs in the modulation of atrial electrical and structural remodeling with a focus on overload-induced atrial alterations, and discusses the potential contribution of microRNAs to mechano-electrical coupling and AF.
Collapse
Affiliation(s)
- Flavia Ravelli
- Laboratory of Biophysics and Biosignals, University of Trento, Trento, Italy.
| | - Michela Masè
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy; Healthcare Research and Innovation Program, IRCS-HTA, Bruno Kessler Foundation, Trento, Italy
| |
Collapse
|
32
|
Extracellular microRNAs in human circulation are associated with miRISC complexes that are accessible to anti-AGO2 antibody and can bind target mimic oligonucleotides. Proc Natl Acad Sci U S A 2020; 117:24213-24223. [PMID: 32929008 PMCID: PMC7533700 DOI: 10.1073/pnas.2008323117] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) function cell-intrinsically to regulate gene expression by base-pairing to complementary mRNA targets while in association with Argonaute, the effector protein of the miRNA-mediated silencing complex (miRISC). A relatively dilute population of miRNAs can be found extracellularly in body fluids such as human blood plasma and cerebrospinal fluid (CSF). The remarkable stability of circulating miRNAs in such harsh extracellular environments can be attributed to their association with protective macromolecular complexes, including extracellular vesicles (EVs), proteins such as Argonaut 2 (AGO2), or high-density lipoproteins. The precise origins and the potential biological significance of various forms of miRNA-containing extracellular complexes are poorly understood. It is also not known whether extracellular miRNAs in their native state may retain the capacity for miRISC-mediated target RNA binding. To explore the potential functionality of circulating extracellular miRNAs, we comprehensively investigated the association between circulating miRNAs and the miRISC Argonaute AGO2. Using AGO2 immunoprecipitation (IP) followed by small-RNA sequencing, we find that miRNAs in circulation are primarily associated with antibody-accessible miRISC/AGO2 complexes. Moreover, we show that circulating miRNAs can base-pair with a target mimic in a seed-based manner, and that the target-bound AGO2 can be recovered from blood plasma in an ∼1:1 ratio with the respective miRNA. Our findings suggest that miRNAs in circulation are largely contained in functional miRISC/AGO2 complexes under normal physiological conditions. However, we find that, in human CSF, the assortment of certain extracellular miRNAs into free miRISC/AGO2 complexes can be affected by pathological conditions such as amyotrophic lateral sclerosis.
Collapse
|
33
|
Zhelankin AV, Vasiliev SV, Stonogina DA, Babalyan KA, Sharova EI, Doludin YV, Shchekochikhin DY, Generozov EV, Akselrod AS. Elevated Plasma Levels of Circulating Extracellular miR-320a-3p in Patients with Paroxysmal Atrial Fibrillation. Int J Mol Sci 2020; 21:ijms21103485. [PMID: 32429037 PMCID: PMC7279020 DOI: 10.3390/ijms21103485] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
The potential of extracellular circulating microRNAs (miRNAs) as non-invasive biomarkers of atrial fibrillation (AF) has been confirmed by a number of recent studies. However, the current data for some miRNAs are controversial and inconsistent, probably due to pre-analytical and methodological differences. In this work, we attempted to fulfill the basic pre-analytical requirements provided for circulating miRNA studies for application to paroxysmal atrial fibrillation (PAF) research. We used quantitative PCR (qPCR) to determine the relative plasma levels of circulating miRNAs expressed in the heart or associated with atrial remodeling or fibrillation with reported altered plasma/serum levels in AF: miR-146a-5p, miR-150-5p, miR-19a-3p, miR-21-5p, miR-29b-3p, miR-320a-3p, miR-328-3p, miR-375-3p, and miR-409-3p. First, in a cohort of 90 adult outpatient clinic patients, we found that the plasma level of miR-320a-3p was elevated in PAF patients compared to healthy controls and hypertensive patients without AF. We further analyzed the impact of medication therapies on miRNA relative levels and found elevated miR-320a-3p levels in patients receiving angiotensin-converting-enzyme inhibitors (ACEI) therapy. Additionally, we found that miR-320a-3p, miR-21-5p, and miR-146a-5p plasma levels positively correlated with the CHA2DS2-Vasc score and were elevated in subjects with CHA2DS2-Vasc ≥ 2. Our results indicate that, amongst the analyzed miRNAs, miR-320a-3p may be considered as a potential PAF circulating plasma biomarker, leading to speculation as to whether this miRNA is a marker of platelet state change due to ACEI therapy.
Collapse
Affiliation(s)
- Andrey V. Zhelankin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (K.A.B.); (E.I.S.); (E.V.G.)
- Correspondence: or ; Tel.: +7-910-410-7765
| | - Sergey V. Vasiliev
- Department of Cardiology, Functional and Ultrasound Diagnostics, Faculty of Medicine N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119146 Moscow, Russia; (S.V.V.); (D.A.S.); (D.Y.S.); (A.S.A.)
| | - Daria A. Stonogina
- Department of Cardiology, Functional and Ultrasound Diagnostics, Faculty of Medicine N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119146 Moscow, Russia; (S.V.V.); (D.A.S.); (D.Y.S.); (A.S.A.)
| | - Konstantin A. Babalyan
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (K.A.B.); (E.I.S.); (E.V.G.)
| | - Elena I. Sharova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (K.A.B.); (E.I.S.); (E.V.G.)
| | - Yurii V. Doludin
- FSI National Research Center for Preventive Medicine of the Ministry of Health of the Russian Federation, 101990 Moscow, Russia;
| | - Dmitry Y. Shchekochikhin
- Department of Cardiology, Functional and Ultrasound Diagnostics, Faculty of Medicine N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119146 Moscow, Russia; (S.V.V.); (D.A.S.); (D.Y.S.); (A.S.A.)
| | - Eduard V. Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (K.A.B.); (E.I.S.); (E.V.G.)
| | - Anna S. Akselrod
- Department of Cardiology, Functional and Ultrasound Diagnostics, Faculty of Medicine N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119146 Moscow, Russia; (S.V.V.); (D.A.S.); (D.Y.S.); (A.S.A.)
| |
Collapse
|
34
|
Böhm A, Vachalcova M, Snopek P, Bacharova L, Komarova D, Hatala R. Molecular Mechanisms, Diagnostic Aspects and Therapeutic Opportunities of Micro Ribonucleic Acids in Atrial Fibrillation. Int J Mol Sci 2020; 21:ijms21082742. [PMID: 32326592 PMCID: PMC7215603 DOI: 10.3390/ijms21082742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/22/2022] Open
Abstract
Micro ribonucleic acids (miRNAs) are short non-coding RNA molecules responsible for regulation of gene expression. They are involved in many pathophysiological processes of a wide spectrum of diseases. Recent studies showed their involvement in atrial fibrillation. They seem to become potential screening biomarkers for atrial fibrillation and even treatment targets for this arrhythmia. The aim of this review article was to summarize the latest knowledge about miRNA and their molecular relation to the pathophysiology, diagnosis and treatment of atrial fibrillation.
Collapse
Affiliation(s)
- Allan Böhm
- National Cardiovascular Institute, 831 01 Bratislava, Slovakia;
- Faculty of Medicine, Slovak Medical University, 831 01 Bratislava, Slovakia
- Academy—Research Organization, 811 02 Bratislava, Slovakia; (M.V.); (P.S.); (D.K.)
- Correspondence:
| | - Marianna Vachalcova
- Academy—Research Organization, 811 02 Bratislava, Slovakia; (M.V.); (P.S.); (D.K.)
- East-Slovak Institute of Cardiovascular Diseases, 040 11 Kosice, Slovakia
| | - Peter Snopek
- Academy—Research Organization, 811 02 Bratislava, Slovakia; (M.V.); (P.S.); (D.K.)
- Cardiology Clinic Faculty Hospital, 950 01 Nitra, Slovakia
- Saint Elisabeth University of Health and Social work, 811 02 Bratislava, Slovakia
| | - Ljuba Bacharova
- Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia;
- International Laser Center, 841 04 Bratislava, Slovakia
| | - Dominika Komarova
- Academy—Research Organization, 811 02 Bratislava, Slovakia; (M.V.); (P.S.); (D.K.)
| | - Robert Hatala
- National Cardiovascular Institute, 831 01 Bratislava, Slovakia;
- Faculty of Medicine, Slovak Medical University, 831 01 Bratislava, Slovakia
| |
Collapse
|