1
|
Putthanbut N, Lee JY, Borlongan CV. Extracellular vesicle therapy in neurological disorders. J Biomed Sci 2024; 31:85. [PMID: 39183263 PMCID: PMC11346291 DOI: 10.1186/s12929-024-01075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Extracellular vesicles (EVs) are vital for cell-to-cell communication, transferring proteins, lipids, and nucleic acids in various physiological and pathological processes. They play crucial roles in immune modulation and tissue regeneration but are also involved in pathogenic conditions like inflammation and degenerative disorders. EVs have heterogeneous populations and cargo, with numerous subpopulations currently under investigations. EV therapy shows promise in stimulating tissue repair and serving as a drug delivery vehicle, offering advantages over cell therapy, such as ease of engineering and minimal risk of tumorigenesis. However, challenges remain, including inconsistent nomenclature, complex characterization, and underdeveloped large-scale production protocols. This review highlights the recent advances and significance of EVs heterogeneity, emphasizing the need for a better understanding of their roles in disease pathologies to develop tailored EV therapies for clinical applications in neurological disorders.
Collapse
Affiliation(s)
- Napasiri Putthanbut
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand
| | - Jea Young Lee
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
| | - Cesario V Borlongan
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA.
| |
Collapse
|
2
|
Zanirati G, dos Santos PG, Alcará AM, Bruzzo F, Ghilardi IM, Wietholter V, Xavier FAC, Gonçalves JIB, Marinowic D, Shetty AK, da Costa JC. Extracellular Vesicles: The Next Generation of Biomarkers and Treatment for Central Nervous System Diseases. Int J Mol Sci 2024; 25:7371. [PMID: 39000479 PMCID: PMC11242541 DOI: 10.3390/ijms25137371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024] Open
Abstract
It has been widely established that the characterization of extracellular vesicles (EVs), particularly small EVs (sEVs), shed by different cell types into biofluids, helps to identify biomarkers and therapeutic targets in neurological and neurodegenerative diseases. Recent studies are also exploring the efficacy of mesenchymal stem cell-derived extracellular vesicles naturally enriched with therapeutic microRNAs and proteins for treating various diseases. In addition, EVs released by various neural cells play a crucial function in the modulation of signal transmission in the brain in physiological conditions. However, in pathological conditions, such EVs can facilitate the spread of pathological proteins from one brain region to the other. On the other hand, the analysis of EVs in biofluids can identify sensitive biomarkers for diagnosis, prognosis, and disease progression. This review discusses the potential therapeutic use of stem cell-derived EVs in several central nervous system diseases. It lists their differences and similarities and confers various studies exploring EVs as biomarkers. Further advances in EV research in the coming years will likely lead to the routine use of EVs in therapeutic settings.
Collapse
Affiliation(s)
- Gabriele Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Paula Gabrielli dos Santos
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Allan Marinho Alcará
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Fernanda Bruzzo
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Isadora Machado Ghilardi
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Vinicius Wietholter
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Fernando Antônio Costa Xavier
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Daniel Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX 77807, USA;
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| |
Collapse
|
3
|
Dey S, Mohapatra S, Khokhar M, Hassan S, Pandey RK. Extracellular Vesicles in Malaria: Shedding Light on Pathogenic Depths. ACS Infect Dis 2024; 10:827-844. [PMID: 38320272 PMCID: PMC10928723 DOI: 10.1021/acsinfecdis.3c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
Malaria, a life-threatening infectious disease caused by Plasmodium falciparum, remains a significant global health challenge, particularly in tropical and subtropical regions. The epidemiological data for 2021 revealed a staggering toll, with 247 million reported cases and 619,000 fatalities attributed to the disease. This formidable global health challenge continues to perplex researchers seeking a comprehensive understanding of its pathogenesis. Recent investigations have unveiled the pivotal role of extracellular vesicles (EVs) in this intricate landscape. These tiny, membrane-bound vesicles, secreted by diverse cells, emerge as pivotal communicators in malaria's pathogenic orchestra. This Review delves into the multifaceted roles of EVs in malaria pathogenesis, elucidating their impact on disease progression and immune modulation. Insights into EV involvement offer potential therapeutic and diagnostic strategies. Integrating this information identifies targets to mitigate malaria's global impact. Moreover, this Review explores the potential of EVs as diagnostic biomarkers and therapeutic targets in malaria. By deciphering the intricate dialogue facilitated by these vesicles, new avenues for intervention and novel strategies for disease management may emerge.
Collapse
Affiliation(s)
- Sangita Dey
- CSO
Department, Cellworks Research India Pvt
Ltd, Bengaluru 560066, Karnataka, India
| | - Salini Mohapatra
- Department
of Biotechnology, Chandigarh University, Punjab 140413, India
| | - Manoj Khokhar
- Department
of Biochemistry, All India Institute of
Medical Sciences Jodhpur, Rajasthan 342005, India
| | - Sana Hassan
- Department
of Life Sciences, Manipal Academy of Higher
Education, Dubai 345050, United Arab Emirates
| | - Rajan Kumar Pandey
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| |
Collapse
|
4
|
Reyes-Ábalos AL, Álvarez-Zabaleta M, Olivera-Bravo S, Di Tomaso MV. Acute Genetic Damage Induced by Ethanol and Corticosterone Seems to Modulate Hippocampal Astrocyte Signaling. Int J Cell Biol 2024; 2024:5524487. [PMID: 38439918 PMCID: PMC10911912 DOI: 10.1155/2024/5524487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Astrocytes maintain CNS homeostasis but also critically contribute to neurological and psychiatric disorders. Such functional diversity implies an extensive signaling repertoire including extracellular vesicles (EVs) and nanotubes (NTs) that could be involved in protection or damage, as widely shown in various experimental paradigms. However, there is no information associating primary damage to the astrocyte genome, the DNA damage response (DDR), and the EV and NT repertoire. Furthermore, similar studies were not performed on hippocampal astrocytes despite their involvement in memory and learning processes, as well as in the development and maintenance of alcohol addiction. By exposing murine hippocampal astrocytes to 400 mM ethanol (EtOH) and/or 1 μM corticosterone (CTS) for 1 h, we tested whether the induced DNA damage and DDR could elicit significant changes in NTs and surface-attached EVs. Genetic damage and initial DDR were assessed by immunolabeling against the phosphorylated histone variant H2AX (γH2AX), DDR-dependent apoptosis by BAX immunoreactivity, and astrocyte activation by the glial acidic fibrillary protein (GFAP) and phalloidin staining. Surface-attached EVs and NTs were examined via scanning electron microscopy, and labeled proteins were analyzed via confocal microscopy. Relative to controls, astrocytes exposed to EtOH, CTS, or EtOH+CTS showed significant increases in nuclear γlH2AX foci, nuclear and cytoplasmic BAX signals, and EV frequency at the expense of the NT amount, mainly upon EtOH, without detectable signs of morphological reactivity. Furthermore, the largest and most complex EVs originated only in DNA-damaged astrocytes. Obtained results revealed that astrocytes exposed to acute EtOH and/or CTS preserved their typical morphology but presented severe DNA damage, triggered canonical DDR pathways, and early changes in the cell signaling mediated by EVs and NTs. Further deepening of this initial morphological and quantitative analysis is necessary to identify the mechanistic links between genetic damage, DDR, cell-cell communication, and their possible impact on hippocampal neural cells.
Collapse
Affiliation(s)
- Ana Laura Reyes-Ábalos
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
- Unidad de Microscopía Electrónica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Magdalena Álvarez-Zabaleta
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Silvia Olivera-Bravo
- Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - María Vittoria Di Tomaso
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| |
Collapse
|
5
|
Yu J, Sane S, Kim JE, Yun S, Kim HJ, Jo KB, Wright JP, Khoshdoozmasouleh N, Lee K, Oh HT, Thiel K, Parvin A, Williams X, Hannon C, Lee H, Kim DK. Biogenesis and delivery of extracellular vesicles: harnessing the power of EVs for diagnostics and therapeutics. Front Mol Biosci 2024; 10:1330400. [PMID: 38234582 PMCID: PMC10791869 DOI: 10.3389/fmolb.2023.1330400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed particles secreted by a variety of cell types. These vesicles encapsulate a diverse range of molecules, including proteins, nucleic acids, lipids, metabolites, and even organelles derived from their parental cells. While EVs have emerged as crucial mediators of intercellular communication, they also hold immense potential as both biomarkers and therapeutic agents for numerous diseases. A thorough understanding of EV biogenesis is crucial for the development of EV-based diagnostic developments since the composition of EVs can reflect the health and disease status of the donor cell. Moreover, when EVs are taken up by target cells, they can exert profound effects on gene expression, signaling pathways, and cellular behavior, which makes these biomolecules enticing targets for therapeutic interventions. Yet, despite decades of research, the intricate processes underlying EV biogenesis by donor cells and subsequent uptake by recipient cells remain poorly understood. In this review, we aim to summarize current insights and advancements in the biogenesis and uptake mechanisms of EVs. By shedding light on the fundamental mechanisms governing EV biogenesis and delivery, this review underscores the potential of basic mechanistic research to pave the way for developing novel diagnostic strategies and therapeutic applications.
Collapse
Affiliation(s)
- Jivin Yu
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Saba Sane
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Ji-Eun Kim
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sehee Yun
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hyeon-Jai Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Kyeong Beom Jo
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Jacob P. Wright
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- College of Arts and Sciences, University at Buffalo, Buffalo, NY, United States
| | - Nooshin Khoshdoozmasouleh
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Kunwoo Lee
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Ho Taek Oh
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Keaton Thiel
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Afrin Parvin
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Xavier Williams
- Applied Technology Laboratory for Advanced Surgery (ATLAS) Studios Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Claire Hannon
- Applied Technology Laboratory for Advanced Surgery (ATLAS) Studios Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Hunsang Lee
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Dae-Kyum Kim
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
6
|
Gupta MK, Vadde R. Delivery strategies of immunotherapies in the treatment of pancreatic cancer. IMMUNE LANDSCAPE OF PANCREATIC CANCER DEVELOPMENT AND DRUG RESISTANCE 2024:173-202. [DOI: 10.1016/b978-0-443-23523-8.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Soukup J, Moško T, Kereïche S, Holada K. Large extracellular vesicles transfer more prions and infect cell culture better than small extracellular vesicles. Biochem Biophys Res Commun 2023; 687:149208. [PMID: 37949026 DOI: 10.1016/j.bbrc.2023.149208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/19/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Prions are responsible for a number of lethal neurodegenerative and transmissible diseases in humans and animals. Extracellular vesicles, especially small exosomes, have been extensively studied in connection with various diseases. In contrast, larger microvesicles are often overlooked. In this work, we compared the ability of large extracellular vesicles (lEVs) and small extracellular vesicles (sEVs) to spread prions in cell culture. We utilized CAD5 cell culture model of prion infection and isolated lEVs by 20,000×g force and sEVs by 110,000×g force. The lEV fraction was enriched in β-1 integrin with a vesicle size starting at 100 nm. The fraction of sEVs was partially depleted of β-1 integrin with a mean size of 79 nm. Both fractions were enriched in prion protein, but the lEVs contained a higher prion-converting activity. In addition, lEV infection led to stronger prion signals in both cell cultures, as detected by cell and western blotting. These results were verified on N2a-PK1 cell culture. Our data suggest the importance of lEVs in the trafficking and spread of prions over extensively studied small EVs.
Collapse
Affiliation(s)
- Jakub Soukup
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, 128 00, Prague, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, 128 44, Prague, Czech Republic.
| | - Tibor Moško
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, 128 00, Prague, Czech Republic
| | - Sami Kereïche
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 128 00, Prague, Czech Republic
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, 128 00, Prague, Czech Republic.
| |
Collapse
|
8
|
van de Wakker SI, Meijers FM, Sluijter JPG, Vader P. Extracellular Vesicle Heterogeneity and Its Impact for Regenerative Medicine Applications. Pharmacol Rev 2023; 75:1043-1061. [PMID: 37280097 DOI: 10.1124/pharmrev.123.000841] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-enclosed particles that are involved in physiologic and pathologic processes. EVs are increasingly being studied for therapeutic applications in the field of regenerative medicine. Therapeutic application of stem cell-derived EVs has shown great potential to stimulate tissue repair. However, the exact mechanisms through which they induce this effect have not been fully clarified. This may to a large extent be attributed to a lack of knowledge on EV heterogeneity. Recent studies suggest that EVs represent a heterogeneous population of vesicles with distinct functions. The heterogeneity of EVs can be attributed to differences in their biogenesis, and as such, they can be classified into distinct populations that can then be further subcategorized into various subpopulations. A better understanding of EV heterogeneity is crucial for elucidating their mechanisms of action in tissue regeneration. This review provides an overview of the latest insights on EV heterogeneity related to tissue repair, including the different characteristics that contribute to such heterogeneity and the functional differences among EV subtypes. It also sheds light on the challenges that hinder clinical translation of EVs. Additionally, innovative EV isolation techniques for studying EV heterogeneity are discussed. Improved knowledge of active EV subtypes would promote the development of tailored EV therapies and aid researchers in the translation of EV-based therapeutics to the clinic. SIGNIFICANCE STATEMENT: Within this review we discuss the differences in regenerative properties of extracellular vesicle (EV) subpopulations and implications of EV heterogeneity for development of EV-based therapeutics. We aim to provide new insights into which aspects are leading to heterogeneity in EV preparations and stress the importance of EV heterogeneity studies for clinical applications.
Collapse
Affiliation(s)
- Simonides Immanuel van de Wakker
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Fleur Michelle Meijers
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Joost Petrus Gerardus Sluijter
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Pieter Vader
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| |
Collapse
|
9
|
Loric S, Denis JA, Desbene C, Sabbah M, Conti M. Extracellular Vesicles in Breast Cancer: From Biology and Function to Clinical Diagnosis and Therapeutic Management. Int J Mol Sci 2023; 24:7208. [PMID: 37108371 PMCID: PMC10139222 DOI: 10.3390/ijms24087208] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer (BC) is the first worldwide most frequent cancer in both sexes and the most commonly diagnosed in females. Although BC mortality has been thoroughly declining over the past decades, there are still considerable differences between women diagnosed with early BC and when metastatic BC is diagnosed. BC treatment choice is widely dependent on precise histological and molecular characterization. However, recurrence or distant metastasis still occurs even with the most recent efficient therapies. Thus, a better understanding of the different factors underlying tumor escape is mainly mandatory. Among the leading candidates is the continuous interplay between tumor cells and their microenvironment, where extracellular vesicles play a significant role. Among extracellular vesicles, smaller ones, also called exosomes, can carry biomolecules, such as lipids, proteins, and nucleic acids, and generate signal transmission through an intercellular transfer of their content. This mechanism allows tumor cells to recruit and modify the adjacent and systemic microenvironment to support further invasion and dissemination. By reciprocity, stromal cells can also use exosomes to profoundly modify tumor cell behavior. This review intends to cover the most recent literature on the role of extracellular vesicle production in normal and cancerous breast tissues. Specific attention is paid to the use of extracellular vesicles for early BC diagnosis, follow-up, and prognosis because exosomes are actually under the spotlight of researchers as a high-potential source of liquid biopsies. Extracellular vesicles in BC treatment as new targets for therapy or efficient nanovectors to drive drug delivery are also summarized.
Collapse
Affiliation(s)
- Sylvain Loric
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | | | - Cédric Desbene
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Michèle Sabbah
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Marc Conti
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
- INTEGRACELL SAS, 91160 Longjumeau, France
| |
Collapse
|
10
|
Racchetti G, Meldolesi J. Four distinct cytoplasmic structures generate and release specific vesicles, thus opening the way to intercellular communication. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:44-58. [PMID: 39698300 PMCID: PMC11648438 DOI: 10.20517/evcna.2023.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 12/20/2024]
Abstract
In all cells, generation and release of specific vesicles are the initial steps of back-and-forth intercellular communication. These processes are critical in normal physiology and pathophysiology. Vesicles have particular functions appropriate to their targets. When stimulated, they are released into the extracellular space. Four cytoplasmic membrane-bound structures generate their particular vesicles. Among these structures, multivesicular bodies (MVBs) can accumulate many small vesicles in their lumen; release occurs upon MVB exocytosis. Ectosomes are larger vesicles characterized by their responses and are generated directly and released independently from specific microdomains pre-established in the thickness of the plasma membrane. Most lysosomes do not generate vesicles. However, unique components of a minor form, the endo-lysosome, constitute the third class of structures that release a few vesicles by exocytosis with molecules and structures inducing changes in the extracellular environment. The autophagosome, the fourth structure, releases several heterogeneous vesicles by exocytosis with malformed bio-molecules, assembled structures, and damaged organelles. Interestingly, the frequent interaction of autophagosomes with MVBs and their exosomes contributes to the regulation and intensity of their action. The specificity and function of released vesicles depend on their membranes' and luminal cargoes' composition and dynamics. An ongoing investigation of the various vesicles reveals new properties regarding their generation, release, and resulting extracellular processes. The growth of information about structures and their vesicles progressively extends the knowledge base regarding cell communication and contributes to their clinical applications.
Collapse
Affiliation(s)
- Gabriella Racchetti
- San Raffaele Institute, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Jacopo Meldolesi
- San Raffaele Institute, Vita-Salute San Raffaele University, Milan 20132, Italy
- CNR Institute of Neuroscience at the Milano-Bicocca University, Vedano al Lambro, Milan 20854, Italy
| |
Collapse
|
11
|
Zhang J, Su Q, Li SC. Qigong Exercise Balances Oxygen Supply and Acid-Base to Modulate Hypoxia: A Perspective Platform toward Preemptive Health & Medicine. Med Sci (Basel) 2023; 11:21. [PMID: 36976529 PMCID: PMC10057714 DOI: 10.3390/medsci11010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/14/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Qigong is a meditative movement with therapeutic effects and is commonly practiced in Eastern medicine. A growing body of evidence validates its health benefits, leading to mechanistic questions about how it works. We propose a novel mechanism by which the "acid" caused by hypoxia affects metabolism, and the way it is neutralized through Qigong practice involves the body's blood flow and vasculature modifications. Specifically, Qigong exercise generates an oxygen supply and acid-base balance against the hypoxic effects of underlying pathological conditions. We also propose that Qigong exercise mediated and focused on the local hypoxia environment of tissues might normalize the circulation of metabolic and inflammation accumulation in the tumor tissue and restore the normal metabolism of tissues and cells through calm, relaxation, and extreme Zen-style breathing that gravitates toward preemptive health and medicine. Thus, we propose the mechanisms of action related to Qigong, intending to unify Eastern and Western exercise theory.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Physical Training and Physical Therapy, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Qingning Su
- Center of Bioengineering, School of Medicine, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory (NSCL), CHOC Children’s Research Institute (CCRI), Children’s Hospital of Orange County (CHOC), 1201 W. La Veta Ave., Orange, CA 92868-3874, USA
- Department of Neurology, School of Medicine, University of California-Irvine (UCI), 200 S Manchester Ave Ste 206, Orange, CA 92868, USA
| |
Collapse
|
12
|
Meldolesi J. Unconventional Protein Secretion Dependent on Two Extracellular Vesicles: Exosomes and Ectosomes. Front Cell Dev Biol 2022; 10:877344. [PMID: 35756998 PMCID: PMC9218857 DOI: 10.3389/fcell.2022.877344] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
In addition to conventional protein secretion, dependent on the specific cleavage of signal sequences, proteins are secreted by other processes, all together called unconventional. Among the mechanisms operative in unconventional secretion, some are based on two families of extracellular vesicle (EVs), expressed by all types of cells: the exosomes (before secretion called ILVs) and ectosomes (average diameters ∼70 and ∼250 nm). The two types of EVs have been largely characterized by extensive studies. ILVs are assembled within endocytic vacuoles by inward budding of small membrane microdomains associated to cytosolic cargos including unconventional secretory proteins. The vacuoles containing ILVs are called multivesicular bodies (MVBs). Upon their possible molecular exchange with autophagosomes, MVBs undergo two alternative forms of fusion: 1. with lysosomes, followed by large digestion of their cargo molecules; and 2. with plasma membrane (called exocytosis), followed by extracellular diffusion of exosomes. The vesicles of the other type, the ectosomes, are differently assembled. Distinct plasma membrane rafts undergo rapid outward budding accompanied by accumulation of cytosolic/secretory cargo molecules, up to their sewing and pinching off. Both types of EV, released to the extracellular fluid in their complete forms including both membrane and cargo, start navigation for various times and distances, until their fusion with target cells. Release/navigation/fusion of EVs establish continuous tridimensional networks exchanging molecules, signals and information among cells. The proteins unconventionally secreted via EVs are a few hundreds. Some of them are functionally relevant (examples FADD, TNF, TACE), governing physiological processes and important diseases. Such proteins, at present intensely investigated, predict future discoveries and innovative developments, relevant for basic research and clinical practice.
Collapse
Affiliation(s)
- Jacopo Meldolesi
- The San Raffaele Institute, Vita-Salute San Raffaele University, Milan, Italy.,The CNR Institute of Neuroscience at Milano-Bicocca University, Milan, Italy
| |
Collapse
|
13
|
Di Daniele A, Antonucci Y, Campello S. Migrasomes, new vescicles as Hansel and Gretel white pebbles? Biol Direct 2022; 17:8. [PMID: 35484629 PMCID: PMC9047267 DOI: 10.1186/s13062-022-00321-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/16/2022] [Indexed: 02/07/2023] Open
Abstract
Migrasomes, released by migrating cells, belong to the heterogeneous world of extracellular vesicles (EVs). However, they can be distinguished from all other members of EVs by their size, biorigin and protein cargo. As far as we know, they can play important roles in various communication processes, by mediating the release of signals, such as mRNAs, proteins or damaged mitochondria. To extend and better understand the functional roles and importance of migrasomes, it is first essential to well understand the basic molecular mechanisms behind their formation and function. Herein, we endeavor to provide a brief and up-to-date description of migrasome biogenesis, release, characterization, biological properties and functional activities in cell-to-cell communication, and we will discuss and propose putative new functions for these vesicles.
Collapse
Affiliation(s)
- Arianna Di Daniele
- grid.6530.00000 0001 2300 0941Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Ylenia Antonucci
- grid.6530.00000 0001 2300 0941Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Silvia Campello
- grid.6530.00000 0001 2300 0941Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|