1
|
Rueda-Zarazua B, Gutiérrez H, García-Ortiz H, Orozco L, Ramírez-Martínez G, Jiménez-Alvarez L, Bolaños-Morales FV, Zuñiga J, Ávila-Moreno F, Melendez-Zajgla J. A Pilot Study: Contrasting Genomic Profiles of Lung Adenocarcinoma Between Patients of European and Latin American Ancestry. Int J Mol Sci 2025; 26:4865. [PMID: 40430005 PMCID: PMC12111962 DOI: 10.3390/ijms26104865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/06/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Lung cancer remains as the leading cause of cancer mortality worldwide. However, while current evidence suggests the existence of genomic differences between populations, indicating different risk factors associated with population-level genetic backgrounds, most studies have concentrated on populations of European ancestry, and more research is needed on non-European populations. We analyzed whole-exome sequencing data from 25 Mexican lung adenocarcinoma patients and compared them with a TCGA-PanCancer cohort enriched with patients of European ancestry as reference. Clinically relevant germline variants in cancer susceptibility genes are more frequent in our cohort (32% vs. 6.4%) than in the reference. Several mutational signatures (SBS32, SBS85, SBS12, SBS19) occurred at significantly higher frequencies in the Mexican cohort compared to the reference (p < 0.0001). Interestingly, the smoking-associated signature SBS4, present in 67.6% of smokers in the reference cohort, was absent in smoking Mexican patients (p < 0.01656). Somatic variant frequencies in SLC36A4 (20%; p < 0.00002), AP1S1 (8%; p < 0.00002), and TP53 (16%; p = 0.00005) showed significant differences from the European reference cohort. We demonstrate that all these observed biases were independent of the sample size. This study uncovers distinct genomic biases in lung cancer carcinogenesis in this population, compared to a European ancestry reference population, suggesting implications for precision medicine strategies in Latin American populations.
Collapse
Affiliation(s)
- Bertha Rueda-Zarazua
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico
| | | | - Humberto García-Ortiz
- Laboratorio de Inmunogenómica y Enfermedades Metabólicas, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (H.G.-O.); (L.O.)
| | - Lorena Orozco
- Laboratorio de Inmunogenómica y Enfermedades Metabólicas, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (H.G.-O.); (L.O.)
| | - Gustavo Ramírez-Martínez
- Laboratorio de Inmunología y Genética, Instituto Nacional de Enfermedades Respiratorias, Mexico City 14080, Mexico; (G.R.-M.); (L.J.-A.); (J.Z.)
| | - Luis Jiménez-Alvarez
- Laboratorio de Inmunología y Genética, Instituto Nacional de Enfermedades Respiratorias, Mexico City 14080, Mexico; (G.R.-M.); (L.J.-A.); (J.Z.)
| | | | - Joaquín Zuñiga
- Laboratorio de Inmunología y Genética, Instituto Nacional de Enfermedades Respiratorias, Mexico City 14080, Mexico; (G.R.-M.); (L.J.-A.); (J.Z.)
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City 14380, Mexico
| | - Federico Ávila-Moreno
- Lung Diseases and Functional Epigenomics Laboratory (LUDIFE), Biomedicine Research Unit (UBIMED), Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico;
- Research Tower, Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico
| | - Jorge Melendez-Zajgla
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico
| |
Collapse
|
2
|
Taş İ, Jacobs R, Albrecht J, Barrientos SA, Åberg J, Sime W, Brunnström H, Persson H, Kazi JU, Massoumi R. Advanced organoid models for targeting Kras-driven lung adenocarcinoma in drug discovery and combination therapy. J Exp Clin Cancer Res 2025; 44:128. [PMID: 40275403 PMCID: PMC12020293 DOI: 10.1186/s13046-025-03385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/03/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Lung cancer remains one of the most challenging diseases to treat due to its heterogeneity. Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) mutations are genetic drivers in numerous cancer types including lung adenocarcinoma (LUAD). Despite recent advances in KRAS-targeted therapies, treatment resistance and limited therapeutic options necessitate advanced preclinical models, such as organoids, to identify personalized cancer therapies by screening novel therapeutic strategies and synergistic drug combinations. RESULTS We established LUAD in genetically engineered mouse (GEM) models of KrasG12V & Trp53 Δex2-10 (KP) and KP with Ctnnb1Δex3 mutation (KPC). Tumor-derived organoids from these models recapitulated the genomic landscape and histopathological characteristics of their parental tumors. The organoids displayed tumorigenic potential when implanted in immunocompromised mice, forming tumors in contrast to unlike healthy lung-derived organoids. Drug screening identified effective kinase inhibitors and DNA methyltransferase (DNMT) inhibitors against the organoids. Notably, the combination of these drugs exhibited the highest synergy in KPC organoids. CONCLUSION We successfully developed LUAD organoids harboring Kras mutations and identified multiple potential therapeutic agents targeting these cells. Furthermore, we demonstrated the effectiveness of a DNMT inhibitor-based combination therapy, presenting a promising strategy for this challenging lung cancer subtype.
Collapse
Affiliation(s)
- İsa Taş
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Ruben Jacobs
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Juliane Albrecht
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Lund, Sweden
| | - Sebastian A Barrientos
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
- IVRS AB, Medicon Village, Scheeletorget 1, 223-81, Lund, SE, Sweden
| | - Josephine Åberg
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Wondossen Sime
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Hans Brunnström
- Department of Clinical Sciences Lund, Division of Pathology, Lund University, Lund, Sweden
| | - Helena Persson
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Lund, Sweden
| | - Julhash U Kazi
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Ramin Massoumi
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden.
| |
Collapse
|
3
|
Kartika AI, Dafip M, Wijayanti N, Heriyanto DS, Haryana SM, Taroeno-Hariadi KW. Research trends in microRNA profiling as a biomarker for lung adenocarcinoma via liquid biopsy: A bibliometric analysis. NARRA J 2025; 5:e1372. [PMID: 40352245 PMCID: PMC12059829 DOI: 10.52225/narra.v5i1.1372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/25/2024] [Indexed: 05/14/2025]
Abstract
Research related to the development of diagnostic biomarkers in lung adenocarcinoma in various countries is important. Research on microRNA as a biomarker in lung adenocarcinoma varies depending on the population, specimen, and technology used for profiling and validation. The aim of this study was to map and analyze bibliometric data of publications related to the topic of microRNA as a candidate biomarker in lung adenocarcinoma and to determine any potential research gaps. A total of 8,506 articles were collected from Crossref, Google Scholar, Semantic Scholar, PubMed, and Scopus databases using Harzing's Publish or Perish platform. A systematic search was conducted using four keywords: "profiling," "validating," "microRNA," and "lung adenocarcinoma," and synonyms of these keywords based on the MeSH on NCBI. The data extraction process followed the chart from PRISMA-P. The article's elimination was conducted using Mendeley Desktop and then was analyzed based on the authors' keywords using VOSviewer and Biblioshiny. A bibliometric analysis of 692 relevant articles identified four primary research clusters: (1) microRNA (19 keywords), which highlights its potential as a biomarker for early detection and diagnosis; (2) lung adenocarcinoma (18 keywords), reflecting advancements in lung cancer research; (3) liquid biopsy (19 keywords), emphasizing the growing interest in non-invasive diagnostic methods; and (4) bioinformatics (nine keywords), underscoring the role of computational approaches in transcriptomic analysis. As a primary topic, microRNAs have become a focal point of research for diagnosing lung cancer across various stages and as biomarkers for cancer cell proliferation, invasion, migration, and metastasis. Numerous studies have demonstrated the successful application of microRNAs in lung cancer diagnosis in the last decade, although the reported types of microRNAs are inconsistent. Therefore, further research on this topic should be continuously conducted, particularly to validate the types of microRNAs and the types of environments that influence them.
Collapse
Affiliation(s)
- Aprilia I. Kartika
- Biotechnology Doctorate Study Program, Graduate School, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Medical Laboratory Technology, Faculty of Health and Nursing, Universitas Muhammadiyah Semarang, Semarang, Indonesia
| | - Muchamad Dafip
- Biotechnology Doctorate Study Program, Graduate School, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nastiti Wijayanti
- Department of Animal Physiology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Didik S. Heriyanto
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sofia M. Haryana
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Kartika W. Taroeno-Hariadi
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Internal Medicine, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| |
Collapse
|
4
|
KONTIC MILICA, MARKOVIC FILIP. Use of DNA methylation patterns for early detection and management of lung cancer: Are we there yet? Oncol Res 2025; 33:781-793. [PMID: 40191732 PMCID: PMC11964873 DOI: 10.32604/or.2024.057231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/20/2024] [Indexed: 04/09/2025] Open
Abstract
Detecting lung cancer early is crucial for improving survival rates, yet it remains a significant challenge due to many cases being diagnosed at advanced stages. This review aims to provide advances in epigenetics which have highlighted DNA methylation patterns as promising biomarkers for early detection, prognosis, and treatment response in lung cancer. Techniques like bisulfite conversion followed by PCR, digital droplet polymerase chain reaction, and next-generation sequencing are commonly used for detecting these methylation patterns, which occur early in the cancer development process and can be detected in non-invasive samples like blood and sputum. Key genes such as SHOX2 and RASSF1A have demonstrated high sensitivity and specificity in clinical studies, making them crucial for diagnostic purposes. However, several challenges remain to be overcome before these biomarkers can be widely adopted for use in clinical practice. Standardizing the assays and validating their effectiveness are critical steps. Additionally, integrating methylation biomarkers with existing diagnostic tools could significantly enhance the accuracy of lung cancer detection, providing a more comprehensive diagnostic approach. Although progress has been made in understanding and utilizing DNA methylation patterns for lung cancer detection, more research and extensive clinical trials are necessary to fully harness their potential. These efforts will help establish the robustness of methylation patterns as biomarkers and therapeutic targets, ultimately leading to better prevention, diagnosis, and treatment strategies for lung cancer. In conclusion, DNA methylation states represent a promising avenue for advancing early detection, accurate diagnosis, and management of lung cancer.
Collapse
Affiliation(s)
- MILICA KONTIC
- Clinic for Pulmonology, University Clinical Center of Serbia, Belgrade, 11000, Serbia
- School of Medicine, University of Belgrade, Belgrade, 11000, Serbia
| | - FILIP MARKOVIC
- Clinic for Pulmonology, University Clinical Center of Serbia, Belgrade, 11000, Serbia
| |
Collapse
|
5
|
Wang Y, Safi M, Hirsch FR, Lu S, Peters S, Govindan R, Rosell R, Park K, Zhang JJ. Immunotherapy for advanced-stage squamous cell lung cancer: the state of the art and outstanding questions. Nat Rev Clin Oncol 2025; 22:200-214. [PMID: 39762577 DOI: 10.1038/s41571-024-00979-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 02/26/2025]
Abstract
Immune-checkpoint inhibitors (ICIs) have transformed the treatment paradigm for advanced-stage squamous non-small-cell lung cancer (LUSC), a histological subtype associated with inferior outcomes compared with lung adenocarcinoma. However, only a subset of patients derive durable clinical benefit. In the first-line setting, multiple ICI regimens are available, including anti-PD-(L)1 antibodies as monotherapy, in combination with chemotherapy, or with an anti-CTLA4 antibody with or without chemotherapy. Several important questions persist regarding the optimal regimen for individual patients, particularly how to identify patients who might benefit from adding chemotherapy and/or anti-CTLA4 antibodies to anti-PD-(L)1 antibodies. An urgent need exists for predictive biomarkers beyond PD-L1 to better guide precision oncology approaches. Deeper knowledge of the underlying molecular biology of LUSC and its implications for response to ICIs will be important in this regard. Integration of this knowledge into multi-omics methods coupled with artificial intelligence might enable the development of more robust biomarkers. Finally, several novel therapeutic strategies, including novel ICIs, bispecific antibodies and personalized cancer vaccines, are emerging. Addressing these unresolved questions through innovative clinical trials and translational research will be crucial to further improving the outcomes of patients with LUSC. In this Review, we provide a comprehensive overview of current immunotherapeutic approaches, unresolved challenges and emerging strategies for patients with LUSC.
Collapse
Affiliation(s)
- Yibei Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mohammed Safi
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Fred R Hirsch
- Center for Thoracic Oncology, Tisch Cancer Institute and Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Shun Lu
- Department of Medical Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Solange Peters
- Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | - Rafael Rosell
- Dr. Rosell Oncology Institute, Dexeus University Hospital, Barcelona, Spain
| | - Keunchil Park
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
- Division of Hematology/Oncology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Jianjun J Zhang
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, the University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Zhou H, Zheng Z, Fan C, Zhou Z. Mechanisms and strategies of immunosenescence effects on non-small cell lung cancer (NSCLC) treatment: A comprehensive analysis and future directions. Semin Cancer Biol 2025; 109:44-66. [PMID: 39793777 DOI: 10.1016/j.semcancer.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Non-small cell lung cancer (NSCLC), the most prevalent form of lung cancer, remains a leading cause of cancer-related mortality worldwide, particularly among elderly individuals. The phenomenon of immunosenescence, characterized by the progressive decline in immune cell functionality with aging, plays a pivotal role in NSCLC progression and contributes to the diminished efficacy of therapeutic interventions in older patients. Immunosenescence manifests through impaired immune surveillance, reduced cytotoxic responses, and increased chronic inflammation, collectively fostering a pro-tumorigenic microenvironment. This review provides a comprehensive analysis of the molecular, cellular, and genetic mechanisms of immunosenescence and its impact on immune surveillance and the tumor microenvironment (TME) in NSCLC. We explore how aging affects various immune cells, including T cells, B cells, NK cells, and macrophages, and how these changes compromise the immune system's ability to detect and eliminate tumor cells. Furthermore, we address the challenges posed by immunosenescence to current therapeutic strategies, particularly immunotherapy, which faces significant hurdles in elderly patients due to immune dysfunction. The review highlights emerging technologies, such as single-cell sequencing and CRISPR-Cas9, which offer new insights into immunosenescence and its potential as a therapeutic target. Finally, we outline future research directions, including strategies for rejuvenating the aging immune system and optimizing immunotherapy for older NSCLC patients, with the goal of improving treatment efficacy and survival outcomes. These efforts hold promise for the development of more effective, personalized therapies for elderly patients with NSCLC.
Collapse
Affiliation(s)
- Huatao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China
| | - Zilong Zheng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China.
| | - Zijing Zhou
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China.
| |
Collapse
|
7
|
Chen HQ, Wang N, Zeng Y, Shi Y, Zhang Z, Li JY, Li YW, Deng SW, Zhou ZY, Liu WB. KCNJ15 inhibits chemical-induced lung carcinogenesis and progression through GNB1 mediated Hippo pathway. Toxicology 2025; 511:154034. [PMID: 39725264 DOI: 10.1016/j.tox.2024.154034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are important environmental carcinogens that can cause lung cancer. However, the underlying epigenetic mechanism during PAHs-induced lung carcinogenesis has remained largely unknown. Previously, we screened some novel epigenetic regulatory genes during 3-methylcholanthrene (3-MCA)-induced lung carcinogenesis, including the potassium inwardly rectifying channel subfamily J member 15 (KCNJ15) gene. This study aimed to investigate the expression regulation, function, and mechanism of KCNJ15 through database analysis, malignant transformed cell model, and xenograft tumor models. We found that KCNJ15 was remarkably under-expressed during lung carcinogenesis and progression. High levels of DNA methylation led to low KCNJ15 expression in 3-MCA-induced malignantly transformed HBE cells. High expression of KCNJ15 was positively correlated with good survival prognosis in lung cancer patients. KCNJ15 overexpression significantly inhibited the growth, invasion, and migration of lung cancer cells both in vitro and in vivo. Knockdown of KCNJ15 resulted in an opposite phenotype. KCNJ15 regulated the Hippo pathway by activating YAP phosphorylation and inhibiting YAP expression. There was a significant protein-protein interaction between KCNJ15 and the G protein subunit beta 1 (GNB1). GNB1 overexpression effectively reduced the effect of KCNJ15 on Hippo pathway. Our data demonstrated that KCNJ15, as a novel epigenetic silencing tumor suppressor, regulates cell growth, invasion, and migration by interaction with GNB1 protein mediating the Hippo-YAP signaling pathway during chemical-induced lung carcinogenesis and progression. It provides novel insights into epigenetic regulation mechanism during carcinogenesis induced by environmental pollutants.
Collapse
Affiliation(s)
- Hong-Qiang Chen
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Na Wang
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Yong Zeng
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Shi
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Zhe Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Jiang-Ying Li
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Ya-Wen Li
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shuang-Wu Deng
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Zi-Yuan Zhou
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wen-Bin Liu
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
8
|
Tolu SS, Viny AD, Amengual JE, Pro B, Bates SE. Getting the right combination to break the epigenetic code. Nat Rev Clin Oncol 2025; 22:117-133. [PMID: 39623073 DOI: 10.1038/s41571-024-00972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 01/26/2025]
Abstract
Rapid advances in the field of epigenetics have facilitated the development of novel therapeutics targeting epigenetic mechanisms that are hijacked by cancer cells to support tumour growth and progression. Several epigenetic agents have been approved by the FDA for the treatment of cancer; however, the efficacy of these drugs is dependent on the underlying biology and drivers of the disease, with inherent differences between solid tumours and haematological malignancies. The efficacy of epigenetic drugs as single agents remains limited across most cancer types, which has spurred the clinical development of combination therapies, with the hope of attaining synergistic activity and/or overcoming treatment resistance. In this Review we discuss clinical advances that have been achieved with the use of epigenetic agents in combination with chemotherapies, immunotherapies or other targeted agents, including epigenetic-epigenetic combinations, as well as limitations and challenges associated with these combinatorial strategies. So far, the success of combination therapies targeting epigenetic mechanisms has generally been confined to haematological malignancies, with limited efficacy observed in patients with solid tumours. Nevertheless, this Review captures the field of epigenetic combination therapies across the spectra of haematology and oncology, highlighting opportunities for precision therapy to effectively harness the potential of epigenetic agents and produce meaningful improvements in clinical outcomes.
Collapse
Affiliation(s)
- Seda S Tolu
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| | - Aaron D Viny
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Jennifer E Amengual
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Barbara Pro
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Susan E Bates
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| |
Collapse
|
9
|
Saqib M, Din ZS, Zafar S, Munawar N, Nawaz R, Ahmed S, Hamdard MH. Lung cancer, platinum analog-based frontline treatment and pharmacogenetic limitations. Per Med 2024; 21:385-400. [PMID: 39560009 DOI: 10.1080/17410541.2024.2391269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/08/2024] [Indexed: 11/20/2024]
Abstract
Lung cancer has the highest mortality rate among all the highly prevalent neoplasia globally. The major concern with its frontline treatment-cisplatin, is the rapid progression of chemoresistance and multi-organ-based toxicities including hearing loss and tinnitus, nephrotoxicity, hepatotoxicity and myelosuppression including anemia and neutropenia. In this review, studies concluding the association of single nucleotide polymorphisms (SNP) in disparate genes with aforementioned toxicity points are summarized to observe the pharmacogenomic pattern. Especially, SNPs in ATP7B, ERCC-1, ERCC-2, MATE-1, OCT-2, ABCB-1, ABCC-1, ABCG-2, ABCC-2, SLC22A, ERCC-5, BRCA-1, GSTM-3, GSTM-4 and GSTM-5 genes appear to be associated with the therapeutic response and/or adverse effects of cisplatin. We recommend utilizing this information to minimize the risk of treatment failure due to chemoresistance and adverse effects on other organs.
Collapse
Affiliation(s)
- Maryam Saqib
- Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Zari Salahud Din
- Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Sehrish Zafar
- Combined Military Hospital College, Lahore, Pakistan
| | - Nayla Munawar
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Rukhsana Nawaz
- Department of Clinical Psychology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Sagheer Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | | |
Collapse
|
10
|
Li H, Luo F, Sun X, Liao C, Wang G, Han Y, Li L, Xu C, Wang W, Cai S, Li G, Wu D. A differentially-methylated-region signature predicts the recurrence risk for patients with early stage lung adenocarcinoma. Aging (Albany NY) 2024; 16:13323-13339. [PMID: 39560475 PMCID: PMC11719112 DOI: 10.18632/aging.206139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 09/02/2024] [Indexed: 11/20/2024]
Abstract
Predicting prognosis in lung cancer patients is important in establishing future treatment and monitoring plans. Lung adenocarcinoma (LUAD) is the most common and aggressive type of lung cancer with dismal prognosis and prognostic stratification would help to guide treatment. Aberrant DNA methylation in tumors occurs earlier than clinical variations, and keeps accumulating as cancer progresses. Preliminary studies have given us some clues that DNA methylation might serve as a promising biomarker for prognosis prediction. Herein, we aimed to study the potential utility of DNA methylation pattern in predicting the recurrence risk of early stage resectable LUAD and to develop a risk-modeling signature based on differentially methylated regions (DMRs). This study consisted of three cohorts of 244 patients with stage I-IIIA LUAD, including marker discovery cohort (n = 39), prognostic model training cohort (n = 117) and validation cohort (n = 80). 468 DMRs between LUAD tumor and adjacent tissues were screened out in the marker discovery cohort (adjusted P < 0.05), and a prognostic signature was developed based on 15 DMRs significantly related to disease-free survival in early stage LUAD patients. The DMR signature showed commendable performance in predicting the recurrence risk of LUAD patients both in model training cohort (P < 0.001; HR = 4.32, 95% CI = 2.39-7.80) and model validation cohort (P = 0.009; HR = 9.08, 95% CI = 1.20-68.80), which might be of great utility both for understanding the molecular basis of LUAD relapse, providing risk stratification of patients, and establishing future monitoring plans.
Collapse
Affiliation(s)
- Heng Li
- Yunnan Cancer Hospital and The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, P.R. China
| | - Fuchao Luo
- Chongqing University Fuling Hospital, Chongqing, P.R. China
| | | | | | | | | | - Leo Li
- Burning Rock Biotech, Guangzhou, P.R. China
| | - Chunwei Xu
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, P.R. China
| | - Wenxian Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, P.R. China
| | | | - Gao Li
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, P.R. China
| | - Di Wu
- The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People’s Hospital), Shenzhen, P.R. China
| |
Collapse
|
11
|
Abdipourbozorgbaghi M, Vancura A, Radpour R, Haefliger S. Circulating miRNA panels as a novel non-invasive diagnostic, prognostic, and potential predictive biomarkers in non-small cell lung cancer (NSCLC). Br J Cancer 2024; 131:1350-1362. [PMID: 39215192 PMCID: PMC11473829 DOI: 10.1038/s41416-024-02831-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is characterised by its aggressiveness and poor prognosis. Early detection and accurate prediction of therapeutic responses remain critical for improving patient outcomes. In the present study, we investigated the potential of circulating microRNA (miRNA) as non-invasive biomarkers in patients with NSCLC. METHODS We quantified miRNA expression in plasma from 122 participants (78 NSCLC; 44 healthy controls). Bioinformatic tools were employed to identify miRNA panels for accurate NSCLC diagnosis. Validation was performed using an independent publicly available dataset of more than 4000 NSCLC patients. Next, we correlated miRNA expression with clinicopathological information to identify independent prognostic miRNAs and those predictive of anti-PD-1 treatment response. RESULTS We identified miRNA panels for lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) diagnosis. The LUAD panel consists of seven circulating miRNAs (miR-9-3p, miR-96-5p, miR-147b-3p, miR-196a-5p, miR-708-3p, miR-708-5p, miR-4652-5p), while the LUSC panel comprises nine miRNAs (miR-130b-3p, miR-269-3p, miR-301a-5p, miR-301b-5p, miR-744-3p, miR-760, miR-767-5p, miR-4652-5p, miR-6499-3p). Additionally, miR-135b-5p, miR-196a-5p, miR-31-5p (LUAD), and miR-205 (LUSC) serve as independent prognostic markers for survival. Furthermore, two miRNA clusters, namely miR-183/96/182 and miR-767/105, exhibit predictive potential in anti-PD-1-treated LUAD patients. CONCLUSIONS Circulating miRNA signatures demonstrate diagnostic and prognostic value for NSCLC and may guide treatment decisions in clinical practice.
Collapse
Affiliation(s)
- Maryam Abdipourbozorgbaghi
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Adrienne Vancura
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Ramin Radpour
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Simon Haefliger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
12
|
Yan Y, Shen S, Li J, Su L, Wang B, Zhang J, Lu J, Luo H, Han P, Xu K, Shen X, Huang S. Cross-omics strategies and personalised options for lung cancer immunotherapy. Front Immunol 2024; 15:1471409. [PMID: 39391313 PMCID: PMC11465239 DOI: 10.3389/fimmu.2024.1471409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
Lung cancer is one of the most common malignant tumours worldwide and its high mortality rate makes it a leading cause of cancer-related deaths. To address this daunting challenge, we need a comprehensive understanding of the pathogenesis and progression of lung cancer in order to adopt more effective therapeutic strategies. In this regard, integrating multi-omics data of the lung provides a highly promising avenue. Multi-omics approaches such as genomics, transcriptomics, proteomics, and metabolomics have become key tools in the study of lung cancer. The application of these methods not only helps to resolve the immunotherapeutic mechanisms of lung cancer, but also provides a theoretical basis for the development of personalised treatment plans. By integrating multi-omics, we have gained a more comprehensive understanding of the process of lung cancer development and progression, and discovered potential immunotherapy targets. This review summarises the studies on multi-omics and immunology in lung cancer, and explores the application of these studies in early diagnosis, treatment selection and prognostic assessment of lung cancer, with the aim of providing more personalised and effective treatment options for lung cancer patients.
Collapse
Affiliation(s)
- Yalan Yan
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Siyi Shen
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jiamin Li
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Lanqian Su
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Binbin Wang
- Intensive Care Unit, Xichong People’s Hospital, Nanchong, China
| | - Jinghan Zhang
- Department of Anaesthesiology, Southwest Medical University, Luzhou, China
| | - Jiaan Lu
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Huiyan Luo
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Ping Han
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Xiang Shen
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Shangke Huang
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Garg P, Singhal S, Kulkarni P, Horne D, Malhotra J, Salgia R, Singhal SS. Advances in Non-Small Cell Lung Cancer: Current Insights and Future Directions. J Clin Med 2024; 13:4189. [PMID: 39064229 PMCID: PMC11278207 DOI: 10.3390/jcm13144189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The leading cause of cancer deaths worldwide is attributed to non-small cell lung cancer (NSCLC), necessitating a continual focus on improving the diagnosis and treatment of this disease. In this review, the latest breakthroughs and emerging trends in managing NSCLC are highlighted. Major advancements in diagnostic methods, including better imaging technologies and the utilization of molecular biomarkers, are discussed. These advancements have greatly enhanced early detection and personalized treatment plans. Significant improvements in patient outcomes have been achieved by new targeted therapies and immunotherapies, providing new hope for individuals with advanced NSCLC. This review discusses the persistent challenges in accessing advanced treatments and their associated costs despite recent progress. Promising research into new therapies, such as CAR-T cell therapy and oncolytic viruses, which could further revolutionize NSCLC treatment, is also highlighted. This review aims to inform and inspire continued efforts to improve outcomes for NSCLC patients globally, by offering a comprehensive overview of the current state of NSCLC treatment and future possibilities.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Sulabh Singhal
- Department of Internal Medicine, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| | - Prakash Kulkarni
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Departments of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Jyoti Malhotra
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S. Singhal
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
14
|
Du C, Tan L, Xiao X, Xin B, Xiong H, Zhang Y, Ke Z, Yin J. Detection of the DNA methylation of seven genes contribute to the early diagnosis of lung cancer. J Cancer Res Clin Oncol 2024; 150:77. [PMID: 38315228 PMCID: PMC10844440 DOI: 10.1007/s00432-023-05588-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Low-dose Computed Tomography (CT) is used for the detection of pulmonary nodules, but the ambiguous risk evaluation causes overdiagnosis. Here, we explored the significance of the DNA methylation of 7 genes including TAC1, CDO1, HOXA9, ZFP42, SOX17, RASSF1A and SHOX2 in the blood cfDNA samples in distinguishing lung cancer from benign nodules and healthy individuals. METHOD A total of 149 lung cancer patients [72 mass and 77 ground-glass nodules (GGNs)], 5 benign and 48 healthy individuals were tested and analyzed in this study. The lasso-logistic regression model was built for distinguishing cancer and control/healthy individuals or IA lung cancer and non-IA lung cancer cases. RESULTS The positive rates of methylation of 7 genes were higher in the cancer group as compared with the healthy group. We constructed a model using age, sex and the ΔCt value of 7 gene methylation to distinguish lung cancer from benign and healthy individuals. The sensitivity, specificity and AUC (area under the curve) were 86.7%, 81.4% and 0.891, respectively. Also, we assessed the significance of 7 gene methylation together with patients' age and sex in distinguishing of GGNs type from the mass type. The sensitivity, specificity and AUC were 77.1%, 65.8% and 0.753, respectively. Furthermore, the methylation positive rates of CDO1 and SHOX2 were different between I-IV stages of lung cancer. Specifically, the positive rate of CDO1 methylation was higher in the non-IA group as compared with the IA group. CONCLUSION Collectively, this study reveals that the methylation of 7 genes has a big significance in the diagnosis of lung cancer with high sensitivity and specificity. Also, the 7 genes present with certain significance in distinguishing the GGN type lung cancer, as well as different stages.
Collapse
Affiliation(s)
- Chaoxiang Du
- Department of Thoracic Surgery, Cancer Center, Zhongshan Hospital of Fudan University, Shanghai, China
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Lijie Tan
- Department of Thoracic Surgery, Cancer Center, Zhongshan Hospital of Fudan University, Shanghai, China
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Xiao Xiao
- School of Physics, Changchun University of Science and Technology, Changchun, 130022, China
- Shanghai Rightongene Biotechnology Co. Ltd., Shanghai, 201403, China
| | - Beibei Xin
- Shanghai Rightongene Biotechnology Co. Ltd., Shanghai, 201403, China
| | - Hui Xiong
- Shanghai Rightongene Biotechnology Co. Ltd., Shanghai, 201403, China
| | - Yuying Zhang
- Shanghai Rightongene Biotechnology Co. Ltd., Shanghai, 201403, China
| | - Zhonghe Ke
- Shanghai Rightongene Biotechnology Co. Ltd., Shanghai, 201403, China.
| | - Jun Yin
- Department of Thoracic Surgery, Cancer Center, Zhongshan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Yang M, Hu X, Tang B, Deng F. Exploring the interplay between methylation patterns and non-coding RNAs in non-small cell lung cancer: Implications for pathogenesis and therapeutic targets. Heliyon 2024; 10:e24811. [PMID: 38312618 PMCID: PMC10835372 DOI: 10.1016/j.heliyon.2024.e24811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Lung cancer is a global public health issue, with non-small cell lung cancer (NSCLC) accounting for 80-85 % of cases. With over two million new diagnoses annually, understanding the complex evolution of this disease is crucial. The development of lung cancer involves a complex interplay of genetic, epigenetic, and environmental factors, leading the key oncogenes and tumor suppressor genes to disorder, and activating the cancer related signaling pathway. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNA (circRNAs) are unique RNA transcripts with diverse biological functions. These ncRNAs are generated through genome transcription and play essential roles in cellular processes. Epigenetic modifications such as DNA methylation, N6-methyladenosine (m6A) modification, and histone methylation have gained significant attention in NSCLC research. The complexity of the interactions among these methylation modifications and ncRNAs contribute to the precise regulation of NSCLC development. This review comprehensively summarizes the associations between ncRNAs and different methylation modifications and discusses their effects on NSCLC. By elucidating these relationships, we aim to advance our understanding of NSCLC pathogenesis and identify potential therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Mei Yang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Xue Hu
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| | - Bin Tang
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Fengmei Deng
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
16
|
Ramazi S, Dadzadi M, Sahafnejad Z, Allahverdi A. Epigenetic regulation in lung cancer. MedComm (Beijing) 2023; 4:e401. [PMID: 37901797 PMCID: PMC10600507 DOI: 10.1002/mco2.401] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 10/31/2023] Open
Abstract
Lung cancer is indeed a major cause of cancer-related deaths worldwide. The development of tumors involves a complex interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms, including DNA methylation (DNAm), histone modifications, and microRNA expression, play a crucial role in this process. Changes in DNAm patterns can lead to the silencing of important genes involved in cellular functions, contributing to the development and progression of lung cancer. MicroRNAs and exosomes have also emerged as reliable biomarkers for lung cancer. They can provide valuable information about early diagnosis and treatment assessment. In particular, abnormal hypermethylation of gene promoters and its effects on tumorigenesis, as well as its roles in the Wnt signaling pathway, have been extensively studied. Epigenetic drugs have shown promise in the treatment of lung cancer. These drugs target the aberrant epigenetic modifications that are involved in the development and progression of the disease. Several factors have been identified as drug targets in non-small cell lung cancer. Recently, combination therapy has been discussed as a successful strategy for overcoming drug resistance. Overall, understanding the role of epigenetic mechanisms and their targeting through drugs is an important area of research in lung cancer treatment.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Maedeh Dadzadi
- Department of BiotechnologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Zahra Sahafnejad
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Abdollah Allahverdi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
17
|
Meira DD, de Castro e Caetano MC, Casotti MC, Zetum ASS, Gonçalves AFM, Moreira AR, de Oliveira AH, Pesente F, Santana GM, de Almeida Duque D, Pereira GSC, de Castro GDSC, Pavan IP, Chagas JPS, Bourguignon JHB, de Oliveira JR, Barbosa KRM, Altoé LSC, Louro LS, Merigueti LP, Alves LNR, Machado MRR, Roque MLRO, Prates PS, de Paula Segáua SH, dos Santos Uchiya T, Louro TES, Daleprane VE, Guaitolini YM, Vicente CR, dos Reis Trabach RS, de Araújo BC, dos Santos EDVW, de Paula F, Lopes TJS, de Carvalho EF, Louro ID. Prognostic Factors and Markers in Non-Small Cell Lung Cancer: Recent Progress and Future Challenges. Genes (Basel) 2023; 14:1906. [PMID: 37895255 PMCID: PMC10606762 DOI: 10.3390/genes14101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/29/2023] Open
Abstract
Lung cancer is a highly aggressive neoplasm and, despite the development of recent therapies, tumor progression and recurrence following the initial response remains unsolved. Several questions remain unanswered about non-small cell lung cancer (NSCLC): (1) Which patients will actually benefit from therapy? (2) What are the predictive factors of response to MAbs and TKIs? (3) What are the best combination strategies with conventional treatments or new antineoplastic drugs? To answer these questions, an integrative literature review was carried out, searching articles in PUBMED, NCBI-PMC, Google Academic, and others. Here, we will examine the molecular genetics of lung cancer, emphasizing NSCLC, and delineate the primary categories of inhibitors based on their molecular targets, alongside the main treatment alternatives depending on the type of acquired resistance. We highlighted new therapies based on epigenetic information and a single-cell approach as a potential source of new biomarkers. The current and future of NSCLC management hinges upon genotyping correct prognostic markers, as well as on the evolution of precision medicine, which guarantees a tailored drug combination with precise targeting.
Collapse
Affiliation(s)
- Débora Dummer Meira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Maria Clara de Castro e Caetano
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Matheus Correia Casotti
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Aléxia Stefani Siqueira Zetum
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - André Felipe Monteiro Gonçalves
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - André Rodrigues Moreira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Augusto Henrique de Oliveira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Fellipe Pesente
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Gabriel Mendonça Santana
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, Brazil
| | - Daniel de Almeida Duque
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Gierleson Santos Cangussu Pereira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Giulia de Souza Cupertino de Castro
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Isabele Pagani Pavan
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - João Pedro Sarcinelli Chagas
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - José Henrique Borges Bourguignon
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Juliana Ribeiro de Oliveira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Karen Ruth Michio Barbosa
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Lorena Souza Castro Altoé
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Luana Santos Louro
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, Brazil
| | - Luiza Poppe Merigueti
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Lyvia Neves Rebello Alves
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Marlon Ramos Rosado Machado
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Maria Luísa Rodrigues Oliveira Roque
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Pedro Santana Prates
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Sayuri Honorio de Paula Segáua
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Taissa dos Santos Uchiya
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Thomas Erik Santos Louro
- Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória (EMESCAM), Curso de Medicina, Vitória 29027-502, Brazil
| | - Vinicius Eduardo Daleprane
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Yasmin Moreto Guaitolini
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Creuza Rachel Vicente
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitória 29090-040, Brazil
| | - Raquel Silva dos Reis Trabach
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Bruno Cancian de Araújo
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Eldamária de Vargas Wolfgramm dos Santos
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Flávia de Paula
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Tiago José S. Lopes
- Department of Reproductive Biology, National Center for Child Health and Development Research Institute, Tokyo 157-8535, Japan
| | - Elizeu Fagundes de Carvalho
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Iúri Drumond Louro
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| |
Collapse
|
18
|
Murphy C, Gornés Pons G, Keogh A, Ryan L, McCarra L, Jose CM, Kesar S, Nicholson S, Fitzmaurice GJ, Ryan R, Young V, Cuffe S, Finn SP, Gray SG. An Analysis of JADE2 in Non-Small Cell Lung Cancer (NSCLC). Biomedicines 2023; 11:2576. [PMID: 37761019 PMCID: PMC10526426 DOI: 10.3390/biomedicines11092576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 09/29/2023] Open
Abstract
The JADE family comprises three members encoded by individual genes and roles for these proteins have been identified in chromatin remodeling, cell cycle progression, cell regeneration and the DNA damage response. JADE family members, and in particular JADE2 have not been studied in any great detail in cancer. Using a series of standard biological and bioinformatics approaches we investigated JADE2 expression in surgically resected non-small cell lung cancer (NSCLC) for both mRNA and protein to examine for correlations between JADE2 expression and overall survival. Additional correlations were identified using bioinformatic analyses on multiple online datasets. Our analysis demonstrates that JADE2 expression is significantly altered in NSCLC. High expression of JADE2 is associated with a better 5-year overall survival. Links between JADE2 mRNA expression and a number of mutated genes were identified, and associations between JADE2 expression and tumor mutational burden and immune cell infiltration were explored. Potential new drugs that can target JADE2 were identified. The results of this biomarker-driven study suggest that JADE2 may have potential clinical utility in the diagnosis, prognosis and stratification of patients into various therapeutically targetable options.
Collapse
Affiliation(s)
- Ciara Murphy
- Department of Histopathology, Labmed Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (S.P.F.)
- Thoracic Oncology Research Group, Central Pathology Laboratory, Trinity St. James’s Cancer Institute (TSJCI), St. James’s Hospital, D08 RX0X Dublin, Ireland (A.K.)
| | - Glòria Gornés Pons
- Thoracic Oncology Research Group, Central Pathology Laboratory, Trinity St. James’s Cancer Institute (TSJCI), St. James’s Hospital, D08 RX0X Dublin, Ireland (A.K.)
- Faculty of Biology, University of Barcelona, 08025 Barcelona, Spain
| | - Anna Keogh
- Thoracic Oncology Research Group, Central Pathology Laboratory, Trinity St. James’s Cancer Institute (TSJCI), St. James’s Hospital, D08 RX0X Dublin, Ireland (A.K.)
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Lisa Ryan
- Department of Histopathology, Labmed Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (S.P.F.)
| | - Lorraine McCarra
- Department of Histopathology, Labmed Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (S.P.F.)
| | - Chris Maria Jose
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Shagun Kesar
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Siobhan Nicholson
- Department of Histopathology, Labmed Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (S.P.F.)
| | - Gerard J. Fitzmaurice
- Surgery, Anaesthesia and Critical Care Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (V.Y.)
| | - Ronan Ryan
- Surgery, Anaesthesia and Critical Care Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (V.Y.)
| | - Vincent Young
- Surgery, Anaesthesia and Critical Care Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (V.Y.)
| | - Sinead Cuffe
- HOPE Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Stephen P. Finn
- Department of Histopathology, Labmed Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (S.P.F.)
- Thoracic Oncology Research Group, Central Pathology Laboratory, Trinity St. James’s Cancer Institute (TSJCI), St. James’s Hospital, D08 RX0X Dublin, Ireland (A.K.)
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Steven G. Gray
- Thoracic Oncology Research Group, Central Pathology Laboratory, Trinity St. James’s Cancer Institute (TSJCI), St. James’s Hospital, D08 RX0X Dublin, Ireland (A.K.)
- Department of Clinical Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- School of Biological Sciences, Technological University Dublin, D07 XT95 Dublin, Ireland
| |
Collapse
|
19
|
Gao J, Han S, Gu J, Wu C, Mu X. The Prognostic and Therapeutic Role of Histone Acetylation Modification in LIHC Development and Progression. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1682. [PMID: 37763801 PMCID: PMC10536947 DOI: 10.3390/medicina59091682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Background and Objectives: The modification of histone acetylation plays a vital role in regulating tumor occurrence and development, but the interaction between histone acetylation modulator genes and the liver hepatocellular carcinoma (LIHC) microenvironment, as well as immunotherapy, has not been investigated. Materials and Methods: Analysis of all statistical data was carried out using R software (Version 4.2.0) and the online tool Sangerbox. Comprehensive bioinformatics analysis, including signature construction and validation, functional analyses, immune and genomic features analyses, and immunotherapy prediction analyses, were performed to explore the prognostic and therapeutic role of histone acetylation modulator genes in LIHC development and progression. Results: The LIHC cohort from The Cancer Genome Atlas (TCGA) database was selected as the training cohort; the GSE76427 cohort from the Gene Expression Omnibus (GEO) database and the LIRI-JP cohort from the International Cancer Genome Consortium (ICGC) database were selected as the validation cohorts. The histone acetylation modulator gene-based prognostic signature was constructed and validated successfully. Immune infiltration analysis showed that most immune cells and immune functions were enriched in patients with high histone acetylation risk scores (HARS). Additionally, high levels of checkpoint inhibitors (ICIs) and human leukocyte antigens (HLAs) were also observed in high HARS patients. Meanwhile, TIDE algorithm analysis was conducted to explore the relationship between HARS and immunotherapy response, and submap algorithm analysis was used for the verification of the results, from which we found that high HAPS patients were more likely to respond to immunotherapy. Conclusions: Our findings revealed that the histone acetylation modulator genes, particularly for KAT21, SIRT6, and HAT1, may have the potential to function as a new prognostic marker and therapeutic target for LIHC.
Collapse
Affiliation(s)
- Ji Gao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China (J.G.)
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing 210029, China
| | - Sheng Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China (J.G.)
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing 210029, China
| | - Jian Gu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China (J.G.)
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing 210029, China
| | - Chen Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China (J.G.)
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing 210029, China
| | - Xiaoxin Mu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China (J.G.)
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing 210029, China
| |
Collapse
|
20
|
Shi Y, Shin DS. Dysregulation of SWI/SNF Chromatin Remodelers in NSCLC: Its Influence on Cancer Therapies including Immunotherapy. Biomolecules 2023; 13:984. [PMID: 37371564 DOI: 10.3390/biom13060984] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. Molecularly targeted therapeutics and immunotherapy revolutionized the clinical care of NSCLC patients. However, not all NSCLC patients harbor molecular targets (e.g., mutated EGFR), and only a subset benefits from immunotherapy. Moreover, we are lacking reliable biomarkers for immunotherapy, although PD-L1 expression has been mainly used for guiding front-line therapeutic options. Alterations of the SWI/SNF chromatin remodeler occur commonly in patients with NSCLC. This subset of NSCLC tumors tends to be undifferentiated and presents high heterogeneity in histology, and it shows a dismal prognosis because of poor response to the current standard therapies. Catalytic subunits SMARCA4/A2 and DNA binding subunits ARID1A/ARID1B/ARID2 as well as PBRM1 were identified to be the most commonly mutated subunits of SWI/SNF complexes in NSCLC. Mechanistically, alteration of these SWI/SNF subunits contributes to the tumorigenesis of NSCLC through compromising the function of critical tumor suppressor genes, enhancing oncogenic activity as well as impaired DNA repair capacity related to genomic instability. Several vulnerabilities of NSCLCS with altered SWI/SNF subunits were detected and evaluated clinically using EZH2 inhibitors, PROTACs of mutual synthetic lethal paralogs of the SWI/SNF subunits as well as PARP inhibitors. The response of NSCLC tumors with an alteration of SWI/SNF to ICIs might be confounded by the coexistence of mutations in genes capable of influencing patients' response to ICIs. High heterogenicity in the tumor with SWI/SNF deficiency might also be responsible for the seemingly conflicting results of ICI treatment of NSCLC patients with alterations of SWI/SNF. In addition, an alteration of each different SWI/SNF subunit might have a unique impact on the response of NSCLC with deficient SWI/SNF subunits. Prospective studies are required to evaluate how the alterations of the SWI/SNF in the subset of NSCLC patients impact the response to ICI treatment. Finally, it is worthwhile to point out that combining inhibitors of other chromatin modulators with ICIs has been proven to be effective for the treatment of NSCLC with deficient SWI/SNF chromatin remodelers.
Collapse
Affiliation(s)
- Yijiang Shi
- Division of Hematology/Oncology, Department of Medicine, Los Angeles, CA 90073, USA
- Division of Hematology/Oncology, Department of Medicine, VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA
| | - Daniel Sanghoon Shin
- Division of Hematology/Oncology, Department of Medicine, Los Angeles, CA 90073, USA
- Division of Hematology/Oncology, Department of Medicine, VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA
| |
Collapse
|
21
|
Sulewska A, Pilz L, Manegold C, Ramlau R, Charkiewicz R, Niklinski J. A Systematic Review of Progress toward Unlocking the Power of Epigenetics in NSCLC: Latest Updates and Perspectives. Cells 2023; 12:cells12060905. [PMID: 36980246 PMCID: PMC10047383 DOI: 10.3390/cells12060905] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Epigenetic research has the potential to improve our understanding of the pathogenesis of cancer, specifically non-small-cell lung cancer, and support our efforts to personalize the management of the disease. Epigenetic alterations are expected to have relevance for early detection, diagnosis, outcome prediction, and tumor response to therapy. Additionally, epi-drugs as therapeutic modalities may lead to the recovery of genes delaying tumor growth, thus increasing survival rates, and may be effective against tumors without druggable mutations. Epigenetic changes involve DNA methylation, histone modifications, and the activity of non-coding RNAs, causing gene expression changes and their mutual interactions. This systematic review, based on 110 studies, gives a comprehensive overview of new perspectives on diagnostic (28 studies) and prognostic (25 studies) epigenetic biomarkers, as well as epigenetic treatment options (57 studies) for non-small-cell lung cancer. This paper outlines the crosstalk between epigenetic and genetic factors as well as elucidates clinical contexts including epigenetic treatments, such as dietary supplements and food additives, which serve as anti-carcinogenic compounds and regulators of cellular epigenetics and which are used to reduce toxicity. Furthermore, a future-oriented exploration of epigenetic studies in NSCLC is presented. The findings suggest that additional studies are necessary to comprehend the mechanisms of epigenetic changes and investigate biomarkers, response rates, and tailored combinations of treatments. In the future, epigenetics could have the potential to become an integral part of diagnostics, prognostics, and personalized treatment in NSCLC.
Collapse
Affiliation(s)
- Anetta Sulewska
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence: (A.S.); (J.N.)
| | - Lothar Pilz
- Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Christian Manegold
- Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Rodryg Ramlau
- Department of Oncology, Poznan University of Medical Sciences, 60-569 Poznan, Poland
| | - Radoslaw Charkiewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence: (A.S.); (J.N.)
| |
Collapse
|
22
|
Lee YH, Do SK, Lee SY, Kang HG, Choi JE, Hong MJ, Lee JH, Lee S, Lee WK, Jeong JY, Shin KM, Park JE, Choi SH, Seo H, Yoo SS, Lee J, Cha SI, Kim CH, Park JY. Genetic Variants in Histone Modification Regions Predict Clinical Outcomes of Pemetrexed Chemotherapy in Lung Adenocarcinoma. Oncology 2023; 101:96-104. [PMID: 36257285 PMCID: PMC9932833 DOI: 10.1159/000527492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This study was conducted to investigate the association between genetic variants in histone modification regions and clinical outcomes of PEM chemotherapy in patients with lung adenocarcinoma. METHODS Potentially functional SNPs were selected using integrated analysis of ChIP-seq and RNA-seq. The associations of 279 SNPs with chemotherapy response and overall survival (OS) were analyzed in 314 lung adenocarcinoma patients who underwent PEM chemotherapy. RESULTS Among the SNPs investigated, 18 were significantly associated with response to chemotherapy, while 28 with OS. Of these SNPs, rs549794A>G in an enhancer which is expected to regulate the expression of ribosomal protein S3 (RPS3) gene was significantly associated with both worse response to chemotherapy and worse OS (adjusted odds ratio = 0.59, 95% CI = 0.36-0.97, p = 0.04; adjusted hazard ratio = 1.44, 95% CI = 1.09-1.91, p = 0.01, respectively). Previous studies suggested that RPS3, a multi-functional protein with various extraribosomal activities, may play a role in chemotherapy resistance. Therefore, it is postulated that rs549794-induced change in the expression level of RPS3 may affect the response to PEM chemotherapy and consequently the survival outcomes in lung adenocarcinoma patients. CONCLUSION This study suggests that genetic variants in the histone modification regions may be useful for the prediction of clinical outcomes of PEM chemotherapy in advanced lung adenocarcinoma.
Collapse
Affiliation(s)
- Yong Hoon Lee
- Departments of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sook Kyung Do
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Shin Yup Lee
- Departments of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea,*Shin Yup Lee,
| | - Hyo-Gyoung Kang
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jin Eun Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Jeong Hong
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jang Hyuck Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sunwoong Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Won Kee Lee
- Department of Medical Informatics, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Medical Research Collaboration Center in Kyungpook National University Hospital and School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Yun Jeong
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung Min Shin
- Department of Radiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Eun Park
- Departments of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sun Ha Choi
- Departments of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Hyewon Seo
- Departments of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Soo Yoo
- Departments of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Jaehee Lee
- Departments of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Ick Cha
- Departments of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chang Ho Kim
- Departments of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae Yong Park
- Departments of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea,**Jae Yong Park,
| |
Collapse
|
23
|
Circulating Tumor DNA Methylation Biomarkers for Characterization and Determination of the Cancer Origin in Malignant Liver Tumors. Cancers (Basel) 2023; 15:cancers15030859. [PMID: 36765815 PMCID: PMC9913861 DOI: 10.3390/cancers15030859] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Malignant liver tumors include primary malignant liver tumors and liver metastases. They are among the most common malignancies worldwide. The disease has a poor prognosis and poor overall survival, especially with liver metastases. Therefore, early detection and differentiation between malignant liver tumors are critical for patient treatment selection. The detection of cancer and the prediction of its origin is possible with a DNA methylation profile of the tumor DNA compared to that of normal cells, which reflects tissue differentiation and malignant transformation. New technologies enable the characterization of the tumor methylome in circulating tumor DNA (ctDNA), providing a variety of new ctDNA methylation biomarkers, which can provide additional information to clinical decision-making. Our review of the literature provides insight into methylation changes in ctDNA from patients with common malignant liver tumors and can serve as a starting point for further research.
Collapse
|
24
|
Samarth N, Gulhane P, Singh S. Immunoregulatory framework and the role of miRNA in the pathogenesis of NSCLC - A systematic review. Front Oncol 2022; 12:1089320. [PMID: 36620544 PMCID: PMC9811680 DOI: 10.3389/fonc.2022.1089320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
With a 5-year survival rate of only 15%, non-small cell lung cancer (NSCLC), the most common kind of lung carcinoma and the cause of millions of deaths annually, has drawn attention. Numerous variables, such as disrupted signaling caused by somatic mutations in the EGFR-mediated RAS/RAF/MAPK, PI3K/AKT, JAK/STAT signaling cascade, supports tumour survival in one way or another. Here, the tumour microenvironment significantly contributes to the development of cancer by thwarting the immune response. MicroRNAs (miRNAs) are critical regulators of gene expression that can function as oncogenes or oncosuppressors. They have a major influence on the occurrence and prognosis of NSCLC. Though, a myriad number of therapies are available and many are being clinically tested, still the drug resistance, its adverse effect and toxicity leading towards fatality cannot be ruled out. In this review, we tried to ascertain the missing links in between perturbed EGFR signaling, miRNAs favouring tumorigenesis and the autophagy mechanism. While connecting all the aforementioned points multiple associations were set, which can be targeted in order to combat NSCLC. Here, we tried illuminating designing synthetically engineered circuits with the toggle switches that might lay a prototype for better therapeutic paradigm.
Collapse
Affiliation(s)
| | | | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, India
| |
Collapse
|
25
|
Lesbon JCC, Garnica TK, Xavier PLP, Rochetti AL, Reis RM, Müller S, Fukumasu H. A Screening of Epigenetic Therapeutic Targets for Non-Small Cell Lung Cancer Reveals PADI4 and KDM6B as Promising Candidates. Int J Mol Sci 2022; 23:ijms231911911. [PMID: 36233212 PMCID: PMC9570250 DOI: 10.3390/ijms231911911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Despite advances in diagnostic and therapeutic approaches for lung cancer, new therapies targeting metastasis by the specific regulation of cancer genes are needed. In this study, we screened a small library of epigenetic inhibitors in non-small-cell lung cancer (NSCLC) cell lines and evaluated 38 epigenetic targets for their potential role in metastatic NSCLC. The potential candidates were ranked by a streamlined approach using in silico and in vitro experiments based on publicly available databases and evaluated by real-time qPCR target gene expression, cell viability and invasion assays, and transcriptomic analysis. The survival rate of patients with lung adenocarcinoma is inversely correlated with the gene expression of eight epigenetic targets, and a systematic review of the literature confirmed that four of them have already been identified as targets for the treatment of NSCLC. Using nontoxic doses of the remaining inhibitors, KDM6B and PADI4 were identified as potential targets affecting the invasion and migration of metastatic lung cancer cell lines. Transcriptomic analysis of KDM6B and PADI4 treated cells showed altered expression of important genes related to the metastatic process. In conclusion, we showed that KDM6B and PADI4 are promising targets for inhibiting the metastasis of lung adenocarcinoma cancer cells.
Collapse
Affiliation(s)
- Jéssika Cristina Chagas Lesbon
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Duque de Caxias, 225-Jardim Elite, Pirassununga 13635-900, SP, Brazil
| | - Taismara Kustro Garnica
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Duque de Caxias, 225-Jardim Elite, Pirassununga 13635-900, SP, Brazil
| | - Pedro Luiz Porfírio Xavier
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Duque de Caxias, 225-Jardim Elite, Pirassununga 13635-900, SP, Brazil
| | - Arina Lázaro Rochetti
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Duque de Caxias, 225-Jardim Elite, Pirassununga 13635-900, SP, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Hospital de Amor, Antenor Duarte Viléla, 1331-Dr. Paulo Prata, Barretos 14784-400, SP, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Susanne Müller
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str 15-60438, 60438 Frankfurt am Main, Germany
| | - Heidge Fukumasu
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Duque de Caxias, 225-Jardim Elite, Pirassununga 13635-900, SP, Brazil
- Correspondence:
| |
Collapse
|
26
|
Ashrafi A, Akter Z, Modareszadeh P, Modareszadeh P, Berisha E, Alemi PS, Chacon Castro MDC, Deese AR, Zhang L. Current Landscape of Therapeutic Resistance in Lung Cancer and Promising Strategies to Overcome Resistance. Cancers (Basel) 2022; 14:4562. [PMID: 36230484 PMCID: PMC9558974 DOI: 10.3390/cancers14194562] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide with a 5-year survival rate of less than 18%. Current treatment modalities include surgery, chemotherapy, radiation therapy, targeted therapy, and immunotherapy. Despite advances in therapeutic options, resistance to therapy remains a major obstacle to the effectiveness of long-term treatment, eventually leading to therapeutic insensitivity, poor progression-free survival, and disease relapse. Resistance mechanisms stem from genetic mutations and/or epigenetic changes, unregulated drug efflux, tumor hypoxia, alterations in the tumor microenvironment, and several other cellular and molecular alterations. A better understanding of these mechanisms is crucial for targeting factors involved in therapeutic resistance, establishing novel antitumor targets, and developing therapeutic strategies to resensitize cancer cells towards treatment. In this review, we summarize diverse mechanisms driving resistance to chemotherapy, radiotherapy, targeted therapy, and immunotherapy, and promising strategies to help overcome this therapeutic resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
27
|
Sun H, Sun Q, Qiu X, Zhang G, Chen G, Li A, Dai J. WD repeat domain 43 promotes malignant progression of non-small cell lung cancer by regulating CDK2. Int J Biochem Cell Biol 2022; 151:106293. [PMID: 36041702 DOI: 10.1016/j.biocel.2022.106293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022]
Abstract
Non-small cell lung cancer (NSCLC) ranks highly among malignant tumors in the world in terms of morbidity and mortality. By using bioinformatics, we screened and obtained a novel oncogene WDR43, a member of the WD-repeat protein encoding family that is closely related to tumor progression. PCR and immunohistochemistry showed that WDR43 is highly expressed in NSCLC. High WDR43 expression in NSCLC was associated with worse clinical symptoms and prognosis. Knocked down expression of WDR43 significantly impaired the migration and proliferation and cell-cycle arrest in G1 phase in NSCLC cell lines. WDR43 can directly interact with cyclin-dependent kinase 2 and induce the expression of cyclin proteins. Our results suggest that WDR43 is a promising target of protein-protein interaction inhibitors for treatment of NSCLC.
Collapse
Affiliation(s)
- Haijun Sun
- Department of Thoracic Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China; The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China; The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China; Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Qi Sun
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany
| | - Xie Qiu
- Department of Thoracic Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China; The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China; The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China; Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Gongming Zhang
- Department of Pathology, The First People's Hospital of Lianyungang The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China; Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Guanghui Chen
- Department of Thoracic Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China; The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China; The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China; Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Aimin Li
- Department of Neurosurgery, The First People's Hospital of Lianyungang City, Lianyungang, Jiangsu, China; The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China; The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China; Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Jianhua Dai
- Department of Thoracic Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China; The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China; The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China; Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China.
| |
Collapse
|
28
|
Rath S, Chakraborty D, Pradhan J, Imran Khan M, Dandapat J. Epigenomic interplay in tumor heterogeneity: Potential of epidrugs as adjunct therapy. Cytokine 2022; 157:155967. [PMID: 35905624 DOI: 10.1016/j.cyto.2022.155967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022]
Abstract
"Heterogeneity" in tumor mass has immense importance in cancer progression and therapy. The impact of tumor heterogeneity is an emerging field and not yet fully explored. Tumor heterogeneity is mainly considered as intra-tumor heterogeneity and inter-tumor heterogeneity based on their origin. Intra-tumor heterogeneity refers to the discrepancy within the same cancer mass while inter-tumor heterogeneity refers to the discrepancy between different patients having the same tumor type. Both of these heterogeneity types lead to variation in the histopathological as well as clinical properties of the cancer mass which drives disease resistance towards therapeutic approaches. Cancer stem cells (CSCs) act as pinnacle progenitors for heterogeneity development along with various other genetic and epigenetic parameters that are regulating this process. In recent times epigenetic factors are one of the most studied parameters that drive oxidative stress pathways essential during cancer progression. These epigenetic changes are modulated by various epidrugs and have an impact on tumor heterogeneity. The present review summarizes various aspects of epigenetic regulation in the tumor microenvironment, oxidative stress, and progression towards tumor heterogeneity that creates complications during cancer treatment. This review also explores the possible role of epidrugs in regulating tumor heterogeneity and personalized therapy against drug resistance.
Collapse
Affiliation(s)
- Suvasmita Rath
- Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| | - Diptesh Chakraborty
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Jyotsnarani Pradhan
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Mohammad Imran Khan
- Department of Biochemistry, King Abdulaziz University (KAU), Jeddah 21577, Saudi Arabia; Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jagneshwar Dandapat
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India; Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India.
| |
Collapse
|
29
|
Wang B, Gu X, Xiang BL, Zhao JQ, Zhang CH, Huang PD, Zhang ZH. eEF-2K knockdown synergizes with STS treatment to inhibit cell proliferation, migration, and invasion via the TG2/ERK pathway in A549 cells. J Biochem Mol Toxicol 2022; 36:e23158. [PMID: 35844142 DOI: 10.1002/jbt.23158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 04/12/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022]
Abstract
Emerging research has suggested the anticancer potential of tanshinone IIA, the bioactive ingredient isolated from the traditional Chinese herb Salvia miltiorrhiza. However, the molecular mechanism of sodium tanshinone IIA sulfonate (STS) antilung cancer effect is not very clear. In this study, our purpose is to investigate the roles of STS and elongation factor-2 kinase (eEF-2K) in regulating the proliferation, migration, and invasion of A549 cells and explore the implicated pathways. We found that STS suppressed A549 cell survival and proliferation in a time- and xdose-dependent manner. Knockdown of eEF-2K and treatment with STS synergistically exerted antiproliferative, -migratory, and -invasive effects on A549 cells. These effects were caused by attenuation of the extracellular signal-regulated kinase (ERK) pathway via inhibition of tissue transglutaminase (TG2). In summary, the inhibition of eEF-2K synergizes with STS treatment, exerting anticancer effects on lung adenocarcinoma cells through the TG2/ERK signaling pathway, which provides a potential therapeutic target for treating lung adenocarcinoma.
Collapse
Affiliation(s)
- Bu Wang
- Department of Respiratory Medicine, First Affiliated Hospital of Hebei Northern College, Zhangjiakou, Hebei, PR China
| | - Xin Gu
- Department of Neurology, First Affiliated Hospital of Hebei Northern College, Zhangjiakou, Hebei, PR China
| | - Bao-Li Xiang
- Department of Respiratory Medicine, First Affiliated Hospital of Hebei Northern College, Zhangjiakou, Hebei, PR China
| | - Jian-Qing Zhao
- Department of Respiratory Medicine, First Affiliated Hospital of Hebei Northern College, Zhangjiakou, Hebei, PR China
| | - Chang-Hong Zhang
- Department of Respiratory Medicine, First Affiliated Hospital of Hebei Northern College, Zhangjiakou, Hebei, PR China
| | - Pan-Deng Huang
- Department of Geriatrics, First Affiliated Hospital of Hebei Northern College, Zhangjiakou, Hebei, PR China
| | - Zhi-Hua Zhang
- Department of Respiratory Medicine, First Affiliated Hospital of Hebei Northern College, Zhangjiakou, Hebei, PR China
| |
Collapse
|
30
|
Duan J, Zhong B, Fan Z, Zhang H, Xu M, Zhang X, Sanders YY. DNA methylation in pulmonary fibrosis and lung cancer. Expert Rev Respir Med 2022; 16:519-528. [PMID: 35673969 DOI: 10.1080/17476348.2022.2085091] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Juan Duan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Baiyun Zhong
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhihua Fan
- Xiangya Medical school of Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Xiangya Medical school of Central South University, Changsha, Hunan, China
| | - Mengmeng Xu
- Xiangya Medical school of Central South University, Changsha, Hunan, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Y Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 901 19 Street South, BMRII Room 408, Birmingham, AL 35294, USA
| |
Collapse
|
31
|
Yang S, Huang Y, Zhao Q. Epigenetic Alterations and Inflammation as Emerging Use for the Advancement of Treatment in Non-Small Cell Lung Cancer. Front Immunol 2022; 13:878740. [PMID: 35514980 PMCID: PMC9066637 DOI: 10.3389/fimmu.2022.878740] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022] Open
Abstract
Lung cancer remains one of the most common malignancies in the world. Nowadays, the most common lung cancer is non-small cell lung cancer (NSCLC), namely, adenocarcinoma, squamous cell carcinoma, and large cell lung carcinoma. Epigenetic alterations that refer to DNA methylation, histone modifications, and noncoding RNA expression, are now suggested to drive the genesis and development of NSCLC. Additionally, inflammation-related tumorigenesis also plays a vital role in cancer research and efforts have been attempted to reverse such condition. During the occurrence and development of inflammatory diseases, the immune component of inflammation may cause epigenetic changes, but it is not always certain whether the immune component itself or the stimulated host cells cause epigenetic changes. Moreover, the links between epigenetic alterations and cancer-related inflammation and their influences on the human cancer are not clear so far. Therefore, the connection between epigenetic drivers, inflammation, and NSCLC will be summarized. Investigation on such topic is most likely to shed light on the molecular and immunological mechanisms of epigenetic and inflammatory factors and promote the application of epigenetics in the innovative diagnostic and therapeutic strategies for NSCLC.
Collapse
Affiliation(s)
- Shuo Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| | - Yang Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau SAR, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| |
Collapse
|
32
|
Identification and Validation of 7-lncRNA Signature of Epigenetic Disorders by Comprehensive Epigenetic Analysis. DISEASE MARKERS 2022; 2022:5118444. [PMID: 35237359 PMCID: PMC8885251 DOI: 10.1155/2022/5118444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 12/30/2022]
Abstract
The survival rate of patients with lung adenocarcinoma (LUAD) is low. This study analyzed the correlation between the expression of long noncoding RNA (lncRNA) and epigenetic alterations along with the investigation of the prognostic value of these outcomes for LUAD. Differentially expressed lncRNAs were identified based on multiomic data and positively related genes using DESeq2 in R, differentially histone-modifying genes specific to LUAD based on histone modification data, gene enhancers from information collected from the FANTOM5 (Function Annotation Of The Mammalian Genome-5) (fantom.gsc.riken.jp/5) human enhancer database, gene promoters using the ChIPseeker and the human lincRNAs Transcripts database in R, and differentially methylated regions (DMRs) using Bumphunter in R. Overall survival was estimated by Kaplan-Meier, comparisons were performed among groups using log-rank tests to derive differences between sample subclasses, and epigenetic lncRNAs (epi-lncRNAs) potentially relevant to LUAD prognosis were identified. A total of seven dysregulated epi-lncRNAs in LUAD were identified by comparing histone modifications and alterations in histone methylation regions on lncRNA promoter and enhancer elements, including H3K4me2, H3K27me3, H3K4me1, H3K9me3, H4K20me1, H3K9ac, H3K79me2, H3K27ac, H3K4me3, and H3K36me3. Furthermore, 69 LUAD-specific dysregulated epi-lncRNAs were identified. Moreover, lncRNAs-based prognostic analysis of LUAD samples was performed and explored that seven of these lncRNAs, including A2M-AS1, AL161431.1, DDX11-AS1, FAM83A-AS1, MHENCR, MNX1-AS1, and NKILA (7-EpiLncRNA), showed the potential to serve as markers for LUAD prognosis. Additionally, patients having a high 7-EpiLncRNA score showed a generally more unfavorable prognosis compared with those which scored lower. Seven lncRNAs were identified as markers of prognosis in patients with LUAD. The outcomes of this research will help us understand epigenetically aberrant regulation of lncRNA expression in LUAD in a better way and have implications for research advances in the regulatory role of lncRNAs in LUAD.
Collapse
|
33
|
Gordon MS, Shapiro GI, Sarantopoulos J, Juric D, Lu B, Zarotiadou A, Connarn JN, Le Bruchec Y, Dumitru CD, Harvey RD. Phase Ib Study of the Histone Deacetylase 6 Inhibitor Citarinostat in Combination With Paclitaxel in Patients With Advanced Solid Tumors. Front Oncol 2022; 11:786120. [PMID: 35070991 PMCID: PMC8779022 DOI: 10.3389/fonc.2021.786120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Citarinostat (CC-96241; previously ACY-241), an oral inhibitor of histone deacetylases (HDACs) with selectivity for HDAC6, has demonstrated synergistic anticancer activity with paclitaxel in multiple solid tumor models. Combination therapy using citarinostat with paclitaxel was evaluated in this phase Ib 3 + 3 dose-escalation study in patients with advanced solid tumors. METHODS Patients with previously treated advanced solid tumors received citarinostat 180, 360, or 480 mg once daily on days 1 to 21 plus paclitaxel 80 mg/m2 on days 1, 8, and 15 of 28-day cycles until disease progression or unacceptable toxicity. The primary endpoint was determination of the maximum tolerated dose (MTD). Secondary endpoints included safety, antitumor activity, pharmacokinetics, and pharmacodynamics. RESULTS Twenty patients were enrolled and received study treatment; 15 had received prior taxane therapy. No dose-limiting toxicities were reported at any dose; therefore, the MTD was not identified. Citarinostat 360 vs 480 mg was associated with reduced incidence and severity of neutropenia. Three patients experienced a confirmed partial response and 13 achieved stable disease. Pharmacokinetic parameters were linear up to citarinostat 360 mg, the dose at which the highest levels of histone and tubulin acetylation were observed in peripheral blood mononuclear cells. CONCLUSIONS The combination of citarinostat plus paclitaxel showed an acceptable safety profile, with no unexpected or dose-limiting toxicities and potential evidence of antitumor activity in patients with heavily pretreated advanced solid tumors. Citarinostat 360 mg once daily is considered the recommended phase II dose for use in combination with paclitaxel 80 mg/m2 every 3 of 4 weeks. This trial is registered on ClinicalTrials.gov (NCT02551185).
Collapse
Affiliation(s)
- Michael S Gordon
- Departments of Hematology and Medical Oncology, HonorHealth Research Institute, Scottsdale, AZ, United States
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - John Sarantopoulos
- Department of Medicine, Division of Medical Oncology & Hematology, Institute for Drug Development, Mays Cancer Center at UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX, United States
| | - Dejan Juric
- Massachusetts General Hospital Cancer Center, Boston, MA, United States.,Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Brian Lu
- Bristol Myers Squibb, Princeton, NJ, United States
| | - Angeliki Zarotiadou
- Celgene Research S.L.U., a Bristol-Myers Squibb Company, Boudry, Switzerland
| | | | | | | | - R Donald Harvey
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University and Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
34
|
Ferrara MG, Stefani A, Pilotto S, Carbone C, Vita E, Di Salvatore M, D'Argento E, Sparagna I, Monaca F, Valente G, Vitale A, Piro G, Belluomini L, Milella M, Tortora G, Bria E. The Renaissance of KRAS Targeting in Advanced Non-Small-Cell Lung Cancer: New Opportunities Following Old Failures. Front Oncol 2022; 11:792385. [PMID: 35004317 PMCID: PMC8733471 DOI: 10.3389/fonc.2021.792385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) represents the perfect paradigm of ‘precision medicine’ due to its complex intratumoral heterogeneity. It is truly characterized by a range of molecular alterations that can deeply influence the natural history of this disease. Several molecular alterations have been found over time, paving the road to biomarker-driven therapy and radically changing the prognosis of ‘oncogene addicted’ NSCLC patients. Kirsten rat sarcoma (KRAS) mutations are present in up to 30% of NSCLC (especially in adenocarcinoma histotype) and have been identified decades ago. Since its discovery, its molecular characteristics and its marked affinity to a specific substrate have led to define KRAS as an undruggable alteration. Despite that, many attempts have been made to develop drugs capable of targeting KRAS signaling but, until a few years ago, these efforts have been unsuccessful. Comprehensive genomic profiling and wide-spectrum analysis of genetic alterations have only recently allowed to identify different types of KRAS mutations. This tricky step has finally opened new frontiers in the treatment approach of KRAS-mutant patients and might hopefully increase their prognosis and quality of life. In this review, we aim to highlight the most interesting aspects of (epi)genetic KRAS features, hoping to light the way to the state of art of targeting KRAS in NSCLC.
Collapse
Affiliation(s)
- Miriam Grazia Ferrara
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Alessio Stefani
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Sara Pilotto
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Carmine Carbone
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Emanuele Vita
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | | | - Ettore D'Argento
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Ileana Sparagna
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Federico Monaca
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Giustina Valente
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Antonio Vitale
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Geny Piro
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Lorenzo Belluomini
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Giampaolo Tortora
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| |
Collapse
|
35
|
Wang Y, Zhao X, Li J, Wang X, Hu W, Zhang X. Four m6A RNA Methylation Gene Signatures and Their Prognostic Values in Lung Adenocarcinoma. Technol Cancer Res Treat 2022; 21:15330338221085373. [PMID: 35343834 PMCID: PMC8966122 DOI: 10.1177/15330338221085373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction: Evidence demonstrates that N6-methyladenosine (m6A) modification plays an increasingly important role in the development of tumors. The aim of this study is to explore the expression of m6A-related regulators in lung adenocarcinoma, identify the effect of altered key factors modified by m6A on the prognosis of patients with lung adenocarcinoma. Methods: A comprehensive analysis of m6A-related gene expressions in patients with lung adenocarcinoma based on The Cancer Genome Atlas database (TCGA) and the CBioPortal database. A prognostic risk score was established based on a linear combination of 4 key gene expression levels using the regression coefficients of the multivariate Cox regression models. Immunohistochemical staining analysis was performed to validate the relationship between the protein expression level of m6A regulators and the prognosis of patients retrospectively. The possible mechanism and prospective therapeutic targets of these key m6A molecules were explored by the M6A2Target database and the CMAP database. Results: Mutation pattern analysis revealed that 32% of 656 patients had genetic alterations. Four genes (writer: methyltransferase like 3 [METTL3] and three readers: insulin like growth factor 2 mRNA binding protein 2 [IGF2BP2], heterogeneous nuclear ribonucleoprotein C [HNRNPC], and heterogeneous nuclear ribonucleoprotein A2/B1 [HNRNPA2B1]) were selected to construct a survival risk prediction model and the results of immunohistochemical staining showed that the expression of these four m6A genes was significantly different between lung adenocarcinoma tissues and normal lung tissues (p < .01). The possible downstream genes and prospective therapeutic targets of these four m6A key molecules were discovered. Conclusion: These four m6A RNA methylation regulators may be effective prognostic and diagnostic factors which can provide auxiliary diagnosis and prognosis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yuzhu Wang
- Department of Radiation Oncology, The First Affiliated Hospital of 12480Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xu Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of 12480Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jing Li
- Department of Radiation Oncology, The First Affiliated Hospital of 12480Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuan Wang
- Department of Radiation Oncology, The First Affiliated Hospital of 12480Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - WeiBin Hu
- Department of Radiation Oncology, The First Affiliated Hospital of 12480Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaozhi Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of 12480Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
36
|
Liu Q, Xiong J, Xu D, Hao N, Zhang Y, Sang Y, Wang Z, Zheng X, Min J, Diao H, Raphael J, Vareki SM, Koropatnick J, Min W. TdIF1-LSD1 Axis Regulates Epithelial-Mesenchymal Transition and Metastasis via Histone Demethylation of E-Cadherin Promoter in Lung Cancer. Int J Mol Sci 2021; 23:250. [PMID: 35008676 PMCID: PMC8745707 DOI: 10.3390/ijms23010250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/27/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022] Open
Abstract
We have previously found that TdT-interacting factor 1 (TdIF1) is a potential oncogene expressed in non-small cell lung cancer (NSCLC) and is associated with poor prognosis. However, its exact mechanism is still unclear. The lysine-specific demethylase 1 (LSD1) is a crucial mediator of the epithelial-mesenchymal transition (EMT), an important process triggered during cancer metastasis. Here, we confirm that TdIF1 is highly expressed in NSCLC and related to lymph node metastasis through The Cancer Genome Atlas (TCGA) analysis of clinical samples. Silencing TdIF1 can regulate the expression of EMT-related factors and impair the migration and invasion ability of cancer cells in vitro. An analysis of tumor xenografts in nude mice confirmed that silencing TdIF1 inhibits tumor growth. Furthermore, we determined the interaction between TdIF1 and LSD1 using immunoprecipitation. Chromatin immunoprecipitation (ChIP) revealed that TdIF1 was enriched in the E-cadherin promoter region. The knockdown of TdIF1 repressed the enrichment of LSD1 at the E-cadherin promoter region, thereby regulating the level of promoter histone methylation and modulating E-cadherin transcription activity, ultimately leading to changes in EMT factors and cancer cell migration and invasion ability. The LSD1 inhibitor and TdIF1 knockdown combination showed a synergistic effect in inhibiting the growth, migration, and invasion of NSCLC cells. Taken together, this is the first demonstration that TdIF1 regulates E-cadherin transcription by recruiting LSD1 to the promoter region, thereby promoting EMT and tumor metastasis and highlighting the potential of TdIF1 as a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Immunotherapy, College of Basic Medicine, The First Affiliated Hospital of Nanchang University, Jiangxi Academy of Medical Sciences, Nanchang 330046, China; (Q.L.); (D.X.); (N.H.); (Y.Z.); (Y.S.); (Z.W.)
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 5A5, Canada; (X.Z.); (S.M.V.); (J.K.)
| | - Juan Xiong
- Department of Preventive Medicine, School of Medicine, Shenzhen University, Shenzhen 518054, China;
| | - Derong Xu
- Institute of Immunotherapy, College of Basic Medicine, The First Affiliated Hospital of Nanchang University, Jiangxi Academy of Medical Sciences, Nanchang 330046, China; (Q.L.); (D.X.); (N.H.); (Y.Z.); (Y.S.); (Z.W.)
| | - Nan Hao
- Institute of Immunotherapy, College of Basic Medicine, The First Affiliated Hospital of Nanchang University, Jiangxi Academy of Medical Sciences, Nanchang 330046, China; (Q.L.); (D.X.); (N.H.); (Y.Z.); (Y.S.); (Z.W.)
| | - Yujuan Zhang
- Institute of Immunotherapy, College of Basic Medicine, The First Affiliated Hospital of Nanchang University, Jiangxi Academy of Medical Sciences, Nanchang 330046, China; (Q.L.); (D.X.); (N.H.); (Y.Z.); (Y.S.); (Z.W.)
| | - Yi Sang
- Institute of Immunotherapy, College of Basic Medicine, The First Affiliated Hospital of Nanchang University, Jiangxi Academy of Medical Sciences, Nanchang 330046, China; (Q.L.); (D.X.); (N.H.); (Y.Z.); (Y.S.); (Z.W.)
| | - Zhigang Wang
- Institute of Immunotherapy, College of Basic Medicine, The First Affiliated Hospital of Nanchang University, Jiangxi Academy of Medical Sciences, Nanchang 330046, China; (Q.L.); (D.X.); (N.H.); (Y.Z.); (Y.S.); (Z.W.)
| | - Xiufen Zheng
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 5A5, Canada; (X.Z.); (S.M.V.); (J.K.)
- Department of Surgery, University of Western Ontario, London, ON N6A 5A5, Canada
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5A5, Canada
- Department of Oncology, University of Western Ontario, London, ON N6A 5A5, Canada;
| | - Jeffrey Min
- London Regional Cancer Program, Matthew Mailing Centre for Translational Transplantation Studies, Lawson Health Research Institute, London, ON N6A 5A5, Canada; (J.M.); (H.D.)
| | - Hong Diao
- London Regional Cancer Program, Matthew Mailing Centre for Translational Transplantation Studies, Lawson Health Research Institute, London, ON N6A 5A5, Canada; (J.M.); (H.D.)
| | - Jacques Raphael
- Department of Oncology, University of Western Ontario, London, ON N6A 5A5, Canada;
- London Regional Cancer Program, Matthew Mailing Centre for Translational Transplantation Studies, Lawson Health Research Institute, London, ON N6A 5A5, Canada; (J.M.); (H.D.)
| | - Saman Maleki Vareki
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 5A5, Canada; (X.Z.); (S.M.V.); (J.K.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5A5, Canada;
- London Regional Cancer Program, Matthew Mailing Centre for Translational Transplantation Studies, Lawson Health Research Institute, London, ON N6A 5A5, Canada; (J.M.); (H.D.)
| | - James Koropatnick
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 5A5, Canada; (X.Z.); (S.M.V.); (J.K.)
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5A5, Canada
- Department of Oncology, University of Western Ontario, London, ON N6A 5A5, Canada;
- London Regional Cancer Program, Matthew Mailing Centre for Translational Transplantation Studies, Lawson Health Research Institute, London, ON N6A 5A5, Canada; (J.M.); (H.D.)
| | - Weiping Min
- Institute of Immunotherapy, College of Basic Medicine, The First Affiliated Hospital of Nanchang University, Jiangxi Academy of Medical Sciences, Nanchang 330046, China; (Q.L.); (D.X.); (N.H.); (Y.Z.); (Y.S.); (Z.W.)
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 5A5, Canada; (X.Z.); (S.M.V.); (J.K.)
- Department of Surgery, University of Western Ontario, London, ON N6A 5A5, Canada
- Department of Oncology, University of Western Ontario, London, ON N6A 5A5, Canada;
- London Regional Cancer Program, Matthew Mailing Centre for Translational Transplantation Studies, Lawson Health Research Institute, London, ON N6A 5A5, Canada; (J.M.); (H.D.)
| |
Collapse
|
37
|
Ntzifa A, Londra D, Rampias T, Kotsakis A, Georgoulias V, Lianidou E. DNA Methylation Analysis in Plasma Cell-Free DNA and Paired CTCs of NSCLC Patients before and after Osimertinib Treatment. Cancers (Basel) 2021; 13:cancers13235974. [PMID: 34885084 PMCID: PMC8656722 DOI: 10.3390/cancers13235974] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Osimertinib has been an effective second-line treatment in EGFR mutant NSCLC patients; however, resistance inevitably occurs. DNA methylation has been previously implicated in NSCLC progression and often in therapy resistance, however its distinct role in osimertinib resistance is not elucidated as yet. In the present study, we directly compared DNA methylation of nine selected genes (RASSF1A, RASSF10, APC, WIF-1, BRMS1, SLFN11, RARβ, SHISA3, and FOXA1) in plasma-cfDNA and paired CTCs of NSCLC patients who were longitudinally monitored during osimertinib treatment. Peripheral blood (PB) from 42 NSCLC patients was obtained at two time points: (a) baseline: before treatment with osimertinib and (b) at progression of disease (PD). DNA methylation of the selected genes was detected in plasma-cfDNA (n = 80) and in paired CTCs (n = 74). Direct comparison of DNA methylation of six genes between plasma-cfDNA and paired CTC samples (n = 70) revealed a low concordance, indicating that CTCs and cfDNA give complementary information. DNA methylation analysis of plasma-cfDNA and CTCs indicated that when at least one of these genes was methylated there was a statistically significant increase at PD compared to baseline (p = 0.031). For the first time, DNA methylation analysis in plasma-cfDNA and paired CTCs of NSCLC patients during osimertinib therapy indicated that DNA methylation of these genes could be a possible resistance mechanism.
Collapse
Affiliation(s)
- Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.N.); (D.L.)
| | - Dora Londra
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.N.); (D.L.)
| | - Theodoros Rampias
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Athanasios Kotsakis
- Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece;
| | - Vassilis Georgoulias
- Department of Medical Oncology, Hellenic Oncology Research Group (HORG), 11471 Athens, Greece;
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.N.); (D.L.)
- Correspondence: ; Tel.: +30-210-727-4311
| |
Collapse
|
38
|
Genetic variants in histone modification regions are associated with the prognosis of lung adenocarcinoma. Sci Rep 2021; 11:21520. [PMID: 34728688 PMCID: PMC8563968 DOI: 10.1038/s41598-021-00909-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022] Open
Abstract
We investigated the association between genetic variants in the histone modification regions and the prognosis of lung adenocarcinoma after curative surgery. Potentially functional SNPs were selected using integrated analysis of ChIP-seq and RNA-seq. The SNPs were analyzed in a discovery set (n = 166) and a validation set (n = 238). The associations of the SNPs with overall survival (OS) and disease-free survival (DFS) were analyzed. A total of 279 SNPs were selected for genotyping. Among these, CAPN1 rs17583C>T was significantly associated with better OS and DFS (P = 0.001 and P = 0.007, respectively), and LINC00959 rs4751162A>G was significantly associated with worse DFS (P = 0.008). Luciferase assays showed a significantly lower promoter activity of CAPN1 in the rs17583 T allele than C allele (P = 0.008), and consistently the CT + TT genotypes had significantly lower CAPN1 expression than CC genotype (P = 0.01) in clinical samples. The rs4751162 G allele had higher promoter activity of GLRX3 than A allele (P = 0.05). The motif analyses and ChIP-qPCR confirmed that the variants are located in the active promoter/enhancer regions where transcription factor binding occurs. This study showed that genetic variants in the histone modification regions could predict the prognosis of lung adenocarcinoma after surgery.
Collapse
|
39
|
Bajbouj K, Al-Ali A, Ramakrishnan RK, Saber-Ayad M, Hamid Q. Histone Modification in NSCLC: Molecular Mechanisms and Therapeutic Targets. Int J Mol Sci 2021; 22:ijms222111701. [PMID: 34769131 PMCID: PMC8584007 DOI: 10.3390/ijms222111701] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is the leading cause of cancer mortality in both genders, with non-small cell lung cancer (NSCLC) accounting for about 85% of all lung cancers. At the time of diagnosis, the tumour is usually locally advanced or metastatic, shaping a poor disease outcome. NSCLC includes adenocarcinoma, squamous cell carcinoma, and large cell lung carcinoma. Searching for novel therapeutic targets is mandated due to the modest effect of platinum-based therapy as well as the targeted therapies developed in the last decade. The latter is mainly due to the lack of mutation detection in around half of all NSCLC cases. New therapeutic modalities are also required to enhance the effect of immunotherapy in NSCLC. Identifying the molecular signature of NSCLC subtypes, including genetics and epigenetic variation, is crucial for selecting the appropriate therapy or combination of therapies. Epigenetic dysregulation has a key role in the tumourigenicity, tumour heterogeneity, and tumour resistance to conventional anti-cancer therapy. Epigenomic modulation is a potential therapeutic strategy in NSCLC that was suggested a long time ago and recently starting to attract further attention. Histone acetylation and deacetylation are the most frequently studied patterns of epigenetic modification. Several histone deacetylase (HDAC) inhibitors (HDIs), such as vorinostat and panobinostat, have shown promise in preclinical and clinical investigations on NSCLC. However, further research on HDIs in NSCLC is needed to assess their anti-tumour impact. Another modification, histone methylation, is one of the most well recognized patterns of histone modification. It can either promote or inhibit transcription at different gene loci, thus playing a rather complex role in lung cancer. Some histone methylation modifiers have demonstrated altered activities, suggesting their oncogenic or tumour-suppressive roles. In this review, patterns of histone modifications in NSCLC will be discussed, focusing on the molecular mechanisms of epigenetic modifications in tumour progression and metastasis, as well as in developing drug resistance. Then, we will explore the therapeutic targets emerging from studying the NSCLC epigenome, referring to the completed and ongoing clinical trials on those medications.
Collapse
Affiliation(s)
- Khuloud Bajbouj
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.B.); (R.K.R.); (Q.H.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Abeer Al-Ali
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Rakhee K. Ramakrishnan
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.B.); (R.K.R.); (Q.H.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.B.); (R.K.R.); (Q.H.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Faculty of Medicine, Cairo University, Cairo 11559, Egypt
- Correspondence: ; Tel.: +971-6-505-7219; Fax: +971-5-558-5879
| | - Qutayba Hamid
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.B.); (R.K.R.); (Q.H.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
40
|
Malapelle U, Pisapia P, Addeo A, Arrieta O, Bellosillo B, Cardona AF, Cristofanilli M, De Miguel-Perez D, Denninghoff V, Durán I, Jantus-Lewintre E, Nuzzo PV, O'Byrne K, Pauwels P, Pickering EM, Raez LE, Russo A, Serrano MJ, Gandara DR, Troncone G, Rolfo C. Liquid biopsy from research to clinical practice: focus on non-small cell lung cancer. Expert Rev Mol Diagn 2021; 21:1165-1178. [PMID: 34570988 DOI: 10.1080/14737159.2021.1985468] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION In the current era of personalized medicine, liquid biopsy has acquired a relevant importance in patient management of advanced stage non-small cell lung cancer (NSCLC). As a matter of fact, liquid biopsy may supplant the problem of inadequate tissue for molecular testing. The term 'liquid biopsy' refers to a number of different biological fluids, but is most clearly associated with plasma-related platforms. It must be taken into account that pre-analytical processing and the selection of the appropriate technology according to the clinical context may condition the results obtained. In addition, novel clinical applications beyond the evaluation of the molecular status of predictive biomarkers are currently under investigation. AREAS COVERED This review summarizes the available evidence on pre-analytical issues and different clinical applications of liquid biopsies in NSCLC patients. EXPERT OPINION Liquid biopsy should be considered not only as a valid alternative but as complementary to tissue-based molecular approaches. Careful attention should be paid to the optimization and standardization of all phases of liquid biopsy samples management in order to determine a significant improvement in either sensitivity or specificity, while significant reducing the number of 'false negative' or 'false positive' molecular results.
Collapse
Affiliation(s)
- Umberto Malapelle
- Department of Public Health, University of Naples Federico Ii, Naples, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico Ii, Naples, Italy
| | - Alfredo Addeo
- Oncology Department, University Hospital Geneva, Geneva, Switzerland
| | - Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), México City, México
| | - Beatriz Bellosillo
- Department of Pathology, Hospital Del Mar, Barcelona, Spain.,Department of Pathology, Ciberonc, Madrid, Spain
| | - Andres F Cardona
- Department of Oncology, Clinical and Translational Oncology Group, Clínica Del Country, Bogotá, Colombia.,Department of Oncology, Foundation for Clinical and Applied Cancer Research (Ficmac), Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-g/oncolgroup), Universidad el Bosque, Bogotá, Colombia
| | - Massimo Cristofanilli
- Division of Hematology and Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Diego De Miguel-Perez
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Liquid Biopsy and Cancer Interception Group, Granada, Spain.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Valeria Denninghoff
- Department of Pathology, University of Buenos Aires - National Council for Scientific and Technical Research (Conicet), Buenos Aires, Argentina
| | - Ignacio Durán
- Department of Oncology, Hospital Universitario Marques de Valdecilla, IDIVAL, Santander, Spain
| | - Eloísa Jantus-Lewintre
- Department of Pathology, Ciberonc, Madrid, Spain.,Molecular Oncology Laboratory, Fundación Para La Investigación Del Hospital General Universitario De Valencia, Valencia, Spain.,Mixed Unit TRIAL, (Príncipe Felipe Research Centre & Fundación Para La Investigación Del Hospital General Universitario De Valencia), Valencia, Spain.,Department of Biotechnology, Universitat Politècnica De València, Valencia, Spain
| | - Pier Vitale Nuzzo
- Department of Medical Oncology, The Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ken O'Byrne
- Medical Oncology, Princess Alexandra Hospital, Queensland University of Technology, Brisbane City, Australia
| | - Patrick Pauwels
- Center for Oncological Research Antwerp (Core), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp (Uantwerp), Wilrijk, Belgium.,Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Edward M Pickering
- Divison of Pulmonary and Critical Care Medicine, Section of Interventional Pulmonology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luis E Raez
- Thoracic Oncology Program, Memorial Cancer Institute/Memorial Health Care System, Florida International University, Miami, FL, USA
| | - Alessandro Russo
- Department of Oncology, Medical Oncology Unit, A.O. Papardo, Messina, Italy
| | - Maria José Serrano
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Liquid Biopsy and Cancer Interception Group, Granada, Spain
| | - David R Gandara
- Department of Internal Medicine, UC Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico Ii, Naples, Italy
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Mount Sinai Medical System & Icahn School of Medicine, New York, NY, USA
| |
Collapse
|
41
|
Construction and Validation of a Lung Cancer Diagnostic Model Based on 6-Gene Methylation Frequency in Blood, Clinical Features, and Serum Tumor Markers. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9987067. [PMID: 34257703 PMCID: PMC8257360 DOI: 10.1155/2021/9987067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/02/2021] [Indexed: 12/25/2022]
Abstract
Lung cancer has a high mortality rate. Promoting early diagnosis and screening of lung cancer is the most effective way to enhance the survival rate of lung cancer patients. Through computer technology, a comprehensive evaluation of genetic testing results and basic clinical information of lung cancer patients could effectively diagnose early lung cancer and indicate cancer risks. This study retrospectively collected 70 pairs of lung cancer tissue samples and normal human tissue samples. The methylation frequencies of 6 genes (FHIT, p16, MGMT, RASSF1A, APC, DAPK) in lung cancer patients, the basic clinical information, and tumor marker levels of these patients were analyzed. Then, the python package "sklearn" was employed to build a support vector machine (SVM) classifier which performed 10-fold cross-validation to construct diagnostic models that could identify lung cancer risk of suspected cases. Receiver operation characteristic (ROC) curves were drawn, and the performance of the combined diagnostic model based on several factors (clinical information, tumor marker level, and methylation frequency of 6 genes in blood) was shown to be better than that of models with only one pathological feature. The AUC value of the combined model was 0.963, and the sensitivity, specificity, and accuracy were 0.900, 0.971, and 0.936, respectively. The above results revealed that the diagnostic model based on these features was highly reliable, which could screen and diagnose suspected early lung cancer patients, contributing to increasing diagnosis rate and survival rate of lung cancer patients.
Collapse
|
42
|
Yang XY, Wang GB, Le YJ, Liu WT, He QY. Quantitative Proteomics Reveals the Antitumor Effects of Sodium New Houttuyfonate on Non-small Cell Lung Cancer. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2021; 000:000-000. [DOI: 10.14218/jerp.2021.00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Bahl S, Ling H, Acharige NPN, Santos-Barriopedro I, Pflum MKH, Seto E. EGFR phosphorylates HDAC1 to regulate its expression and anti-apoptotic function. Cell Death Dis 2021; 12:469. [PMID: 33976119 PMCID: PMC8113371 DOI: 10.1038/s41419-021-03697-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/03/2023]
Abstract
HDAC1 is the prototypical human histone deacetylase (HDAC) enzyme responsible for catalyzing the removal of acetyl group from lysine residues on many substrate proteins. By deacetylating histones and non-histone proteins, HDAC1 has a profound effect on the regulation of gene transcription and many processes related to cell growth and cell death, including cell cycle progression, DNA repair, and apoptosis. Early studies reveal that, like most eukaryotic proteins, the functions and activities of HDAC1 are regulated by post-translational modifications. For example, serine phosphorylation of HDAC1 by protein kinase CK2 promotes HDAC1 deacetylase enzymatic activity and alters its interactions with proteins in corepressor complexes. Here, we describe an alternative signaling pathway by which HDAC1 activities are regulated. Specifically, we discover that EGFR activity promotes the tyrosine phosphorylation of HDAC1, which is necessary for its protein stability. A key EGFR phosphorylation site on HDAC1, Tyr72, mediates HDAC1's anti-apoptotic function. Given that HDAC1 overexpression and EGFR activity are strongly related with tumor progression and cancer cell survival, HDAC1 tyrosine phosphorylation may present a possible target to manipulate HDAC1 protein levels in future potential cancer treatment strategies.
Collapse
Affiliation(s)
- Sonali Bahl
- Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
- GW Cancer Center, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Hongbo Ling
- Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
- GW Cancer Center, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | | | - Irene Santos-Barriopedro
- Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
- GW Cancer Center, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Edward Seto
- Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA.
- GW Cancer Center, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA.
| |
Collapse
|
44
|
Fu Y, Zhuang X, Xia X, Li X, Xiao K, Liu X. Correlation Between Promoter Hypomethylation and Increased Expression of Syncytin-1 in Non-Small Cell Lung Cancer. Int J Gen Med 2021; 14:957-965. [PMID: 33776474 PMCID: PMC7989540 DOI: 10.2147/ijgm.s294392] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction Syncytin-1 is a human endogenous retroviral (HERVW) envelope protein, which has been implicated in trophoblast and cancer cell fusions as well as in immunomodulatory functions. We investigated syncytin-1 expression and promoter methylation in non-small cell lung cancer (NSCLC) and the adjacent, para-carcinoma tissues. In addition, the correlation to patient survival differentiation of between 5-year survival and death group was analyzed. Methods Survival ratio was calculated by Kaplan-Meier survival curve. Death risk assessment was executed by Cox risk regression model. The 5ʹ-LTR methylation level of HERVW promoter was detected by EpiTYPER method. Results Syncytin-1 expression in NSCLC tissue was found to be significantly higher than in para-carcinoma tissues. Moreover, the 5-year survival group has a lower syncytin-1 expression than the death group. Clinical stage and the percentage of syncytin-1 positive cells were top risk factors according to Cox ratio risk regression model analysis. While the methylation level of the 5ʹ-LTR in HERVW gene promoter was relatively lower in NSCLC than para-carcinoma tissues, the methylation status of a CpG-2 site overlapping the Oct-1 binding site was found to be an important element potentially involved in the epigenetic regulation of HERVW gene expression. Conclusion These findings suggest that syncytin-1 could be a biomarker for the diagnosis/prognosis of NSCLC, and further studies are required to elucidate the exact role of syncytin-1 in the development of NSCLC as well as the underlying molecular mechanism for syncytin-1 function and regulation.
Collapse
Affiliation(s)
- Yang Fu
- Department of Reproductive Medicine Center, Jinan Maternity and Child Care Hospital, Jinan, 250001, People's Republic of China
| | - Xuewei Zhuang
- Department of Clinical Laboratory Medicine, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250031, People's Republic of China.,Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Xiyan Xia
- Department of Microbial Immune, Jinan Vocational College of Nursing, Jinan, 250012, People's Republic of China
| | - Xiaohui Li
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Ke Xiao
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Xiaojing Liu
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| |
Collapse
|
45
|
Su SF, Liu CH, Cheng CL, Ho CC, Yang TY, Chen KC, Hsu KH, Tseng JS, Chen HW, Chang GC, Yu SL, Li KC. Genome-Wide Epigenetic Landscape of Lung Adenocarcinoma Links HOXB9 DNA Methylation to Intrinsic EGFR-TKI Resistance and Heterogeneous Responses. JCO Precis Oncol 2021; 5:PO.20.00151. [PMID: 34036228 PMCID: PMC8140798 DOI: 10.1200/po.20.00151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/15/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) show efficacy in treating patients with lung adenocarcinoma with EGFR-activating mutations. However, a significant subset of targeted patients fail to respond. Unlike acquired resistance (AR), intrinsic resistance (IR) remains poorly understood. We investigated whether epigenomic factors contribute to patient-to-patient heterogeneity in the EGFR-TKI response and aimed to characterize the IR subpopulation that obtains no benefit from EGFR-TKIs. PATIENTS AND METHODS We conducted genome-wide DNA methylation profiling of 79 tumors sampled from patients with advanced lung adenocarcinoma before they received EGFR-TKI treatment and analyzed the patient responses. Pyrosequencing was performed in a validation cohort of 163 patients with EGFR-activating mutations. RESULTS A DNA methylation landscape of 216 CpG sites with differential methylation was established to elucidate the association of DNA methylation with the characteristics and EGFR-TKI response status of the patients. Functional analysis of 37 transcription-repressive sites identified the enrichment of transcription factors, notably homeobox (HOX) genes. DNA methylation of HOXB9 (cg13643585) in the enhancer region yielded 88% sensitivity for predicting drug response (odds ratio [OR], 6.64; 95% CI, 1.98 to 25.23; P = .0009). Pyrosequencing validated that HOXB9 gained methylation in patients with a poor EGFR-TKI response (OR, 3.06; 95% CI, 1.13 to 8.19; P = .019). CONCLUSION Our data suggest that homeobox DNA methylation could be a novel tumor cellular state that can aid the precise categorization of tumor heterogeneity in the study of IR to EGFR-TKIs. We identified, for the first time, an epigenomic factor that can potentially complement DNA mutation status in discriminating patients with lung adenocarcinoma who are less likely to benefit from EGFR-TKI treatment, thereby leading to improved patient management in precision medicine.
Collapse
Affiliation(s)
- Sheng-Fang Su
- Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University, College of Medicine, Taipei, Taiwan.,YongLin Institute of Health, YongLin Scholar, National Taiwan University, Taipei, Taiwan
| | - Chia-Hsin Liu
- Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Chiou-Ling Cheng
- NTU Centers for Genomic and Precision Medicine, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Tsung-Ying Yang
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kun-Chieh Chen
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Kuo-Hsuan Hsu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Internal Medicine, Division of Critical Care and Respiratory Therapy, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jeng-Sen Tseng
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Gee-Chen Chang
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sung-Liang Yu
- NTU Centers for Genomic and Precision Medicine, National Taiwan University, College of Medicine, Taipei, Taiwan.,Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, College of Medicine, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pathology and Graduate Institute of Pathology, National Taiwan University, College of Medicine, Taipei, Taiwan.,Institute of Medical Device and Imaging, National Taiwan University, College of Medicine, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Ker-Chau Li
- Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Statistics, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
46
|
Hellmann MD, Jänne PA, Opyrchal M, Hafez N, Raez LE, Gabrilovich DI, Wang F, Trepel JB, Lee MJ, Yuno A, Lee S, Brouwer S, Sankoh S, Wang L, Tamang D, Schmidt EV, Meyers ML, Ramalingam SS, Shum E, Ordentlich P. Entinostat plus Pembrolizumab in Patients with Metastatic NSCLC Previously Treated with Anti-PD-(L)1 Therapy. Clin Cancer Res 2021; 27:1019-1028. [PMID: 33203644 PMCID: PMC7887114 DOI: 10.1158/1078-0432.ccr-20-3305] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE New therapies are needed to treat immune checkpoint inhibitor-resistant non-small cell lung cancer (NSCLC) and identify biomarkers to personalize treatment. Epigenetic therapies, including histone deacetylase inhibitors, may synergize with programmed cell death-1 (PD-1) blockade to overcome resistance. We report outcomes in patients with anti-programmed cell death ligand-1 [PD-(L)1]-resistant/refractory NSCLC treated with pembrolizumab plus entinostat in ENCORE 601. PATIENTS AND METHODS The expansion cohort of ENCORE 601 included patients with NSCLC who previously experienced disease progression with immune checkpoint inhibitors. The primary endpoint for the phase II expansion cohort is overall response rate (ORR); safety, tolerability, and exploratory endpoints are described. RESULTS Of 76 treated patients, 71 were evaluable for efficacy. immune-regulated RECIST-assessed ORR was 9.2% [95% confidence interval (CI): 3.8-18.1], which did not meet the prespecified threshold for positivity. Median duration of response was 10.1 months (95% CI: 3.9-not estimable), progression-free survival (PFS) at 6 months was 22%, median PFS was 2.8 months (95% CI: 1.5-4.1), and median overall survival was 11.7 months (95% CI: 7.6-13.4). Benefit was enriched among patients with high levels of circulating classical monocytes at baseline. Baseline tumor PD-L1 expression and IFNγ gene expression were not associated with benefit. Treatment-related grade ≥3 adverse events occurred in 41% of patients. CONCLUSIONS In anti-PD-(L)1-experienced patients with NSCLC, entinostat plus pembrolizumab did not achieve the primary response rate endpoint but provided a clinically meaningful benefit, with objective response in 9% of patients. No new toxicities, including immune-related adverse events, were seen for either drug. Future studies will continue to evaluate the association of monocyte levels and response.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- B7-H1 Antigen/antagonists & inhibitors
- Benzamides/administration & dosage
- Benzamides/adverse effects
- Benzamides/pharmacology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/pathology
- Drug Resistance, Neoplasm/immunology
- Female
- Follow-Up Studies
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Lung Neoplasms/drug therapy
- Lung Neoplasms/immunology
- Lung Neoplasms/mortality
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/mortality
- Neoplasm Recurrence, Local/pathology
- Progression-Free Survival
- Pyridines/administration & dosage
- Pyridines/adverse effects
- Pyridines/pharmacology
Collapse
Affiliation(s)
| | - Pasi A Jänne
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | - Luis E Raez
- Memorial Cancer Institute, Florida International University, Miami, Florida
| | | | - Fang Wang
- The Wistar Institute, Philadelphia, Pennsylvania
| | | | | | | | | | - Susan Brouwer
- Syndax Pharmaceuticals, Inc., Waltham, Massachusetts
| | - Serap Sankoh
- Syndax Pharmaceuticals, Inc., Waltham, Massachusetts
| | - Lei Wang
- Syndax Pharmaceuticals, Inc., Waltham, Massachusetts
| | - David Tamang
- Syndax Pharmaceuticals, Inc., Waltham, Massachusetts
| | | | | | | | - Elaine Shum
- Perlmutter Cancer Institute at NYU Langone Health, New York, New York
| | | |
Collapse
|
47
|
Kim MJ, Chen G, Sica GL, Deng X. Epigenetic modulation of FBW7/Mcl-1 pathway for lung cancer therapy. Cancer Biol Ther 2021; 22:55-65. [PMID: 33336620 PMCID: PMC7833779 DOI: 10.1080/15384047.2020.1856756] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/24/2020] [Accepted: 11/23/2020] [Indexed: 01/09/2023] Open
Abstract
Methylation induces epigenetic silencing of tumor suppressor genes in human lung cancer. Inhibition of DNA methyltransferases by decitabine (DAC) can demethylate and activate epigenetically silenced tumor suppressor genes. Epigenetic therapy using DAC should be an attractive strategy for lung cancer therapy. FBW7 is a tumor suppressor that functions as an Mcl-1 E3 ligase to degrade Mcl-1 by ubiquitination. Here we discovered that treatment of various human lung cancer cells with DAC resulted in activation of FBW7 expression, decreased levels of Mcl-1 protein, and growth inhibition. DAC-activated FBW7 expression promoted Mcl-1 ubiquitination and degradation leading to a significant reduction in the half-life of Mcl-1 protein. Mechanistically, treatment of lung cancer cells or lung cancer xenografts with DAC induced the conversion of the FBW7 gene from a methylated form to an unmethylated form, which was associated with the increased expression of FBW7 and decreased expression of Mcl-1 in vitro and in vivo. DAC suppressed lung cancer growth in a dose-dependent manner in vivo. Combined treatment with DAC and a Bcl2 inhibitor, venetoclax, exhibited strong synergistic potency against lung cancer without normal tissue toxicity. These findings uncover a novel mechanism by which DAC suppresses tumor growth by targeting the FBW7/Mcl-1 signaling pathway. Combination of DAC with Bcl2 inhibitor venetoclax provides more effective epigenetic therapy for lung cancer.
Collapse
Affiliation(s)
- Mi Jeong Kim
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- Department of Food and Nutrition, Changwon National University, Gyeongsangnam-do, Korea
| | - Guo Chen
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Gabriel L. Sica
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Xingming Deng
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| |
Collapse
|
48
|
Ding S, Zhang H, Zhao X, Dang J, Li G. UNC5A, an epigenetically silenced gene, functions as a tumor suppressor in non-small cell lung cancer. Saudi J Biol Sci 2020; 27:3009-3017. [PMID: 33100860 PMCID: PMC7569136 DOI: 10.1016/j.sjbs.2020.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/01/2022] Open
Abstract
UNC5A has been reported to be related with human cancers. However, the function and mechanism in non-small cell lung carcinoma (NSCLC) remains unknown. We analyzed two NSCLC cell lines (A549 and H157), one normal human bronchial epithelial cell line (BEAS-2B) and the tissues of NSCLC. We used quantitative real-time PCR (qRT-PCR), western blot and immunohistochemical (IHC) staining to examine the expression of UNC5A. Methylation status of the UNC5A promoter was analyzed using methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP). We used western blot to analyzed protein levels of PI3K/Akt pathway. We found that the mRNA expression of UNCA5 was significantly downregulated in NSCLC cells and tissues. The promoter of UNC5A was hypermethylated in NSCLC cells compared to normal control cells. The expression of UNC5A could be reversed by demethylation agent in NSCLC cells. The expression of UNC5A was decreased in NSCLC samples and significantly associated with the advanced types of NSCLC. Functionally, knockdown of UNC5A promoted cell proliferation, migration, invasion and induced apoptosis in NSCLC, overexpression of UNC5A yielded the opposite result. Moreover, we found that UNC5A negatively regulated PI3K/Akt signaling pathway in NSCLC. UNC5A is a novel epigenetically silenced gene in NSCLC and consequent under-expression of UNC5A may contribute to NSCLC tumorigenesis through regulating PI3K/Akt pathway.
Collapse
Affiliation(s)
- Silu Ding
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Hongwei Zhang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Xinyu Zhao
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Jun Dang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Guang Li
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110000, China
| |
Collapse
|
49
|
Hong Y, Kim WJ. DNA Methylation Markers in Lung Cancer. Curr Genomics 2020; 22:79-87. [PMID: 34220295 PMCID: PMC8188581 DOI: 10.2174/1389202921999201013164110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 08/04/2020] [Accepted: 08/18/2020] [Indexed: 01/05/2023] Open
Abstract
Lung cancer is the most common cancer and the leading cause of cancer-related morbidity and mortality worldwide. As early symptoms of lung cancer are minimal and non-specific, many patients are diagnosed at an advanced stage. Despite a concerted effort to diagnose lung cancer early, no biomarkers that can be used for lung cancer screening and prognosis prediction have been established so far. As global DNA demethylation and gene-specific promoter DNA methylation are present in lung cancer, DNA methylation biomarkers have become a major area of research as potential alternative diagnostic methods to detect lung cancer at an early stage. This review summarizes the emerging DNA methylation changes in lung cancer tumorigenesis, focusing on biomarkers for early detection and their potential clinical applications in lung cancer.
Collapse
Affiliation(s)
- Yoonki Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Woo Jin Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
50
|
Sever B, Akalın Çiftçi G, Altıntop MD. A new series of benzoxazole-based SIRT1 modulators for targeted therapy of non-small-cell lung cancer. Arch Pharm (Weinheim) 2020; 354:e2000235. [PMID: 32930414 DOI: 10.1002/ardp.202000235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 01/01/2023]
Abstract
In an attempt to identify potential anticancer agents for non-small-cell lung cancer (NSCLC) targeting sirtuin 1 (SIRT1), the synthesis of a new series of benzoxazoles (3a - i) was carried out through a facile and versatile synthetic route. The compounds were evaluated for their cytotoxic effects on A549 human lung adenocarcinoma and NIH/3T3 mouse embryonic fibroblast cells using the MTT assay. 2-[(5-Nitro-1H-benzimidazol-2-yl)thio]-N-(2-methylbenzoxazol-5-yl)acetamide (3e) and 2-[(5-chloro-1H-benzimidazol-2-yl)thio]-N-(2-methylbenzoxazol-5-yl)acetamide (3g) were the most potent and selective anticancer agents in this series against the A549 cell line, with IC50 values of 46.66 ± 11.54 and 55.00 ± 5.00 µM, respectively. The flow cytometry-based apoptosis detection assay was performed to determine their effects on apoptosis in A549 cells. Both compounds induced apoptosis in a dose-dependent manner. The effects of compounds 3e and 3g on SIRT1 activity were determined. On the basis of in vitro studies, it was observed that compound 3g caused a significant decrease in SIRT1 levels in a dose-dependent manner, whereas compound 3e increased the SIRT1 levels. According to molecular docking studies, the substantial alteration in the type of action could be attributed to the difference between the interactions of compounds 3e and 3g with the same residues in the active site of SIRT1 (PDB code: 4IG9). On the basis of in silico ADME (absorption, distribution, metabolism, and excretion) studies, these compounds are predicted to possess favorable ADME profiles. According to the in vitro and in silico studies, compounds 3e and 3g, small-molecule SIRT1 modulators, were identified as potential orally bioavailable anticancer agents for the targeted therapy of NSCLC.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|