1
|
Ma C, Li Y, Zhu H, Li Z, Liu Y. Clinical applications of circulating tumor cell detection: challenges and strategies. Clin Chem Lab Med 2025; 63:1060-1068. [PMID: 39610299 DOI: 10.1515/cclm-2024-0959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024]
Abstract
Circulating tumor cells (CTCs) are pivotal in the distant metastasis of tumors, serving as one of the primary materials for liquid biopsy. They hold significant clinical importance in assessing prognosis, predicting efficacy, evaluating therapeutic outcomes, and studying recurrence, metastasis, and resistance mechanisms in cancer patients. Nevertheless, the rareness and heterogeneity of CTC and the complexity of metastasis make the clinical application of CTC detection confront many challenges, which may need to be settled by some practical strategies. This article will review the content mentioned above.
Collapse
Affiliation(s)
- Chunhui Ma
- Faculty of Medical Imaging, Naval Medical University, Shanghai, China
| | - Yang Li
- Faculty of Medical Imaging, Naval Medical University, Shanghai, China
| | - Hai Zhu
- Faculty of Medical Imaging, Naval Medical University, Shanghai, China
| | - Zhiyong Li
- Faculty of Medical Imaging, Naval Medical University, Shanghai, China
| | - Yi Liu
- 26460 The Fifth Medical Center of Chinese PLA General Hospital , Beijing, China
| |
Collapse
|
2
|
Kim W, Cho S, Lee J, Lee J, Ji S, Sung H, Jung W, Jeon JH, Kim K, Jheon S. Mutational differences between primary cancer tissue and circulating tumor cells in early-stage non-small cell lung cancer. Transl Lung Cancer Res 2024; 13:3026-3038. [PMID: 39669998 PMCID: PMC11632435 DOI: 10.21037/tlcr-24-709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/21/2024] [Indexed: 12/14/2024]
Abstract
Background Early-stage non-small cell lung cancer (NSCLC) has a high recurrence rate despite proper management, including curative surgery. Circulating tumor cells (CTCs) are believed to play a key role in the distant metastasis of lung cancer. Immunofluorescence imaging studies of CTCs have revealed that they are associated with the prognosis of NSCLC. However, the mutational profiling of CTCs from early-stage NSCLC has not been extensively explored. We hypothesized that CTCs could be detected by mutational analysis using panel sequencing and would have distinct mutations associated with distant metastasis compared to those of primary cancer tissue in early-stage NSCLC. Thus, this study examined the DNA from CTCs using targeted panel sequencing to identify mutations and compared them with mutations found in primary cancer tissue in patients with resectable early-stage NSCLC. Methods Overall, 45 patients with resectable NSCLC were prospectively enrolled from September to December 2023. Matched whole blood samples and primary cancer tissues were collected during curative surgery. Then, 405-gene targeted panel sequencing was performed on DNA from primary cancer tissues and CTCs. Results In this study, 37 patients (82%) had adenocarcinoma, and 30 (67%) were classified as having pathologic stage 1 disease. Mutated genes were detected in all (100%) and 31 patients (69%) for primary cancer tissue and CTCs from panel sequencing, respectively. The partial concordance rate of mutations between primary cancer tissue and CTCs was 17.8%, with the top 10 mutated genes differing significantly. Among primary cancer tissue samples, mutated genes differed by stage and histologic type; these findings were not observed in CTCs. CTCs predominantly displayed mutations in tumor suppressor genes, whereas primary cancer tissues exhibited mutations in both oncogenes and tumor suppressor genes. Conclusions CTCs exhibited unique mutations, showing low concordance with mutations found in primary cancer tissue. CTCs may possess specific mutations independent from those of primary cancer tissue in early-stage NSCLC.
Collapse
Affiliation(s)
- Woojung Kim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sukki Cho
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joonseok Lee
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinsu Lee
- BeyondDx Inc., Gwangmyeong, Republic of Korea
| | - Soojeong Ji
- BeyondDx Inc., Gwangmyeong, Republic of Korea
| | - Hyejin Sung
- BeyondDx Inc., Gwangmyeong, Republic of Korea
| | - Woohyun Jung
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Hyun Jeon
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kwhanmien Kim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sanghoon Jheon
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Sugai K, Mori T, Bilal T, Furukawa A, Sekine Y, Kobayashi N, Kikuchi S, Goto Y, Ichimura H, Masuda T, Arai F, Sato Y, Matsusaka S. Detection of circulating tumor cells in patients with lung cancer using a rare cell sorter: a pilot study. BMC Cancer 2024; 24:1291. [PMID: 39425044 PMCID: PMC11488178 DOI: 10.1186/s12885-024-12945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/12/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND We developed a Rare Cell Sorter (RCS) for collecting single cell including circulating tumor cells (CTCs). This single-institution pilot study evaluated the ability of this device to detect tumor-like cells in patients with lung cancer and confirmed their genuineness based on the epidermal growth factor receptor (EGFR) mutation concordance with tissue samples. METHODS This study included patients treated for lung cancer from September 2021 to August 2022 in University of Tsukuba Hospital. Peripheral blood samples were obtained before surgery or during periodic medical checks for patients treated with drugs. We used the RCS to capture cells based on size. The cells were stained, and the Hoechst-positive, CD45-negative, and epithelial celladhesion molecule (EpCAM)- positive cells were defined as CTCs, were collected. The presumptive CTCs were counted and tested using digital droplet polymerase chain reaction for EGFR mutations and compared with the tissue EGFR status to check concordance. RESULTS Eighteen patients were included in this study and CTCs were detected in 6 patients (33%). The CTCs from three patients showed EGFR mutation, and the EGFR mutation status of CTCs concorded with that of tissue samples in 83% of the cases (5/6). Only one CTC showed a different status from the tissue, and the concordance rate of EGFR status between CTCs and the tissue was 96% (24/25). CONCLUSION The ability of the RCS to detect CTCs in patients with lung cancer was demonstrated based on the concordance of EGFR status in this pilot study. This novel hybrid method of CTC recovery using the RCS has the potential to recover a wide range of CTCs regardless of EpCAM. Further validation through a large-scale study is needed.
Collapse
Affiliation(s)
- Kazuto Sugai
- Department of Thoracic Surgery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305- 8577, Japan
| | - Tomoko Mori
- Department of Clinical Research and Regional Innovation, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Turan Bilal
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8654, Japan
| | - Atsuko Furukawa
- Department of Clinical Research and Regional Innovation, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yasuharu Sekine
- Department of Thoracic Surgery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305- 8577, Japan
| | - Naohiro Kobayashi
- Department of Thoracic Surgery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305- 8577, Japan
| | - Shinji Kikuchi
- Department of Thoracic Surgery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305- 8577, Japan
- Department of Thoracic Surgery, Ibaraki Prefectural Hospital, Koibuchi, Kasama, 6528, 309- 1703, Japan
| | - Yukinobu Goto
- Department of Thoracic Surgery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305- 8577, Japan
| | - Hideo Ichimura
- Department of Thoracic Surgery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305- 8577, Japan
| | - Taisuke Masuda
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8654, Japan
| | - Fumihito Arai
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8654, Japan
| | - Yukio Sato
- Department of Thoracic Surgery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305- 8577, Japan
| | - Satoshi Matsusaka
- Department of Clinical Research and Regional Innovation, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
4
|
Jahani MM, Mashayekhi P, Omrani MD, Khosravi A, Dehghanifard A, Azad Manjiri S, Zahraei M, Mabani M, Seifi S, Salimi B, Rostami P. Assessing the Sensitivity of Nested PCR Followed by Direct Sequencing on Exosomal DNA for EGFR Mutation Detection in NSCL. IRANIAN BIOMEDICAL JOURNAL 2024; 28:208-15. [PMID: 39289877 PMCID: PMC11444484 DOI: 10.61186/ibj.4289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/29/2024] [Indexed: 09/19/2024]
Abstract
Background Early and minimally invasive detection of epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) patients is a promising tool to select patients for targeted therapy in order to improve their prognosis. This study aimed to identify a sensitive, cost-effective, and easily accessible noninvasive method for detecting the EGFR-targetable mutations in the plasma exosomal DNA (exoDNA)+ of patients with NSCLC. Methods This retrospective observational study was conducted over 10 months, from December 2022 to October 2023, at Masih Daneshvari Hospital in Tehran, Iran. A total of 30 patients with stage II-IV NSCLC and targetable mutation in the EGFR gene were included in the study. Nested PCR and Sanger sequencing were used to evaluate EGFR mutations in the DNA extracted from circulating exosomes. Results The study found a sensitivity of 76.6% for EGFR mutation detection on exoDNA compared to tissue results. No significant impact was observed based on tumor staging, histology, mutation type, smoking status, gender, or age. Conclusion Therapeutically targetable driver mutations in the EGFR gene can be accurately detected using nested PCR followed by direct sequencing of plasma exoDNA from patients with NSCLC. This approach facilitates timely and more personalized treatment for NSCLC patients, ultimately improving patient prognosis. Additionally, this method reduces the reliance on invasive tissue biopsies and their associated complications.
Collapse
Affiliation(s)
- Mohammad Mehdi Jahani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Mashayekhi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adnan Khosravi
- Research Center of Thoracic Oncology (RCTO), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Dehghanifard
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sanam Azad Manjiri
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mahyar Zahraei
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Mabani
- Research Center of Thoracic Oncology (RCTO), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sharareh Seifi
- Research Center of Thoracic Oncology (RCTO), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Salimi
- Research Center of Thoracic Oncology (RCTO), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parsa Rostami
- Research Center of Thoracic Oncology (RCTO), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Rashid S, Sun Y, Ali Khan Saddozai U, Hayyat S, Munir MU, Akbar MU, Khawar MB, Ren Z, Ji X, Ihsan Ullah Khan M. Circulating tumor DNA and its role in detection, prognosis and therapeutics of hepatocellular carcinoma. Chin J Cancer Res 2024; 36:195-214. [PMID: 38751441 PMCID: PMC11090798 DOI: 10.21147/j.issn.1000-9604.2024.02.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is considered the fifth most prevalent cancer among all types of cancers and has the third most morbidity value. It has the most frequent duplication time and a high recurrence rate. Recently, the most unique technique used is liquid biopsies, which carry many markers; the most prominent is circulating tumor DNA (ctDNA). Varied methods are used to investigate ctDNA, including various forms of polymerase chain reaction (PCR) [emulsion PCR (ePCR), digital PCR (dPCR), and bead, emulsion, amplification, magnetic (BEAMing) PCR]. Hence ctDNA is being recognized as a potential biomarker that permits early cancer detection, treatment monitoring, and predictive data on tumor burden are subjective to therapy or surgery. Numerous ctDNA biomarkers have been investigated based on their alterations such as 1) single nucleotide variations (either insertion or deletion of a nucleotide) markers including TP53, KRAS, and CCND1; 2) copy number variations which include markers such as CDK6, EFGR, MYC and BRAF; 3) DNA methylation (RASSF1A, SEPT9, KMT2C and CCNA2); 4) homozygous mutation includes ctDNA markers as CDKN2A, AXIN1; and 5) gain or loss of function of the genes, particularly for HCC. Various researchers have conducted many studies and gotten fruitful results. Still, there are some drawbacks to ctDNA namely low quantity, fragment heterogeneity, less stability, limited mutant copies and standards, and differential sensitivity. However, plenty of investigations demonstrate ctDNA's significance as a polyvalent biomarker for cancer and can be viewed as a future diagnostic, prognostic and therapeutic agent. This article overviews many conditions in genetic changes linked to the onset and development of HCC, such as dysregulated signaling pathways, somatic mutations, single-nucleotide polymorphisms, and genomic instability. Additionally, efforts are also made to develop treatments for HCC that are molecularly targeted and to unravel some of the genetic pathways that facilitate its early identification.
Collapse
Affiliation(s)
- Sana Rashid
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54590, Pakistan
| | - Yingchuan Sun
- Department of Internal Oncology (Section I), Xuchang Municipal Central Hospital, Xuchang 461000, China
| | - Umair Ali Khan Saddozai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Sikandar Hayyat
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54590, Pakistan
| | - Muhammad Usman Munir
- Australian Institute for Bioengineering & Nanotechnology, the University of Queensland, Brisbane 4072, Australia
| | - Muhammad Usman Akbar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan
| | - Muhammad Babar Khawar
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54590, Pakistan
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal Punjab 51600, Pakistan
| | - Zhiguang Ren
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xinying Ji
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou 450064, China
- Department of Medicine, Huaxian County People’s Hospital, Huaxian 456400, China
| | - Malik Ihsan Ullah Khan
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54590, Pakistan
| |
Collapse
|
6
|
Abusamra SM, Barber R, Sharafeldin M, Edwards CM, Davis JJ. The integrated on-chip isolation and detection of circulating tumour cells. SENSORS & DIAGNOSTICS 2024; 3:562-584. [PMID: 38646187 PMCID: PMC11025039 DOI: 10.1039/d3sd00302g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/12/2024] [Indexed: 04/23/2024]
Abstract
Circulating tumour cells (CTCs) are cancer cells shed from a primary tumour which intravasate into the blood stream and have the potential to extravasate into distant tissues, seeding metastatic lesions. As such, they can offer important insight into cancer progression with their presence generally associated with a poor prognosis. The detection and enumeration of CTCs is, therefore, critical to guiding clinical decisions during treatment and providing information on disease state. CTC isolation has been investigated using a plethora of methodologies, of which immunomagnetic capture and microfluidic size-based filtration are the most impactful to date. However, the isolation and detection of CTCs from whole blood comes with many technical barriers, such as those presented by the phenotypic heterogeneity of cell surface markers, with morphological similarity to healthy blood cells, and their low relative abundance (∼1 CTC/1 billion blood cells). At present, the majority of reported methods dissociate CTC isolation from detection, a workflow which undoubtedly contributes to loss from an already sparse population. This review focuses on developments wherein isolation and detection have been integrated into a single-step, microfluidic configuration, reducing CTC loss, increasing throughput, and enabling an on-chip CTC analysis with minimal operator intervention. Particular attention is given to immune-affinity, microfluidic CTC isolation, coupled to optical, physical, and electrochemical CTC detection (quantitative or otherwise).
Collapse
Affiliation(s)
- Sophia M Abusamra
- Nuffield Department of Surgical Sciences, University of Oxford Oxford OX3 9DU UK
| | - Robert Barber
- Department of Chemistry, University of Oxford Oxford OX1 3QZ UK
| | | | - Claire M Edwards
- Nuffield Department of Surgical Sciences, University of Oxford Oxford OX3 9DU UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Systems, University of Oxford Oxford UK
| | - Jason J Davis
- Department of Chemistry, University of Oxford Oxford OX1 3QZ UK
| |
Collapse
|
7
|
Díaz del Arco C, Fernández Aceñero MJ, Ortega Medina L. Liquid biopsy for gastric cancer: Techniques, applications, and future directions. World J Gastroenterol 2024; 30:1680-1705. [PMID: 38617733 PMCID: PMC11008373 DOI: 10.3748/wjg.v30.i12.1680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
After the study of circulating tumor cells in blood through liquid biopsy (LB), this technique has evolved to encompass the analysis of multiple materials originating from the tumor, such as nucleic acids, extracellular vesicles, tumor-educated platelets, and other metabolites. Additionally, research has extended to include the examination of samples other than blood or plasma, such as saliva, gastric juice, urine, or stool. LB techniques are diverse, intricate, and variable. They must be highly sensitive, and pre-analytical, patient, and tumor-related factors significantly influence the detection threshold, diagnostic method selection, and potential results. Consequently, the implementation of LB in clinical practice still faces several challenges. The potential applications of LB range from early cancer detection to guiding targeted therapy or immunotherapy in both early and advanced cancer cases, monitoring treatment response, early identification of relapses, or assessing patient risk. On the other hand, gastric cancer (GC) is a disease often diagnosed at advanced stages. Despite recent advances in molecular understanding, the currently available treatment options have not substantially improved the prognosis for many of these patients. The application of LB in GC could be highly valuable as a non-invasive method for early diagnosis and for enhancing the management and outcomes of these patients. In this comprehensive review, from a pathologist's perspective, we provide an overview of the main options available in LB, delve into the fundamental principles of the most studied techniques, explore the potential utility of LB application in the context of GC, and address the obstacles that need to be overcome in the future to make this innovative technique a game-changer in cancer diagnosis and treatment within clinical practice.
Collapse
Affiliation(s)
- Cristina Díaz del Arco
- Department of Surgical Pathology, Health Research Institute of the Hospital Clínico San Carlos, Hospital Clínico San Carlos, Madrid 28040, Spain
- Department of Legal Medicine, Psychiatry and Pathology, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - M Jesús Fernández Aceñero
- Department of Surgical Pathology, Health Research Institute of the Hospital Clínico San Carlos, Hospital Clínico San Carlos, Madrid 28040, Spain
- Department of Legal Medicine, Psychiatry and Pathology, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Luis Ortega Medina
- Department of Surgical Pathology, Health Research Institute of the Hospital Clínico San Carlos, Hospital Clínico San Carlos, Madrid 28040, Spain
- Department of Legal Medicine, Psychiatry and Pathology, Universidad Complutense de Madrid, Madrid 28040, Spain
| |
Collapse
|
8
|
Beninato T, Lo Russo G, Leporati R, Roz L, Bertolini G. Circulating tumor cells in lung cancer: Integrating stemness and heterogeneity to improve clinical utility. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 392:1-66. [PMID: 40287216 DOI: 10.1016/bs.ircmb.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Circulating tumor cells (CTC), released by primary tumors into the bloodstream, represent a valuable source to inform on cancer heterogeneity, cancer progression, metastatic disease and therapy efficacy without the need of invasive tumor biopsies. However, the extreme rarity and heterogeneity of CTCs, occurring at genotypic, phenotypic and functional levels, poses a major challenge for the study of this population and explains the lack of standardized strategies of CTC isolation. Lung cancer, the leading causes of cancer-related death worldwide, is a paradigmatic example of how CTC heterogeneity can undermine the clinical utility of this biomarker, since contrasting data have been reported using different isolation technologies. Some evidences suggest that only a fraction of CTC, characterized by stem-like feature and partial epithelial-mesenchymal transition (EMT) phenotype, can sustain metastasis initiation. Cancer stem cells (CSCs) have the potential to maintain primary tumors, initiate metastasis and escape both chemotherapy and immunotherapy treatments. Moreover, a close connection has been reported in several tumor types among hybrid phenotype, characterized by retention of epithelial and mesenchymal traits, acquisition of CSC feature and increased metastatic potential. This review focuses on the phenotypic and functional heterogeneity of CTCs and the resulting implications for their isolation and clinical validation, especially in the setting of non-small cell lung cancer (NSCLC). In particular, we discuss the most relevant studies providing evidence for the presence and prognostic/predictive value of CTC subsets characterized by stem-like and hybrid EMT phenotype. Despite technical and conceptual issues, tracking circulating CSCs has the potential to improve the prognostic/predictive value of CTCs in NSCLC setting and could provide novel insights into the comprehension of the metastatic process and identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Teresa Beninato
- Thoracic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppe Lo Russo
- Thoracic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rita Leporati
- Thoracic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Roz
- Unit of Epigenomics and Biomarkers of Solid Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Bertolini
- Unit of Epigenomics and Biomarkers of Solid Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
9
|
Goswami S, Samanta P, Adhikari MD. Nanobiotechnology: A smart platform of the future transform liquid biopsy era. THE JOURNAL OF LIQUID BIOPSY 2024; 3:100137. [PMID: 40026567 PMCID: PMC11863936 DOI: 10.1016/j.jlb.2024.100137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 03/05/2025]
Abstract
Cancer is the leading cause of death worldwide. The most complicated fact about this disease is early diagnosis. Treatment at advanced stages of the disease is extremely challenging. We need an early cancer detection method. Nanotechnology-based liquid biopsy is an efficient platform for this health crisis. Several advanced modifications to this method ushered in a new era of liquid biopsy. The present article addresses the transforming signature of nanobiotechnology on liquid biopsy techniques (it explores its advantages and limitations).
Collapse
Affiliation(s)
- Srijan Goswami
- Department of Biotechnology, University of North Bengal, Darjeeling, West Bengal, India
| | - Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, Dhupguri, West Bengal, India
| | - Manab Deb Adhikari
- Department of Biotechnology, University of North Bengal, Darjeeling, West Bengal, India
| |
Collapse
|
10
|
Wishart G, Templeman A, Hendry F, Miller K, Pailhes-Jimenez AS. Molecular Profiling of Circulating Tumour Cells and Circulating Tumour DNA: Complementary Insights from a Single Blood Sample Utilising the Parsortix ® System. Curr Issues Mol Biol 2024; 46:773-787. [PMID: 38248352 PMCID: PMC10814787 DOI: 10.3390/cimb46010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
The study of molecular drivers of cancer is an area of rapid growth and has led to the development of targeted treatments, significantly improving patient outcomes in many cancer types. The identification of actionable mutations informing targeted treatment strategies are now considered essential to the management of cancer. Traditionally, this information has been obtained through biomarker assessment of a tissue biopsy which is costly and can be associated with clinical complications and adverse events. In the last decade, blood-based liquid biopsy has emerged as a minimally invasive, fast, and cost-effective alternative, which is better suited to the requirement for longitudinal monitoring. Liquid biopsies allow for the concurrent study of multiple analytes, such as circulating tumour cells (CTCs) and circulating tumour DNA (ctDNA), from a single blood sample. Although ctDNA assays are commercially more advanced, there is an increasing awareness of the clinical significance of the transcriptome and proteome which can be analysed using CTCs. Herein, we review the literature in which the microfluidic, label-free Parsortix® system is utilised for CTC capture, harvest and analysis, alongside the analysis of ctDNA from a single blood sample. This detailed summary of the literature demonstrates how these two analytes can provide complementary disease information.
Collapse
Affiliation(s)
- Gabrielle Wishart
- ANGLE plc, Guildford GU2 7QB, UK; (A.T.); (F.H.); (K.M.); (A.-S.P.-J.)
| | | | | | | | | |
Collapse
|
11
|
Zala U, Patel R, Panchal V, Chaudhari J, Shah V, Shah A. Liquid biopsy for assessment of RFS (recurrence-free survival) in NSCLC (non-small cell lung cancer) patients post-treatment through circulating tumour DNA detection: A meta-analysis. THE JOURNAL OF LIQUID BIOPSY 2023; 2:100127. [PMID: 40028487 PMCID: PMC11863698 DOI: 10.1016/j.jlb.2023.100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 03/05/2025]
Abstract
Background One of the main techniques for diagnosing lung cancer is still tissue biopsy. The more recent liquid biopsy technique includes the assessment of fragments of cfDNA, ctDNA, and CTCs, which are released by tumour cells and act as biomarkers. After compiling information from the existing literature, we conducted a statistical analysis to evaluate the prognosis and recurrence of NSCLC post-treatment using ctDNA levels. Method Based on predefined inclusion and exclusion criteria, published studies between 2000 and 2022 from electronic databases with statistical data on ctDNA levels for NSCLC were included. Then, using PRISMA guidelines, we carried out a systematic review of those studies. Result A total of 7 studies were included in the analysis, and we found a correlation of ctDNA levels for determination of prognosis and recurrence after treatment in NSCLC. Meta-analysis was performed using RevMan version 5.4. A P-value of less than 0.05 was considered significant. Studies were divided into three groups: <1 week post-surgery, one week to 3 months post-surgery, and > three months post-surgery. Analysis showed that in <1-week post-surgery group, ctDNA-negative post-treatment detection had an HR of 4.85 (95 % CI: 2.41 to 9.77; p=<0.0001, I2 = 0 %) for recurrence-free survival compared to ctDNA-positive post-treatment detection. Similar findings were obtained for one week to 3 months and > three months group, with HR of 5.27 (95 % CI: 3.62 to 7.67; p=<0.00001, I2 = 11 %) and HR of 6.62 (95 % CI: 2.85 to 15.35; p=<0.0001, I2 = 64 %) respectively. Conclusion According to our meta-analysis, patients with NSCLC who were ctDNA negative after surgery had a significantly longer recurrence-free survival than those who were ctDNA positive. As a result, liquid biopsy used to measure ctDNA levels is a useful non-invasive technique to assess the prognosis in such patients. The early detection of recurrence may also allow timely therapeutic intervention, leading to better outcomes.
Collapse
Affiliation(s)
- Urvi Zala
- Dept. of Medicine, Smt. N.H.L. Municipal Medical College and SVPISMR, Ahmedabad, Gujarat, India
| | - Rushi Patel
- Dept. of Medicine, Smt. N.H.L. Municipal Medical College and SVPISMR, Ahmedabad, Gujarat, India
| | - Viraj Panchal
- Dept. of Medicine, Smt. N.H.L. Municipal Medical College and SVPISMR, Ahmedabad, Gujarat, India
| | - Joy Chaudhari
- Dept. of Medicine, Smt. N.H.L. Municipal Medical College and SVPISMR, Ahmedabad, Gujarat, India
| | - Vedant Shah
- Dept. of Medicine, Smt. N.H.L. Municipal Medical College and SVPISMR, Ahmedabad, Gujarat, India
| | - Abhi Shah
- Dept. of Medicine, Smt. N.H.L. Municipal Medical College and SVPISMR, Ahmedabad, Gujarat, India
| |
Collapse
|
12
|
Andrikou K, Rossi T, Verlicchi A, Priano I, Cravero P, Burgio MA, Crinò L, Bandini S, Ulivi P, Delmonte A. Circulating Tumour Cells: Detection and Application in Advanced Non-Small Cell Lung Cancer. Int J Mol Sci 2023; 24:16085. [PMID: 38003273 PMCID: PMC10671094 DOI: 10.3390/ijms242216085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the deadliest diseases worldwide. Tissue biopsy is the current gold standard for the diagnosis and molecular profiling of NSCLC. However, this approach presents some limitations due to inadequate tissue sampling, and intra- and intertumour heterogenicity. Liquid biopsy is a noninvasive method to determine cancer-related biomarkers in peripheral blood, and can be repeated at multiple timepoints. One of the most studied approaches to liquid biopsies is represented by circulating tumour cells (CTCs). Several studies have evaluated the prognostic and predictive role of CTCs in advanced NSCLC. Despite the limitations of these studies, the results of the majority of studies seem to be concordant regarding the correlation between high CTC count and poor prognosis in patients with NSCLC. Similarly, the decrease of CTC count during treatment may represent an important predictive marker of sensitivity to therapy in advanced NSCLC. Furthermore, molecular characterization of CTCs can be used to provide information on tumour biology, and on the mechanisms involved in resistance to targeted treatment. This review will discuss the current status of the clinical utility of CTCs in patients with advanced NSCLC, highlighting their potential application to prognosis and to treatment decision making.
Collapse
Affiliation(s)
- Kalliopi Andrikou
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (A.V.); (I.P.); (P.C.); (M.A.B.); (L.C.); (A.D.)
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (P.U.)
| | - Alberto Verlicchi
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (A.V.); (I.P.); (P.C.); (M.A.B.); (L.C.); (A.D.)
| | - Ilaria Priano
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (A.V.); (I.P.); (P.C.); (M.A.B.); (L.C.); (A.D.)
| | - Paola Cravero
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (A.V.); (I.P.); (P.C.); (M.A.B.); (L.C.); (A.D.)
| | - Marco Angelo Burgio
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (A.V.); (I.P.); (P.C.); (M.A.B.); (L.C.); (A.D.)
| | - Lucio Crinò
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (A.V.); (I.P.); (P.C.); (M.A.B.); (L.C.); (A.D.)
| | - Sara Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (P.U.)
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (P.U.)
| | - Angelo Delmonte
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (A.V.); (I.P.); (P.C.); (M.A.B.); (L.C.); (A.D.)
| |
Collapse
|
13
|
Michas A, Michas B, Tsitsibis A, Tsoukalas N. Molecular Screening for Urothelial Cancer: How Close We Are? Glob Med Genet 2023; 10:101-104. [PMID: 37228870 PMCID: PMC10205394 DOI: 10.1055/s-0043-1768958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Early detection of urothelial cancer offers the potential for effective and successful treatment. Despite previous efforts, currently, there is not a well-validated, recommended screening program in any country. This integrative, literature-based review provides details on how recent molecular advances may further advance early tumor detection. The minimally invasive liquid biopsy is capable of identifying tumor material in human fluid samples from asymptomatic individuals. Circulating tumor biomarkers (cfDNA, exosomes, etc.) are very promising and are attracting the interest of numerous studies for the diagnosis of early-stage cancer. However, this approach definitely needs to be refined before clinical implementation. Nevertheless, despite the variety of current obstacles that require further research, the prospect of identifying urothelial carcinoma by a single urine or blood test seems truly intriguing.
Collapse
Affiliation(s)
- Athanasios Michas
- Department of Oncology, 401 General Army Hospital of Athens, 401 Geniko Stratiotiko Nosokomeio Athenon, Athina, Greece
| | - Basileios Michas
- Department of Oncology, 401 General Army Hospital of Athens, 401 Geniko Stratiotiko Nosokomeio Athenon, Athina, Greece
| | - Anastasios Tsitsibis
- Department of Oncology, 401 General Army Hospital of Athens, 401 Geniko Stratiotiko Nosokomeio Athenon, Athina, Greece
| | - Nikolaos Tsoukalas
- Department of Oncology, 401 General Army Hospital of Athens, 401 Geniko Stratiotiko Nosokomeio Athenon, Athina, Greece
| |
Collapse
|
14
|
Kurniali PC, Storandt MH, Jin Z. Utilization of Circulating Tumor Cells in the Management of Solid Tumors. J Pers Med 2023; 13:jpm13040694. [PMID: 37109080 PMCID: PMC10145886 DOI: 10.3390/jpm13040694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells shed from the primary tumor into circulation, with clusters of CTCs responsible for cancer metastases. CTC detection and isolation from the bloodstream are based on properties distinguishing CTCs from normal blood cells. Current CTC detection techniques can be divided into two main categories: label dependent, which depends upon antibodies that selectively bind cell surface antigens present on CTCs, or label-independent detection, which is detection based on the size, deformability, and biophysical properties of CTCs. CTCs may play significant roles in cancer screening, diagnosis, treatment navigation, including prognostication and precision medicine, and surveillance. In cancer screening, capturing and evaluating CTCs from peripheral blood could be a strategy to detect cancer at its earliest stage. Cancer diagnosis using liquid biopsy could also have tremendous benefits. Full utilization of CTCs in the clinical management of malignancies may be feasible in the near future; however, several challenges still exist. CTC assays currently lack adequate sensitivity, especially in early-stage solid malignancies, due to low numbers of detectable CTCs. As assays improve and more trials evaluate the clinical utility of CTC detection in guiding therapies, we anticipate increased use in cancer management.
Collapse
Affiliation(s)
- Peter C Kurniali
- Sanford Cancer Center, 701 E Rosser Ave, Bismarck, ND 58501, USA
- Department of Internal Medicine, Division of Hematology/Oncology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | | | |
Collapse
|
15
|
Wang Z, Zhang XC, Feng WN, Zhang L, Liu XQ, Guo WB, Deng YM, Zou QF, Yang JJ, Zhou Q, Wang BC, Chen HJ, Tu HY, Yan HH, Wu YL. Circulating tumor cells dynamics during chemotherapy predict survival and response in advanced non-small-cell lung cancer patients. Ther Adv Med Oncol 2023; 15:17588359231167818. [PMID: 37113733 PMCID: PMC10126699 DOI: 10.1177/17588359231167818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Background Circulating tumor cells (CTCs) are prognostic biomarker in non-small-cell lung cancer (NSCLC). CTCs could also be used as predictor of efficacy of systemic treatments in advanced NSCLC. Objectives We described the dynamic changes of CTCs during first-line platinum-based chemotherapy in advanced NSCLC and clarified the correlation between CTC counts and efficacy of chemotherapy. Design Chemotherapy is administered and blood specimens are collected at four time points from baseline to disease progression for CTC detection. Methods This multicenter prospective study enrolled patients with previously untreated stage III or IV NSCLC fit for standard platinum-based chemotherapy. Bloods were sampled as per standard operating procedures at baseline, cycle 1 and cycle 4 of chemotherapy, and at disease progression for CTC analysis using the CellSearch system. Results Among 150 patients enrolled, median overall survival (OS) was 13.8, 8.4, and 7.9 months in patients with CTC-, KIT-CTC, and KIT+CTC at baseline (p = 0.002). Patients with persistent negative CTC (46.0%) had longer progression-free survival [5.7 months, 95% confidence interval (CI): 5.0-6.5 versus 3.0 months, 0.6-5.4; hazard ratio (HR): 0.34, 95% CI: 0.18-0.67) and OS (13.1 months, 10.9-15.3 versus 5.6 months, 4.1-7.1; HR: 0.17, 0.08-0.36) compared with patients with persistent positive CTC (10.7%), which was not impacted by chemotherapy. Chemotherapy decreased CTC from 36.0% (54/150) to 13.7% (13/95). Conclusions CTC persistent presence during treatment represents poor prognosis and resistance to chemotherapy in advanced NSCLC. Chemotherapy could effectively eliminate CTCs. Molecular characterization and the functionalization of CTC will be warranted for further intensive investigation. Trial registration NCT01740804.
Collapse
Affiliation(s)
| | | | | | - Li Zhang
- Cancer Center, Sun Yat-sen University, Guangzhou, China
| | | | - Wei-Bang Guo
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yan-Ming Deng
- The First People’s Hospital of Foshan, Foshan, China
| | - Qing-Feng Zou
- Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin-Ji Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Bin-Chao Wang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hua-Jun Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hai-Yan Tu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | | | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Rd, Guangzhou 510080, China
| |
Collapse
|
16
|
Telekes A, Horváth A. The Role of Cell-Free DNA in Cancer Treatment Decision Making. Cancers (Basel) 2022; 14:6115. [PMID: 36551600 PMCID: PMC9776613 DOI: 10.3390/cancers14246115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to evaluate the present status of the use of cell-free DNA and its fraction of circulating tumor DNA (ctDNA) because this year July 2022, an ESMO guideline was published regarding the application of ctDNA in patient care. This review is for clinical oncologists to explain the concept, the terms used, the pros and cons of ctDNA; thus, the technical aspects of the different platforms are not reviewed in detail, but we try to help in navigating the current knowledge in liquid biopsy. Since the validated and adequately sensitive ctDNA assays have utility in identifying actionable mutations to direct targeted therapy, ctDNA may be used for this soon in routine clinical practice and in other different areas as well. The cfDNA fragments can be obtained by liquid biopsy and can be used for diagnosis, prognosis, and selecting among treatment options in cancer patients. A great proportion of cfDNA comes from normal cells of the body or from food uptake. Only a small part (<1%) of it is related to tumors, originating from primary tumors, metastatic sites, or circulating tumor cells (CTCs). Soon the data obtained from ctDNA may routinely be used for finding minimal residual disease, detecting relapse, and determining the sites of metastases. It might also be used for deciding appropriate therapy, and/or emerging resistance to the therapy and the data analysis of ctDNA may be combined with imaging or other markers. However, to achieve this goal, further clinical validations are inevitable. As a result, clinicians should be aware of the limitations of the assays. Of course, several open questions are still under research and because of it cfDNA and ctDNA testing are not part of routine care yet.
Collapse
Affiliation(s)
- András Telekes
- Omnimed-Etosz, Ltd., 81 Széher Rd., 1021 Budapest, Hungary
- Semmelweis University, 26. Üllői Rd., 1085 Budapest, Hungary
| | - Anna Horváth
- Department of Internal Medicine and Haematology, Semmelweis University, 46. Szentkirályi Rd., 1088 Budapest, Hungary
| |
Collapse
|
17
|
Balla A, Bhak J, Biró O. The application of circulating tumor cell and cell-free DNA liquid biopsies in ovarian cancer. Mol Cell Probes 2022; 66:101871. [PMID: 36283501 DOI: 10.1016/j.mcp.2022.101871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Ovarian cancer is the deadliest gynecological cancer. 70% of the cases are diagnosed at late stages with already developed metastases due to the absence of easily noticeable symptoms. Early-stage ovarian cancer has a good prognosis with a 5-year survival rate reaching 95%, hence the identification of effective biomarkers for early diagnosis is important. Advances in liquid biopsy-based methods can have a significant impact not just on the development of an efficient screening strategy, but also in clinical decision-making with additional molecular profiling and genetic alterations linked to therapy resistance. Despite the well-known advantages of liquid biopsy, there are still challenges that need to be addressed before its routine use in clinical practice. Various liquid biopsy-based biomarkers have been investigated in ovarian cancer; however, in this review, we are concentrating on the current use of cell-free DNA (cfDNA) and circulating tumor cells (CTCs) in disease management, focusing on their emerging importance in clinical practice. We also discuss the technical aspects of these workflows. The analysis of cfDNA is often chosen for the detection of mutations, copy number aberrations, and DNA methylation changes, whereas CTC analysis provides a unique opportunity to study whole cells, thus allowing DNA, RNA, and protein-based molecular profiling as well as in vivo studies. Combined solutions which merge the strengths of cfDNA and CTC approaches should be developed to maximize the potential of liquid biopsy technology.
Collapse
Affiliation(s)
- Abigél Balla
- Clinomics Europe Ltd., Budapest, Hungary; Semmelweis University, Károly Rácz Doctoral School of Clinical Medicine, Budapest, Hungary
| | - Jong Bhak
- Clinomics Inc. UNIST, Ulsan, 44916, Republic of Korea
| | | |
Collapse
|
18
|
Bożyk A, Nicoś M. The Overview of Perspectives of Clinical Application of Liquid Biopsy in Non-Small-Cell Lung Cancer. Life (Basel) 2022; 12:1640. [PMID: 36295075 PMCID: PMC9604747 DOI: 10.3390/life12101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 01/19/2023] Open
Abstract
The standard diagnostics procedure for non-small-cell lung cancer (NSCLC) requires a pathological evaluation of tissue samples obtained by surgery or biopsy, which are considered invasive sampling procedures. Due to this fact, re-sampling of the primary tumor at the moment of progression is limited and depends on the patient's condition, even if it could reveal a mechanism of resistance to applied therapy. Recently, many studies have indicated that liquid biopsy could be provided for the noninvasive management of NSCLC patients who receive molecularly targeted therapies or immunotherapy. The liquid biopsy of neoplastic patients harbors small fragments of circulating-free DNA (cfDNA) and cell-free RNA (cfRNA) secreted to the circulation from normal cells, as well as a subset of tumor-derived circulating tumor cells (CTCs) or circulating tumor DNA (ctDNA). In NSCLC patients, a longitudinal assessment of genetic alterations in "druggable" genes in liquid biopsy might improve the follow-up of treatment efficacy and allow for the detection of an early progression before it is detectable in computed tomography or a clinical image. However, a liquid biopsy may be used to determine a variety of relevant molecular or genetic information for understanding tumor biology and its evolutionary trajectories. Thus, liquid biopsy is currently associated with greater hope for common diagnostic and clinical applications. In this review, we would like to highlight diagnostic challenges in the application of liquid biopsy into the clinical routine and indicate its implications on the metastatic spread of NSCLC or monitoring of personalized treatment regimens.
Collapse
Affiliation(s)
| | - Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
19
|
Nikanjam M, Kato S, Kurzrock R. Liquid biopsy: current technology and clinical applications. J Hematol Oncol 2022; 15:131. [PMID: 36096847 PMCID: PMC9465933 DOI: 10.1186/s13045-022-01351-y] [Citation(s) in RCA: 376] [Impact Index Per Article: 125.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
Liquid biopsies are increasingly used for cancer molecular profiling that enables a precision oncology approach. Circulating extracellular nucleic acids (cell-free DNA; cfDNA), circulating tumor DNA (ctDNA), and circulating tumor cells (CTCs) can be isolated from the blood and other body fluids. This review will focus on current technologies and clinical applications for liquid biopsies. ctDNA/cfDNA has been isolated and analyzed using many techniques, e.g., droplet digital polymerase chain reaction, beads, emulsion, amplification, and magnetics (BEAMing), tagged-amplicon deep sequencing (TAm-Seq), cancer personalized profiling by deep sequencing (CAPP-Seq), whole genome bisulfite sequencing (WGBS-Seq), whole exome sequencing (WES), and whole genome sequencing (WGS). CTCs have been isolated using biomarker-based cell capture, and positive or negative enrichment based on biophysical and other properties. ctDNA/cfDNA and CTCs are being exploited in a variety of clinical applications: differentiating unique immune checkpoint blockade response patterns using serial samples; predicting immune checkpoint blockade response based on baseline liquid biopsy characteristics; predicting response and resistance to targeted therapy and chemotherapy as well as immunotherapy, including CAR-T cells, based on serial sampling; assessing shed DNA from multiple metastatic sites; assessing potentially actionable alterations; analyzing prognosis and tumor burden, including after surgery; interrogating difficult-to biopsy tumors; and detecting cancer at early stages. The latter can be limited by the small amounts of tumor-derived components shed into the circulation; furthermore, cfDNA assessment in all cancers can be confounded by clonal hematopoeisis of indeterminate potential, especially in the elderly. CTCs can be technically more difficult to isolate that cfDNA, but permit functional assays, as well as evaluation of CTC-derived DNA, RNA and proteins, including single-cell analysis. Blood biopsies are less invasive than tissue biopsies and hence amenable to serial collection, which can provide critical molecular information in real time. In conclusion, liquid biopsy is a powerful tool, and remarkable advances in this technology have impacted multiple aspects of precision oncology, from early diagnosis to management of refractory metastatic disease. Future research may focus on fluids beyond blood, such as ascites, effusions, urine, and cerebrospinal fluid, as well as methylation patterns and elements such as exosomes.
Collapse
Affiliation(s)
- Mina Nikanjam
- Division of Hematology-Oncology, University of California San Diego, La Jolla, 1200 Garden View Road, Encinitas, CA, 92024, USA.
| | - Shumei Kato
- Division of Hematology-Oncology, University of California San Diego, La Jolla, 1200 Garden View Road, Encinitas, CA, 92024, USA
| | - Razelle Kurzrock
- Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA.,WIN Consortium, Paris, France
| |
Collapse
|
20
|
Choi EJ, Kim YJ. Liquid biopsy for early detection and therapeutic monitoring of hepatocellular carcinoma. JOURNAL OF LIVER CANCER 2022; 22:103-114. [PMID: 37383403 PMCID: PMC10035729 DOI: 10.17998/jlc.2022.09.08] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/30/2023]
Abstract
Advances in our knowledge of the molecular characteristics of hepatocellular carcinoma (HCC) have enabled significant progress in the detection and therapeutic prediction of HCC. As a non-invasive alternative to tissue biopsy, liquid biopsy examines circulating cellular components such as exosomes, nucleic acids, and cell-free DNA found in body fluids (e.g., urine, saliva, ascites, and pleural effusions) and provides information about tumor characteristics. Technical advances in liquid biopsy have led to the increasing adoption of diagnostic and monitoring applications for HCC. This review summarizes the various analytes, ongoing clinical trials, and case studies of United States Food and Drug Administrationapproved in vitro diagnostic applications for liquid biopsy, and provides insight into its implementation in managing HCC.
Collapse
Affiliation(s)
| | - Young-Joon Kim
- LepiDyne Co., Ltd., Seoul, Korea
- Department of Biochemistry, Yonsei University, Seoul, Korea
| |
Collapse
|
21
|
Yuan H, Gao W, Yin J, Chen K, Mu Y, Jin Q, Jia C, Cong H, Yu J, Zhao J. Detection of EGFR gene with a droplet digital PCR chip integrating a double-layer glass reservoir. Anal Biochem 2022; 656:114877. [DOI: 10.1016/j.ab.2022.114877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/01/2022]
|
22
|
Padinharayil H, Varghese J, John MC, Rajanikant GK, Wilson CM, Al-Yozbaki M, Renu K, Dewanjee S, Sanyal R, Dey A, Mukherjee AG, Wanjari UR, Gopalakrishnan AV, George A. Non-small cell lung carcinoma (NSCLC): Implications on molecular pathology and advances in early diagnostics and therapeutics. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
23
|
Pesta M, Shetti D, Kulda V, Knizkova T, Houfkova K, Bagheri MS, Svaton M, Polivka J. Applications of Liquid Biopsies in Non-Small-Cell Lung Cancer. Diagnostics (Basel) 2022; 12:1799. [PMID: 35892510 PMCID: PMC9330570 DOI: 10.3390/diagnostics12081799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
The concept of liquid biopsy as an analysis tool for non-solid tissue carried out for the purpose of providing information about solid tumors was introduced approximately 20 years ago. Additional to the detection of circulating tumor cells (CTCs), the liquid biopsy approach quickly included the analysis of circulating tumor DNA (ctDNA) and other tumor-derived markers such as circulating cell-free RNA or extracellular vesicles. Liquid biopsy is a non-invasive technique for detecting multiple cancer-associated biomarkers that is easy to obtain and can reflect the characteristics of the entire tumor mass. Currently, ctDNA is the key component of the liquid biopsy approach from the point of view of the prognosis assessment, prediction, and monitoring of the treatment of non-small-cell lung cancer (NSCLC) patients. ctDNA in NSCLC patients carries variants or rearrangements that drive carcinogenesis, such as those in EGFR, KRAS, ALK, or ROS1. Due to advances in pharmacology, these variants are the subject of targeted therapy. Therefore, the detection of these variants has gained attention in clinical medicine. Recently, methods based on qPCR (ddPCR, BEAMing) and next-generation sequencing (NGS) are the most effective approaches for ctDNA analysis. This review addresses various aspects of the use of liquid biopsy with an emphasis on ctDNA as a biomarker in NSCLC patients.
Collapse
Affiliation(s)
- Martin Pesta
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00 Plzen, Czech Republic; (D.S.); (T.K.); (K.H.)
| | - Dattatrya Shetti
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00 Plzen, Czech Republic; (D.S.); (T.K.); (K.H.)
| | - Vlastimil Kulda
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Plzen, Czech Republic;
| | - Tereza Knizkova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00 Plzen, Czech Republic; (D.S.); (T.K.); (K.H.)
| | - Katerina Houfkova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00 Plzen, Czech Republic; (D.S.); (T.K.); (K.H.)
| | - Mahyar Sharif Bagheri
- Department of Histology, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Plzen, Czech Republic; (M.S.B.); (J.P.)
| | - Martin Svaton
- Department of Pneumology and Phthisiology, Faculty of Medicine in Pilsen, Charles University, University Hospital in Pilsen, E. Benese 13, 301 00 Plzen, Czech Republic;
| | - Jiri Polivka
- Department of Histology, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Plzen, Czech Republic; (M.S.B.); (J.P.)
| |
Collapse
|
24
|
Kapeleris J, Müller Bark J, Ranjit S, Irwin D, Hartel G, Warkiani ME, Leo P, O'Leary C, Ladwa R, O'Byrne K, Hughes BGM, Punyadeera C. Prognostic value of integrating circulating tumour cells and cell-free DNA in non-small cell lung cancer. Heliyon 2022; 8:e09971. [PMID: 35874074 PMCID: PMC9305346 DOI: 10.1016/j.heliyon.2022.e09971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) often presents at an incurable stage, and majority of patients will be considered for palliative treatment at some point in their disease. Despite recent advances, the prognosis remains poor, with a median overall survival of 12–18 months. Liquid biopsy-based biomarkers have emerged as potential candidates for predicting prognosis and response to therapy in NSCLC patients. This pilot study evaluated whether combining circulating tumour cells and clusters (CTCs) and cell-free DNA (cfDNA) can predict progression-free survival (PFS) in NSCLC patients. Methods CTC and cfDNA/ctDNA from advanced stage NSCLC patients were measured at study entry (T0) and 3-months post-treatment (T1). CTCs were enriched using a spiral microfluidic chip and characterised by immunofluorescence. ctDNA was assessed using an UltraSEEK® Lung Panel. Kaplan-Meier plots were generated to investigate the contribution of the presence of CTC/CTC clusters and cfDNA for PFS. Cox proportional hazards analysis compared time to progression versus CTC/CTC cluster counts and cfDNA levels. Results Single CTCs were found in 14 out of 25 patients, while CTC clusters were found in 8 out of the 25 patients at T0. At T1, CTCs were found in 7 out of 18 patients, and CTC clusters in 1 out of the 18 patients. At T0, CTC presence and the combination of CTC cluster counts with cfDNA levels were associated with shorter PFS, p = 0.0261, p = 0.0022, respectively. Conclusions Combining CTC cluster counts and cfDNA levels could improve PFS assessment in NSCLC patients. Our results encourage further investigation on the combined effect of CTC/cfDNA as a prognostic biomarker in a large cohort of advanced stage NSCLC patients.
Collapse
Affiliation(s)
- Joanna Kapeleris
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Centre for Biomedical Technologies, Saliva and Liquid Biopsy Translational Laboratory Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Juliana Müller Bark
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Centre for Biomedical Technologies, Saliva and Liquid Biopsy Translational Laboratory Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, Brisbane, Australia.,Saliva and Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Shanon Ranjit
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Centre for Biomedical Technologies, Saliva and Liquid Biopsy Translational Laboratory Kelvin Grove, QLD, Australia
| | - Darryl Irwin
- Agena Biosciences, Bowen Hills, Brisbane, QLD, Australia
| | - Gunter Hartel
- QIMR Berghofer Medical Research Institute, Herston Road, Herston, QLD, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Ultimo NSW, Australia
| | - Paul Leo
- Translational Research Institute, Woolloongabba, Brisbane, Australia.,Australian Translational Genomics Centre, Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Woolloongabba, Australia
| | - Connor O'Leary
- Translational Research Institute, Woolloongabba, Brisbane, Australia.,Department of Medical Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Rahul Ladwa
- Department of Medical Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia.,School of Medicine, University of Queensland, Herston, Brisbane, Queensland, Australia
| | - Kenneth O'Byrne
- Translational Research Institute, Woolloongabba, Brisbane, Australia.,Department of Medical Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Brett G M Hughes
- School of Medicine, University of Queensland, Herston, Brisbane, Queensland, Australia.,The Royal Brisbane and Women's Hospital, Herston, Brisbane, Queensland, Australia
| | - Chamindie Punyadeera
- Translational Research Institute, Woolloongabba, Brisbane, Australia.,Saliva and Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,Menzies Health Institute, Griffith University, Gold-Coast, Australia
| |
Collapse
|
25
|
Aramini B, Masciale V, Arienti C, Dominici M, Stella F, Martinelli G, Fabbri F. Cancer Stem Cells (CSCs), Circulating Tumor Cells (CTCs) and Their Interplay with Cancer Associated Fibroblasts (CAFs): A New World of Targets and Treatments. Cancers (Basel) 2022; 14:cancers14102408. [PMID: 35626011 PMCID: PMC9139858 DOI: 10.3390/cancers14102408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The world of small molecules in solid tumors as cancer stem cells (CSCs), circulating tumor cells (CTCs) and cancer-associated fibroblasts (CAFs) continues to be under-debated, but not of minor interest in recent decades. One of the main problems in regard to cancer is the development of tumor recurrence, even in the early stages, in addition to drug resistance and, consequently, ineffective or an incomplete response against the tumor. The findings behind this resistance are probably justified by the presence of small molecules such as CSCs, CTCs and CAFs connected with the tumor microenvironment, which may influence the aggressiveness and the metastatic process. The mechanisms, connections, and molecular pathways behind them are still unknown. Our review would like to represent an important step forward to highlight the roles of these molecules and the possible connections among them. Abstract The importance of defining new molecules to fight cancer is of significant interest to the scientific community. In particular, it has been shown that cancer stem cells (CSCs) are a small subpopulation of cells within tumors with capabilities of self-renewal, differentiation, and tumorigenicity; on the other side, circulating tumor cells (CTCs) seem to split away from the primary tumor and appear in the circulatory system as singular units or clusters. It is becoming more and more important to discover new biomarkers related to these populations of cells in combination to define the network among them and the tumor microenvironment. In particular, cancer-associated fibroblasts (CAFs) are a key component of the tumor microenvironment with different functions, including matrix deposition and remodeling, extensive reciprocal signaling interactions with cancer cells and crosstalk with immunity. The settings of new markers and the definition of the molecular connections may present new avenues, not only for fighting cancer but also for the definition of more tailored therapies.
Collapse
Affiliation(s)
- Beatrice Aramini
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, 47121 Forlì, Italy;
- Correspondence:
| | - Valentina Masciale
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41122 Modena, Italy; (V.M.); (M.D.)
| | - Chiara Arienti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.A.); (G.M.); (F.F.)
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41122 Modena, Italy; (V.M.); (M.D.)
| | - Franco Stella
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, 47121 Forlì, Italy;
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.A.); (G.M.); (F.F.)
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.A.); (G.M.); (F.F.)
| |
Collapse
|
26
|
Rehman AU, Khan P, Maurya SK, Siddiqui JA, Santamaria-Barria JA, Batra SK, Nasser MW. Liquid biopsies to occult brain metastasis. Mol Cancer 2022; 21:113. [PMID: 35538484 PMCID: PMC9088117 DOI: 10.1186/s12943-022-01577-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/19/2022] [Indexed: 02/08/2023] Open
Abstract
Brain metastasis (BrM) is a major problem associated with cancer-related mortality, and currently, no specific biomarkers are available in clinical settings for early detection. Liquid biopsy is widely accepted as a non-invasive method for diagnosing cancer and other diseases. We have reviewed the evidence that shows how the molecular alterations are involved in BrM, majorly from breast cancer (BC), lung cancer (LC), and melanoma, with an inception in how they can be employed for biomarker development. We discussed genetic and epigenetic changes that influence cancer cells to breach the blood-brain barrier (BBB) and help to establish metastatic lesions in the uniquely distinct brain microenvironment. Keeping abreast with the recent breakthroughs in the context of various biomolecules detections and identifications, the circulating tumor cells (CTC), cell-free nucleotides, non-coding RNAs, secretory proteins, and metabolites can be pursued in human body fluids such as blood, serum, cerebrospinal fluid (CSF), and urine to obtain potential candidates for biomarker development. The liquid biopsy-based biomarkers can overlay with current imaging techniques to amplify the signal viable for improving the early detection and treatments of occult BrM.
Collapse
Affiliation(s)
- Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | | | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA. .,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA.
| |
Collapse
|
27
|
Foo J, Basanta D, Rockne RC, Strelez C, Shah C, Ghaffarian K, Mumenthaler SM, Mitchell K, Lathia JD, Frankhouser D, Branciamore S, Kuo YH, Marcucci G, Vander Velde R, Marusyk A, Huang S, Hari K, Jolly MK, Hatzikirou H, Poels KE, Spilker ME, Shtylla B, Robertson-Tessi M, Anderson ARA. Roadmap on plasticity and epigenetics in cancer. Phys Biol 2022; 19:10.1088/1478-3975/ac4ee2. [PMID: 35078159 PMCID: PMC9190291 DOI: 10.1088/1478-3975/ac4ee2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
The role of plasticity and epigenetics in shaping cancer evolution and response to therapy has taken center stage with recent technological advances including single cell sequencing. This roadmap article is focused on state-of-the-art mathematical and experimental approaches to interrogate plasticity in cancer, and addresses the following themes and questions: is there a formal overarching framework that encompasses both non-genetic plasticity and mutation-driven somatic evolution? How do we measure and model the role of the microenvironment in influencing/controlling non-genetic plasticity? How can we experimentally study non-genetic plasticity? Which mathematical techniques are required or best suited? What are the clinical and practical applications and implications of these concepts?
Collapse
Affiliation(s)
- Jasmine Foo
- School of Mathematics, University of Minnesota, Twin Cities, MN 55455, United States of America
| | - David Basanta
- Integrated Mathematical Oncology Department, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States of America
| | - Russell C Rockne
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA 91010, United States of America
| | - Carly Strelez
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA 90064, United States of America
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Curran Shah
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA 90064, United States of America
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, United States of America
| | - Kimya Ghaffarian
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA 90064, United States of America
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA 90064, United States of America
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, United States of America
| | - Kelly Mitchell
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Justin D Lathia
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America
- Case Comprehensive Cancer Center, Cleveland, OH 44106, United States of America
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - David Frankhouser
- Department of Population Sciences, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA 91010, United States of America
| | - Sergio Branciamore
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA 91010, United States of America
| | - Ya-Huei Kuo
- Department of Hematologic Malignancies Translational Science, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA 91010, United States of America
| | - Guido Marcucci
- Department of Hematologic Malignancies Translational Science, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA 91010, United States of America
| | - Robert Vander Velde
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, United States of America
- Department of Molecular Biology, University of South Florida Health, Tampa, FL 33612, United States of America
| | - Andriy Marusyk
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, United States of America
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA 98109, United States of America
| | - Kishore Hari
- Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012 Bangalore, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012 Bangalore, India
| | - Haralampos Hatzikirou
- Mathematics Department, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
- Centre for Information Services and High Performance Computing, TU Dresden, 01062, Dresden, Germany
| | - Kamrine E Poels
- Early Clinical Development, Pfizer Worldwide Research and Development and Medical, United States of America
| | - Mary E Spilker
- Medicine Design, Pfizer Worldwide Research and Development and Medical, United States of America
| | - Blerta Shtylla
- Early Clinical Development, Pfizer Worldwide Research and Development and Medical, United States of America
| | - Mark Robertson-Tessi
- Integrated Mathematical Oncology Department, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States of America
| | - Alexander R A Anderson
- Integrated Mathematical Oncology Department, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States of America
| |
Collapse
|
28
|
Chang L, Li J, Zhang R. Liquid biopsy for early diagnosis of non-small cell lung carcinoma: recent research and detection technologies. Biochim Biophys Acta Rev Cancer 2022; 1877:188729. [DOI: 10.1016/j.bbcan.2022.188729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/14/2022] [Accepted: 04/10/2022] [Indexed: 02/07/2023]
|
29
|
Abstract
This overview of the molecular pathology of lung cancer includes a review of the most salient molecular alterations of the genome, transcriptome, and the epigenome. The insights provided by the growing use of next-generation sequencing (NGS) in lung cancer will be discussed, and interrelated concepts such as intertumor heterogeneity, intratumor heterogeneity, tumor mutational burden, and the advent of liquid biopsy will be explored. Moreover, this work describes how the evolving field of molecular pathology refines the understanding of different histologic phenotypes of non-small-cell lung cancer (NSCLC) and the underlying biology of small-cell lung cancer. This review will provide an appreciation for how ongoing scientific findings and technologic advances in molecular pathology are crucial for development of biomarkers, therapeutic agents, clinical trials, and ultimately improved patient care.
Collapse
Affiliation(s)
- James J Saller
- Departments of Pathology and Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Theresa A Boyle
- Departments of Pathology and Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| |
Collapse
|
30
|
Kim B, Kim Y, Shin S, Lee ST, Cho JY, Lee KA. Application of CRISPR/Cas9-based mutant enrichment technique to improve the clinical sensitivity of plasma EGFR testing in patients with non-small cell lung cancer. Cancer Cell Int 2022; 22:82. [PMID: 35168603 PMCID: PMC8845274 DOI: 10.1186/s12935-022-02504-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Approximately 50%-60% of secondary resistance to primary EGFR- tyrosine kinase inhibitors (TKI) therapy is caused by acquired p.Thr790Met (T790M) mutation; however, highly fragmented, low-quantity circulating tumor DNA is an obstacle for detecting mutations. Therefore, more sensitive mutation detection techniques are required. Here, we report a new mutant enrichment technology, the CRISPR system combined with post-polymerase chain reaction (PCR) cell-free DNA (cfDNA) (CRISPR-CPPC) to detect the T790M mutation using droplet digital PCR (ddPCR) from cfDNA. METHODS The CRISPR-CPPC process comprises the following three steps: (1) cfDNA PCR, (2) assembly of post-PCR cfDNA and CRISPR/CRISPR associated protein 9 complex, and (3) enrichment of the target DNA template. After CRISPR-CPPC, the target DNA was detected using ddPCR. We optimized and validated CRISPR-CPPC using reference cfDNA standards and cfDNA from patients with non-small cell lung cancer who underwent TKI therapy. We then compared the detection sensitivity of CRISPR-CPPC assay with the results of real-time PCR and those of ddPCR. RESULTS CRISPR-CPPC aided detection of T790M with 93.9% sensitivity and 100% specificity. T790M mutant copies were sensitively detected achieving an approximately 13-fold increase in the detected allele frequency. Furthermore, positive rate of detecting a low T790M copy number (< 10 copies/mL) were 93.8% (15/16) and 43.8% (7/16) for CRISPR-CPPC assay and ddPCR, respectively. CONCLUSIONS CRISPR-CPPC is a useful mutant enrichment tool for the sensitive detection of target mutation. When tested in patients with progressive disease, the diagnostic performance of CRISPR-CPPC assay is exceptionally better than that of any other currently available methods.
Collapse
Affiliation(s)
- Boyeon Kim
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-Ro, Gangnam-Gu, Seoul, 06273, Republic of Korea
| | - Yoonjung Kim
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-Ro, Gangnam-Gu, Seoul, 06273, Republic of Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jae Yong Cho
- Division of Medical Oncology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
| | - Kyung-A Lee
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-Ro, Gangnam-Gu, Seoul, 06273, Republic of Korea.
| |
Collapse
|
31
|
Osei-Bordom DC, Sachdeva G, Christou N. Liquid Biopsy as a Prognostic and Theranostic Tool for the Management of Pancreatic Ductal Adenocarcinoma. Front Med (Lausanne) 2022; 8:788869. [PMID: 35096878 PMCID: PMC8795626 DOI: 10.3389/fmed.2021.788869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinomas (PDAC) represent one of the deadliest cancers worldwide. Survival is still low due to diagnosis at an advanced stage and resistance to treatment. Herein, we review the main types of liquid biopsy able to help in both prognosis and adaptation of treatments.
Collapse
Affiliation(s)
- Daniel C Osei-Bordom
- Department of General Surgery, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Centre for Liver and Gastroenterology Research, University of Birmingham, Birmingham, United Kingdom
| | - Gagandeep Sachdeva
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Niki Christou
- Department of General Surgery, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Department of General Surgery, University Hospital of Limoges, Limoges, France
- EA3842 CAPTuR Laboratory "Cell Activation Control, Tumor Progression and Therapeutic Resistance", Faculty of Medicine, Limoges, France
| |
Collapse
|
32
|
Yang L, Ma P, Chen X, Cheng Z, Lin J. High-Sensitivity Fluorescence Detection for lung cancer CYFRA21-1 DNA based on Accumulative Hybridization of Quantum Dots. J Mater Chem B 2022; 10:1386-1392. [DOI: 10.1039/d1tb02557k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sensitive detection of circulating tumor DNA (ctDNA) in vitro has attracted growing attention owing to its potential application in diagnostics of cancer. In this study, we synthesized hydrophilic AgInS2@ZnS core-shell...
Collapse
|
33
|
Katopodis P, Anikin V, Kishore U, Carter T, Hall M, Asadi N, Polychronis A, Karteris E. Circulating tumour cells and circulating cell-free DNA in patients with lung cancer: a comparison between thoracotomy and video-assisted thoracoscopic surgery. BMJ Open Respir Res 2021; 8:8/1/e000917. [PMID: 34493540 PMCID: PMC8424856 DOI: 10.1136/bmjresp-2021-000917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/07/2021] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION The type of lung cancer surgery impacts on tumour manipulation during surgery and may drive dissemination of cancer cells into the vasculature, thus facilitating metastatic spread. The aim of this study was to investigate the impact of surgically induced trauma using peripheral blood from preoperative and postoperative patients with non-small cell lung cancer (NSCLC) undergoing thoracotomy or video-assisted thoracoscopic surgery (VATS) resection. METHODS Imaging flow cytometry was used to measure circulating cancer-associated cells (CCs). Circulating cell-free DNA (ccfDNA) isolation was performed using Promega dsDNA HS Assay Kit. DNA integrity measurements were calculated by the ALU247 to ALU115 ratio and cytokine levels measured using the Luminex screening assay. RESULTS CCs were increased in postoperative blood samples in 54 patients with NSCLC. Patients who underwent thoracotomy instead of VATS had higher numbers of EpCAM (p=0.004) and PanCK-labelled (p=0.03) CCs postoperatively. ccfDNA and DNA integrity index were also significantly increased in postoperative samples (p=0.0009 and p=0.04), with concomitant increase in interleukin 6 and interleukin 10 levels in the same cohorts (p=0.0004 and p=0.034, respectively). CONCLUSIONS In this study we have shown the potential clinical utility of several biomarkers from liquid biopsies to guide perioperative management, as well as provide a snapshot of the type of surgical resection in terms of circulating tumour cell release. Obtaining reliable readouts from blood can provide crucial information for disease progression, as well as being of prognostic value monitoring patients' response to treatment.
Collapse
Affiliation(s)
- Periklis Katopodis
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK.,Thoracic Surgery, Royal Brompton & Harefield NHS Foundation Trust, Harefield, UK
| | - Vladimir Anikin
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK.,Thoracic Surgery, Royal Brompton & Harefield NHS Foundation Trust, Harefield, UK.,Department of Oncology and Reconstructive Surgery, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | | | - Marcia Hall
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK.,Mount Vernon Cancer Centre, Northwood, UK
| | - Nizar Asadi
- Royal Brompton and Harefield NHS Trust, London, UK
| | | | - Emmanouil Karteris
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK .,Thoracic Surgery, Royal Brompton & Harefield NHS Foundation Trust, Harefield, UK
| |
Collapse
|
34
|
Jensen SG, Epistolio S, Madsen CL, Kyneb MH, Riva A, Paganotti A, Barizzi J, Petersen RK, Børgesen M, Molinari F, Boldorini R, Lorenzen J, Sørensen E, Christensen UB, Høgdall E, Frattini M. A new sensitive and fast assay for the detection of EGFR mutations in liquid biopsies. PLoS One 2021; 16:e0253687. [PMID: 34166445 PMCID: PMC8224962 DOI: 10.1371/journal.pone.0253687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/10/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND A major perspective for the use of circulating tumor DNA (ctDNA) in the clinical setting of non-small cell lung cancer (NSCLC) is expected as predictive factor for resistance and response to EGFR TKI therapy and, especially, as a non-invasive alternative to tissue biopsy. However, ctDNA is both highly fragmented and mostly low concentrated in plasma and serum. On this basis, it is important to use a platform characterized by high sensitivity and linear performance in the low concentration range. This motivated us to evaluate the newly developed and commercially available SensiScreen® EGFR Liquid assay platform (PentaBase) with regard to sensitivity, linearity, repeatability and accuracy and finally to compare it to our already implemented methods. The validation was made in three independent European laboratories using two cohorts on a total of 68 unique liquid biopsies. RESULTS Using artificial samples containing 1600 copies of WT DNA spiked with 50% - 0.1% of mutant copies across a seven-log dilution scale, we assessed the sensitivity, linearity, repeatability and accuracy for the p.T790M, p.L858R and exon 19 deletion assays of the SensiScreen® EGFR Liquid assay platform. The lowest value detectable ranged from 0.5% to 0.1% with R2≥0,97 indicating good linearity. High PCR efficiency was shown for all three assays. In 102 single PCRs each containing theoretical one copy of the mutant at initiating, assays showed repeatable positivity in 75.5% - 80.4% of reactions. At low ctDNA levels, as in plasma, the SensiScreen® EGFR Liquid assay platform showed better sensitivity than the Therascreen® EGFR platform (Qiagen) and equal performance to the ctEGFR Mutation Detection Kit (EntroGen) and the IOT® Oncomine cell-free nucleic acids assay (Thermo Fisher Scientific) with 100% concordance at the sequence level. CONCLUSION For profiling clinical plasma samples, characterized by low ctDNA abundance, the SensiScreen® EGFR Liquid assay is able to identify down to 1 copy of mutant alleles and with its high sensitivity, linearity and accuracy it may be a competitive platform of choice.
Collapse
Affiliation(s)
| | | | | | | | - Alice Riva
- Institute of Pathology, Locarno, Switzerland
| | - Alessia Paganotti
- Department of Pathology, ’Maggiore della Carità’ Hospital, Novara, Italy
| | | | | | | | | | - Renzo Boldorini
- Department of Pathology, ’Maggiore della Carità’ Hospital, Novara, Italy
- Department of Health Sciences, Universitá degli Studi del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Jan Lorenzen
- Life Science Division, Danish Technological Institute, Aarhus, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Estrid Høgdall
- Department of Pathology, Herlev—Gentofte University Hospital, Herlev, Denmark
| | | |
Collapse
|
35
|
Chang TY, Chen SW, Lin WH, Huang CE, Evans MI, Chung IF, Wu JW, Ma GC, Chen M. Comparison of Genetic Profiling between Primary Tumor and Circulating Tumor Cells Captured by Microfluidics in Epithelial Ovarian Cancer: Tumor Heterogeneity or Allele Dropout? Diagnostics (Basel) 2021; 11:diagnostics11061102. [PMID: 34208639 PMCID: PMC8234832 DOI: 10.3390/diagnostics11061102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/16/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is a leading cause of cancer mortality among women but unfortunately is usually not diagnosed until advanced stage. Early detection of EOC is of paramount importance to improve outcomes. Liquid biopsy of circulating tumor cells (CTCs) is emerging as one of the promising biomarkers for early detection of solid tumors. However, discrepancies in terms of oncogenomics (i.e., different genetic defects detected) between the germline, primary tumor, and liquid biopsy are a serious concern and may adversely affect downstream cancer management. Here, we illustrate the potential and pitfalls of CTCs by presenting two patients of Stage I EOC. We successfully isolated and recovered CTCs by a silicon-based nanostructured microfluidics system, the automated Cell RevealTM. We examined the genomics of CTCs as well as the primary tumor and germline control (peripheral blood mononuclear cells) by whole exome sequencing. Different signatures were then investigated by comparisons of identified mutation loci distinguishing those that may only arise in the primary tumor or CTCs. A novel model is proposed to test if the highly variable allele frequencies, between primary tumor and CTCs results, are due to allele dropout in plural CTCs or tumor heterogeneity. This proof-of-principle study provides a strategy to elucidate the possible cause of genomic discrepancy between the germline, primary tumor, and CTCs, which is helpful for further large-scale use of such technology to be integrated into clinical management protocols.
Collapse
Affiliation(s)
- Ting-Yu Chang
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua 50046, Taiwan;
- Department of Research, Changhua Christian Hospital, Changhua 50006, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Sheng-Wen Chen
- Department of Electrical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan;
- Cytoaurora Biotechnologies Inc., Hsinchu Science Park, Hsinchu 30261, Taiwan;
| | - Wen-Hsiang Lin
- Welgene Biotechnology Company, Nangang Business Park, Taipei 11503, Taiwan;
| | - Chung-Er Huang
- Cytoaurora Biotechnologies Inc., Hsinchu Science Park, Hsinchu 30261, Taiwan;
| | - Mark I. Evans
- Comprehensive Genetics, New York, NY 10065, USA;
- Department of Obstetrics and Gynecology, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - I-Fang Chung
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Janne-Wha Wu
- Department of Electrical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan;
- Department of Communications Engineering, National Chung Cheng University, Chiayi 62102, Taiwan
- Correspondence: (J.-W.W.); (G.-C.M.); (M.C.); Tel.: +886-5-272-0411 (ext. 33519) (J.-W.W.); +886-4-723-8595 (ext. 2319) (G.-C.M.); +886-4-723-8595 (ext. 2323) (M.C.)
| | - Gwo-Chin Ma
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua 50046, Taiwan;
- Department of Research, Changhua Christian Hospital, Changhua 50006, Taiwan
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
- Correspondence: (J.-W.W.); (G.-C.M.); (M.C.); Tel.: +886-5-272-0411 (ext. 33519) (J.-W.W.); +886-4-723-8595 (ext. 2319) (G.-C.M.); +886-4-723-8595 (ext. 2323) (M.C.)
| | - Ming Chen
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua 50046, Taiwan;
- Department of Research, Changhua Christian Hospital, Changhua 50006, Taiwan
- Department of Obstetrics and Gynecology, College of Medicine and Hospital, National Taiwan University, Taipei 100225, Taiwan
- Department of Biomedical Science, Dayeh University, Changhua 515006, Taiwan
- Department of Medical Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
- Correspondence: (J.-W.W.); (G.-C.M.); (M.C.); Tel.: +886-5-272-0411 (ext. 33519) (J.-W.W.); +886-4-723-8595 (ext. 2319) (G.-C.M.); +886-4-723-8595 (ext. 2323) (M.C.)
| |
Collapse
|
36
|
Jouida A, McCarthy C, Fabre A, Keane MP. Exosomes: a new perspective in EGFR-mutated lung cancer. Cancer Metastasis Rev 2021; 40:589-601. [PMID: 33855679 PMCID: PMC8213600 DOI: 10.1007/s10555-021-09962-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
Exosomes are major contributors in cell to cell communication due to their ability to transfer biological material such as protein, RNA, DNA, and miRNA. Additionally, they play a role in tumor initiation, promotion, and progression, and recently, they have emerged as a potential source of information on tumor detection and may be useful as diagnostic, prognostic, and predictive tools. This review focuses on exosomes from lung cancer with a focus on EGFR mutations. Here, we outline the role of exosomes and their functional effect in carcinogenesis, tumor progression, and metastasis. Finally, we discuss the possibility of exosomes as novel biomarkers in early detection, diagnosis, assessment of prognosis, and prediction of therapeutic response in EGFR-mutated lung cancer.
Collapse
Affiliation(s)
- Amina Jouida
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Cormac McCarthy
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- St. Vincent's University Hospital and School of Medicine, University College Dublin, Dublin, Ireland
| | - Aurelie Fabre
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- St. Vincent's University Hospital and School of Medicine, University College Dublin, Dublin, Ireland
| | - Michael P Keane
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
- St. Vincent's University Hospital and School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
37
|
Duréndez-Sáez E, Torres-Martinez S, Calabuig-Fariñas S, Meri-Abad M, Ferrero-Gimeno M, Camps C. Exosomal microRNAs in non-small cell lung cancer. Transl Cancer Res 2021; 10:3128-3139. [PMID: 35116621 PMCID: PMC8798604 DOI: 10.21037/tcr-20-2815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022]
Abstract
Lung cancer is one of the highest incidence cancer types worldwide and one with the lowest 5-year survival rate of all cancer types. Despite recent insights into lung cancer pathobiology, including novel biomarker-targeted therapies and immunotherapies, most of lung patients are diagnosed at late stages with limited and ineffective treatments. Therefore, more approaches are needed to eradicate lung cancer. In the last years, small extracellular vesicles (EVs) secreted by tumor cells have been gaining relevance. These intercellular signal mediators, called exosomes, contain a huge range of biological elements, including lipids, nucleic acids and miRNAs, among others, that carry relevant information. The role of exosomes in cancer progression is dependent on cancer type, molecular characteristics and stage. MicroRNAs molecules are a big part of the content of exosomes cargo and probably the most studied ones. Due to the regulatory role in gene expression, miRNAs may provide information of the molecular characteristics of the tumor and be also able to reprogram distant target cells. Exosomal miRNAs can modulate different biological processes in cancer such as growth, progression, invasion, angiogenesis, metastasis and drug resistance; playing a critical role in modifying the microenvironment of non-small cell lung cancer (NSCLC). Therefore, they can act by regulating tumor resistance and also be useful to monitoring the response/relapse to targeted therapies. In this work, we summarize the relevant advances on the potential role of exosomal miRNAs in NSCLC pathobiogenesis, highlighting the clinical utility of exosomal microRNAs as biomarkers for the NSCLC diagnosis, prognosis, drug resistance and therapeutic strategies.
Collapse
Affiliation(s)
- Elena Duréndez-Sáez
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain.,CIBERONC, Valencia, Spain
| | - Susana Torres-Martinez
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain.,CIBERONC, Valencia, Spain
| | - Silvia Calabuig-Fariñas
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain.,CIBERONC, Valencia, Spain.,Department of Pathology, Universitat de València, Valencia, Spain
| | - Marina Meri-Abad
- Department of Medical Oncology, Hospital General Universitario de Valencia, Valencia, Spain
| | - Macarena Ferrero-Gimeno
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain.,CIBERONC, Valencia, Spain
| | - Carlos Camps
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain.,CIBERONC, Valencia, Spain.,Department of Medical Oncology, Hospital General Universitario de Valencia, Valencia, Spain.,Department of Medicine, Universitat de València, Valencia, Spain
| |
Collapse
|
38
|
Clinical Relevance of Mesenchymal- and Stem-Associated Phenotypes in Circulating Tumor Cells Isolated from Lung Cancer Patients. Cancers (Basel) 2021; 13:cancers13092158. [PMID: 33947159 PMCID: PMC8124761 DOI: 10.3390/cancers13092158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Lung cancer is the most frequent malignancy in the world. Most lung cancer patients are diagnosed at an advanced stage. To make matters worse, the survival of patients is very poor. Circulating tumor cells (CTCs), albeit rare, have been portrayed as essential players in the progression of lung cancer. It is definitely not easy being a CTC. First, they escape from the primary tumor, then they travel in the bloodstream, have to survive really harsh conditions, and finally, they form metastases. The adoption of epithelial-to-mesenchymal transition as well as cancer stem cell features has been suggested to allow CTCs to survive and metastasize. This review will focus on how these features can be used to estimate the prognosis of lung cancer patients. Abstract Lung cancer is the leading cause of cancer-related mortality globally. Among the types of lung cancer, non-small-cell lung cancer (NSCLC) is more common, while small-cell lung cancer (SCLC) is less frequent yet more aggressive. Circulating tumor cells (CTCs), albeit rare, have been portrayed as essential players in the progression of lung cancer. CTCs are considered to adopt an epithelial-to-mesenchymal transition (EMT) phenotype and characteristics of cancer stem cells (CSCs). This EMT (or partial) phenotype affords these cells the ability to escape from the primary tumor, travel into the bloodstream, and survive extremely adverse conditions, before colonizing distant foci. Acquisition of CSC features, such as self-renewal, differentiation, and migratory potential, further reflect CTCs’ invasive potential. CSCs have been identified in lung cancer, and expression of EMT markers has previously been correlated with poor clinical outcomes. Thus far, a vast majority of studies have concentrated on CTC detection and enumeration as a prognostic tools of patients’ survival or for monitoring treatment efficacy. In this review, we highlight EMT and CSC markers in CTCs and focus on the clinical significance of these phenotypes in the progression of both non-small- and small-cell lung cancer.
Collapse
|
39
|
Vasantharajan SS, Eccles MR, Rodger EJ, Pattison S, McCall JL, Gray ES, Calapre L, Chatterjee A. The Epigenetic landscape of Circulating tumour cells. Biochim Biophys Acta Rev Cancer 2021; 1875:188514. [PMID: 33497709 DOI: 10.1016/j.bbcan.2021.188514] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/31/2022]
Abstract
Cancer metastasis is the main reason for the high mortality in patients, contributing to 90% of cancer-related deaths. Biomarkers for early detection and therapeutic monitoring are essential to improve cancer outcomes. Circulating tumour cells (CTCs) arise from solid tumours and are capable of metastatic dissemination via the bloodstream or lymphatic system. Thus, CTCs can potentially be developed as a minimally invasive biomarker for early detection and therapeutic monitoring. Despite its clinical potential, research on CTCs remains limited, and this is likely due to their low numbers, short half-life, and the lack of robust methods for their isolation. There is also a need for molecular characterisation of CTCs to identify tumour-specific features, such as epigenetic signatures of metastasis. This review provides an overview of the epigenetic landscape of CTCs. We discuss the role of epigenetic modifications in CTC dissemination,metastatic tumour formation and progression and highlight its clinical implications.
Collapse
Affiliation(s)
| | - Michael R Eccles
- Department of Pathology, Otago Medical School-Dunedin Campus, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand.
| | - Euan J Rodger
- Department of Pathology, Otago Medical School-Dunedin Campus, New Zealand.
| | - Sharon Pattison
- Department of Medicine, Otago Medical School-Dunedin Campus, New Zealand.
| | - John L McCall
- Department of Surgical Sciences, Otago Medical School-Dunedin Campus, New Zealand.
| | - Elin S Gray
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia.
| | - Leslie Calapre
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia.
| | - Aniruddha Chatterjee
- Department of Pathology, Otago Medical School-Dunedin Campus, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
40
|
Kim Y, Shin S, Lee KA. Exosome-based detection of EGFR T790M in plasma and pleural fluid of prospectively enrolled non-small cell lung cancer patients after first-line tyrosine kinase inhibitor therapy. Cancer Cell Int 2021; 21:50. [PMID: 33435996 PMCID: PMC7802208 DOI: 10.1186/s12935-021-01761-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The exosomal nucleic acid (exoNA) from the plasma and pleural fluid can potentially provide means to identify genomic changes in non-small cell lung cancer (NSCLC) patients who develop resistance to targeted epidermal growth factor receptor (EGFR) inhibitor therapy. METHODS We compared the performance of the following tools to detect EGFR mutations in 54 plasma samples and 13 pleural fluid using cfDNA, combined TNA (exoTNA + cfTNA), or total cellular DNA: droplet digital PCR (ddPCR), the Cobas® EGFR Mutation Test v2 (Cobas) and NGS with Oncomine Pan-Cancer Cell-Free Assay. RESULTS All three of these platforms demonstrated 100% specificity in the detection of EGFR mutations in the plasma. In the detection of an activating mutation (exon 19 deletion and L858R), Cobas using cfDNA, ddPCR using combined TNA, and NGS using combined TNA showed a sensitivity of 93, 95.3, and 93.8%, respectively. For T790M mutation detection, the Cobas, ddPCR, and NGS showed a sensitivity of 64.7, 88.2, and 93.3%, respectively. Pleural fluid analysis revealed enrichment of the T790M mutant copies in the exosomes. ddPCR using exoTNA showed higher sensitivity than did total cellular DNA from the pleural fluid. CONCLUSION These results demonstrated that combined TNA in the plasma and exoTNA in the pleural fluid can be used to evaluate low-abundant EGFR mutant copies in NSCLC.
Collapse
Affiliation(s)
- Yoonjung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung-A Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
41
|
Moreno-Manuel A, Calabuig-Fariñas S, Obrador-Hevia A, Blasco A, Fernández-Díaz A, Sirera R, Camps C, Jantus-Lewintre E. dPCR application in liquid biopsies: divide and conquer. Expert Rev Mol Diagn 2020; 21:3-15. [PMID: 33305634 DOI: 10.1080/14737159.2021.1860759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Precision medicine is already a reality in oncology, since biomarker-driven therapies have clearly improved patient survival. Furthermore, a new, minimally invasive strategy termed 'liquid biopsy' (LB) has revolutionized the field by allowing comprehensive cancer genomic profiling through the analysis of circulating tumor DNA (ctDNA). However, its detection requires extremely sensitive and efficient technologies. A powerful molecular tool based on the principle of 'divide and conquer' has emerged to solve this problem. Thus, digital PCR (dPCR) allows absolute and accurate quantification of target molecules.Areas covered: In this review we will discuss the fundamentals of dPCR and the most common approaches used for partition of samples and quantification. The advantages and limitations of dPCR will be mentioned in the context of LB in oncology.Expert opinion: In our opinion, dPCR has proven to be one of the most sensitive methods available for LB analysis, albeit some aspects such as its capacity of multiplexing and protocol standardization still require further improvements. Furthermore, the increasing sensitivities and lower costs of next generation sequencing (NGS) methods position dPCR as a confirmatory and complementary technique for NGS results which will likely prove to be very useful for treatment monitoring and assessing minimal residual disease.
Collapse
Affiliation(s)
- Andrea Moreno-Manuel
- Molecular Oncology Laboratory, Fundación Para La Investigación del Hospital General Universitario De Valencia, Valencia, Spain.,Mixed Unit TRIAL, (Príncipe Felipe Research Centre & Fundación Para La Investigación Del Hospital General Universitario De Valencia), Valencia, Spain
| | - Silvia Calabuig-Fariñas
- Molecular Oncology Laboratory, Fundación Para La Investigación del Hospital General Universitario De Valencia, Valencia, Spain.,Mixed Unit TRIAL, (Príncipe Felipe Research Centre & Fundación Para La Investigación Del Hospital General Universitario De Valencia), Valencia, Spain.,Department of Pathology, Universitat de València, València, Spain.,CIBERONC, Madrid, Spain
| | - Antonia Obrador-Hevia
- Group of Advanced Therapies and Biomarkers in Clinical Oncology, Health Research Institute of the Balearic Islands (Idisba), Son Espases University Hospital, Palma, Spain.,Molecular Diagnosis Unit, Son Espases University Hospital, Palma, Spain
| | - Ana Blasco
- CIBERONC, Madrid, Spain.,Medical Oncology Department, General University Hospital of Valencia, Valencia, Spain
| | - Amaya Fernández-Díaz
- Medical Oncology Department, General University Hospital of Valencia, Valencia, Spain
| | - Rafael Sirera
- Mixed Unit TRIAL, (Príncipe Felipe Research Centre & Fundación Para La Investigación Del Hospital General Universitario De Valencia), Valencia, Spain.,CIBERONC, Madrid, Spain.,Department of Biotechnology, Universitat Politècnica De València, Valencia, Spain
| | - Carlos Camps
- Molecular Oncology Laboratory, Fundación Para La Investigación del Hospital General Universitario De Valencia, Valencia, Spain.,Mixed Unit TRIAL, (Príncipe Felipe Research Centre & Fundación Para La Investigación Del Hospital General Universitario De Valencia), Valencia, Spain.,CIBERONC, Madrid, Spain.,Medical Oncology Department, General University Hospital of Valencia, Valencia, Spain.,Department of Medicine, Universitat De València, Valencia, Spain
| | - Eloisa Jantus-Lewintre
- Molecular Oncology Laboratory, Fundación Para La Investigación del Hospital General Universitario De Valencia, Valencia, Spain.,Mixed Unit TRIAL, (Príncipe Felipe Research Centre & Fundación Para La Investigación Del Hospital General Universitario De Valencia), Valencia, Spain.,CIBERONC, Madrid, Spain.,Department of Biotechnology, Universitat Politècnica De València, Valencia, Spain
| |
Collapse
|
42
|
Dai Z, Gu XY, Xiang SY, Gong DD, Man CF, Fan Y. Research and application of single-cell sequencing in tumor heterogeneity and drug resistance of circulating tumor cells. Biomark Res 2020; 8:60. [PMID: 33292625 PMCID: PMC7653877 DOI: 10.1186/s40364-020-00240-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Malignant tumor is a largely harmful disease worldwide. The cure rate of malignant tumors increases with the continuous discovery of anti-tumor drugs and the optimisation of chemotherapy options. However, drug resistance of tumor cells remains a massive obstacle in the treatment of anti-tumor drugs. The heterogeneity of malignant tumors makes studying it further difficult for us. In recent years, using single-cell sequencing technology to study and analyse circulating tumor cells can avoid the interference of tumor heterogeneity and provide a new perspective for us to understand tumor drug resistance.
Collapse
Affiliation(s)
- Zhe Dai
- Cancer Institution, Affiliated People’s Hospital of Jiangsu University, No.8 Dianli Road, Zhenjiang, Jiangsu Province 212002 People’s Republic of China
| | - Xu-yu Gu
- Cancer Institution, Affiliated People’s Hospital of Jiangsu University, No.8 Dianli Road, Zhenjiang, Jiangsu Province 212002 People’s Republic of China
| | - Shou-yan Xiang
- Cancer Institution, Affiliated People’s Hospital of Jiangsu University, No.8 Dianli Road, Zhenjiang, Jiangsu Province 212002 People’s Republic of China
| | - Dan-dan Gong
- Cancer Institution, Affiliated People’s Hospital of Jiangsu University, No.8 Dianli Road, Zhenjiang, Jiangsu Province 212002 People’s Republic of China
| | - Chang-feng Man
- Cancer Institution, Affiliated People’s Hospital of Jiangsu University, No.8 Dianli Road, Zhenjiang, Jiangsu Province 212002 People’s Republic of China
| | - Yu Fan
- Cancer Institution, Affiliated People’s Hospital of Jiangsu University, No.8 Dianli Road, Zhenjiang, Jiangsu Province 212002 People’s Republic of China
| |
Collapse
|
43
|
Liu HE, Vuppalapaty M, Wilkerson C, Renier C, Chiu M, Lemaire C, Che J, Matsumoto M, Carroll J, Crouse S, Hanft VR, Jeffrey SS, Di Carlo D, Garon EB, Goldman J, Sollier E. Detection of EGFR Mutations in cfDNA and CTCs, and Comparison to Tumor Tissue in Non-Small-Cell-Lung-Cancer (NSCLC) Patients. Front Oncol 2020; 10:572895. [PMID: 33117705 PMCID: PMC7578230 DOI: 10.3389/fonc.2020.572895] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) therapies, based on the evaluation of EGFR mutations, have shown dramatic clinical benefits. EGFR mutation assays are mainly performed on tumor biopsies, which carry risks, are not always successful and give results relevant to the timepoint of the assay. To detect secondary EGFR mutations, which cause resistance to 1st and 2nd generation TKIs and lead to the administration of a 3rd generation drug, effective and non-invasive monitoring of EGFR mutation status is needed. Liquid biopsy analytes, such as circulating tumor cells (CTCs) and circulating tumor DNA (cfDNA), allow such monitoring over the course of the therapy. The aim of this study was to develop and optimize a workflow for the evaluation of cfDNA and CTCs in NSCLC patients all from one blood sample. Using Vortex technology and EntroGen ctEGFR assay, EGFR mutations were identified at 0.5 ng of DNA (∼83 cells), with a sensitivity ranging from 0.1 to 2.0% for a total DNA varying from 25 ng (∼4 CTCs among 4000 white blood cells, WBCs) to 1 ng (∼4 CTCs among 200 WBCs). The processing of plasma-depleted-blood provided comparable capture recovery as whole blood, confirming the possibility of a multimodality liquid biopsy analysis (cfDNA and CTC DNA) from a single tube of blood. Different anticoagulants were evaluated and compared in terms of respective performance. Blood samples from 24 NSCLC patients and 6 age-matched healthy donors were analyzed with this combined workflow to minimize blood volume needed and sample-to-sample bias, and the EGFR mutation profile detected from CTCs and cfDNA was compared to matched tumor tissues. Despite the limited size of the patient cohort, results from this non-invasive EGFR mutation analysis are encouraging and this combined workflow represents a valuable means for informing therapy selection and for monitoring treatment of patients with NSCLC.
Collapse
Affiliation(s)
- Haiyan E Liu
- Vortex Biosciences, Inc., Pleasanton, CA, United States
| | | | | | | | - Michael Chiu
- Vortex Biosciences, Inc., Pleasanton, CA, United States
| | | | - James Che
- Vortex Biosciences, Inc., Pleasanton, CA, United States
| | - Melissa Matsumoto
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - James Carroll
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Steve Crouse
- Vortex Biosciences, Inc., Pleasanton, CA, United States
| | - Violet R Hanft
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Stefanie S Jeffrey
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States.,California NanoSystems Institute, Los Angeles, CA, United States.,UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, United States
| | - Edward B Garon
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, United States
| | - Jonathan Goldman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, United States
| | | |
Collapse
|
44
|
Kim IA, Hur JY, Kim HJ, Lee SE, Kim WS, Lee KY. Liquid biopsy using extracellular vesicle-derived DNA in lung adenocarcinoma. J Pathol Transl Med 2020; 54:453-461. [PMID: 33027851 PMCID: PMC7674759 DOI: 10.4132/jptm.2020.08.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
Blood liquid biopsy has emerged as a way of overcoming the clinical limitations of repeat biopsy by testing for the presence of acquired resistance mutations to therapeutic agents. Despite its merits of repeatability and non-invasiveness, this method is currently only used as a supplemental test due to a relatively low sensitivity rate of 50%–60%, and cannot replace tissue biopsy. The circulating tumor DNAs used in blood liquid biopsies are passive products of fragmented DNA with a short half-life released following tumor cell death; the low sensitivity seen with liquid blood biopsy results from this instability, which makes increasing the sensitivity of this test fundamentally difficult. Extracellular vesicles (EVs) are ideal carriers of cancer biomarkers, as cancer cells secret an abundance of EVs, and the contents of tumor cell-originated EVs reflect the molecular and genetic composition of parental cells. In addition, EV-derived DNAs (EV DNAs) consist of large-sized genomic DNAs and tumor-specific oncogenic mutant DNAs. For these reasons, liquid biopsy using EV DNA has the potential to overcome issues arising from tissue shortages associated with small biopsies, which are often seen in lung cancer patients, and the biopsy product can be used in other diagnostic methods, such as epidermal growth factor receptor (EGFR) mutation testing and next-generation sequencing (NGS). A higher sensitivity can be achieved when EV DNAs obtained from bronchoalveolar lavage fluid (BALF) are used rather than those from blood. BALF, when obtained close to the tumor site, is a promising liquid biopsy tool, as it enables the gathering of both cellular and non-cellular fractions of the tumor microenvironment, and provides increased diagnostic sensitivity when compared to blood.
Collapse
Affiliation(s)
- In Ae Kim
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul, Korea.,Department of Pulmonary Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Jae Young Hur
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul, Korea.,Department of Pathology, Konkuk University School of Medicine, Seoul, Korea
| | - Hee Joung Kim
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul, Korea.,Department of Pulmonary Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Seung Eun Lee
- Department of Pathology, Konkuk University School of Medicine, Seoul, Korea
| | - Wan Seop Kim
- Department of Pathology, Konkuk University School of Medicine, Seoul, Korea
| | - Kye Young Lee
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul, Korea.,Department of Pulmonary Medicine, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Beyond tissue biopsy: a diagnostic framework to address tumor heterogeneity in lung cancer. Curr Opin Oncol 2020; 32:68-77. [PMID: 31714259 DOI: 10.1097/cco.0000000000000598] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The objective of this review is to discuss the strength and limitations of tissue and liquid biopsy and functional imaging to capture spatial and temporal tumor heterogeneity either alone or as part of a diagnostic framework in non-small cell lung cancer (NSCLC). RECENT FINDINGS NSCLC displays genetic and phenotypic heterogeneity - a detailed knowledge of which is crucial to personalize treatment. Tissue biopsy often lacks spatial and temporal resolution. Thus, NSCLC needs to be characterized by complementary diagnostic methods to resolve heterogeneity. Liquid biopsy offers detection of tumor biomarkers and for example, the classification and monitoring of EGFR mutations in NSCLC. It allows repeated sampling, and therefore, appears promising to address temporal aspects of tumor heterogeneity. Functional imaging methods and emerging image analytic tools, such as radiomics capture temporal and spatial heterogeneity. Further standardization of radiomics is required to allow introduction into clinical routine. SUMMARY To augment the potential of precision therapy, improved diagnostic characterization of tumors is pivotal. We suggest a comprehensive diagnostic framework combining tissue and liquid biopsy and functional imaging to address the known aspects of spatial and temporal tumor heterogeneity on the example of NSCLC. We envision how this framework might be implemented in clinical practice.
Collapse
|
46
|
Cayrefourcq L, Alix-Panabières C. Clinical relevance of liquid biopsy in breast cancer: update in 2020. Expert Rev Mol Diagn 2020; 20:913-919. [DOI: 10.1080/14737159.2020.1816828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
| |
Collapse
|
47
|
Agashe R, Kurzrock R. Circulating Tumor Cells: From the Laboratory to the Cancer Clinic. Cancers (Basel) 2020; 12:cancers12092361. [PMID: 32825548 PMCID: PMC7564158 DOI: 10.3390/cancers12092361] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/08/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Circulating tumor cells (CTCs) are cells that are shed from tumors into the bloodstream. Cell enrichment and isolation technology as well as molecular profiling via next-generation sequencing have allowed for a greater understanding of tumor cancer biology via the interrogation of CTCs. CTC detection can be used to predict cancer relapse, progression, and survival; evaluate treatment effectiveness; and explore the ex vivo functional impact of agents. Detection methods can be by either immunoaffinity (positive or negative enrichment strategies) or biophysical strategies. CTC characterization, which is performed by DNA, RNA, and/or protein techniques, can predict metastatic potential. Currently, CTC-derived explant models may mimic patient response to chemotherapy and help with studying druggable targets and testing treatments. The Food and Drug Administration has cleared a CTC blood test to enumerate CTCs derived from breast, prostate, and colorectal cancers. In conclusion, liquid biopsies via CTCs provide a non-invasive way to obtain important diagnostic, prognostic, and predictive information in patients with cancer.
Collapse
|
48
|
Quan Y, Chen K, Xiang N, Ni Z. A single-view field filter device for rare tumor cell filtration and enumeration. Electrophoresis 2020; 41:2000-2006. [PMID: 32767389 DOI: 10.1002/elps.202000176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
In this work, we demonstrate a single-view field filter (SVFF) device for the efficient filtration and enumeration of rare tumor cells in the blood. In our device, the track-etched membrane is integrated within a low-cost polymer-film microfluidic chip, and multiplex microfiltration chambers are designed. Our device permits the performing of multiple sample tests on a single membrane and the dynamical observation of the entire filtration process in a single field of view. To characterize the device performance, our device is first tested using tumor cells, and three different cell behaviors are observed during the filtration process. Finally, we successfully apply our device for the separation of rare tumor cells from the lysed blood samples at various flow rates. The recovery rates of 93.3, 87.6, and 84.1% can be respectively achieved at the throughputs of 50, 100, and 150 μL/min. Our single-view field filter (SVFF) device offers the advantages of label-free filtration, efficient enumeration, easy integration, and low cost, and holds the potential to be used as an efficient tool for the filtration and enumeration of rare cells.
Collapse
Affiliation(s)
- Yunlin Quan
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Ke Chen
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| |
Collapse
|
49
|
Netterberg I, Karlsson MO, Terstappen LWMM, Koopman M, Punt CJA, Friberg LE. Comparing Circulating Tumor Cell Counts with Dynamic Tumor Size Changes as Predictor of Overall Survival: A Quantitative Modeling Framework. Clin Cancer Res 2020; 26:4892-4900. [PMID: 32527941 DOI: 10.1158/1078-0432.ccr-19-2570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/04/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Quantitative relationships between treatment-induced changes in tumor size and circulating tumor cell (CTC) counts, and their links to overall survival (OS), are lacking. We present a population modeling framework identifying and quantifying such relationships, based on longitudinal data collected in patients with metastatic colorectal cancer (mCRC) to evaluate the value of tumor size and CTC counts as predictors of OS. EXPERIMENTAL DESIGN A pharmacometric approach (i.e., population pharmacodynamic modeling) was used to characterize the changes in tumor size and CTC count and evaluate them as predictors of OS in 451 patients with mCRC treated with chemotherapy and targeted therapy in a prospectively randomized phase III study (CAIRO2). RESULTS A tumor size model of tumor quiescence and drug resistance was used to characterize the tumor size time-course, and was, in addition to the total normalized dose (i.e., of all administered drugs) in a given cycle, related to the CTC counts through a negative binomial model (CTC model). Tumor size changes did not contribute additional predictive value when the mean CTC count was a predictor of OS. Treatment reduced the typical mean count from 1.43 to 0.477 (HR = 3.94). The modeling framework was applied to explore whether dose modifications (increased and reduced) would result in a CTC count below 1/7.5 mL after 1 to 2 weeks of treatment. CONCLUSIONS Time-varying CTC counts can be useful for early predicting OS in patients with mCRC, and may therefore have potential for model-based treatment individualization. Although tumor size was connected to CTC, its link to OS was weaker.
Collapse
Affiliation(s)
- Ida Netterberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Mats O Karlsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Leon W M M Terstappen
- Department of Medical Cell BioPhysics, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Miriam Koopman
- Department of Medical Oncology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Cornelis J A Punt
- Department of Medical Oncology, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, the Netherlands
| | - Lena E Friberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
50
|
Dianat-Moghadam H, Azizi M, Eslami-S Z, Cortés-Hernández LE, Heidarifard M, Nouri M, Alix-Panabières C. The Role of Circulating Tumor Cells in the Metastatic Cascade: Biology, Technical Challenges, and Clinical Relevance. Cancers (Basel) 2020; 12:E867. [PMID: 32260071 PMCID: PMC7225923 DOI: 10.3390/cancers12040867] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Metastases and cancer recurrence are the main causes of cancer death. Circulating Tumor Cells (CTCs) and disseminated tumor cells are the drivers of cancer cell dissemination. The assessment of CTCs' clinical role in early metastasis prediction, diagnosis, and treatment requires more information about their biology, their roles in cancer dormancy, and immune evasion as well as in therapy resistance. Indeed, CTC functional and biochemical phenotypes have been only partially characterized using murine metastasis models and liquid biopsy in human patients. CTC detection, characterization, and enumeration represent a promising tool for tailoring the management of each patient with cancer. The comprehensive understanding of CTCs will provide more opportunities to determine their clinical utility. This review provides much-needed insights into this dynamic field of translational cancer research.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran; (H.D.-M.); (M.N.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Mehdi Azizi
- Proteomics Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran;
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, UPRES, EA2415, 34093 Montpellier, France (L.E.C.-H.)
| | - Luis Enrique Cortés-Hernández
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, UPRES, EA2415, 34093 Montpellier, France (L.E.C.-H.)
| | - Maryam Heidarifard
- Drug Applied Research Center, Tabriz University of Medical Sciences, 51368 Tabriz, Iran;
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran; (H.D.-M.); (M.N.)
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, UPRES, EA2415, 34093 Montpellier, France (L.E.C.-H.)
| |
Collapse
|