1
|
Kmail M, Razak R, Mohd Isa IL. Engineering extracellular matrix-based hydrogels for intervertebral disc regeneration. Front Bioeng Biotechnol 2025; 13:1601154. [PMID: 40375978 PMCID: PMC12078266 DOI: 10.3389/fbioe.2025.1601154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 04/16/2025] [Indexed: 05/18/2025] Open
Abstract
Lower back pain (LBP) is a major health concern, especially in older adults. A key aetiological factor is intervertebral disc (IVD) degeneration. It is mediated by dysregulation of extracellular matrix (ECM) and inflammation. In recent years, regenerative therapies have garnered attention for their potential to restore disc function by addressing the underlying biological alterations within the IVD. This review focuses on the comprehensive understanding of the anatomy and physiology of the IVD, highlighting its life cycle from embryonic development, and maturation to degenerative phenotype. We describe current treatments for managing LBP caused by IVD degeneration. This review emphasizes on the recent advancements in hydrogel engineering, highlighting natural, synthetic, and composite hydrogels and their application in ECM-targeted regenerative therapy for IVD degeneration. By exploring innovations in hydrogel technology, including improvements in crosslinking techniques and controlled degradation rates-we discuss how these materials could enhance IVD regeneration and potentially be used for the management of LBP. With their enhanced biomimicry, hydrogel-based ECM mimics offer a promising pathway for developing effective, durable therapies that address the root causes of disc degeneration, providing new hope for individuals living with chronic LBP.
Collapse
Affiliation(s)
- Mwafaq Kmail
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan, Kuala Lumpur, Malaysia
| | - Rusydi Razak
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan, Kuala Lumpur, Malaysia
| | - Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan, Kuala Lumpur, Malaysia
- CÚRAM Research Ireland Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Sao K, Risbud MV. SDC4 drives fibrotic remodeling of the intervertebral disc under altered spinal loading. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643128. [PMID: 40161806 PMCID: PMC11952502 DOI: 10.1101/2025.03.13.643128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Alterations in physiological loading of the spine are deleterious to intervertebral disc health. The caudal spine region Ca3-6 that experiences increased flexion, showed disc degeneration in young adult mice. Given the role of Syndecan 4 (SDC4), a cell surface heparan sulfate proteoglycan in disc matrix catabolism and mechanosensing, we investigated if deletion could mitigate this loading-dependent phenotype. Notably, at spinal levels Ca3-6, Sdc4- KO mice did not exhibit increased collagen fibril and fibronectin deposition in the NP compartment or showed the alterations in collagen crosslinks observed in wild-type mice. Similarly, unlike wild-type mice, NP cells in Sdc4 -KO mice retained transgelin (TGLN) expression and showed absence of COL X deposition, pointing to the preservation of their notochordal characteristics. Proteomic analysis revealed that NP tissues responded to the abnormal loading by increasing the abundance of proteins associated with extracellular matrix remodeling, chondrocyte development, and contractility. Similarly, downregulated proteins suggested decreased vesicle transport, autophagy-related pathway, and RNA quality control regulation. Notably, NP proteome from Sdc4 KO suggested that increased dynamin-mediated endocytosis, autophagy-related pathway, and RNA and DNA quality control may underscore the protection from increased flexion-induced degeneration. Our study highlights the important role of SDC4 in fine-tuning cellular homeostasis and extracellular matrix production in disc environment subjected to altered loading.
Collapse
|
3
|
Chen J, Yang J, Li R, Huang Z, Huang Z, Wu X, Zhu Q, Ding Y. The Degree of Cervical Intervertebral Disc Degeneration Is Associated With Denser Bone Quality of the Cervical Sub-endplate and Vertebral Body. Orthop Surg 2025; 17:460-469. [PMID: 39632275 PMCID: PMC11787967 DOI: 10.1111/os.14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/21/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
OBJECTIVE The relationship between cervical disc degeneration and bone quality of adjacent vertebral body remains controversial. This study aims to investigate the relationship between cervical disc degeneration and bone quality of the adjacent vertebral body and sub-endplate bone with a new MRI-based bone quality score in patients over 50 years with cervical spondylosis. METHODS We retrospectively reviewed 479 cervical disc segments from 131 patients. Disc degeneration at levels C3/C4-C6/C7 was graded using T2-weighted MRI. Vertebral body quality (VBQ) score and sub-endplate bone quality (EBQ) score from C3 to C7 were computed from T1-weighted MRI images. Additionally, bone mineral density (BMD) of the cervical vertebrae was measured in 52 patients using a novel phantom-less quantitative computed tomography (PL-QCT) system. The correlation between bone quality score and Pfirrmann grade was analyzed and risk factors for VBQ and EBQ were further evaluated. RESULTS Significant differences were found in cranial VBQ among different Pfirrmann grades, with a score of 2.55 ± 0.54 for Grade 5 discs, which was lower compared to Grades 4 (2.70 ± 0.56) (p < 0.05) and 3 (2.81 ± 0.58) (p < 0.01). Caudal VBQ for Grade 5 discs (2.43 ± 0.52) was also significantly lower than for Grade 3 discs (2.66 ± 0.54) (p < 0.01). EBQ scores decreased with increasing Pfirrmann grades. Negative correlations were observed between both cranial and caudal VBQ and EBQ scores and Pfirrmann grades. Grades 4 and 5 discs were identified as independent risk factors for decreased caudal VBQ and EBQ, whereas only Grade 5 was a significant risk factor for decreased cranial EBQ. Additionally, a moderate correlation (0.4 < R < 0.6, p < 0.05) was noted between vertebral body BMD and VBQ at each cervical level. CONCLUSION In individuals over 50 years with cervical spondylosis, the severity of disc degeneration was closely correlated with denser bone quality in both the caudal vertebral body and sub-endplate, as measured by VBQ and EBQ scores. These findings suggest that worsening disc degeneration is associated with increased bone density in specific areas of the cervical spine.
Collapse
Affiliation(s)
- Jia‐Yu Chen
- Department of Spinal SurgeryThe First People's Hospital of ChenzhouChenzhouChina
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jia‐Chen Yang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ruo‐Yao Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zu‐Cheng Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhi‐Ping Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiu‐Hua Wu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Qing‐An Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yin Ding
- Department of Orthopedics, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical CenterNanjing Medical UniversityChangzhouChina
| |
Collapse
|
4
|
Yu Z, Fan C, Mao Y, Wu X, Mao H. Autophagy activation alleviates annulus fibrosus degeneration via the miR-2355-5p/mTOR pathway. J Orthop Surg Res 2025; 20:86. [PMID: 39849546 PMCID: PMC11755947 DOI: 10.1186/s13018-025-05492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/12/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Intervertebral disc degeneration disease (IVDD) is a major cause of disability and reduced work productivity worldwide. Annulus fibrosus degeneration is a key contributor to IVDD, yet its mechanisms remain poorly understood. Autophagy, a vital process for cellular homeostasis, involves the lysosomal degradation of cytoplasmic proteins and organelles. This study aimed to investigate the role of autophagy in IVDD using a hydrogen peroxide (H2O2)-induced model of rat annulus fibrosus cells (AFCs). METHODS AFCs were exposed to H2O2 to model oxidative stress-induced degeneration. Protein expression levels of collagen I, collagen II, MMP3, and MMP13 were quantified. GEO database analysis identified alterations in miR-2355-5p expression, and its regulatory role on the mTOR pathway and autophagy was assessed. Statistical tests were used to evaluate changes in protein expression and pathway activation. RESULTS H2O2 exposure reduced collagen I and collagen II expression to approximately 50% of baseline levels, while MMP3 and MMP13 expression increased twofold. Activation of autophagy restored collagen I and II expression and decreased MMP3 and MMP13 levels. GEO analysis revealed significant alterations in miR-2355-5p expression, confirming its role in regulating the mTOR pathway and autophagy. CONCLUSIONS Autophagy, mediated by the miR-2355-5p/mTOR pathway, plays a protective role in AFCs degeneration. These findings suggest a potential therapeutic target for mitigating IVDD progression.
Collapse
Affiliation(s)
- Zilin Yu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214026, Jiangsu, China
| | - Chunyang Fan
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yubo Mao
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214026, Jiangsu, China.
| | - Xiexing Wu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Haiqing Mao
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
5
|
Ren BW, Liu YH, Wu JH, An BC, Liu QZ, Liu CY, Mao KY, Liu JH. Causal effects of plasma proteome on intervertebral disc degeneration: a comprehensive mendelian randomization study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2025; 34:316-325. [PMID: 39500755 DOI: 10.1007/s00586-024-08551-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 01/24/2025]
Abstract
PURPOSE Intervertebral disc degeneration (IVDD) considerably impacts global disability and quality of life. Although potential links between plasma proteins and IVDD exist, their causal correlation remains undefined. This study explored the causal links between plasma proteins and IVDD employing genome-wide association study data. METHODS For this observational study, summary statistics for plasma proteins were derived from an Icelandic population, paralleled with genome-wide data on IVDD obtained from the FinnGen consortium. Using two-sample Mendelian randomization, we assessed the causal relationship between 4,907 plasma proteins and IVDD. Standard sensitivity analyses encompassing heterogeneity, pleiotropy, and leave-one-out cross-validation tests confirmed the stability and robustness of the findings. Subsequently, through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein interaction analyses, we delved into the functional interrelation among identified plasma proteins. RESULTS A causal association with IVDD was identified for 47 plasma proteins; myoneurin, intersectin 1, and eukaryotic translation initiation factor 4 gamma 3 maintained significant correlations post multiple correction tests (P < 1.02 × 10- 5), influencing IVDD development positively. GO/KEGG pathway analyses confirmed that multiple pathways may be involved in IVDD development. CONCLUSION The study underscores the causal correlation between plasma protein levels and IVDD risk. These identified proteins could emerge as unique biomarkers for IVDD, contributing to its predictive measures. The findings further our understanding of IVDD pathomechanisms and prospective therapeutic targets.
Collapse
Affiliation(s)
- Bo-Wen Ren
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of the Chinese PLA General Hospital, Beijing, 100853, China
| | - Yi-Hao Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of the Chinese PLA General Hospital, Beijing, 100853, China
| | - Jian-Hui Wu
- Medical School of the Chinese PLA General Hospital, Beijing, 100853, China
| | - Bo-Chen An
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of the Chinese PLA General Hospital, Beijing, 100853, China
| | - Qing-Zu Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of the Chinese PLA General Hospital, Beijing, 100853, China
| | - Chong-Yang Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of the Chinese PLA General Hospital, Beijing, 100853, China
| | - Ke-Ya Mao
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Jian-Heng Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
6
|
Liu Q, Zhang HL, Zhang YL, Wang S, Feng XQ, Li K, Zhang CQ. Strain rate-dependent failure mechanics of the intervertebral disc under tension/compression and constitutive analysis. Med Eng Phys 2024; 127:104158. [PMID: 38692761 DOI: 10.1016/j.medengphy.2024.104158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND The intervertebral disc exhibits not only strain rate dependence (viscoelasticity), but also significant asymmetry under tensile and compressive loads, which is of great significance for understanding the mechanism of lumbar disc injury under physiological loads. OBJECTIVE In this study, the strain rate sensitive and tension-compression asymmetry of the intervertebral disc were analyzed by experiments and constitutive equation. METHOD The Sheep intervertebral disc samples were divided into three groups, in order to test the strain rate sensitive mechanical behavior, and the internal displacement as well as pressure distribution. RESULTS The tensile stiffness is one order of magnitude smaller than the compression stiffness, and the logarithm of the elastic modulus is approximately linear with the logarithm of the strain rate, showing obvious tension-compression asymmetry and rate-related characteristics. In addition, the sensitivity to the strain rate is the same under these two loading conditions. The stress-strain curves of unloading and loading usually do not coincide, and form a Mullins effect hysteresis loop. The radial displacement distribution is opposite between the anterior and posterior region, which is consistent with the stress distribution. By introducing the damage factor into ZWT constitutive equation, the rate-dependent viscoelastic and weakening behavior of the intervertebral disc can be well described.
Collapse
Affiliation(s)
- Qing Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300384, China; Department of Mechanics, Tianjin University, Tianjin, 300354, China; Tianjin Key Laboratory of Nonlinear Dynamics and Control, Tianjin, 300354, China
| | - Han-Lin Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300384, China
| | - Yu-Lin Zhang
- Sinopec Zhenhai Refining & Chemical Company, Ningbo, 315200, China
| | - Shuo Wang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300384, China
| | - Xiao-Qing Feng
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300384, China
| | - Kun Li
- Tianjin Key Laboratory of Film Electronic and Communication Device, Tianjin University of Technology, Tianjin, 300384, China.
| | - Chun-Qiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300384, China.
| |
Collapse
|
7
|
Notarangelo MP, Penolazzi L, Lambertini E, Falzoni S, De Bonis P, Capanni C, Di Virgilio F, Piva R. The NFATc1/P2X7 receptor relationship in human intervertebral disc cells. Front Cell Dev Biol 2024; 12:1368318. [PMID: 38638530 PMCID: PMC11024252 DOI: 10.3389/fcell.2024.1368318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/13/2024] [Indexed: 04/20/2024] Open
Abstract
A comprehensive understanding of the molecules that play key roles in the physiological and pathological homeostasis of the human intervertebral disc (IVD) remains challenging, as does the development of new therapeutic treatments. We recently found a positive correlation between IVD degeneration (IDD) and P2X7 receptor (P2X7R) expression increases both in the cytoplasm and in the nucleus. Using immunocytochemistry, reverse transcription PCR (RT-PCR), overexpression, and chromatin immunoprecipitation, we found that NFATc1 and hypoxia-inducible factor-1α (HIF-1α) are critical regulators of P2X7R. Both transcription factors are recruited at the promoter of the P2RX7 gene and involved in its positive and negative regulation, respectively. Furthermore, using the proximity ligation assay, we revealed that P2X7R and NFATc1 form a molecular complex and that P2X7R is closely associated with lamin A/C, a major component of the nuclear lamina. Collectively, our study identifies, for the first time, P2X7R and NFATc1 as markers of IVD degeneration and demonstrates that both NFATc1 and lamin A/C are interaction partners of P2X7R.
Collapse
Affiliation(s)
| | - Letizia Penolazzi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Elisabetta Lambertini
- Department of Chemical, Pharmaceutical and Agricultural Sciences of the University of Ferrara, Ferrara, Italy
| | - Simonetta Falzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Pasquale De Bonis
- Neurosurgery Department, Sant’Anna University Hospital, Ferrara, Italy
| | - Cristina Capanni
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, Bologna, Italy
- IRCCS Rizzoli Orthopedic Institute, Bologna, Italy
| | | | - Roberta Piva
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
8
|
Liu W, Li HM, Bai G. Construction of a novel mRNA-miRNA-lncRNA/circRNA triple subnetwork associated with immunity and aging in intervertebral disc degeneration. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:1176-1195. [PMID: 38555595 DOI: 10.1080/15257770.2024.2334353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVE Intervertebral disk degeneration (IVDD) is one of the most common causes of low back pain. However, in the etiology of IVDD, the specific method by which nucleus pulposus (NP) cell senescence and the immune response induce disease is uncertain. METHODS Gene Expression Omnibus database was used to find differentially expressed genes (DEGs), differentially expressed miRNAs (DE miRNAs), differentially expressed lncRNAs (DE lncRNAs), and differentially expressed circRNAs (DE circRNAs). Functional enrichment analysis was performed through Enrichr database. Potential regulatory miRNAs, lncRNAs and circRNAs of mRNAs were predicted by ENCORI and circBank, respectively. RESULTS We identified 198 upregulated and 131 downregulated genes, 39 upregulated and 22 downregulated miRNAs, 2152 upregulated and 564 downregulated lncRNAs, and 352 upregulated and 279 downregulated circRNAs as DEGs, DE miRNAs, DE lncRNAs, DE circRNAs, respectively. Functional enrichment analysis revealed that they were significantly enriched in Toll-like receptor signaling route and the NF-kappa B signaling pathway. An mRNA-miRNA-lncRNA/circRNA network linked to the pathogenesis of NP cells in IVDD was constructed based on node degree and differential expression level. Eight immune-related DEGs (6 upregulated and 2 downregulated genes) and five aging-related DEGs (3 upregulated and 2 downregulated genes) were identified in the critical network. CONCLUSION We established a novel immune-related and aging-related triple regulatory network of mRNA-miRNA-lncRNA/circRNA ceRNA, among which all RNAs may be utilized as the pathogenesis biomarker of NP cells in IVDD.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopedics, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, P R China
| | - Hui-Min Li
- Department of Orthopedics, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, P R China
| | - Guangchao Bai
- Department of Orthopedics, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, P R China
| |
Collapse
|
9
|
Lorio MP, Tate JL, Myers TJ, Block JE, Beall DP. Perspective on Intradiscal Therapies for Lumbar Discogenic Pain: State of the Science, Knowledge Gaps, and Imperatives for Clinical Adoption. J Pain Res 2024; 17:1171-1182. [PMID: 38524692 PMCID: PMC10959304 DOI: 10.2147/jpr.s441180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Specific clinical diagnostic criteria have established a consensus for defining patients with lumbar discogenic pain. However, if conservative medical management fails, these patients have few treatment options short of surgery involving discectomy often coupled with fusion or arthroplasty. There is a rapidly-emerging research effort to fill this treatment gap with intradiscal therapies that can be delivered minimally-invasively via fluoroscopically guided injection without altering the normal anatomy of the affected vertebral motion segment. Viable candidate products to date have included mesenchymal stromal cells, platelet-rich plasma, nucleus pulposus structural allograft, and other cell-based compositions. The objective of these products is to repair, supplement, and restore the damaged intervertebral disc as well as retard further degeneration. In doing so, the intervention is meant to eliminate the source of discogenic pain and avoid surgery. Methodologically rigorous studies are rare, however, and based on the best clinical evidence, the safety as well as the magnitude and duration of clinical efficacy remain difficult to estimate. Further, we summarize the US Food and Drug Administration's (FDA) guidance regarding the interpretation of the minimal manipulation and homologous use criteria, which is central to designating these products as a tissue or as a drug/device/biologic. We also provide perspectives on the core evidence and knowledge gaps associated with intradiscal therapies, propose imperatives for evaluating effectiveness of these treatments and highlight several new technologies on the horizon.
Collapse
|
10
|
Easson GWD, Savadipour A, Gonzalez C, Guilak F, Tang SY. TRPV4 differentially controls inflammatory cytokine networks during static and dynamic compression of the intervertebral disc. JOR Spine 2023; 6:e1282. [PMID: 38156056 PMCID: PMC10751971 DOI: 10.1002/jsp2.1282] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/04/2023] [Accepted: 09/02/2023] [Indexed: 12/30/2023] Open
Abstract
Background The ion channel transient receptor potential vanilloid 4 (TRPV4) critically transduces mechanical forces in the IVD, and its inhibition can prevent IVD degeneration due to static overloading. However, it remains unknown whether different modes of loading signals through TRPV4 to regulate the expression of inflammatory cytokines. We hypothesized that TRPV4 signaling is essential during static and dynamic loading to mediate homeostasis and mechanotransduction. Methods Mouse functional spine units were isolated and either cyclically compressed for 5 days (1 Hz, 1 h, 10% strain) or statically compressed (24 h, 0.2 MPa). Conditioned media were monitored at 6 h, 24 h, 2 days, and 5 days, with and without TRPV4 inhibition. Effects of TRPV4 activation was also evaluated without loading. The media was analyzed for a panel of 44 cytokines using a microbead array and then a correlative network was constructed to explore the regulatory relationships during loading and TRPV4 inhibition. After the loading regimen, the IVDs were evaluated histologically for degeneration. Results Activation of TRPV4 led to an increase interleukin-6 (IL-6) family of cytokines (IL-6, IL-11, IL-16, and leukemia inhibitory factor [LIF]) and decreased the T-cell (CCL3, CCL4, CCL17, CCL20, CCL22, and CXCL10) and monocyte (CCL2 and CCL12) recruiting chemokines by the IVD. Dynamic and static loading each provoked unique chemokine correlation networks. The inhibition of TRPV4 during dynamic loading dysregulated the relationship between LIF and other cytokines, while the inhibition of TRPV4 during static loading disrupted the connectivity of IL-16 and VEGFA. Conclusions We demonstrated that TRPV4 critically mediates the cytokine production following dynamic and static loading. The activation of TRPV4 upregulated a diverse set of cytokines that may suppress the chemotaxis of T-cells and monocytes, implicating the role of TRPV4 in maintaining the immune privilege of healthy IVD.
Collapse
Affiliation(s)
- Garrett W. D. Easson
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
- Department of Mechanical Engineering and Materials ScienceWashington University in St. LouisSt. LouisMissouriUSA
| | - Alireza Savadipour
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
- Department of Mechanical Engineering and Materials ScienceWashington University in St. LouisSt. LouisMissouriUSA
- Shriners Hospitals for Children—St. LouisSt. LouisMissouriUSA
| | - Christian Gonzalez
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Farshid Guilak
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
- Department of Mechanical Engineering and Materials ScienceWashington University in St. LouisSt. LouisMissouriUSA
- Shriners Hospitals for Children—St. LouisSt. LouisMissouriUSA
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Simon Y. Tang
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
- Department of Mechanical Engineering and Materials ScienceWashington University in St. LouisSt. LouisMissouriUSA
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| |
Collapse
|
11
|
Velnar T, Gradisnik L. Endplate role in the degenerative disc disease: A brief review. World J Clin Cases 2023; 11:17-29. [PMID: 36687189 PMCID: PMC9846967 DOI: 10.12998/wjcc.v11.i1.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/19/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The degenerative disease of the intervertebral disc is nowadays an important health problem, which has still not been understood and solved adequately. The vertebral endplate is regarded as one of the vital elements in the structure of the intervertebral disc. Its constituent cells, the chondrocytes in the endplate, may also be involved in the process of the intervertebral disc degeneration and their role is central both under physiological and pathological conditions. They main functions include a role in homeostasis of the extracellular environment of the intervertebral disc, metabolic support and nutrition of the discal nucleus and annulus beneath and the preservation of the extracellular matrix. Therefore, it is understandable that the cells in the endplate have been in the centre of research from several viewpoints, such as development, degeneration and growth, reparation and remodelling, as well as treatment strategies. In this article, we briefly review the importance of vertebral endplate, which are often overlooked, in the intervertebral disc degeneration.
Collapse
Affiliation(s)
- Tomaz Velnar
- Department of Neurosurgery, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
- Alma Mater Europaea Maribor, Maribor 2000, Slovenia
| | - Lidija Gradisnik
- Alma Mater Europaea Maribor, Maribor 2000, Slovenia
- Institute of Biomedical Sciences, University of Maribor, University of Maribor, Maribor 2000, Slovenia
| |
Collapse
|
12
|
Tang SN, Bonilla AF, Chahine NO, Colbath AC, Easley JT, Grad S, Haglund L, Le Maitre CL, Leung V, McCoy AM, Purmessur D, Tang SY, Zeiter S, Smith LJ. Controversies in spine research: Organ culture versus in vivo models for studies of the intervertebral disc. JOR Spine 2022; 5:e1235. [PMID: 36601369 PMCID: PMC9799089 DOI: 10.1002/jsp2.1235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
Intervertebral disc degeneration is a common cause of low back pain, the leading cause of disability worldwide. Appropriate preclinical models for intervertebral disc research are essential to achieving a better understanding of underlying pathophysiology and for the development, evaluation, and translation of more effective treatments. To this end, in vivo animal and ex vivo organ culture models are both widely used by spine researchers; however, the relative strengths and weaknesses of these two approaches are a source of ongoing controversy. In this article, members from the Spine and Preclinical Models Sections of the Orthopedic Research Society, including experts in both basic and translational spine research, present contrasting arguments in support of in vivo animal models versus ex vivo organ culture models for studies of the disc, supported by a comprehensive review of the relevant literature. The objective is to provide a deeper understanding of the respective advantages and limitations of these approaches, and advance the field toward a consensus with respect to appropriate model selection and implementation. We conclude that complementary use of several model types and leveraging the unique advantages of each is likely to result in the highest impact research in most instances.
Collapse
Affiliation(s)
- Shirley N. Tang
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Andres F. Bonilla
- Preclinical Surgical Research Laboratory, Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Nadeen O. Chahine
- Departments of Orthopedic Surgery and Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| | - Aimee C. Colbath
- Department of Clinical Sciences, College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - Jeremiah T. Easley
- Preclinical Surgical Research Laboratory, Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| | | | | | | | - Victor Leung
- Department of Orthopaedics and TraumatologyThe University of Hong KongHong KongSARChina
| | - Annette M. McCoy
- Department of Veterinary Clinical MedicineUniversity of IllinoisUrbanaIllinoisUSA
| | - Devina Purmessur
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Simon Y. Tang
- Department of Orthopaedic SurgeryWashington University in St LouisSt LouisMissouriUSA
| | | | - Lachlan J. Smith
- Departments of Orthopaedic Surgery and NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
13
|
Peng B, Li Y. Concerns about cell therapy for intervertebral disc degeneration. NPJ Regen Med 2022; 7:46. [PMID: 36068218 PMCID: PMC9448766 DOI: 10.1038/s41536-022-00245-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 08/10/2022] [Indexed: 01/17/2023] Open
Affiliation(s)
- Baogan Peng
- Department of Orthopaedics, The Third Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing, China.
| | - Yongchao Li
- Department of Orthopaedics, The Third Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
14
|
Bahar ME, Hwang JS, Ahmed M, Lai TH, Pham TM, Elashkar O, Akter KM, Kim DH, Yang J, Kim DR. Targeting Autophagy for Developing New Therapeutic Strategy in Intervertebral Disc Degeneration. Antioxidants (Basel) 2022; 11:antiox11081571. [PMID: 36009290 PMCID: PMC9405341 DOI: 10.3390/antiox11081571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent cause of low back pain. IVDD is characterized by abnormal expression of extracellular matrix components such as collagen and aggrecan. In addition, it results in dysfunctional growth, senescence, and death of intervertebral cells. The biological pathways involved in the development and progression of IVDD are not fully understood. Therefore, a better understanding of the molecular mechanisms underlying IVDD could aid in the development of strategies for prevention and treatment. Autophagy is a cellular process that removes damaged proteins and dysfunctional organelles, and its dysfunction is linked to a variety of diseases, including IVDD and osteoarthritis. In this review, we describe recent research findings on the role of autophagy in IVDD pathogenesis and highlight autophagy-targeting molecules which can be exploited to treat IVDD. Many studies exhibit that autophagy protects against and postpones disc degeneration. Further research is needed to determine whether autophagy is required for cell integrity in intervertebral discs and to establish autophagy as a viable therapeutic target for IVDD.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Jin Seok Hwang
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Trang Minh Pham
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Omar Elashkar
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Kazi-Marjahan Akter
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, GyeongNam, Korea
| | - Dong-Hee Kim
- Department of Orthopaedic Surgery, Institute of Health Sciences, Gyeongsang National University Hospital and Gyeongsang National University College of Medicine, Jinju 52727, GyeongNam, Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
- Correspondence: ; Tel.: +82-55-772-8054
| |
Collapse
|
15
|
Hiyama A, Suyama K, Sakai D, Tanaka M, Watanabe M. Correlational analysis of chemokine and inflammatory cytokine expression in the intervertebral disc and blood in patients with lumbar disc disease. J Orthop Res 2022; 40:1213-1222. [PMID: 34191345 DOI: 10.1002/jor.25136] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/01/2021] [Accepted: 06/25/2021] [Indexed: 02/04/2023]
Abstract
The involvement of intervertebral disc (IVD) tissues, whole blood (WB) cytokines, and chemokines in pain in patients with lumbar degenerative disc disease (LDD) is unknown. We investigated the relationships between inflammatory cytokines and chemokines in human IVD tissues and WB samples and their association with pain. Expression levels of chemokines and cytokine gene expression were measured in samples from 20 patients with LDD and compared between IVD tissues and WB samples. The associations between WB chemokine and cytokine gene expression levels and pain intensity (numeric rating scale) were also analyzed. The mRNA of C-C chemokine ligand 20 (CCL20), C-C chemokine receptor 6 (CCR6), interleukin-6 (IL-6), IL-1β, IL-17, and tumor necrosis factor-α (TNF-α) was expressed in degenerated IVD tissues. Pearson's product-moment correlation analysis produced positive correlations between CCR6 and IL-6 expression levels in IVD tissues (r = 0.845, p < 0.001) and WB samples (r = 0.963, p < 0.001). WB IL-6 and CCR6 mRNA expression levels correlated significantly with present pain, maximum pain, and average pain. By contrast, low back pain (LBP) did not correlate with serum chemokine/cytokine expression. This is the first study to report correlations between chemokine and inflammatory cytokine gene expression levels in IVD tissues and WB samples in patients with LDD in relation to pain intensity. WB CCR6 and IL-6 gene expression levels correlated significantly with present pain, maximum pain, and average pain, but not with LBP. These data provide a new understanding of the role of chemokines and inflammatory cytokines in patients with LDD and may lead to new treatment strategies for pain.
Collapse
Affiliation(s)
- Akihiko Hiyama
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kaori Suyama
- Department of Anatomy and Cellular Biology, Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Masahiro Tanaka
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
16
|
Zhu M, Yan X, Zhao Y, Xue H, Wang Z, Wu B, Li X, Shen Y. lncRNA LINC00284 promotes nucleus pulposus cell proliferation and ECM synthesis via regulation of the miR‑205‑3p/Wnt/β‑catenin axis. Mol Med Rep 2022; 25:179. [PMID: 35322864 PMCID: PMC8972274 DOI: 10.3892/mmr.2022.12695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/23/2022] [Indexed: 11/08/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is a leading cause of degenerative spinal disease. Long non-coding RNA (lncRNA) LINC00284 is overexpressed in multiple types of cancer and promotes cancer cell proliferation and inhibits apoptosis; however, its role in human IDD and nucleus pulposus (NP) remain unclear. In the present study, intervertebral disc (IVD) tissues were collected from IDD patients for detection of LINC00284 expression using reverse transcription-quantitative PCR, the binding effect between miR-205-3p and LINC00284 was validated by dual-luciferase reporter assay. miR-205-3p and small interfering RNA (siRNA) was used for LINC00240 knockdown to investigate the proliferation, apoptosis of cells in the NP cells measured by Cell Counting Kit (CCK)-8 assay and Annexin V-FITC/Propidium Iodide (PI) staining with flow cytometry receptivity. IDD animal models were constructed for in vivo study of the role LINC00284 in IDD improvement. The results showed that LINC00284 expression was upregulated in IDD tissue and IL-1β-induced NP cells. LINC00284 knockdown resulted in an increase in IL-1β-induced NP cell proliferation, a decrease in apoptosis and matrix metalloproteinase-3 expression and an increase in expression of extracellular matrix (ECM) markers aggrecan and collagen II. In vivo experiments and histomorphometric analysis confirmed the protective effect of LINC00284 knockdown in IDD. LINC00284 was also shown to be a target of microRNA (miR)-205-3p, and there was a negative correlation between LINC00284 and miR-205-3p levels in IDD tissue. Additionally, LINC00284 knockdown or miR-205-3p upregulation resulted in inhibition of Wnt/β-catenin signaling and subsequent degradation of the ECM. The present study demonstrated that LINC00284 activated the Wnt/β-catenin signaling via sponging miR-205-3p, resulting in inhibition of NP cell proliferation and ECM synthesis. These results suggested that targeting LINC00284 to rescue miR-205-3p expression may be a potential method for IDD management.
Collapse
Affiliation(s)
- Min Zhu
- Department of Spine Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xiaoling Yan
- Chemotherapy Department, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yin Zhao
- Department of Spine Surgery, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Huawei Xue
- Department of Spine Surgery, Nantong Third People's Hospital, Nantong, Jiangsu 226006, P.R. China
| | - Zhen Wang
- Department of Spine Surgery, Nantong Third People's Hospital, Nantong, Jiangsu 226006, P.R. China
| | - Bo Wu
- Department of Spine Surgery, Nantong Third People's Hospital, Nantong, Jiangsu 226006, P.R. China
| | - Xiangyang Li
- Department of Spine Surgery, Nantong Third People's Hospital, Nantong, Jiangsu 226006, P.R. China
| | - Yixin Shen
- Department of Spine Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
17
|
Wang J, Xia D, Lin Y, Xu W, Wu Y, Chen J, Chu J, Shen P, Weng S, Wang X, Shen L, Fan S, Shen S. Oxidative stress-induced circKIF18A downregulation impairs MCM7-mediated anti-senescence in intervertebral disc degeneration. Exp Mol Med 2022; 54:285-297. [PMID: 35332256 PMCID: PMC8979962 DOI: 10.1038/s12276-022-00732-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/10/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022] Open
Abstract
Low back pain, triggered by intervertebral disc degeneration (IVDD), is one of the most common causes of disability and financial expenditure worldwide. However, except for surgical interventions, effective medical treatment to prevent the progression of IVDD is lacking. This study aimed to investigate the effects of circKIF18A, a novel circRNA, on IVDD progression and to explore its underlying mechanism in IVDD. In this study, we found that oxidative stress was positively correlated with nucleus pulposus cell (NPC) senescence in IVDD and that circKIF18A was downregulated in IVDD and attenuated senescent phenotypes such as cell cycle arrest and extracellular matrix degradation in NPCs. Mechanistically, circKIF18A competitively suppressed ubiquitin-mediated proteasomal degradation of MCM7, and the protective effects of circKIF18A on NPCs were partially mediated by MCM7 under oxidative stress. Intradiscal injection of adenoviral circKIF18A ameliorated IVDD in a rat model. This study revealed that circKIF18A regulates NPC degeneration by stabilizing MCM7 and identified a novel signaling pathway, the circKIF18A-MCM7 axis, for anti-senescence molecular therapy in IVDD. A non-coding circular RNA molecule that prevents spinal cells from undergoing premature ageing offers a new therapeutic target for treating intervertebral disc degeneration (IVDD), a major cause of lower back pain. Shuying Shen of Zhejiang University School of Medicine, China, and colleagues took samples from the soft, gelatinous central portion of the intervertebral disk, the so-called nucleus pulposus, and looked for circular RNAs with high expression levels in healthy individuals and low levels in people with IVDD. They identified a specific RNA in this way, and showed how this regulatory molecule promotes the activity of a protein involved in enhancing the proliferative capacity of nucleus pulposus tissues. In rats, injections of a gene therapy vector encoding this RNA helped ameliorate signs of IVDD, highlighting the potential for similar therapeutic strategies in people with IVDD.
Collapse
Affiliation(s)
- Jianle Wang
- Department of Orthopedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310020, Hangzhou, Zhejiang, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 310020, Hangzhou, Zhejiang, China
| | - Dongdong Xia
- Department of Orthopedics, Ningbo First Hospital, 315010, Ningbo, Zhejiang, China
| | - Yan Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325088, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, 325088, Wenzhou, Zhejiang Province, China
| | - Wenbin Xu
- Department of Orthopedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310020, Hangzhou, Zhejiang, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 310020, Hangzhou, Zhejiang, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325088, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, 325088, Wenzhou, Zhejiang Province, China
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325088, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, 325088, Wenzhou, Zhejiang Province, China
| | - Junjie Chu
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310020, Hangzhou, Zhejiang, China
| | - Panyang Shen
- Department of Orthopedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310020, Hangzhou, Zhejiang, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 310020, Hangzhou, Zhejiang, China
| | - Sheji Weng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325088, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, 325088, Wenzhou, Zhejiang Province, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325088, Wenzhou, Zhejiang Province, China. .,Key Laboratory of Orthopaedics of Zhejiang Province, 325088, Wenzhou, Zhejiang Province, China.
| | - Lifeng Shen
- Department of Orthopedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310020, Hangzhou, Zhejiang, China. .,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 310020, Hangzhou, Zhejiang, China.
| | - Shunwu Fan
- Department of Orthopedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310020, Hangzhou, Zhejiang, China. .,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 310020, Hangzhou, Zhejiang, China.
| | - Shuying Shen
- Department of Orthopedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310020, Hangzhou, Zhejiang, China. .,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 310020, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
The Proteolysis of ECM in Intervertebral Disc Degeneration. Int J Mol Sci 2022; 23:ijms23031715. [PMID: 35163637 PMCID: PMC8835917 DOI: 10.3390/ijms23031715] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a pathological process that commonly occurs throughout the human life span and is a major cause of lower back pain. Better elucidation of the molecular mechanisms involved in disc degeneration could provide a theoretical basis for the development of lumbar disc intervention strategies. In recent years, extracellular matrix (ECM) homeostasis has received much attention due to its relevance to the mechanical properties of IVDs. ECM proteolysis mediated by a variety of proteases is involved in the pathological process of disc degeneration. Here, we discuss in detail the relationship between the IVD as well as the ECM and the role of ECM proteolysis in the degenerative process of the IVD. Targeting ECM proteolysis-associated proteases may be an effective means of intervention in IDD.
Collapse
|
19
|
Jiang C, Chen Z, Wang X, Zhang Y, Guo X, Xu Z, Yang H, Hao D. The potential mechanisms and application prospects of non-coding RNAs in intervertebral disc degeneration. Front Endocrinol (Lausanne) 2022; 13:1081185. [PMID: 36568075 PMCID: PMC9772433 DOI: 10.3389/fendo.2022.1081185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Low back pain (LBP) is one of the most common musculoskeletal symptoms and severely affects patient quality of life. The majority of people may suffer from LBP during their life-span, which leading to huge economic burdens to family and society. According to the series of the previous studies, intervertebral disc degeneration (IDD) is considered as the major contributor resulting in LBP. Furthermore, non-coding RNAs (ncRNAs), mainly including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), can regulate diverse cellular processes, which have been found to play pivotal roles in the development of IDD. However, the potential mechanisms of action for ncRNAs in the processes of IDD are still completely unrevealed. Therefore, it is challenging to consider ncRNAs to be used as the potential therapeutic targets for IDD. In this paper, we reviewed the current research progress and findings on ncRNAs in IDD: i). ncRNAs mainly participate in the process of IDD through regulating apoptosis of nucleus pulposus (NP) cells, metabolism of extracellular matrix (ECM) and inflammatory response; ii). the roles of miRNAs/lncRNAs/circRNAs are cross-talk in IDD development, which is similar to the network and can modulate each other; iii). ncRNAs have been attempted to combat the degenerative processes and may be promising as an efficient bio-therapeutic strategy in the future. Hence, this review systematically summarizes the principal pathomechanisms of IDD and shed light on the therapeutic potentials of ncRNAs in IDD.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhe Chen
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xiaohui Wang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yongyuan Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xinyu Guo
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhengwei Xu
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Hao Yang, ; Dingjun Hao,
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Hao Yang, ; Dingjun Hao,
| |
Collapse
|
20
|
Mechanical Stretch Induces Annulus Fibrosus Cell Senescence through Activation of the RhoA/ROCK Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5321121. [PMID: 34840974 PMCID: PMC8626192 DOI: 10.1155/2021/5321121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/07/2023]
Abstract
Background Intervertebral disc is responsible for absorbing and transmitting mechanical compression. Under physiological conditions, the peripheral annulus fibrosus (AF) cells are subjected to different magnitudes of transverse mechanical stretch depending on the swelling of the central nucleus pulposus tissue. However, the biological behavior of AF cells under mechanical stretch is not well studied. Objective This study was performed to study the effects of mechanical tension on AF cell senescence and the potential signaling transduction pathway. Methods Rat AF cells were made to experience different magnitudes of mechanical stretch (2% elongation and 20% elongation for 4 hours every day at 1 Hz) in a 10-day experiment period. The inhibitor RKI-1447 of the Rho-associated coiled-coil–containing protein kinases (ROCK) was added along with culture medium to investigate its role. Cell proliferation, cell cycle, telomerase activity, and expression of senescence markers (p16 and p53) were analyzed. Results We found that 20% elongation significantly decreased cell proliferation, promoted G0/G1 cell cycle arrest, decreased telomerase activity, and upregulated mRNA/protein expression of p16 and p53. Moreover, the inhibitor RKI-1447 partly resisted effects of 20% elongation on these parameters of cell senescence. Conclusion High mechanical stretch obviously induces AF cell senescence through the RhoA/ROCK pathway. This study provides us a deeper understanding on the AF cell's behavior under mechanical stretch.
Collapse
|
21
|
Wang Y, Kang J, Guo X, Zhu D, Liu M, Yang L, Zhang G, Kang X. Intervertebral Disc Degeneration Models for Pathophysiology and Regenerative Therapy -Benefits and Limitations. J INVEST SURG 2021; 35:935-952. [PMID: 34309468 DOI: 10.1080/08941939.2021.1953640] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aim:This review summarized the recent intervertebral disc degeneration (IDD) models and described their advantages and potential disadvantages, aiming to provide an overview for the current condition of IDD model establishment and new ideas for new strategies development of the treatment and prevention of IDD.Methods:The database of PubMed was searched up to May 2021 with the following search terms: nucleus pulposus, annulus fibrosus, cartilage endplate, intervertebral disc(IVD), intervertebral disc degeneration, animal model, organ culture, bioreactor, inflammatory reaction, mechanical stress, pathophysiology, epidemiology. Any IDD model-related articles were collected and summarized.Results:The best IDD model should have the features of repeatability, measurability and controllability. There are a lot of aspects to be considered in the selection of animals. Mice, rats and rabbits are low-cost and easy to access. However, their IVD size and shape are more different from human anatomy than pigs, cattle, sheep and goats. Organ culture models and animal models are two options in model establishment for IDD. The IVD organ culture model can put the studying variables into the controllable system for transitional research. Unlike the animal model, the organ culture model can only be used to evaluate the short-term effects and it is not applicable in simulating the complex process of IDD. Similarly, the animal models induced by different methods also have their advantages and disadvantages. For studying the mechanism of IDD and the corresponding treatment and prevention strategies, the selection of model should be individualized based on the purpose of each study.Conclusions:Various models have different characteristics and scope of application due to their different rationales and methods of construction. Currently, there is no experimental model that can perfectly mimic the degenerative process of human IVD. Personalized selection of appropriate model based on study purpose and experimental designing can enhance the possibility to obtain reliable and real results.
Collapse
Affiliation(s)
- Yidian Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Jihe Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Xudong Guo
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Daxue Zhu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Mingqiang Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Liang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Guangzhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Xuewen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, P.R. China.,The International Cooperation Base of Gansu Province for The Pain Research in Spinal Disorders, Gansu, P.R. China
| |
Collapse
|
22
|
Dou Y, Sun X, Ma X, Zhao X, Yang Q. Intervertebral Disk Degeneration: The Microenvironment and Tissue Engineering Strategies. Front Bioeng Biotechnol 2021; 9:592118. [PMID: 34354983 PMCID: PMC8329559 DOI: 10.3389/fbioe.2021.592118] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/18/2021] [Indexed: 12/16/2022] Open
Abstract
Intervertebral disk degeneration (IVDD) is a leading cause of disability. The degeneration is inevitable, and the mechanisms are complex. Current therapeutic strategies mainly focus on the relief of symptoms, not the intrinsic regeneration of the intervertebral disk (IVD). Tissue engineering is a promising strategy for IVDD due to its ability to restore a healthy microenvironment and promote IVD regeneration. This review briefly summarizes the IVD anatomy and composition and then sets out elements of the microenvironment and the interactions. We rationalized different scaffolds based on tissue engineering strategies used recently. To fulfill the complete restoration of a healthy IVD microenvironment, we propose that various tissue engineering strategies should be combined and customized to create personalized therapeutic strategies for each individual.
Collapse
Affiliation(s)
- Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xinlong Ma
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
23
|
McAlinden A, Hudson DM, Fernandes AA, Ravindran S, Fernandes RJ. Biochemical and immuno-histochemical localization of type IIA procollagen in annulus fibrosus of mature bovine intervertebral disc. Matrix Biol Plus 2021; 12:100077. [PMID: 34337380 PMCID: PMC8313739 DOI: 10.1016/j.mbplus.2021.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 11/05/2022] Open
Abstract
For next generation tissue-engineered constructs and regenerative medicine to succeed clinically, the basic biology and extracellular matrix composition of tissues that these repair techniques seek to restore have to be fully determined. Using the latest reagents coupled with tried and tested methodologies, we continue to uncover previously undetected structural proteins in mature intervertebral disc. In this study we show that the “embryonic” type IIA procollagen isoform (containing a cysteine-rich amino propeptide) was biochemically detectable in the annulus fibrosus of both calf and mature steer caudal intervertebral discs, but not in the nucleus pulposus where the type IIB isoform was predominantly localized. Specifically, the triple-helical type IIA procollagen isoform immunolocalized in the outer margins of the inner annulus fibrosus. Triple helical processed type II collagen exclusively localized within the inter-lamellae regions and with type IIA procollagen in the intra-lamellae regions. Mass spectrometry of the α1(II) collagen chains from the region where type IIA procollagen localized showed high 3-hydroxylation of Proline-944, a post-translational modification that is correlated with thin collagen fibrils as in the nucleus pulposus. The findings implicate small diameter fibrils of type IIA procollagen in select regions of the annulus fibrosus where it likely contributes to the organization of collagen bundles and structural properties within the type I-type II collagen transition zone.
Collapse
Affiliation(s)
- Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO, USA.,Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, MO, USA.,Shriners Hospitals for Children- St Louis, MO, USA
| | - David M Hudson
- Department of Orthopaedic & Sports Medicine, University of Washington, Seattle, WA, USA
| | - Aysel A Fernandes
- Department of Orthopaedic & Sports Medicine, University of Washington, Seattle, WA, USA
| | - Soumya Ravindran
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Russell J Fernandes
- Department of Orthopaedic & Sports Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
24
|
Speer J, Barcellona M, Jing L, Liu B, Lu M, Kelly M, Buchowski J, Zebala L, Luhmann S, Gupta M, Setton L. Integrin-mediated interactions with a laminin-presenting substrate modulate biosynthesis and phenotypic expression for cells of the human nucleus pulposus. Eur Cell Mater 2021; 41:793-810. [PMID: 34160056 PMCID: PMC8378851 DOI: 10.22203/ecm.v041a50] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
With aging and pathology, cells of the nucleus pulposus (NP) de-differentiate towards a fibroblast-like phenotype, a change that contributes to degeneration of the intervertebral disc (IVD). Laminin isoforms are a component of the NP extracellular matrix during development but largely disappear in the adult NP tissue. Exposing human adult NP cells to hydrogels made from PEGylated-laminin-111 (PEGLM) has been shown to regulate NP cell behaviors and promote cells to assume a biosynthetically active state with gene/protein expression and morphology consistent with those observed in juvenile NP cells. However, the mechanism regulating this effect has remained unknown. In the present study, the integrin subunits that promote adult degenerative NP cell interactions with laminin-111 are identified by performing integrin blocking studies along with assays of intracellular signaling and cell phenotype. The findings indicate that integrin α3 is a primary regulator of cell attachment to laminin and is associated with phosphorylation of signaling molecules downstream of integrin engagement (ERK 1/2 and GSK3β). Sustained effects of blocking integrin α3 were also demonstrated including decreased expression of phenotypic markers, reduced biosynthesis, and altered cytoskeletal organization. Furthermore, blocking both integrin α3 and additional integrin subunits elicited changes in cell clustering, but did not alter the phenotype of single cells. These findings reveal that integrin- mediated interactions through integrin α3 are critical in the process by which NP cells sense and alter phenotype in response to culture upon laminin and further suggest that targeting integrin α3 has potential for reversing or slowing degenerative changes to the NP cell.
Collapse
Affiliation(s)
- J. Speer
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA
| | - M. Barcellona
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA
| | - L. Jing
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA
| | - B. Liu
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA
| | - M. Lu
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA
| | - M. Kelly
- Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA
| | - J. Buchowski
- Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA
| | - L. Zebala
- Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA
| | - S. Luhmann
- Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA
| | - M. Gupta
- Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA
| | - L. Setton
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA,Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA,Address for correspondence: Dr. Lori A. Setton, Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1097, St. Louis, MO 63130, USA. Telephone number: +1 3149356164,
| |
Collapse
|
25
|
Speer JE, Barcellona MN, Lu MY, Zha Z, Jing L, Gupta MC, Buchowski JM, Kelly MP, Setton LA. Development of a library of laminin-mimetic peptide hydrogels for control of nucleus pulposus cell behaviors. J Tissue Eng 2021; 12:20417314211021220. [PMID: 34188794 PMCID: PMC8211742 DOI: 10.1177/20417314211021220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022] Open
Abstract
The nucleus pulposus (NP) of the intervertebral disc plays a critical role in
distributing mechanical loads to the axial skeleton. Alterations in NP cells and,
consequently, NP matrix are some of the earliest changes in the development of disc
degeneration. Previous studies demonstrated a role for laminin-presenting biomaterials in
promoting a healthy phenotype for human NP cells from degenerated tissue. Here we
investigate the use of laminin-mimetic peptides presented individually or in combination
on a poly(ethylene) glycol hydrogel as a platform to modulate the behaviors of
degenerative human NP cells. Data confirm that NP cells attach to select laminin-mimetic
peptides that results in cell signaling downstream of integrin and syndecan binding.
Furthermore, the peptide-functionalized hydrogels demonstrate an ability to promote cell
behaviors that mimic that of full-length laminins. These results identify a set of
peptides that can be used to regulate NP cell behaviors toward a regenerative engineering
strategy.
Collapse
Affiliation(s)
- Julie E Speer
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Marcos N Barcellona
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael Y Lu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Zizhen Zha
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Liufang Jing
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Munish C Gupta
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacob M Buchowski
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael P Kelly
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Lori A Setton
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.,Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
26
|
Kong M, Zhang Y, Song M, Cong W, Gao C, Zhang J, Han S, Tu Q, Ma X. Myocardin‑related transcription factor A nuclear translocation contributes to mechanical overload‑induced nucleus pulposus fibrosis in rats with intervertebral disc degeneration. Int J Mol Med 2021; 48:123. [PMID: 33982787 PMCID: PMC8121555 DOI: 10.3892/ijmm.2021.4956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/16/2021] [Indexed: 01/22/2023] Open
Abstract
Previous studies have reported that the Ras homolog family member A (RhoA)/myocardin‑related transcription factor A (MRTF‑A) nuclear translocation axis positively regulates fibrogenesis induced by mechanical forces in various organ systems. The aim of the present study was to determine whether this signaling pathway was involved in the pathogenesis of nucleus pulposus (NP) fibrosis induced by mechanical overload during the progression of intervertebral disc degeneration (IVDD) and to confirm the alleviating effect of an MRTF‑A inhibitor in the treatment of IVDD. NP cells (NPCs) were cultured on substrates of different stiffness (2.9 and 41.7 KPa), which mimicked normal and overloaded microenvironments, and were treated with an inhibitor of MRTF‑A nuclear import, CCG‑1423. In addition, bipedal rats were established by clipping the forelimbs of rats at 1 month and gradually elevating the feeding trough, and in order to establish a long‑term overload‑induced model of IVDD, and their intervertebral discs were injected with CCG‑1423 in situ. Cell viability was determined by Cell Counting Kit‑8 assay, and protein expression was determined by western blotting, immunofluorescence and immunohistochemical staining. The results demonstrated that the viability of NPCs was not affected by the application of force or the inhibitor. In NPCs cultured on stiff matrices, MRTF‑A was mostly localized in the nucleus, and the expression levels of fibrotic proteins, including type I collagen, connective tissue growth factor and α‑smooth muscle cell actin, were upregulated compared with those in NPCs cultured on soft matrices. The levels of these proteins were reduced by CCG‑1423 treatment. In rats, 6 months of upright posture activated MRTF‑A nuclear‑cytoplasmic trafficking and fibrogenesis in the NP and induced IVDD; these effects were alleviated by CCG‑1423 treatment. In conclusion, the results of the present study demonstrated that the RhoA/MRTF‑A translocation pathway may promote mechanical overload‑induced fibrogenic activity in NP tissue and partially elucidated the molecular mechanisms underlying the occurrence of IVDD.
Collapse
Affiliation(s)
- Meng Kong
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Yiran Zhang
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Mengxiong Song
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Wenbin Cong
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Changtong Gao
- Minimally Invasive Interventional Therapy Center, Qingdao Municipal Hospital, Qing'dao, Shandong 266000, P.R. China
| | - Jiajun Zhang
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Shuo Han
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Qihao Tu
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Xuexiao Ma
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| |
Collapse
|
27
|
Kirnaz S, Capadona C, Lintz M, Kim B, Yerden R, Goldberg JL, Medary B, Sommer F, McGrath LB, Bonassar LJ, Härtl R. Pathomechanism and Biomechanics of Degenerative Disc Disease: Features of Healthy and Degenerated Discs. Int J Spine Surg 2021; 15:10-25. [PMID: 34376493 DOI: 10.14444/8052] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human intervertebral disc (IVD) is a complex organ composed of fibrous and cartilaginous connective tissues, and it serves as a boundary between 2 adjacent vertebrae. It provides a limited range of motion in the torso as well as stability during axial compression, rotation, and bending. Adult IVDs have poor innate healing potential due to low vascularity and cellularity. Degenerative disc disease (DDD) generally arises from the disruption of the homeostasis maintained by the structures of the IVD, and genetic and environmental factors can accelerate the progression of the disease. Impaired cell metabolism due to pH alteration and poor nutrition may lead to autophagy and disruption of the homeostasis within the IVD and thus plays a key role in DDD etiology. To develop regenerative therapies for degenerated discs, future studies must aim to restore both anatomical and biomechanical properties of the IVDs. The objective of this review is to give a detailed overview about anatomical, radiological, and biomechanical features of the IVDs as well as discuss the structural and functional changes that occur during the degeneration process.
Collapse
Affiliation(s)
- Sertac Kirnaz
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Charisse Capadona
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Marianne Lintz
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Byumsu Kim
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| | - Rachel Yerden
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Jacob L Goldberg
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Branden Medary
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Fabian Sommer
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Lynn B McGrath
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| | - Roger Härtl
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| |
Collapse
|
28
|
In vivo intervertebral disc deformation: intratissue strain patterns within adjacent discs during flexion-extension. Sci Rep 2021; 11:729. [PMID: 33436667 PMCID: PMC7804136 DOI: 10.1038/s41598-020-77577-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 11/10/2020] [Indexed: 01/29/2023] Open
Abstract
The biomechanical function of the intervertebral disc (IVD) is a critical indicator of tissue health and pathology. The mechanical responses (displacements, strain) of the IVD to physiologic movement can be spatially complex and depend on tissue architecture, consisting of distinct compositional regions and integrity; however, IVD biomechanics are predominately uncharacterized in vivo. Here, we measured voxel-level displacement and strain patterns in adjacent IVDs in vivo by coupling magnetic resonance imaging (MRI) with cyclic motion of the cervical spine. Across adjacent disc segments, cervical flexion-extension of 10° resulted in first principal and maximum shear strains approaching 10%. Intratissue spatial analysis of the cervical IVDs, not possible with conventional techniques, revealed elevated maximum shear strains located in the posterior disc (nucleus pulposus) regions. IVD structure, based on relaxometric patterns of T2 and T1ρ images, did not correlate spatially with functional metrics of strain. Our approach enables a comprehensive IVD biomechanical analysis of voxel-level, intratissue strain patterns in adjacent discs in vivo, which are largely independent of MRI relaxometry. The spatial mapping of IVD biomechanics in vivo provides a functional assessment of adjacent IVDs in subjects, and provides foundational biomarkers for elastography, differentiation of disease state, and evaluation of treatment efficacy.
Collapse
|
29
|
Ke W, Wang B, Hua W, Song Y, Lu S, Luo R, Li G, Wang K, Liao Z, Xiang Q, Li S, Wu X, Zhang Y, Yang C. The distinct roles of myosin IIA and IIB under compression stress in nucleus pulposus cells. Cell Prolif 2021; 54:e12987. [PMID: 33415745 PMCID: PMC7848961 DOI: 10.1111/cpr.12987] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/08/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022] Open
Abstract
Objectives Inappropriate or excessive compression applied to intervertebral disc (IVD) contributes substantially to IVD degeneration. The actomyosin system plays a leading role in responding to mechanical stimuli. In the present study, we investigated the roles of myosin II isoforms in the compression stress‐induced senescence of nucleus pulposus (NP) cells. Material and methods Nucleus pulposus cells were exposed to 1.0 MPa compression for 0, 12, 24 or 36 hours. Immunofluorescence and co‐immunoprecipitation analysis were used to measure the interaction of myosin IIA and IIB with actin. Western blot analysis and immunofluorescence staining were used to detect nuclear expression and nuclear localization of MRTF‐A. In addition, the expression levels of p‐RhoA/RhoA, ROCK1/2 and p‐MLC/MLC were measured in human NP cells under compression stress and in degenerative IVD tissues. Results Compression stress increased the interaction of myosin IIA and actin, while the interaction of myosin IIB and actin was reduced. The actomyosin cytoskeleton remodelling was involved in the compression stress‐induced fibrotic phenotype mediated by MRTF‐A nuclear translocation and inhibition of proliferation in NP cells. Furthermore, RhoA/ROCK1 pathway activation mediated compression stress‐induced human NP cells senescence by regulating the interaction of myosin IIA and IIB with actin. Conclusions We for the first time investigated the regulation of actomyosin cytoskeleton in human NP cells under compression stress. It provided new insights into the development of therapy for effectively inhibiting IVD degeneration.
Collapse
Affiliation(s)
- Wencan Ke
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingjin Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Saideng Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Xiang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Xu H, Sun M, Wang C, Xia K, Xiao S, Wang Y, Ying L, Yu C, Yang Q, He Y, Liu A, Chen L. Growth differentiation factor-5-gelatin methacryloyl injectable microspheres laden with adipose-derived stem cells for repair of disc degeneration. Biofabrication 2020; 13:015010. [PMID: 33361566 DOI: 10.1088/1758-5090/abc4d3] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleus pulposus (NP) degeneration is the major cause of degenerative disc disease (DDD). This condition cannot be treated or attenuated by traditional open or minimally invasive surgical options. However, a combination of stem cells, growth factors (GFs) and biomaterials present a viable option for regeneration. Injectable biomaterials act as carriers for controlled release of GFs and deliver stem cells to target tissues through a minimally invasive approach. In this study, injectable gelatin methacryloyl microspheres (GMs) with controllable, uniform particle sizes were rapidly biosynthesized through a low-cost electrospraying method. The GMs were used as delivery vehicles for cells and GFs, and they exhibited good mechanical properties and biocompatibility and enhanced the in vitro differentiation of laden cells into NP-like phenotypes. Furthermore, this integrated system attenuated the in vivo degeneration of rat intervertebral discs, maintained NP tissue integrity and accelerated the synthesis of extracellular matrix. Therefore, this novel therapeutic system is a promising option for the treatment of DDD.
Collapse
Affiliation(s)
- Haibin Xu
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China. Department of Orthopedic Research, Institute of Zhejiang University, Hangzhou 310009, Zhejiang, People's Republic of China. These two authors contributed equally to this work
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Exosomes Derived from Human Urine-Derived Stem Cells Inhibit Intervertebral Disc Degeneration by Ameliorating Endoplasmic Reticulum Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6697577. [PMID: 33488928 PMCID: PMC7787770 DOI: 10.1155/2020/6697577] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Objective This study is aimed at determining the effects of human urine-derived stem cell-derived exosomes (USCs-exos) on pressure-induced nucleus pulposus cell (NPC) apoptosis and intervertebral disc degeneration (IDD) and on the ERK and AKT signaling pathways. Methods The NPCs were obtained from patients with herniated lumbar discs. Western blot analysis (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) were used to determine endoplasmic reticulum (ER) stress levels of NPCs under stress. Human USCs were identified using an inverted microscope, three-line differentiation experiments, and flow cytometry. A transmission microscope, nanoparticle size analysis, and WB procedures were used to identify the extracted exosomes and observe NPC uptake. A control group, a 48 h group, and a USCs-exos group were established. The control group was untreated, and the 48 h group was pressure-trained for 48 h, while the USCs-exos group was pressure-trained for 48 h and treated with USCs-exos. WB, qRT-PCR, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis were used to determine the ER stress levels in stress conditions and after exosomal treatment. The AKT and ERK pathways were partially detected. Magnetic Resonance Imaging (MRI) and computed tomography (CT) were used to evaluate cell degeneration while exosomal effects on the intervertebral disc (IVD) tissue were determined by hematoxylin and eosin (HE) staining, Safranin O-fast green staining, immunohistochemical staining (IHC), nuclear magnetic resonance (NMR), spectrometric detection, and total correlation spectroscopy (TOCSY). IVD metabolites were also identified and quantified. Results After pressure culture, ER stress markers (GRP78 and C/EBP homologous protein (CHOP)) in the NPCs were significantly elevated with time (p < 0.05). Human USCs are short and spindle-shaped. They can successfully undergo osteogenic, adipogenic, and chondrogenic differentiation. In this study, these stem cells were found to be positive for CD29, CD44, and CD73. The exosomes were centrally located with a diameter of 50-100 nm. CD63 and Tsg101 were highly expressed while the expression of Calnexin was suppressed. The exosomes can be ingested by NPCs. USCs-exos significantly improved ER stress responses and inhibited excessive activation of the unfolded protein response (UPR) as well as cell apoptosis and disc degeneration through the AKT and ERK signaling pathways (p < 0.05). Conclusion Through the AKT and ERK signaling pathways, USCs-exos significantly inhibit ER stress-induced cell apoptosis and IDD under pressure conditions. It is, therefore, a viable therapeutic strategy.
Collapse
|
32
|
Fearing BV, Speer JE, Jing L, Kalathil A, P. Kelly M, M. Buchowski J, P. Zebala L, Luhmann S, C. Gupta M, A. Setton L. Verteporfin treatment controls morphology, phenotype, and global gene expression for cells of the human nucleus pulposus. JOR Spine 2020; 3:e1111. [PMID: 33392449 PMCID: PMC7770208 DOI: 10.1002/jsp2.1111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Cells of the nucleus pulposus (NP) are essential contributors to extracellular matrix synthesis and function of the intervertebral disc. With age and degeneration, the NP becomes stiffer and more dehydrated, which is associated with a loss of phenotype and biosynthetic function for its resident NP cells. Also, with aging, the NP cell undergoes substantial morphological changes from a rounded shape with pronounced vacuoles in the neonate and juvenile, to one that is more flattened and spread with a loss of vacuoles. Here, we make use of the clinically relevant pharmacological treatment verteporfin (VP), previously identified as a disruptor of yes-associated protein-TEA domain family member-binding domain (TEAD) signaling, to promote morphological changes in adult human NP cells in order to study variations in gene expression related to differences in cell shape. Treatment of adult, degenerative human NP cells with VP caused a shift in morphology from a spread, fibroblastic-like shape to a rounded, clustered morphology with decreased transcriptional activity of TEAD and serum-response factor. These changes were accompanied by an increased expression of vacuoles, NP-specific gene markers, and biosynthetic activity. The contemporaneous observation of VP-induced changes in cell shape and prominent, time-dependent changes within the transcriptome of NP cells occurred over all timepoints in culture. Enriched gene sets with the transition to VP-induced cell rounding suggest a major role for cell adhesion, cytoskeletal remodeling, vacuolar lumen, and MAPK activity in the NP phenotypic and functional response to changes in cell shape.
Collapse
Affiliation(s)
- Bailey V. Fearing
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
- Department of Orthopaedic SurgeryAtrium Health Musculoskeletal InstituteCharlotteNorth CarolinaUSA
| | - Julie E. Speer
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Liufang Jing
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Aravind Kalathil
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Michael P. Kelly
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Jacob M. Buchowski
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Lukas P. Zebala
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Scott Luhmann
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Munish C. Gupta
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Lori A. Setton
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| |
Collapse
|
33
|
Mern DS, Walsen T, Beierfuß A, Thomé C. Animal models of regenerative medicine for biological treatment approaches of degenerative disc diseases. Exp Biol Med (Maywood) 2020; 246:483-512. [PMID: 33175609 DOI: 10.1177/1535370220969123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Degenerative disc disease (DDD) is a painful, chronic and progressive disease, which is characterized by inflammation, structural and biological deterioration of the intervertebral disc (IVD) tissues. DDD is specified as cell-, age-, and genetic-dependent degenerative process that can be accelerated by environmental factors. It is one of the major causes of chronic back pain and disability affecting millions of people globally. Current treatment options, such as physical rehabilitation, pain management, and surgical intervention, can provide only temporary pain relief. Different animal models have been used to study the process of IVD degeneration and develop therapeutic options that may restore the structure and function of degenerative discs. Several research works have depicted considerable progress in understanding the biological basis of disc degeneration and the therapeutic potentials of cell transplantation, gene therapy, applications of supporting biomaterials and bioactive factors, or a combination thereof. Since animal models play increasingly significant roles in treatment approaches of DDD, we conducted an electronic database search on Medline through June 2020 to identify, compare, and discuss publications regarding biological therapeutic approaches of DDD that based on intradiscal treatment strategies. We provide an up-to-date overview of biological treatment strategies in animal models including mouse, rat, rabbit, porcine, bovine, ovine, caprine, canine, and primate models. Although no animal model could profoundly reproduce the clinical conditions in humans; animal models have played important roles in specifying our knowledge about the pathophysiology of DDD. They are crucial for developing new therapy approaches for clinical applications.
Collapse
Affiliation(s)
| | - Tanja Walsen
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck A-6020, Austria
| | - Anja Beierfuß
- Laboratory Animal Facility, Medical University of Innsbruck, Innsbruck A-6020, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck A-6020, Austria
| |
Collapse
|
34
|
Hartmann K, Düver P, Kaiser S, Fischer C, Forterre F. CT-Scan Based Evaluation of Dorsal-to-Ventral Ratios of Paraspinal Musculature in Chondrodystrophic and Non-chondrodystrophic Dogs. Front Vet Sci 2020; 7:577394. [PMID: 33330697 PMCID: PMC7672003 DOI: 10.3389/fvets.2020.577394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023] Open
Abstract
Objective: To assess and objectively quantify, with CT-scan exams, differences in cervical paraspinal musculature and vertebrae angulation that might influence the different predisposed sites for intervertebral disk disease observed in chondrodystrophic and non-chondrodystrophic breeds. Sample: Retrospective evaluation and analysis of cervical spine CT-scans performed on 30 dogs presented for clinical reasons unrelated to a cervical disk problem. 15 chondrodystrophic (Dachshunds) and 15 non-chondrodystrophic dogs (Labrador Retrievers) were included. Procedures: Height measurements of dorsal and ventral paraspinal musculature were performed on sagittal CT-scan reconstructions to generate dorsal-to-ventral height ratios. Additionally, disk angulation to the floor of the vertebral canal was determined for each cervical disk. On transverse plane images the areas of the dorsal and the ventral paraspinal musculature were measured and ratios calculated. Furthermore, estimations of moments exerted on the disk were evaluated through calculation of a dorsal-to-ventral ratio of moments applied at the level of each disk. Results: Dachshunds showed a relatively more prominent dorsal paraspinal musculature than Labrador Retrievers with statistically significant higher dorsal-to-ventral height ratios at C3/C4, C4/C5, C7/T1 (p = 0.034*, p = 0,004**, p = 0.004**) and a dorsal-to-ventral area ratio at C3/C4 (p < 0.001**). Regarding the disk angle to the spinal canal floor along the cervical spine, Labrador Retrievers had a less steep conformation compared to Dachshunds with a significant difference at C2/C3 (p < 0.001**). Relation of moments calculations revealed statistically significant differences at C2/C3 (p = 0.021*). Conclusion and Clinical Relevance: Significant differences have been found in the cervical spine of chondrodystrophic and non-chondrodystrophic dogs, regarding paraspinal musculature height and area ratios along with ratio of moments and vertebrae angulation. These differences may affect the anatomical and biomechanical dorsal-to-ventral paraspinal muscle relationship and potentially influence the load on intervertebral disks, especially in the upper cervical spine. Our findings could play a role in understanding the development of intervertebral disk disease.
Collapse
Affiliation(s)
- Katinka Hartmann
- Division of Small Animal Surgery, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Pia Düver
- Division of Small Animal Surgery, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Carolin Fischer
- Veterinary Specialists Ireland, Clonmahon, Summerhill, Ireland
| | - Franck Forterre
- Division of Small Animal Surgery, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
35
|
Xiang Q, Kang L, Zhao K, Wang J, Hua W, Song Y, Feng X, Li G, Lu S, Wang K, Yang C, Zhang Y. CircCOG8 Downregulation Contributes to the Compression-Induced Intervertebral Disk Degeneration by Targeting miR-182-5p and FOXO3. Front Cell Dev Biol 2020; 8:581941. [PMID: 33195225 PMCID: PMC7609857 DOI: 10.3389/fcell.2020.581941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) have been increasingly demonstrated to play critical roles in the pathogenesis of various human diseases. Intervertebral disk degeneration (IDD) is recognized as the major contributor to lower back pain, and mechanical stress is a predominant trigger for IDD. However, little is known about the part that circRNAs play in the involvement of mechanical stress during IDD development. In the present study, we identified a novel circRNA and examined the role of this circRNA in a compression loading-induced IDD process. We detected the expression pattern of circCOG8 and observed its function in disk NP cells under mechanical stress. We conducted bioinformatics analysis, RNA immunoprecipitation experiment, and reporter gene assay to unveil the mechanism of the circCOG8 downregulation mediated IVD degeneration. Results showed that the circCOG8 expression was obviously down-regulated by the mechanical stress in disk NP cells. CircCOG8 attenuated NP cells apoptosis, intracellular ROS accumulation, and ECM degradation in vitro and ex vivo. CircCOG8 directly interacted with miR-182-5p and, thus, modulated the FOXO3 expression to affect the compression-induced IDD progression. Altogether, the present study revealed that the circCOG8/miR-182-5p/FOXO3 pathway was an important underlying mechanism in the involvement of compression during the IDD progression. Intervention of circCOG8 is a new therapeutic strategy for IDD treatment.
Collapse
Affiliation(s)
- Qian Xiang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangcheng Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juntan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Saideng Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Ohnishi T, Novais EJ, Risbud MV. Alterations in ECM signature underscore multiple sub-phenotypes of intervertebral disc degeneration. Matrix Biol Plus 2020; 6-7:100036. [PMID: 33543030 PMCID: PMC7852332 DOI: 10.1016/j.mbplus.2020.100036] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
The intervertebral disc is a specialized connective tissue critical for absorption of mechanical loads and providing flexibility to the spinal column. The disc ECM is complex and plays a vital role in imparting tissue its biomechanical function. The central NP is primarily composed of large aggregating proteoglycans (PGs) while surrounding AF is composed of fibrillar collagens, I and II. Aggrecan and versican in particular, due to their high concentration of sulfated GAG chains form large aggregates with hyaluronic acid (HA) and provide water binding capacity to the disc. Degradation of aggrecan core protein due to aggrecanase and MMP activity, SNPs that affect number of chondroitin sulfate (CS) substitutions and alteration in enzymes critical in synthesis of CS chains can impair the aggrecan functionality. Similarly, levels of many matrix and matrix-related molecules e.g. Col2, Col9, HAS2, ccn2 are dysregulated during disc degeneration and genetic animal models have helped establish causative link between their expression and disc health. In the degenerating and herniated discs, increased levels of inflammatory cytokines such as TNF-α, IL-1β and IL-6 are shown to promote matrix degradation through regulating expression and activity of critical proteases and stimulate immune cell activation. Recent studies of different mouse strains have better elucidated the broader impact of spontaneous degeneration on disc matrix homeostasis. SM/J mice showed an increased cell apoptosis, loss of cell phenotype, and cleavage of aggrecan during early stages followed by tissue fibrosis evident by enrichment of several collagens, SLRPs and fibronectin. In summary, while disc degeneration encompasses wide spectrum of degenerative phenotypes extensive matrix degradation and remodeling underscores all of them. The intervertebral disc absorbs loads and provides flexibility to the spine. The ECM is complex and vital for imparting tissue its biomechanical function. Numerous types of proteoglycans and collagens designate the quality of the disc. Many matrix and matrix-related molecules are dysregulated during disc degeneration. Matrix degradation and remodeling underscores wide spectrum of phenotype.
Collapse
Affiliation(s)
- Takashi Ohnishi
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Emanuel J Novais
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
37
|
Li XF, Jin LY, Liang CG, Yin HL, Song XX. Adjacent-level biomechanics after single-level anterior cervical interbody fusion with anchored zero-profile spacer versus cage-plate construct: a finite element study. BMC Surg 2020; 20:66. [PMID: 32252742 PMCID: PMC7137311 DOI: 10.1186/s12893-020-00729-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The development of adjacent segment degeneration (ASD) following ACDF is well established. There is no analytical study related to effects of plate profile on the biomechanics of the adjacent-level after ACDF. This study aimed to test the effects of plate profile on the adjacent-level biomechanics after single-level anterior cervical discectomy and fusion (ACDF). METHODS A three-dimensional finite element model (FEM) of an intact C2-T1 segment was built and validated. From this intact model, two instrumentation models were constructed with the anchored zero-profile spacer or the standard plate-interbody spacer after a C5-C6 corpectomy and fusion. Motion patterns, the stresses in the disc, the endplate, and the facet joint at the levels cephalad and caudal to the fusion were assessed. RESULTS Compared with the normal condition, the biomechanical responses in the adjacent levels were increased after fusion. Relative to the intact model, the average increase of range of motion (ROM) and stresses in the endplate, the disc, and the facet of the zero-profile spacer fusion model were slightly lower than that of the standard plate-interbody spacer fusion model. The kinematics ROM and stress variations above fusion segment were larger than that below. The biomechanical features of the adjacent segment after fusion were most affected during extension. CONCLUSIONS The FE analysis indicated that plate profile may have an impact on the biomechanics of the adjacent-level after a single-level ACDF. The impact may be long-term and cumulative. The current findings may help explain the decreasing incidence of ASD complications in the patients using zero-profile spacer compared with the patients using cage and plate construct.
Collapse
Affiliation(s)
- Xin-Feng Li
- Department of Orthopaedic Surgery, Baoshan Branch of Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 1058, Huan Zheng Bei Rd, Shanghai, 200444, P.R. China.
| | - Lin-Yu Jin
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Chao-Ge Liang
- Department of Orthopaedic Surgery, Shanghai Xijiao Orthopaedic Hospital, Shanghai, 200336, China
| | - Hong-Ling Yin
- School of Materials Science and Engineering, Shanghai Jiaotong University, No. 1954, Huashan Rd, Shanghai, 20030, P.R. China.
| | - Xiao-Xing Song
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Lu, Shanghai, 200025, China.
| |
Collapse
|
38
|
Gao G, Chang F, Zhang T, Huang X, Yu C, Hu Z, Ji M, Duan Y. Naringin Protects Against Interleukin 1β (IL-1β)-Induced Human Nucleus Pulposus Cells Degeneration via Downregulation Nuclear Factor kappa B (NF-κB) Pathway and p53 Expression. Med Sci Monit 2019; 25:9963-9972. [PMID: 31927560 PMCID: PMC6944037 DOI: 10.12659/msm.918597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Low back pain (LBP) is regarded as a frequent disease that causes disability. We aimed to explore the effect of naringin on intervertebral disc degeneration (IDD) in IL-1ß-induced human nucleus pulposus (NP) cells and its corresponding molecular mechanisms. MATERIAL AND METHODS Human NP cells were identified by toluidine blue and Safranin O staining. Cell viability was determined by MTT assay. The expression levels of matrix metalloproteinases (MMP-3, MMP-13, ADAMTS-4, ADAMTS-5, collagen II, aggrecan), inflammatory genes (tumor necrosis factor [TNF]-alpha, interleukin [IL]-6), kappa B kinase alpha (IkappaBalpha), p65 and p53 were determined by quantitative real-time polymerase chain reaction (qPCR) and western blotting. Immunofluorescence study was performed to detect the position and expression of p65 protein in IL-1ß-induced human NP cells. RESULTS Human NP cells were successfully separated from intervertebral disc tissue. We found that naringin could significantly reduce the expressions of matrix metalloproteinases (MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5) and inflammatory genes in IL-1ß-stimulated human NP cells, while collagen II and aggrecan were increased at mRNA and protein level. Immunofluorescence showed that naringin pretreatment decreased the p65 protein expression in the nucleus and suppressed the phosphorylation of IkappaBalpha and p65. CONCLUSIONS These results demonstrated that naringin could attenuate matrix metalloproteinase catabolism and inflammation in IL-1ß-treated human nucleus pulposus cells via downregulating NF-kappaB pathway and p53 expression, suggesting that naringin has the potential to prevent and treat IDD.
Collapse
Affiliation(s)
- Gang Gao
- Department of Spinal Minimally Invasive Surgery, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, P.R China
| | - Feng Chang
- Department of Spinal Minimally Invasive Surgery, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, P.R China
| | - Ting Zhang
- Department of Spinal Minimally Invasive Surgery, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, P.R China
| | - Xinhu Huang
- Department of Spinal Minimally Invasive Surgery, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, P.R China
| | - Chen Yu
- Department of Spinal Minimally Invasive Surgery, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, P.R China
| | - Zhaolin Hu
- Department of Spinal Minimally Invasive Surgery, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, P.R China
| | - Mingming Ji
- Department of Spinal Minimally Invasive Surgery, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, P.R China
| | - Yufen Duan
- Department of Endocrinology, Shanxi Coal Central Hospital, Taiyuan, Shanxi, P.R. China
| |
Collapse
|
39
|
Growney EA, Linder HR, Garg K, Bledsoe JG, Sell SA. Bio-conjugation of platelet-rich plasma and alginate through carbodiimide chemistry for injectable hydrogel therapies. J Biomed Mater Res B Appl Biomater 2019; 108:1972-1984. [PMID: 31846217 DOI: 10.1002/jbm.b.34538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/04/2019] [Accepted: 11/29/2019] [Indexed: 01/19/2023]
Abstract
Alginate is a highly tailorable, biocompatible polymer whose properties can be tuned to mimic the properties of native nucleus pulposus (NP) tissue. Platelet-rich plasma (PRP) is a highly accessible, inexpensive, and readily available mix of pro-regenerative factors. By functionalizing alginate with PRP, a mechanically optimized, bioactive alginate NP analogue may stimulate NP cells to proliferate and accumulate matrix over a longer period of time than if the PRP were solely encapsulated within the hydrogel. In this study, PRP was chemically bound to alginate using carbodiimide chemistry and mechanically, physically, and cytologically compared to plain alginate as well as alginate containing free-floating lyophilized PRP. The alginates were mechanically and physically characterized; PRP-conjugated alginate had similar mechanical properties to controls and had the benefit of retained PRP proteins within the hydrogel. Human nucleus pulposus cells (hNPCs) were seeded within the modified alginates and cultured for 14 days. Quantification data of glycosaminoglycans suggests that PRP-incorporated alginate has the potential to increase ECM production within the characterized alginate constructs, and that PRP-functionalized alginate can retain protein within the hydrogel over time. This is the first study to functionalize the milieu of PRP proteins onto alginate and characterize the mechanical and physical properties of the modified alginates. This study also incorporates hNPCs into the characterized PRP-modified alginates to observe phenotypic maintenance when encapsulated within the in situ gelling constructs.
Collapse
Affiliation(s)
- Emily A Growney
- Centre for Research in Medical Devices (CÙRAM), National University of Ireland Galway, Galway, Ireland.,Department of Biomedical Engineering, Parks College of Engineering, Aviation & Technology, Saint Louis University, St. Louis, Missouri
| | - Houston R Linder
- Department of Biomedical Engineering, Parks College of Engineering, Aviation & Technology, Saint Louis University, St. Louis, Missouri
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation & Technology, Saint Louis University, St. Louis, Missouri
| | - J Gary Bledsoe
- Department of Biomedical Engineering, Parks College of Engineering, Aviation & Technology, Saint Louis University, St. Louis, Missouri
| | - Scott A Sell
- Department of Biomedical Engineering, Parks College of Engineering, Aviation & Technology, Saint Louis University, St. Louis, Missouri
| |
Collapse
|
40
|
Kos N, Gradisnik L, Velnar T. A Brief Review of the Degenerative Intervertebral Disc Disease. Med Arch 2019; 73:421-424. [PMID: 32082013 PMCID: PMC7007629 DOI: 10.5455/medarh.2019.73.421-424] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/28/2019] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION The degenerative processes of the intervertebral disc represent an important cause of morbidity in everyday clinical practice, exerting burden on patients and clinicians treating them. Numerous factors may initiate degenerative processes, which most commonly affect the nucleus pulposus and ultimately influence the biomechanics of the whole spine. AIM This paper provides an overview from the literature about the process, causes and mechanisms of disc degeneration and the associated factors. METHODS The scientific literature was reviewed through PubMed, Medline and Science Direct. The articles were chosen in correlation with the study objective and their scientific relevance. RESULTS Many mechanical factors, such as mechanical, traumatic, genetic and nutritional, may affect the integrity of the intervertebral disc. The degenerative processes involve the structural damage of the intervertebral disc and the changes in number and composition of cells. The main factor in the degeneration of the intervertebral disc is the loss of proteoglycans. Degenerative changes of the disc are connected to damage of adjacent structures, leading to functional changes, higher susceptibility to injuries and clinical signs and symptoms. CONCLUSIONS Degenerative disease of the intervertebral disc remains a significant health problem. Besides standard conservative and surgical treatment, techniques of regenerative therapy are becoming very promising, although still in the experimental phase.
Collapse
Affiliation(s)
- Natasa Kos
- Department of Medical Rehabilitation, University Medical Centre Ljubljana, Slovenia
- AMEU-ECM Maribor, Slovenia
| | - Lidija Gradisnik
- AMEU-ECM Maribor, Slovenia
- Institute of Biomedical Sciences, Medical Faculty Maribor, Slovenia
| | - Tomaz Velnar
- AMEU-ECM Maribor, Slovenia
- Department of Neurosurgery, University Medical Centre Ljubljana, Slovenia
| |
Collapse
|
41
|
Das U. Bioactive lipids in intervertebral disc degeneration and its therapeutic implications. Biosci Rep 2019; 39:BSR20192117. [PMID: 31533969 PMCID: PMC6822496 DOI: 10.1042/bsr20192117] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc (IVD) degeneration is not uncommon. It is estimated that approximately >60% of individuals above the age of 40 years suffer from IVD degeneration. Shan et al. showed that hyperglycemia can enhance apoptosis of anulus fibrosis cells in a JNK pathway and p38 mitogen-activated protein kinase (MAPK) pathway dependent fashion. Recent studies showed that IVD degeneration could be an inflammatory condition characterized by increased production of matrix metalloproteinases, TNF-α, nitric oxide, IL-6, IL-17, IL-9, and prostaglandin E2, and decreased formation of anti-inflammatory molecules such as lipoxin A4. This imbalance between pro- and anti-inflammatory molecules seem to activate JNK pathway and p38 MAPK pathway to induce apoptosis of anulus fibrosis and nucleus pulposus cells. The activation of production of PGE2 (due to activation of COX-2 pathway) seems to be dependent on p38/c-Fos and JNK/c-Jun activation in an AP-1-dependent manner. These results imply that suppressing pro-inflammatory events in the disc by either augmenting anti-inflammatory events or suppressing production of pro-inflammatory molecules or both may form a logical step in the prevention and management of IVD degeneration.
Collapse
Affiliation(s)
- Undurti N. Das
- UND Life Sciences, 2221 NW 5th St, Battle Ground, WA 98604, USA and BioScience Research Center and Department of Medicine, GVP Medical College and Hospital, Visakhapatnam 530048, India
| |
Collapse
|
42
|
Zhang K, Xue C, Lu N, Ren P, Peng H, Wang Y, Wang Y. Mechanical loading mediates human nucleus pulposus cell viability and extracellular matrix metabolism by activating of NF-κB. Exp Ther Med 2019; 18:1587-1594. [PMID: 31410113 PMCID: PMC6676187 DOI: 10.3892/etm.2019.7744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
Lower back pain is one of the most frequent complaints in US orthopedic outpatient departments. Intervertebral disc degeneration (IDD) is an important cause of lower back pain. Previous studies have found that mechanical loading was associated with IDD, but the underlying mechanism remains unclear. In the present study, a human nucleus pulposus cell line was used to establish an in vitro mechanical loading model. Mechanical loading, western blot analysis, quantitative PCR, ELISA, cell viability assay and IHC staining were used in the current study. It was found that a short loading time of 4 h followed by a long period of rest (20 h) exerted protective effects against matrix degradation in nucleus pulposus cells, whilst a longer loading time of 20 h followed by a shorter period of rest (4 h) resulted in cell apoptosis and extracellular matrix (ECM) degradation. Excessive mechanical loading may induce ECM degradation by activation of the NF-κB signaling pathway. Taken together, these findings demonstrated that whilst moderate mechanical loading exerted beneficial effects on nucleus pulposus cells, excessive mechanical loading inhibited human nucleus pulposus cell viability and promoted ECM degradation by activating NF-κB.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Orthopedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Chao Xue
- Department of Orthopedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Ning Lu
- Department of Orthopedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Peng Ren
- Department of Orthopedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Haiwen Peng
- Department of Orthopedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Yao Wang
- Department of Orthopedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Yan Wang
- Department of Orthopedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| |
Collapse
|
43
|
Zhao R, Liu W, Xia T, Yang L. Disordered Mechanical Stress and Tissue Engineering Therapies in Intervertebral Disc Degeneration. Polymers (Basel) 2019; 11:polym11071151. [PMID: 31284436 PMCID: PMC6680713 DOI: 10.3390/polym11071151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
Low back pain (LBP), commonly induced by intervertebral disc degeneration, is a lumbar disease with worldwide prevalence. However, the mechanism of degeneration remains unclear. The intervertebral disc is a nonvascular organ consisting of three components: Nucleus pulposus, annulus fibrosus, and endplate cartilages. The disc is structured to support our body motion and endure persistent external mechanical pressure. Thus, there is a close connection between force and intervertebral discs in LBP. It is well established that with aging, disordered mechanical stress profoundly influences the fate of nucleus pulposus and the alignment of collagen fibers in the annulus fibrosus. These support a new understanding that disordered mechanical stress plays an important role in the degeneration of the intervertebral discs. Tissue-engineered regenerative and reparative therapies are being developed for relieving disc degeneration and symptoms of lower back pain. In this paper, we will review the current literature available on the role of disordered mechanical stress in intervertebral disc degeneration, and evaluate the existing tissue engineering treatment strategies of the current therapies.
Collapse
Affiliation(s)
- Runze Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Tingting Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
44
|
Ge J, Yang H, Chen Y, Yan Q, Wu C, Zou J. PMMA Bone Cement Acts on the Hippo/YAP Pathway To Regulate CTGF and Induce Intervertebral Disc Degeneration. ACS Biomater Sci Eng 2019; 5:3293-3302. [PMID: 33405572 DOI: 10.1021/acsbiomaterials.9b00146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jun Ge
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yufeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Qi Yan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Cenhao Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jun Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
45
|
Tissue Engineering Strategies for Intervertebral Disc Treatment Using Functional Polymers. Polymers (Basel) 2019; 11:polym11050872. [PMID: 31086085 PMCID: PMC6572548 DOI: 10.3390/polym11050872] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc (IVD) is the fibrocartilage between the vertebrae, allowing the spine to move steadily by bearing multidirectional complex loads. Aging or injury usually causes degeneration of IVD, which is one of the main reasons for low back pain prevalent worldwide and reduced quality of life. While various treatment strategies for degenerative IVD have been studied using in vitro studies, animal experiments, and clinical trials, there are unsolved limitations for endogenous regeneration of degenerative IVD. In this respect, several tissue engineering strategies that are based on the cell and scaffolds have been extensively researched with positive outcomes for regeneration of IVD tissues. Scaffolds made of functional polymers and their diverse forms mimicking the macro- and micro-structure of native IVD enhance the biological and mechanical properties of the scaffolds for IVD regeneration. In this review, we discuss diverse morphological and functional polymers and tissue engineering strategies for endogenous regeneration of degenerative IVD. Tissue engineering strategies using functional polymers are promising therapeutics for fundamental and endogenous regeneration of degenerative IVD.
Collapse
|
46
|
Zhao L, Tian B, Xu Q, Zhang C, Zhang L, Fang H. Extensive mechanical tension promotes annulus fibrosus cell senescence through suppressing cellular autophagy. Biosci Rep 2019; 39:BSR20190163. [PMID: 30910846 PMCID: PMC6470409 DOI: 10.1042/bsr20190163] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/14/2019] [Accepted: 03/24/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Mechanical load contributes a lot to the initiation and progression of disc degeneration. Annulus fibrosus (AF) cell biology under mechanical tension remains largely unclear.Objective: The present study was aimed to investigate AF cell senescence under mechanical tension and the potential role of autophagy.Methods: Rat AF cells were cultured and experienced different magnitudes (5% elongation and 20% elongation) of mechanical tension for 12 days. Control AF cells were kept static. Cell proliferation, telomerase activity, cell cycle fraction, and expression of senescence-related molecules (p16 and p53) and matrix macromolecules (aggrecan and collagen I) were analyzed to evaluate cell senescence. In addition, expression of Beclin-1 and LC3, and the ratio of LC3-II to LC3-I were analyzed to investigate cell autophagy.Results: Compared with the control group and 5% tension group, 20% tension group significantly decreased cell proliferation potency and telomerase activity, increased G1/G0 phase fraction, and up-regulated gene/protein expression of p16 and p53, whereas down-regulated gene/protein expression of aggrecan and collagen I. In addition, autophagy-related parameters such as gene/protein expression of Beclin-1 and LC3, and the ratio of LC3-II to LC3-I, were obviously suppressed in the 20% tension group.Conclusion: High mechanical tension promotes AF cell senescence though suppressing cellular autophagy. The present study will help us to better understand AF cell biology under mechanical tension and mechanical load-related disc degeneration.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Emergency Trauma Surgery, Jining NO.1 People's Hospital, Affiliated Jining NO.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Baofang Tian
- Department of Emergency Trauma Surgery, Jining NO.1 People's Hospital, Affiliated Jining NO.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Qing Xu
- Department of Anesthesia Surgery, Jining NO.1 People's Hospital, Affiliated Jining NO.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Cunxin Zhang
- Department of Spine Surgery, Jining NO.1 People's Hospital, Affiliated Jining NO.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Luo Zhang
- Department of Emergency Trauma Surgery, Jining NO.1 People's Hospital, Affiliated Jining NO.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Haolin Fang
- Department of Emergency Trauma Surgery, Jining NO.1 People's Hospital, Affiliated Jining NO.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| |
Collapse
|
47
|
Zhang J, Wang X, Liu H, Li Z, Chen F, Wang H, Zheng Z, Wang J. TNF-α enhances apoptosis by promoting chop expression in nucleus pulposus cells: role of the MAPK and NF-κB pathways. J Orthop Res 2019; 37:697-705. [PMID: 30561076 DOI: 10.1002/jor.24204] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/28/2018] [Indexed: 02/04/2023]
Abstract
CHOP has been shown to be involved in AF cells apoptosis and disc degeneration in a rat model. The aim of this study was to investigate the regulatory effects of TNF-α on C/EBP homologous protein (CHOP) and the role of CHOP in nucleus pulposus (NP) cell apoptosis. The effects of TNF-α on chop were measured by qPCR, Western blot, and immunofluorescence. TNF receptor involvement was analyzed by small interfering RNA (siRNA), Western blotting, immunofluorescence, and qPCR. The effects of NF-κB and MAPK on TNF-α-mediated chop promoter activity were studied using siRNAs, Western blotting, immunofluorescence, and qPCR. The regulatory effects of TNF-α-induced CHOP on Bcl-2 and Bax were studied using siRNAs, Western blotting, immunofluorescence, and qPCR. Flow cytometric and TUNEL analyses were performed to investigate the effects of chop on NP cell apoptosis. Increased CHOP expression was observed in NP cells after TNF-α treatment. Treatment of cells with TNF receptor, NF-κB, and ERK/JNK-MAPK inhibitors or siRNAs abolished the effects of cytokines on CHOP expression. Pharmacological siRNA knockdown of chop promoted Bax, decreased Bcl-2, and attenuated TNF-α-mediated cell apoptosis. During intervertebral disc degeneration (IVDD), TNF-α binds to TNF receptors and controls the JNK/ERK-MAPK, and NF-κB signaling pathways in NP cells, increasing CHOP expression. This change up-regulates the pro-apoptotic protein Bax and down-regulates the anti-apoptosis protein Bcl-2, inducing cell apoptosis. This study suggests a potential therapeutic target for controlling the inflammatory-induced apoptosis associated with IVDD. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
- Department of Spine Surgery, Shenzhen Second People's Hospital, The 1st Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, PR China
| | - Xiaolin Wang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The 6th Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Hui Liu
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Zemin Li
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Fan Chen
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Hua Wang
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Zhaomin Zheng
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Jianru Wang
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| |
Collapse
|
48
|
Jiang Y, Fu L, Song Y. Responses of apoptosis and matrix metabolism of annulus fibrosus cells to different magnitudes of mechanical tension in vitro. Biosci Rep 2019; 39:BSR20182375. [PMID: 30700570 PMCID: PMC6386766 DOI: 10.1042/bsr20182375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Annulus fibrosus (AF) is important to confine disc nucleus pulposus (NP) tissue during mechanical load experience. However, the knowledge on AF cell biology under mechanical load is much limited compared with disc NP. OBJECTIVE The present study aimed to investigate responses of apoptosis and matrix metabolism of AF cells to different magnitudes of mechanical tension in vitro Methods: Rat AF cells were subjected to different magnitudes (5, 10, and 20% elongations at a frequency of 1.0 Hz for 6 h per day) of mechanical tension for 7 days. Control AF cells were cultured without mechanical tension. Cell apoptosis ratio, caspase-3 activity, gene/protein expression of apoptosis-related molecules (Bcl-2, Bax, caspase-3/cleaved caspase-3 and cleaved PARP), matrix macromolecules (aggrecan and collagen I) and matrix metabolism-related enzymes (TIMP-1, TIMP-3, MMP-3, and ADAMTS-4) were analyzed. RESULTS Compared with 5% tension group and control group, 10 and 20% tension groups significantly increased apoptosis ratio, caspase-3 activity, up-regulated gene/protein expression of Bax, caspase-3/cleaved caspase-3, cleaved PARP, MMP-3, and ADAMTS-4, whereas down-regulated gene/protein expression of Bcl-2, aggrecan, collagen I, TIMP-1, and TIMP-3. No significant difference was found in these parameters apart from Bcl-2 expression between the control group and 5% tension group. CONCLUSION High mechanical tension promotes AF cell apoptosis and suppresses AF matrix synthesis compared with low mechanical tension. The present study indirectly indicates how mechanical overload induces disc degeneration through affecting AF biology.
Collapse
Affiliation(s)
- Yanhai Jiang
- Department of Orthopaedics, The Affiliated Weihai Second Hospital of Qingdao University, Weihai 264200, China
| | - Lianqiang Fu
- Department of Orthopaedics, The Affiliated Weihai Second Hospital of Qingdao University, Weihai 264200, China
| | - Yeliang Song
- Department of Orthopaedics, The Affiliated Weihai Second Hospital of Qingdao University, Weihai 264200, China
| |
Collapse
|
49
|
Blanco JF, Villarón EM, Pescador D, da Casa C, Gómez V, Redondo AM, López-Villar O, López-Parra M, Muntión S, Sánchez-Guijo F. Autologous mesenchymal stromal cells embedded in tricalcium phosphate for posterolateral spinal fusion: results of a prospective phase I/II clinical trial with long-term follow-up. Stem Cell Res Ther 2019; 10:63. [PMID: 30795797 PMCID: PMC6387529 DOI: 10.1186/s13287-019-1166-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Posterolateral spinal fusion with autologous bone graft is considered the "gold standard" for lumbar degenerative disc disease (DDD) when surgical treatment is indicated. The potential role of mesenchymal stromal cells (MSCs) to replace the bone graft in this setting has not been fully addressed. OBJECTIVE To analyze the safety, feasibility and potential clinical efficacy of the implantation of autologous MSCs embedded with tricalcium phosphate as a therapeutic alternative to bone graft in patients with DDD during posterolateral spine fusion. STUDY DESIGN Phase I/II single-arm prospective clinical trial. METHODS Eleven patients with monosegmental DDD at L4-L5 or L5-S1 level were included. Autologous bone marrow-derived MSC were expanded in our Good Manufacturing Practice (GMP) Facility and implanted during spinal surgery embedded in a tricalcium phosphate carrier. Monitoring of patients included a postoperative period of 12 months with four visits (after the 1st, 3rd, 6th, and 12th month), with clinical and radiological assessment that included the visual analog scale (VAS), the Oswestry disability index (ODI), the Short-Form Health Survey (SF-36), the vertebral fusion grade observed through a simple Rx, and the evaluation of possible complications or adverse reactions. In addition, all patients were further followed up to 5 years for outcome. RESULTS Median age of patients included was 44 years (range 30-58 years), and male/female ratio was (6/5) L4-L5 and L5-S1 DDD was present five and six patients, respectively. Autologous MSCs were expanded in all cases. There were no adverse effects related to cell implantation. Regarding efficacy, both VAS and ODI scores improved after surgery. Radiologically, 80% of patients achieved lumbar fusion at the end of the follow-up. No adverse effects related to the procedure were recorded. CONCLUSIONS The use of autologous MSCs for spine fusion in patients with monosegmental degenerative disc disease is feasible, safe, and potentially effective. TRIAL REGISTRATION no. EudraCT: 2010-018335-17 ; code Identifier: NCT01513694 ( clinicaltrials.gov ).
Collapse
Affiliation(s)
- Juan F Blanco
- Trauma and Orthopedics Service, IBSAL - University Hospital of Salamanca, Salamanca, Spain. .,Network Center in Regenerative Medicine and Cellular Therapy of Castilla y León, Salamanca, Spain. .,Trauma and Orthopedics Department, IBSAL - University Hospital of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.
| | - Eva M Villarón
- Hematology Service, IBSAL - University Hospital of Salamanca, Salamanca, Spain.,Network Center in Regenerative Medicine and Cellular Therapy of Castilla y León, Salamanca, Spain
| | - David Pescador
- Trauma and Orthopedics Service, IBSAL - University Hospital of Salamanca, Salamanca, Spain.,Network Center in Regenerative Medicine and Cellular Therapy of Castilla y León, Salamanca, Spain
| | - Carmen da Casa
- Trauma and Orthopedics Service, IBSAL - University Hospital of Salamanca, Salamanca, Spain
| | - Victoria Gómez
- Trauma and Orthopedics Service, IBSAL - University Hospital of Salamanca, Salamanca, Spain.,Network Center in Regenerative Medicine and Cellular Therapy of Castilla y León, Salamanca, Spain
| | - Alba M Redondo
- Hematology Service, IBSAL - University Hospital of Salamanca, Salamanca, Spain.,Network Center in Regenerative Medicine and Cellular Therapy of Castilla y León, Salamanca, Spain
| | - Olga López-Villar
- Hematology Service, IBSAL - University Hospital of Salamanca, Salamanca, Spain.,Network Center in Regenerative Medicine and Cellular Therapy of Castilla y León, Salamanca, Spain
| | - Miriam López-Parra
- Hematology Service, IBSAL - University Hospital of Salamanca, Salamanca, Spain.,Network Center in Regenerative Medicine and Cellular Therapy of Castilla y León, Salamanca, Spain
| | - Sandra Muntión
- Hematology Service, IBSAL - University Hospital of Salamanca, Salamanca, Spain.,Network Center in Regenerative Medicine and Cellular Therapy of Castilla y León, Salamanca, Spain
| | - Fermín Sánchez-Guijo
- Hematology Service, IBSAL - University Hospital of Salamanca, Salamanca, Spain.,Network Center in Regenerative Medicine and Cellular Therapy of Castilla y León, Salamanca, Spain
| |
Collapse
|
50
|
Mizuno S, Kashiwa K, Kang JD. Molecular and histological characteristics of bovine caudal nucleus pulposus by combined changes in hydrostatic and osmotic pressures in vitro. J Orthop Res 2019; 37:466-476. [PMID: 30480329 PMCID: PMC6590145 DOI: 10.1002/jor.24188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/30/2018] [Indexed: 02/04/2023]
Abstract
Intervertebral disc degeneration is ubiquitous among aging patients, and altered matrix homeostasis is one of the key features of this condition. Physicochemical stresses have a significant impact on matrix homeostasis as they lead to progressive degeneration and may be associated with spinal pain and dysfunction. Thus, it is important to understand the cellular and matrix characteristics of nucleus pulposus in response to these stresses, which include hydrostatic and osmotic pressures during alternate loading conditions. We hypothesized that a combination of changes in hydrostatic pressure and in osmotic pressure that mimic normal, daily spinal stress would stimulate anabolic function, whereas a non-realistic combination of those stresses would stimulate catabolic function in nucleus pulposus cells. We examined the effects of these combined stresses, represented by 12 systematic conditions, on the metabolic activities of enzymatically isolated bovine caudal nucleus pulposus in vitro. We measured the gene expression of extracellular matrix (ECM) molecules and proliferating cell nuclear antigen (PCNA) and evaluated the quality of the matrix and the capability of cell proliferation immunohistologically. Combined cyclic hydrostatic pressure at 0.5 MPa, 0.5 Hz, and high osmotic pressure at 450 mOsm upregulated the aggrecan core protein and collagen type-II gene expression significantly (p < 0.05), and showed trends of upregulation of chondroitin sulfate N-acetylgalactosaminyltransferase 1, matrix metalloproteinase-13, and PCNA. ECM, however, contained empty spaces at a high osmotic pressure with and without hydrostatic pressure. Since ECM has highly specialized physicochemical properties, homeostasis should involve not only phenotypic cellular behavior but also turnover of ECM. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 37:466-476, 2019.
Collapse
Affiliation(s)
- Shuichi Mizuno
- Department of Orthopedic SurgeryBrigham and Women's Hospital and Harvard Medical School75 Francis StreetBostonMassachusetts02115
| | - Kaori Kashiwa
- Department of Orthopedic SurgeryBrigham and Women's Hospital and Harvard Medical School75 Francis StreetBostonMassachusetts02115
| | - James D. Kang
- Department of Orthopedic SurgeryBrigham and Women's Hospital and Harvard Medical School75 Francis StreetBostonMassachusetts02115
| |
Collapse
|