1
|
Gomes-Ferreira PHS, Frigério PB, Duarte ND, de Moura J, Monteiro NG, Fabris ALDS, Okamoto R. Evaluation of Peri-Implant Bone Repair in Ovariectomized Rats Submitted to the Implant Placement Functionalized with Anti-Sclerostin. Bioengineering (Basel) 2025; 12:358. [PMID: 40281718 PMCID: PMC12024908 DOI: 10.3390/bioengineering12040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/23/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
(1) Background: The challenges in Implantology involve the development of alternative methods to enhance bone repair in patients with systemic conditions, such as osteoporosis. This study aimed to evaluate the effect of a local anti-sclerostin monoclonal antibody (Scl-Ab) on the functionalization of titanium implant surfaces through a dip-coating technique in peri-implant bone repair. (2) Methods: A total of 32 female rats were separated into four groups (n = 8): SHAM NT (Sham surgery), OVX NT (ovariectomy), SHAM Scl-Ab (SHAM; implants functionalized with Scl-Ab), and OVX Scl-Ab (OVX; implants functionalized with Scl-Ab). Implant surgery was executed 30 days after ovariectomy, and the rats were euthanized 28 days postoperatively. The right tibia was used for removal torque and RT-PCR, while the left tibia was collected for micro-CT and laser confocal microscopy. (3) Results: Functionalization with Scl-Ab significantly increased the gene expression of bone markers, especially ALP, in the SHAM Scl-Ab group compared to the other groups (p < 0.05). (4) Conclusions: Some parameters of this study indicate that implants functionalized with anti-sclerostin bone anabolic drug enhance peri-implant bone repair, especially in healthy rats. However, more studies must be carried out to confirm the therapeutic benefits of this approach.
Collapse
Affiliation(s)
| | - Paula Buzo Frigério
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (N.D.D.); (J.d.M.); (N.G.M.); (A.L.d.S.F.)
| | - Nathália Dantas Duarte
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (N.D.D.); (J.d.M.); (N.G.M.); (A.L.d.S.F.)
| | - Juliana de Moura
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (N.D.D.); (J.d.M.); (N.G.M.); (A.L.d.S.F.)
| | - Naara Gabriela Monteiro
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (N.D.D.); (J.d.M.); (N.G.M.); (A.L.d.S.F.)
| | - André Luis da Silva Fabris
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (N.D.D.); (J.d.M.); (N.G.M.); (A.L.d.S.F.)
| | - Roberta Okamoto
- Department of Basic Sciences, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil;
| |
Collapse
|
2
|
Sung HH, Kwon HH, Stephan C, Reynolds SM, Dai Z, Van der Kraan PM, Caird MS, Blaney Davidson EN, Kozloff KM. Sclerostin antibody enhances implant osseointegration in bone with Col1a1 mutation. Bone 2024; 186:117167. [PMID: 38876270 PMCID: PMC11243590 DOI: 10.1016/j.bone.2024.117167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
We evaluated the potential of sclerostin antibody (SclAb) therapy to enhance osseointegration of dental and orthopaedic implants in a mouse model (Brtl/+) mimicking moderate to severe Osteogenesis Imperfecta (OI). To address the challenges in achieving stable implant integration in compromised bone conditions, our aim was to determine the effectiveness of sclerostin antibody (SclAb) at improving bone-to-implant contact and implant fixation strength. Utilizing a combination of micro-computed tomography, mechanical push-in testing, immunohistochemistry, and Western blot analysis, we observed that SclAb treatment significantly enhances bone volume fraction (BV/TV) and bone-implant contact (BIC) in Brtl/+ mice, suggesting a normalization of bone structure toward WT levels. Despite variations in implant survival rates between the maxilla and tibia, SclAb treatment consistently improved implant stability and resistance to mechanical forces, highlighting its potential to overcome the inherent challenges of OI in dental and orthopaedic implant integration. These results suggest that SclAb could be a valuable therapeutic approach for enhancing implant success in compromised bone conditions.
Collapse
Affiliation(s)
- Hsiao H Sung
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, MI, USA; Experimental Rheumatology, Department of Rheumatology, Radboud Medical Centre, Nijmegen, the Netherlands
| | - Hanna H Kwon
- Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Chris Stephan
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Skylar M Reynolds
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Zongrui Dai
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Peter M Van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboud Medical Centre, Nijmegen, the Netherlands
| | - Michelle S Caird
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Kenneth M Kozloff
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Qiao ZB, Gu MZ, Wang YW, Ma BB, Pang SS. Combination treatment with whole body vibration and simvastatin improves the early osseointegration in aged rats. Bone Rep 2024; 22:101790. [PMID: 39540057 PMCID: PMC11558254 DOI: 10.1016/j.bonr.2024.101790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 11/16/2024] Open
Abstract
Background Current research has demonstrated that Simvastatin (SIM) and Whole Body Vibration (WBV) actively contributes to the repair of osteoporotic bones. However, there is still limited knowledge regarding the impact of this combined therapy on osseointegration in elderly individuals. Objective: The objective of this study was to verify the influence of WBV and SIM combination treatment on Titanium implants' fixation strength in aged rats. Methods Male Sprague-Dawley rats at 24 months old were utilized for this investigation. Titanium rods were surgically inserted into the distal femoral canal on their left side. Subsequently, all animals were randomly assigned to one of four groups: Control group; WBV group; SIM group; and WBV + SIM group. Each group received Saline, Whole Body Vibration, Simvastatin, or a combination of Whole Body Vibration plus Simvastatin treatment until they reached their natural death after 12 weeks. The bilateral femurs and serum samples from these rats were collected for evaluation purposes. Results Both WBV and SIM treatments exhibited an increase in bone mass, osseointegration, and push-out force compared to the Control group (all, P < 0.05). Additionally, levels of oxidative stress and inflammatory factors decreased with both treatments when compared to the Control group alone (all, P < 0.05). Notably, the WBV + SIM group displayed superior effects on new bone formation, biomechanical strength, BMP2 expression in bone tissue as well as SOD2 expression regulation related to bone repair genes when compared to other groups involved in this study (all, P < 0.05). Conclusion These findings suggest that combining physiotherapy (WBV) with drug therapy (SIM) proves beneficial for enhancing implant fixation in aged rats.
Collapse
Affiliation(s)
- Zheng-Bo Qiao
- Department of Emergency Medicine, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng 224000, China
| | - Ming-Zhong Gu
- Department of Emergency Medicine, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng 224000, China
| | - Yu-Wu Wang
- Department of Emergency Medicine, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng 224000, China
| | - Bin-Bin Ma
- Department of Orthopedics, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng 224000, China
| | - Shan-Shan Pang
- Department of General Medicine, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng 224000, China
| |
Collapse
|
4
|
Chandran M, Akesson KE, Javaid MK, Harvey N, Blank RD, Brandi ML, Chevalley T, Cinelli P, Cooper C, Lems W, Lyritis GP, Makras P, Paccou J, Pierroz DD, Sosa M, Thomas T, Silverman S. Impact of osteoporosis and osteoporosis medications on fracture healing: a narrative review. Osteoporos Int 2024; 35:1337-1358. [PMID: 38587674 PMCID: PMC11282157 DOI: 10.1007/s00198-024-07059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
Antiresorptive medications do not negatively affect fracture healing in humans. Teriparatide may decrease time to fracture healing. Romosozumab has not shown a beneficial effect on human fracture healing. BACKGROUND Fracture healing is a complex process. Uncertainty exists over the influence of osteoporosis and the medications used to treat it on fracture healing. METHODS Narrative review authored by the members of the Fracture Working Group of the Committee of Scientific Advisors of the International Osteoporosis Foundation (IOF), on behalf of the IOF and the Société Internationale de Chirurgie Orthopédique et de Traumatologie (SICOT). RESULTS Fracture healing is a multistep process. Most fractures heal through a combination of intramembranous and endochondral ossification. Radiographic imaging is important for evaluating fracture healing and for detecting delayed or non-union. The presence of callus formation, bridging trabeculae, and a decrease in the size of the fracture line over time are indicative of healing. Imaging must be combined with clinical parameters and patient-reported outcomes. Animal data support a negative effect of osteoporosis on fracture healing; however, clinical data do not appear to corroborate with this. Evidence does not support a delay in the initiation of antiresorptive therapy following acute fragility fractures. There is no reason for suspension of osteoporosis medication at the time of fracture if the person is already on treatment. Teriparatide treatment may shorten fracture healing time at certain sites such as distal radius; however, it does not prevent non-union or influence union rate. The positive effect on fracture healing that romosozumab has demonstrated in animals has not been observed in humans. CONCLUSION Overall, there appears to be no deleterious effect of osteoporosis medications on fracture healing. The benefit of treating osteoporosis and the urgent necessity to mitigate imminent refracture risk after a fracture should be given prime consideration. It is imperative that new radiological and biological markers of fracture healing be identified. It is also important to synthesize clinical and basic science methodologies to assess fracture healing, so that a convergence of the two frameworks can be achieved.
Collapse
Affiliation(s)
- M Chandran
- Osteoporosis and Bone Metabolism Unit, Department of Endocrinology, Singapore General Hospital, DUKE NUS Medical School, Singapore, Singapore.
| | - K E Akesson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences, Lund University, Department of Orthopedics, Skåne University Hospital, Malmö, Sweden
| | - M K Javaid
- NIHR Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK
| | - N Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, NIHR Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - R D Blank
- Garvan Institute of Medical Research, Medical College of Wisconsin, Darlinghurst, NSW, Australia
- Medical College of Wisconsin, Milwaukee, WI, USA
| | - M L Brandi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Largo Palagi 1, Florence, Italy
| | - T Chevalley
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - P Cinelli
- Department of Trauma Surgery, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - C Cooper
- MRC Lifecourse Epidemiology Centre, University of Southampton, NIHR Southampton Biomedical Research Centre, University of Southampton, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
- NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
| | - W Lems
- Department of Rheumatology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - G P Lyritis
- Hellenic Osteoporosis Foundation, Athens, Greece
| | - P Makras
- Department of Medical Research, 251 Hellenic Air Force & VA General Hospital, Athens, Greece
| | - J Paccou
- Department of Rheumatology, MABlab ULR 4490, CHU Lille, Univ. Lille, 59000, Lille, France
| | - D D Pierroz
- International Osteoporosis Foundation, Nyon, Switzerland
| | - M Sosa
- University of Las Palmas de Gran Canaria, Investigation Group on Osteoporosis and Mineral Metabolism, Canary Islands, Spain
| | - T Thomas
- Department of Rheumatology, North Hospital, CHU Saint-Etienne and INSERM U1059, University of Lyon-University Jean Monnet, Saint‑Etienne, France
| | - S Silverman
- Cedars-Sinai Medical Center and Geffen School of Medicine UCLA, Los Angeles, CA, USA
| |
Collapse
|
5
|
Anderson KD, Beckmann C, Heermant S, Ko FC, Dulion B, Tarhoni I, Borgia JA, Virdi AS, Wimmer MA, Sumner DR, Ross RD. Zucker Diabetic-Sprague Dawley Rats Have Impaired Peri-Implant Bone Formation, Matrix Composition, and Implant Fixation Strength. JBMR Plus 2023; 7:e10819. [PMID: 38025036 PMCID: PMC10652173 DOI: 10.1002/jbm4.10819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 12/01/2023] Open
Abstract
An increasing number of patients with type 2 diabetes (T2DM) will require total joint replacement (TJR) in the next decade. T2DM patients are at increased risk for TJR failure, but the mechanisms are not well understood. The current study used the Zucker Diabetic-Sprague Dawley (ZDSD) rat model of T2DM with Sprague Dawley (SPD) controls to investigate the effects of intramedullary implant placement on osseointegration, peri-implant bone structure and matrix composition, and fixation strength at 2 and 10 weeks post-implant placement. Postoperative inflammation was assessed with circulating MCP-1 and IL-10 2 days post-implant placement. In addition to comparing the two groups, stepwise linear regression modeling was performed to determine the relative contribution of glucose, cytokines, bone formation, bone structure, and bone matrix composition on osseointegration and implant fixation strength. ZDSD rats had decreased peri-implant bone formation and reduced trabecular bone volume per total volume compared with SPD controls. The osseointegrated bone matrix of ZDSD rats had decreased mineral-to-matrix and increased crystallinity compared with SPD controls. Osseointegrated bone volume per total volume was not different between the groups, whereas implant fixation was significantly decreased in ZDSD at 2 weeks but not at 10 weeks. A combination of trabecular mineral apposition rate and postoperative MCP-1 levels explained 55.6% of the variance in osseointegration, whereas cortical thickness, osseointegration mineral apposition rate, and matrix compositional parameters explained 69.2% of the variance in implant fixation strength. The results support the growing recognition that both peri-implant structure and matrix composition affect implant fixation and suggest that postoperative inflammation may contribute to poor outcomes after TJR surgeries in T2DM patients. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Kyle D Anderson
- Department of Anatomy and Cell BiologyRush University Medical CenterChicagoILUSA
| | - Christian Beckmann
- Department of Orthopedic SurgeryRush University Medical CenterChicagoILUSA
| | - Saskia Heermant
- Department of Orthopedic SurgeryRush University Medical CenterChicagoILUSA
| | - Frank C Ko
- Department of Anatomy and Cell BiologyRush University Medical CenterChicagoILUSA
- Department of Orthopedic SurgeryRush University Medical CenterChicagoILUSA
| | - Bryan Dulion
- Department of Anatomy and Cell BiologyRush University Medical CenterChicagoILUSA
| | - Imad Tarhoni
- Department of Anatomy and Cell BiologyRush University Medical CenterChicagoILUSA
| | - Jeffrey A Borgia
- Department of Anatomy and Cell BiologyRush University Medical CenterChicagoILUSA
| | - Amarjit S Virdi
- Department of Anatomy and Cell BiologyRush University Medical CenterChicagoILUSA
- Department of Orthopedic SurgeryRush University Medical CenterChicagoILUSA
| | - Markus A Wimmer
- Department of Orthopedic SurgeryRush University Medical CenterChicagoILUSA
| | - D Rick Sumner
- Department of Anatomy and Cell BiologyRush University Medical CenterChicagoILUSA
- Department of Orthopedic SurgeryRush University Medical CenterChicagoILUSA
| | - Ryan D Ross
- Department of Anatomy and Cell BiologyRush University Medical CenterChicagoILUSA
- Department of Orthopedic SurgeryRush University Medical CenterChicagoILUSA
- Department of Microbial Pathogens and ImmunityRush University Medical CenterChicagoILUSA
| |
Collapse
|
6
|
Jiao Z, Chai H, Wang S, Sun C, Huang Q, Xu W. SOST gene suppression stimulates osteocyte Wnt/β-catenin signaling to prevent bone resorption and attenuates particle-induced osteolysis. J Mol Med (Berl) 2023; 101:607-620. [PMID: 37121919 PMCID: PMC10163143 DOI: 10.1007/s00109-023-02319-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023]
Abstract
The most common cause for prosthetic revision surgery is wear particle-induced periprosthetic osteolysis, which leads to aseptic loosening of the prosthesis. Both SOST gene and its synthetic protein, sclerostin, are hallmarks of osteocytes. According to our previous findings, blocking SOST induces bone formation and protects against bone loss and deformation caused by titanium (Ti) particles by activating the Wnt/β-catenin cascade. Although SOST has been shown to influence osteoblasts, its ability to control wear-particle-induced osteolysis via targeting osteoclasts remains unclear. Mice were subjected to development of a cranial osteolysis model. Micro CT, HE staining, and TRAP staining were performed to evaluate bone loss in the mouse model. Bone marrow-derived monocyte-macrophages (BMMs) made from the C57BL/6 mice were exposed to the medium of MLO-Y4 (co-cultured with Ti particles) to transform them into osteoclasts. Bioinformatics methods were used to predict and validate the interaction among SOST, Wnt/β-catenin, RANKL/OPG, TNF-α, and IL-6. Local bone density and bone volume improved after SOST inhibition, both the number of lysis pores and the rate of skull erosion decreased. Histological research showed that β-catenin and OPG expression were markedly increased after SOST inhibition, whereas TRAP and RANKL levels were markedly decreased. In-vitro, Ti particle treatment elevated the expression of sclerostin, suppressed the expression of β-catenin, and increased the RANKL/OPG ratio in the MLO-Y4 cell line. TNF-α and IL-6 also elevated after treatment with Ti particles. The expression levels of NFATc1, CTSK, and TRAP in osteoclasts were significantly increased, and the number of positive cells for TRAP staining was increased. Additionally, the volume of bone resorption increased at the same time. In contrast, when SOST expression was inhibited in the MLO-Y4 cell line, these effects produced by Ti particles were reversed. All the results strongly show that SOST inhibition triggered the osteocyte Wnt/β-catenin signaling cascade and prevented wear particle-induced osteoclastogenesis, which might reduce periprosthetic osteolysis. KEY MESSAGES: SOST is a molecular regulator in maintaining bone homeostasis. SOST plays in regulating bone homeostasis through the Wnt/β-catenin signaling pathway. SOST gene suppression stimulates osteocyte Wnt/β-catenin signaling to prevent bone resorption and attenuates particle-induced osteolysis.
Collapse
Affiliation(s)
- Zixue Jiao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Hao Chai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
- Department of Orthopedics, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Shendong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Chunguang Sun
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
- Department of Orthopedics, Funing People's Hospital, Yancheng, 224400, Jiangsu, China
| | - Qun Huang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
- Department of Orthopedics, Zhangjiagang City First People's Hospital, Zhangjiagang, 215699, Jiangsu, China
| | - Wei Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
7
|
Xu C, Ji G, Chen X, Yan L, Liang T, Liu J, Wang F. Sclerostin antibody promotes bone formation through the Wnt/β-catenin signaling pathway in femoral trochlear after patellar instability. Connect Tissue Res 2023; 64:148-160. [PMID: 36379907 DOI: 10.1080/03008207.2022.2135507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE The molecular mechanism of patellar instability (PI) remains unknown. The purpose of this study was to explore the function of SOST/sclerostin in PI and examine the effect of sclerostin antibody (Scl-Ab). MATERIALS AND METHODS We randomly divided 60 male 3-week-old C57Bl/6 mice into four groups: sham, PI, Scl-Ab intraperitoneal injection (Scl-Ab IP), Scl-Ab intraarticular injection (Scl-Ab IA). PI was established in the latter three groups. The Scl-Ab IP/IA groups were administered with an intraperitoneal/intraarticular Scl-Ab injection (100 mg/kg, 20 µl), respectively, at 5-day intervals. Distal femurs were collected 30 days after the surgery. The SOST/sclerostin, β-catenin, ALP, OPG and RANKL expression in distal femur were determined. Trochlear morphology and structural parameters of the trabecular and cortical bone compartments were determined by micro-CT. Further sub-regional analysis was performed. HE staining and Masson's trichrome staining were performed to evaluate cartilage changes. RESULTS PI increased the expression of SOST/sclerostin and RANKL, and decreased β-catenin, ALP and OPG levels, while Scl-Ab IP reversed these changes. Scl-Ab IP brought trochlear morphology closer to normality. Additionally, Scl-Ab IP significantly improved most of the bone parameters. Importantly, both PI and Scl-Ab IP acted mainly on trabecular bone. Histological analysis showed that Scl-Ab IP protected cartilage from degeneration. However, Scl-Ab IA did not protect against bone loss or cartilage degradation. CONCLUSIONS SOST/sclerostin plays an important role in PI and systemic Scl-Ab use promotes bone formation through the Wnt/β-catenin signaling pathway in the femoral trochlear after PI.
Collapse
Affiliation(s)
- Chenyue Xu
- Department of Orthopaedic Surgery, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Gang Ji
- Department of Orthopaedic Surgery, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Xiaobo Chen
- Department of Orthopaedic Surgery, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Lirong Yan
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tuwan Liang
- College of Medical, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Junle Liu
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fei Wang
- Department of Orthopaedic Surgery, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
8
|
Couto BADA, Fernandes JCH, Saavedra-Silva M, Roca H, Castilho RM, Fernandes GVDO. Antisclerostin Effect on Osseointegration and Bone Remodeling. J Clin Med 2023; 12:jcm12041294. [PMID: 36835830 PMCID: PMC9964545 DOI: 10.3390/jcm12041294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Objective: This study reviewed the literature on local or systemic administration of antisclerostin, presenting results associated with osseointegration of dental/orthopedic implants and stimulation of bone remodeling. Materials and Methods: An extensive electronic search was conducted through MED-LINE/PubMed, PubMed Central, Web of Science databases and specific peer-reviewed journals to identify case reports, case series, randomized controlled trials, clinical trials and animal studies comparing either the systemic or local administration of antisclerostin and its effect in osseointegration and bone remodeling. Articles in English and with no restriction on period were included. Results: Twenty articles were selected for a full-text, and one was excluded. Finally, 19 articles were included in the study (16 animal studies and 3 randomized control trials). These studies were divided into two groups, which evaluated (i) osseointegration and (ii) bone remodeling potential. Initially 4560 humans and 1191 animals were identified. At least 1017 were excluded from the studies (981 humans and 36 animals), totaling 4724 subjects who completed (3579 humans and 1145 animals). (a) Osseointegration: 7 studies described this phenomenon; 4 reported bone-implant contact, which increased in all included studies. Similar results were found for bone mineral density, bone area/volume and bone thickness. (b) Bone remodeling: 13 studies were used for description. The studies reported an increase in BMD with sclerostin antibody treatment. A similar effect was found for bone mineral density/area/volume, trabecular bone and bone formation. Three biomarkers of bone formation were identified: bone-specific alkaline phosphatase (BSAP), osteocalcin and procollagen type 1 N-terminal Pro-peptide (P1NP); and markers for bone resorption were: serum C-telopeptide (sCTX), C-terminal telopeptides of type I collagen (CTX-1), β-isomer of C-terminal telopeptides of type I collagen (β-CTX) and tartrate-resistant acid phosphatase 5b (TRACP-5b). There were limitations: low number of human studies identified; high divergence in the model used (animal or human); the variance in the type of Scl-Ab and doses of administration; and the lack of reference quantitative values in the parameters analyzed by authors' studies (many articles only reported qualitative information). Conclusion: Within the limitations of this review and carefully observing all data, due to the number of articles included and the heterogeneity existing, more studies must be carried out to better evaluate the action of the antisclerostin on the osseointegration of dental implants. Otherwise, these findings can accelerate and stimulate bone remodeling and neoformation.
Collapse
Affiliation(s)
| | | | - Mariana Saavedra-Silva
- Departamento de Cirurgía (Área de Estomatología), Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Hernan Roca
- McCauley-Roca Lab’s, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Rogério Moraes Castilho
- Periodontics and Oral Medicine Department, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
9
|
Mohammadi A, Dehkordi NR, Mahmoudi S, Rafeie N, Sabri H, Valizadeh M, Poorsoleiman T, Jafari A, Mokhtari A, Khanjarani A, Salimi Y, Mokhtari M, Deravi N. Effects of Drugs and Chemotherapeutic Agents on Dental Implant Osseointegration: A Narrative Review. Curr Rev Clin Exp Pharmacol 2023; 19:42-60. [PMID: 35674294 DOI: 10.2174/2772432817666220607114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dental implants have been one of the most popular treatments for rehabilitating individuals with single missing teeth or fully edentulous jaws since their introduction. As more implant patients are well-aged and take several medications due to various systemic conditions, clinicians should take into consideration the possible drug implications on bone remodeling and osseointegration. OBJECTIVE The present study aims to examine and review some desirable and unwelcomed implications of medicine on osseointegration. METHODS A broad search for proper relevant studies was conducted in four databases, including Web of Science, Pubmed, Scopus, and Google Scholar. RESULTS Some commonly prescribed medicines, such as nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, proton pump inhibitors (PPIs), selective serotonin reuptake inhibitors (SSRIs), anticoagulants, metformin, and chemotherapeutic agents, may jeopardize osseointegration. On the contrary, some therapeutic agents, such as anabolic, anti-catabolic, or dual anabolic agents may enhance osseointegration and increase the treatment's success rate. CONCLUSION Systemic medications that enhance osseointegration include mineralization promoters and bone resorption inhibitors. On the other hand, medications often given to the elderly with systemic problems might interfere with osseointegration, leading to implant failure. However, to validate the research, more human studies with a higher level of evidence are required.
Collapse
Affiliation(s)
- Aida Mohammadi
- Dental Materials Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Roqani Dehkordi
- Department of Periodontology, Faculty of Dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sadaf Mahmoudi
- Department of Endodontics, School of Dentistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Niyousha Rafeie
- Dental Research Center, Dentistry Research Institute, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamoun Sabri
- Research Center, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Valizadeh
- Student Research Committee, Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Taniya Poorsoleiman
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Aryan Jafari
- Dental Materials Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Mokhtari
- Student Research Committee, Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arshia Khanjarani
- Student Research Committee, Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasaman Salimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Melika Mokhtari
- Student Research Committee, Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Zhou MS, Tao ZS. Systemic administration with melatonin in the daytime has a better effect on promoting osseointegration of titanium rods in ovariectomized rats. Bone Joint Res 2022; 11:751-762. [DOI: 10.1302/2046-3758.1111.bjr-2022-0017.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aims This study examined whether systemic administration of melatonin would have different effects on osseointegration in ovariectomized (OVX) rats, depending on whether this was administered during the day or night. Methods In this study, a titanium rod was implanted in the medullary cavity of one femoral metaphysis in OVX rats, and then the rats were randomly divided into four groups: Sham group (Sham, n = 10), OVX rat group (OVX, n = 10), melatonin day treatment group (OVX + MD, n = 10), and melatonin night treatment group (OVX + MN, n = 10). The OVX + MD and OVX + MN rats were treated with 30 mg/kg/day melatonin at 9 am and 9 pm, respectively, for 12 weeks. At the end of the research, the rats were killed to obtain bilateral femora and blood samples for evaluation. Results Micro-CT and histological evaluation showed that the bone microscopic parameters of femoral metaphysis trabecular bone and bone tissue around the titanium rod in the OVX + MD group demonstrated higher bone mineral density, bone volume fraction, trabecular number, connective density, trabecular thickness, and lower trabecular speculation (p = 0.004) than the OVX + MN group. Moreover, the biomechanical parameters of the OVX + MD group showed higher pull-out test and three-point bending test values, including fixation strength, interface stiffness, energy to failure, energy at break, ultimate load, and elastic modulus (p = 0.012) than the OVX + MN group. In addition, the bone metabolism index and oxidative stress indicators of the OVX + MD group show lower values of Type I collagen cross-linked C-telopeptide, procollagen type 1 N propeptide, and malondialdehyde (p = 0.013), and higher values of TAC and SOD (p = 0.002) compared with the OVX + MN group. Conclusion The results of our study suggest that systemic administration with melatonin at 9 am may improve the initial osseointegration of titanium rods under osteoporotic conditions more effectively than administration at 9 pm. Cite this article: Bone Joint Res 2022;11(11):751–762.
Collapse
Affiliation(s)
- Mao-Sheng Zhou
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| |
Collapse
|
11
|
Tao ZS, Wang HS, Li TL, Wei S. Silibinin-modified Hydroxyapatite coating promotes the osseointegration of titanium rods by activation SIRT1/SOD2 signaling pathway in diabetic rats. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:62. [PMID: 36057883 PMCID: PMC9441422 DOI: 10.1007/s10856-022-06684-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/01/2022] [Indexed: 05/06/2023]
Abstract
The purpose of this study is to investigate the role of Silibinin (SIL)-modified Hydroxyapatite coating on osseointegration in diabetes in vivo and in vitro and explore the mechanism of osteogenic differentiation of MC3T3-E1. RT-qPCR, Immunofluorescence, and Western blot were used to measure the expression level of oxidative Stress Indicators and osteogenic markers proteins. Moreover, CCK-8 assay was conducted to detect cell viability in hyperglycemia. Alizarin red staining and alkaline phosphatase staining were used to examine osteogenic function and calcium deposits. The diabetic rat model receive titanium rod implantation was set up successfully and Von-Gieson staining was used to examine femoral bone tissue around titanium rod. Our results showed that intracellular oxidative stress in hyperglycemia was overexpressed, while FoxO1, SIRT1, GPX1, and SOD2 were downregulated. SIL suppressed oxidative stress to promote osteogenic differentiation. Additionally, it was confirmed that SIL promoted osteogenic differentiation of MC3T3-E1 and obviously restored the osseointegration ability of diabetic rats. Further study indicated that SIL exerted its beneficial function through activation SIRT1/SOD2 signaling pathway to restore osteoblast function, and improved the osseointegration and stability of titanium rods in vivo. Our research suggested that the SIL-modulated oxidative Stress inhibition is responsible for the activation of the process of osteogenic differentiation through activation SIRT1/SOD2 signaling pathway in hyperglycemia, providing a novel insight into improving prosthetic osseointegration in diabetic patients. Hyperglycemia impaired the activity and function of MC3T3-E1 and inhibits bone formation by up-regulating intracellular ROS levels through inhibition of SIRT1/SOD2 signaling pathway. Local administrator SIL can improve the activity and function of osteoblasts and enhance osseointegration by reducing intracellular ROS through activation of SIRT1/SOD2 signaling pathway in DM rat models.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, P.R. China.
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), No. 2, Zhe Shan Xi Road, Wuhu, China.
| | - Hai-Sheng Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, P.R. China
| | - Tian-Lin Li
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, P.R. China
| | - Shan Wei
- School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, 241000, P.R. China
- Additive Manufacturing Institute of Anhui Polytechnic University, Anhui Polytechnic University, Wuhu, 241000, P.R. China
| |
Collapse
|
12
|
Ko FC, Moran MM, Ross RD, Sumner DR. Activation of canonical Wnt signaling accelerates intramembranous bone regeneration in male mice. J Orthop Res 2022; 40:1834-1843. [PMID: 34811780 PMCID: PMC9124233 DOI: 10.1002/jor.25217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 02/04/2023]
Abstract
Canonical Wnt signaling plays an important role in skeletal development, homeostasis, and both endochondral and intramembranous repair. While studies have demonstrated that the inhibition of Wnt signaling impairs intramembranous bone regeneration, how its activation affects intramembranous bone regeneration has been underexplored. Therefore, we sought to determine the effects of activation of canonical Wnt signaling on intramembranous bone regeneration by using the well-established marrow ablation model. We hypothesized that mice with a mutation in the Wnt ligand coreceptor gene Lrp5 would have accelerated intramembranous bone regeneration. Male and female wild-type and Lrp5-mutant mice underwent unilateral femoral bone marrow ablation surgery in the right femur at 4 weeks of age. Both the left intact and right operated femurs were assessed at Days 3, 5, 7, 10, and 14. The intact femur of Lrp5 mutant mice of both sexes had higher bone mass than wild-type littermates, although to a greater degree in males than females. Overall, the regenerated bone volume in Lrp5 mutant male mice was 1.8-fold higher than that of littermate controls, whereas no changes were observed between female Lrp5 mutant and littermate control mice. In addition, the rate of intramembranous bone regeneration (from Day 3 to Day 7) was higher in Lrp5 mutant male mice compared to their same-sex littermate controls with no difference in the females. Thus, activation of canonical Wnt signaling increases bone mass in intact bones of both sexes, but accelerates intramembranous bone regeneration following an injury challenge only in male mice.
Collapse
Affiliation(s)
- Frank C. Ko
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612
| | - Meghan M. Moran
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612
| | - Ryan D. Ross
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612
| | - D. Rick Sumner
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612
| |
Collapse
|
13
|
Liao C, Liang S, Wang Y, Zhong T, Liu X. Sclerostin is a promising therapeutic target for oral inflammation and regenerative dentistry. J Transl Med 2022; 20:221. [PMID: 35562828 PMCID: PMC9102262 DOI: 10.1186/s12967-022-03417-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/28/2022] [Indexed: 11/10/2022] Open
Abstract
Sclerostin is the protein product of the SOST gene and is known for its inhibitory effects on bone formation. The monoclonal antibody against sclerostin has been approved as a novel treatment method for osteoporosis. Oral health is one of the essential aspects of general human health. Hereditary bone dysplasia syndrome caused by sclerostin deficiency is often accompanied by some dental malformations, inspiring the therapeutic exploration of sclerostin in the oral and dental fields. Recent studies have found that sclerostin is expressed in several functional cell types in oral tissues, and the expression level of sclerostin is altered in pathological conditions. Sclerostin not only exerts similar negative outcomes on the formation of alveolar bone and bone-like tissues, including dentin and cementum, but also participates in the development of oral inflammatory diseases such as periodontitis, pulpitis, and peri-implantitis. This review aims to highlight related research progress of sclerostin in oral cavity, propose necessary further research in this field, and discuss its potential as a therapeutic target for dental indications and regenerative dentistry.
Collapse
Affiliation(s)
- Chufang Liao
- School of Stomatology, Jinan University, Guangzhou, China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China.,Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shanshan Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Prosthodontics, Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yining Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Prosthodontics, Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ting Zhong
- School of Stomatology, Jinan University, Guangzhou, China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China.,Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangning Liu
- School of Stomatology, Jinan University, Guangzhou, China. .,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China. .,Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
14
|
Yiğit U, Kırzıoğlu FY, Özmen Ö. Effects of low dose doxycycline and caffeic acid phenethyl ester on sclerostin and bone morphogenic protein-2 expressions in experimental periodontitis. Biotech Histochem 2022; 97:567-575. [PMID: 35135409 DOI: 10.1080/10520295.2022.2036370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
We investigated the effects of caffeic acid phenethyl ester (CAPE) and low-dose doxycycline (LDD) on sclerostin and bone morphogenic protein (BMP)-2 expression in experimental periodontitis. We used male rats in groups as follows: control group (C), periodontitis + CAPE group (PC), periodontitis + LDD group (PD), periodontitis + LDD + CAPE group (PCD) and periodontitis group (P). We administered 10 µmol/kg/day CAPE by an intraperitoneal (i.p.) injection and 10 mg/kg/day LDD by oral gavage. Histopathological changes among groups were evaluated and compared. Sclerostin and BMP-2 expression was analyzed using immunohistochemistry. LDD and/or CAPE treatment ameliorated pathology. The highest sclerostin and lowest BMP-2 expressions were found in P group. Group PC exhibited the highest BMP-2 expression scores and the most significant improvement among the treatment groups. The lowest sclerostin expression was observed in the PD group. We found that preventing sclerostin activity may be a useful treatment alternative for bone resorption, especially in cases of periodontitis and peri-implantitis. We found that CAPE and/or LDD may act as anti-sclerostin agents.
Collapse
Affiliation(s)
- Umut Yiğit
- Department of Periodontology, Faculty of Dentistry, Uşak University, Uşak, Turkey
| | - Fatma Yeşim Kırzıoğlu
- Department of Periodontogy, Faculty of Dentistry, Süleyman Demirel University, Isparta, Turkey
| | - Özlem Özmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
15
|
Mihara A, Yukata K, Seki T, Iwanaga R, Nishida N, Fujii K, Nagao Y, Sakai T. Effects of sclerostin antibody on bone healing. World J Orthop 2021; 12:651-659. [PMID: 34631449 PMCID: PMC8472444 DOI: 10.5312/wjo.v12.i9.651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/12/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Promoting bone healing after a fracture has been a frequent subject of research. Recently, sclerostin antibody (Scl-Ab) has been introduced as a new anabolic agent for the treatment of osteoporosis. Scl-Ab activates the canonical Wnt (cWnt)-β-catenin pathway, leading to an increase in bone formation and decrease in bone resorption. Because of its rich osteogenic effects, preclinically, Scl-Ab has shown positive effects on bone healing in rodent models; researchers have reported an increase in bone mass, mechanical strength, histological bone formation, total mineralized callus volume, bone mineral density, neovascularization, proliferating cell nuclear antigen score, and bone morphogenic protein expression at the fracture site after Scl-Ab administration. In addition, in a rat critical-size femoral-defect model, the Scl-Ab-treated group demonstrated a higher bone healing rate. On the other hand, two clinical reports have researched Scl-Ab in bone healing and failed to show positive effects in the femur and tibia. This review discusses why Scl-Ab appears to be effective in animal models of fracture healing and not in clinical cases.
Collapse
Affiliation(s)
- Atsushi Mihara
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Kiminori Yukata
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Toshihiro Seki
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Ryuta Iwanaga
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Norihiro Nishida
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Kenzo Fujii
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Yuji Nagao
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Takashi Sakai
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| |
Collapse
|
16
|
Ma Y, Ran D, Shi X, Zhao H, Liu Z. Cadmium toxicity: A role in bone cell function and teeth development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144646. [PMID: 33485206 DOI: 10.1016/j.scitotenv.2020.144646] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a widespread environmental contaminant that causes severe bone metabolism disease, such as osteoporosis, osteoarthritis, and osteomalacia. The present review aimed to explore the molecular mechanisms of Cd-induced bone injury starting from bone cell function and teeth development. Cd inhibits the differentiation of bone marrow mesenchymal stem cells (BMSCs) into osteoblasts, and directly causes BMSC apoptosis. In the case of osteoporosis, Cd mainly affects the activation of osteoclasts and promotes bone resorption. Cd-induces osteoblast injury and oxidative stress, which causes DNA damage, mitochondrial dysfunction, and endoplasmic reticulum stress, resulting in apoptosis. In addition, the development of osteoarthritis (OA) might be related to Cd-induced chondrocyte damage. The high expression of metallothionein (MT) might reduce Cd toxicity toward osteocytes. The toxicity of Cd toward teeth mainly focuses on enamel development and dental caries. Understanding the effect of Cd on bone cell function and teeth development could contribute to revealing the mechanisms of Cd-induced bone damage. This review explores Cd-induced bone disease from cellular and molecular levels, and provides new directions for removing this heavy metal from the environment.
Collapse
Affiliation(s)
- Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Di Ran
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xueni Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
17
|
Lupi SM, Sassi AN, Addis A, Rodriguez y Baena R. The Impact of Nandrolone Decanoate in the Osseointegration of Dental Implants in a Rabbit Model: Histological and Micro-Radiographic Results. MATERIALS 2021; 14:ma14092258. [PMID: 33925604 PMCID: PMC8123797 DOI: 10.3390/ma14092258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 11/23/2022]
Abstract
Despite high rates of osseointegration in healthy patients, complex cases present an increased risk of osseointegration failure when treated with dental implants. Furthermore, if immediate loading of the implants is used, maximizing the response of the host organism would be desirable. Anabolic steroids, such as Nandrolone Decanoate (ND), are reported to have beneficial clinical effects on various bone issues such as osteoporosis and bone fractures. However, their beneficial effects in promoting osseointegration in dental implant placement have not been documented. The study aimed to examine histological changes induced by ND in experimental dental implants in rabbit models. Two dental implants were placed in the tibias of 24 adult rabbits. Rabbits were allocated to one of two groups: control group or test group. Rabbits in the latter group were given nandrolone decanoate (15 mg/kg, immediately after implant placement and after 1 week). Micro-radiographic and histological analyses were assessed to characterize the morphological changes promoted by the nandrolone decanoate use. Total bone volume and fluorescence were significantly higher in the control group after 2 weeks. Such a difference between the two groups might indicate that, initially, nandrolone lengthens the non-specific healing period characteristic of all bone surgeries. However, after the beginning of the reparative processes, the quantity of newly formed bone appears to be significantly higher, indicating a positive stimulation of the androgen molecule on bone metabolism. Based on micro-radiology and fluorescence microscopy, nandrolone decanoate influenced bone regeneration in the implant site. The anabolic steroid nandrolone decanoate affects the healing processes of the peri-implant bone and therefore has the potential to improve the outcomes of implant treatment in medically complex patients.
Collapse
Affiliation(s)
- Saturnino Marco Lupi
- Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (A.N.S.); (R.R.y.B.)
- Correspondence:
| | - Alessandra Nicole Sassi
- Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (A.N.S.); (R.R.y.B.)
| | - Alessandro Addis
- CRABCC, Biotechnology Research Centre for Cardiothoracic Applications, 26027 Rivolta d’Adda, Italy;
| | - Ruggero Rodriguez y Baena
- Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (A.N.S.); (R.R.y.B.)
| |
Collapse
|
18
|
Mahri M, Shen N, Berrizbeitia F, Rodan R, Daer A, Faigan M, Taqi D, Wu KY, Ahmadi M, Ducret M, Emami E, Tamimi F. Osseointegration Pharmacology: A Systematic Mapping Using Artificial Intelligence. Acta Biomater 2021; 119:284-302. [PMID: 33181361 DOI: 10.1016/j.actbio.2020.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/25/2022]
Abstract
Clinical performance of osseointegrated implants could be compromised by the medications taken by patients. The effect of a specific medication on osseointegration can be easily investigated using traditional systematic reviews. However, assessment of all known medications requires the use of evidence mapping methods. These methods allow assessment of complex questions, but they are very resource intensive when done manually. The objective of this study was to develop a machine learning algorithm to automatically map the literature assessing the effect of medications on osseointegration. Datasets of articles classified manually were used to train a machine-learning algorithm based on Support Vector Machines. The algorithm was then validated and used to screen 599,604 articles identified with an extremely sensitive search strategy. The algorithm included 281 relevant articles that described the effect of 31 different drugs on osseointegration. This approach achieved an accuracy of 95%, and compared to manual screening, it reduced the workload by 93%. The systematic mapping revealed that the treatment outcomes of osseointegrated medical devices could be influenced by drugs affecting homeostasis, inflammation, cell proliferation and bone remodeling. The effect of all known medications on the performance of osseointegrated medical devices can be assessed using evidence mappings executed with highly accurate machine learning algorithms.
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to critically evaluate the current literature regarding implant fixation in osteoporotic bone. RECENT FINDINGS Clinical studies have not only demonstrated the growing prevalence of osteoporosis in patients undergoing total joint replacement (TJR) but may also indicate a significant gap in screening and treatment of this comorbidity. Osteoporosis negatively impacts bone in multiple ways beyond the mere loss of bone mass, including compromising skeletal regenerative capacity, architectural deterioration, and bone matrix quality, all of which could diminish implant fixation. Recent findings both in preclinical animal models and in clinical studies indicate encouraging results for the use of osteoporosis drugs to promote implant fixation. Implant fixation in osteoporotic bone presents an increasing clinical challenge that may be benefitted by increased screening and usage of osteoporosis drugs.
Collapse
Affiliation(s)
- Kyle D Anderson
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Frank C Ko
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Amarjit S Virdi
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - D Rick Sumner
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Ryan D Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA.
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
20
|
Yao Y, Kauffmann F, Maekawa S, Sarment LV, Sugai JV, Schmiedeler CA, Doherty EJ, Holdsworth G, Kostenuik PJ, Giannobile WV. Sclerostin antibody stimulates periodontal regeneration in large alveolar bone defects. Sci Rep 2020; 10:16217. [PMID: 33004873 PMCID: PMC7530715 DOI: 10.1038/s41598-020-73026-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Destruction of the alveolar bone in the jaws can occur due to periodontitis, trauma or following tumor resection. Common reconstructive therapy can include the use of bone grafts with limited predictability and efficacy. Romosozumab, approved by the FDA in 2019, is a humanized sclerostin-neutralizing antibody (Scl-Ab) indicated in postmenopausal women with osteoporosis at high risk for fracture. Preclinical models show that Scl-Ab administration preserves bone volume during periodontal disease, repairs bone defects surrounding dental implants, and reverses alveolar bone loss following extraction socket remodeling. To date, there are no studies evaluating Scl-Ab to repair osseous defects around teeth or to identify the efficacy of locally-delivered Scl-Ab for targeted drug delivery. In this investigation, the use of systemically-delivered versus low dose locally-delivered Scl-Ab via poly(lactic-co-glycolic) acid (PLGA) microspheres (MSs) was compared at experimentally-created alveolar bone defects in rats. Systemic Scl-Ab administration improved bone regeneration and tended to increase cementogenesis measured by histology and microcomputed tomography, while Scl-Ab delivered by MSs did not result in enhancements in bone or cemental repair compared to MSs alone or control. In conclusion, systemic administration of Scl-Ab promotes bone and cemental regeneration while local, low dose delivery did not heal periodontal osseous defects in this study.
Collapse
Affiliation(s)
- Yao Yao
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109-2800, USA
| | - Frederic Kauffmann
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109-2800, USA
- Department of Oral and Craniomaxillofacial Surgery, Center for Dental Medicine, University Medical Center Freiburg, 79110, Freiburg, Germany
| | - Shogo Maekawa
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109-2800, USA
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Lea V Sarment
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109-2800, USA
| | - James V Sugai
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109-2800, USA
| | - Caroline A Schmiedeler
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109-2800, USA
| | - Edward J Doherty
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Cambridge, MA, 02115, USA
| | | | - Paul J Kostenuik
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - William V Giannobile
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109-2800, USA.
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, 48019, USA.
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, 02115, USA.
| |
Collapse
|
21
|
Ko FC, Sumner DR. How faithfully does intramembranous bone regeneration recapitulate embryonic skeletal development? Dev Dyn 2020; 250:377-392. [PMID: 32813296 DOI: 10.1002/dvdy.240] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/19/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Postnatal intramembranous bone regeneration plays an important role during a wide variety of musculoskeletal regeneration processes such as fracture healing, joint replacement and dental implant surgery, distraction osteogenesis, stress fracture healing, and repair of skeletal defects caused by trauma or resection of tumors. The molecular basis of intramembranous bone regeneration has been interrogated using rodent models of most of these conditions. These studies reveal that signaling pathways such as Wnt, TGFβ/BMP, FGF, VEGF, and Notch are invoked, reminiscent of embryonic development of membranous bone. Discoveries of several skeletal stem cell/progenitor populations using mouse genetic models also reveal the potential sources of postnatal intramembranous bone regeneration. The purpose of this review is to compare the underlying molecular signals and progenitor cells that characterize embryonic development of membranous bone and postnatal intramembranous bone regeneration.
Collapse
Affiliation(s)
- Frank C Ko
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - D Rick Sumner
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
22
|
Wang YN, Jia TT, Xu X, Zhang DJ. [Overview of animal researches about the effects of systemic drugs on implant osseointegration]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:211-217. [PMID: 32314897 PMCID: PMC7184276 DOI: 10.7518/hxkq.2020.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/25/2019] [Indexed: 11/21/2022]
Abstract
Implant osseointegration is an important biological basis for dental implantology. Many factors, including surgical factors, implant factors, and patients' own factors, affect implant osseointegration. Notably, the application of systemic drugs to improve implant osseointegration has become a research hotspot. This article reviews the effects of systemic drugs on implant osseointegration based on animal researches to provide systemic drug selection to improve implant osseointegration and lay a good foundation for later clinical trials.
Collapse
Affiliation(s)
- Ya-Nan Wang
- School of Stomatology, Shandong University, Jinan 250012, China;Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| | - Ting-Ting Jia
- School of Stomatology, Shandong University, Jinan 250012, China;Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| | - Xin Xu
- School of Stomatology, Shandong University, Jinan 250012, China;Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China;Dept. of Implantology, Stomatological Hospital of Shandong University, Jinan 250012, China
| | - Dong-Jiao Zhang
- School of Stomatology, Shandong University, Jinan 250012, China;Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China;Dept. of Implantology, Stomatological Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
23
|
Zhang ZH, Jia XY, Fang JY, Chai H, Huang Q, She C, Jia P, Geng DC, Xu W. Reduction of SOST gene promotes bone formation through the Wnt/β-catenin signalling pathway and compensates particle-induced osteolysis. J Cell Mol Med 2020; 24:4233-4244. [PMID: 32134561 PMCID: PMC7171346 DOI: 10.1111/jcmm.15084] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 12/16/2022] Open
Abstract
The increase in bone resorption and/or the inhibition of bone regeneration caused by wear particles are the main causes of periprosthetic osteolysis. The SOST gene and Sclerostin, a protein synthesized by the SOST gene, are the characteristic marker of osteocytes and regulate bone formation and resorption. We aimed to verify whether the SOST gene was involved in osteolysis induced by titanium (Ti) particles and to investigate the effects of SOST reduction on osteolysis. The results showed osteolysis on the skull surface with an increase of sclerostin levels after treated with Ti particles. Similarly, sclerostin expression in MLO-Y4 osteocytes increased when treated with Ti particles in vitro. After reduction of SOST, local bone mineral density and bone volume increased, while number of lytic pores on the skull surface decreased and the erodibility of the skull surface was compensated. Histological analyses revealed that SOST reduction increased significantly alkaline phosphatase- (ALP) and osterix-positive expression on the skull surface which promoted bone formation. ALP activity and mineralization of MC3T3-E1 cells also increased in vitro when SOST was silenced, even if treated with Ti particles. In addition, Ti particles decreased β-catenin expression with an increase in sclerostin levels, in vivo and in vitro. Inversely, reduction of SOST expression increased β-catenin expression. In summary, our results suggested that reduction of SOST gene can activate the Wnt/β-catenin signalling pathway, promoting bone formation and compensated for bone loss induced by Ti particles. Thus, this study provided new perspectives in understanding the mechanisms of periprosthetic osteolysis.
Collapse
Affiliation(s)
- Zai Hang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Yu Jia
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Yi Fang
- The Experiment Center, The Medical College of Soochow University, Suzhou, China
| | - Hao Chai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qun Huang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Chang She
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Peng Jia
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - De Chun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
24
|
Hu B, Wu H, Shi Z, Ying Z, Zhao X, Lin T, Hong J, Wang Y, Yang Y, Cai X, Yan S. Effects of sequential treatment with intermittent parathyroid hormone and zoledronic acid on particle-induced implant loosening: Evidence from a rat model. J Orthop Res 2019; 37:1489-1497. [PMID: 30644138 DOI: 10.1002/jor.24217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/26/2018] [Indexed: 02/04/2023]
Abstract
Particle-induced implant loosening is a major challenge to long-term survival of joint prostheses. Administration of intermittent parathyroid hormone (PTH) has shown potential in the treatment of cases of early-stage periprosthetic osteolysis, while sequential administration of intermittent PTH (iPTH) and bisphosphonates (Bps) has achieved significant effects on treatment of postmenopausal osteoporosis. The objective of this study was to determine whether sequential treatment could preserve bone mass and implant fixation during a pathological course of peri-implant osteolysis in a rat model. Ninety male Sprague Dawley rats were randomly divided into nine groups, four of which were used for confirmation of establishment of the peri-implant osteolysis model at two time points, while the other five were used to determine the efficiency of the sequential treatment on peri-implant osteolysis. Implant fixation and peri-implant bone mass were evaluated using biomechanical testing, micro-CT analysis, and histology at 6 and 12 weeks postoperative. The biomechanical test demonstrated that the maximum loading force during a push-out test was significantly elevated in the sequential treatment group compared to the osteolysis group and iPTH withdrawal group at 12 weeks. Peri-implant bone morphology also indicated a robust increase in bone volume in the sequential treatment group. Sequential administration of iPTH and Bps was effective in preventing experimental peri-implant osteolysis, resulting in improved implant fixation and increased peri-implant bone volume. Clinical significance: The innovative application of sequential treatment in peri-implant osteolysis could be used clinically to improve the prognosis of patients with early-stage periprosthetic osteolysis. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1489-1497, 2019.
Collapse
Affiliation(s)
- Bin Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, No. 88 Jiefang Road, Hangzhou, People's Republic of China
| | - Haobo Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, No. 88 Jiefang Road, Hangzhou, People's Republic of China
| | - Zhongli Shi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, No. 88 Jiefang Road, Hangzhou, People's Republic of China
| | - Zhimin Ying
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, No. 88 Jiefang Road, Hangzhou, People's Republic of China
| | - Xiang Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, No. 88 Jiefang Road, Hangzhou, People's Republic of China
| | - Tiao Lin
- Department of Orthopedic Surgery, First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, People's Republic of China
| | - Jianqiao Hong
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, No. 88 Jiefang Road, Hangzhou, People's Republic of China
| | - Yangxin Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, No. 88 Jiefang Road, Hangzhou, People's Republic of China
| | - Yute Yang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Hangzhou, People's Republic of China
| | - Xunzi Cai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, No. 88 Jiefang Road, Hangzhou, People's Republic of China
| | - Shigui Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, No. 88 Jiefang Road, Hangzhou, People's Republic of China
| |
Collapse
|
25
|
Ruppert DS, Harrysson OL, Marcellin-Little DJ, Bollenbecker S, Weinhold PS. Osteogenic benefits of low-intensity pulsed ultrasound and vibration in a rodent osseointegration model. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2019; 19:150-158. [PMID: 31186385 PMCID: PMC6587081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/20/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Osseointegrated prostheses are increasingly used for amputees, however, the lengthy rehabilitation time of these prostheses remains a challenge to their implementation. The aim of this study was to investigate the ability of locally applied vibration or low-intensity pulsed ultrasound (LIPUS) to accelerate osseointegration and increase peri-implant bone volume. METHODS A 4-week and 8-week rodent study were conducted in a femoral intramedullary implant model (control, vibration, LIPUS, and combined treatment) to determine effects on healing. Osseointegration was evaluated quantitatively through mechanical, µCT and histological evaluations. RESULTS Maximum pushout load at 4 weeks increased with LIPUS relative to control (37.7%, P=0.002). Histologically, LIPUS and vibration separately increased peri-implant bone formation after 4 weeks relative to control. Vibration resulted in greater peri-implant bone after 8 weeks than all other groups (25.7%, P<0.001). However, no significant group differences in pushout load were noted at 8 weeks. CONCLUSIONS Although vibration increased bone around implants, LIPUS was superior to vibration for accelerating osseointegration and increasing bone-implant failure loads at 4 weeks. However, the LIPUS benefits on osseointegration at 4 weeks were not sustained at 8 weeks.
Collapse
Affiliation(s)
| | - Ola L.A. Harrysson
- Department of Biomedical Engineering, UNC-NCSU
- Edward P. Fitts Department of Industrial and Systems Engineering, NCSU
| | - Denis J. Marcellin-Little
- Department of Biomedical Engineering, UNC-NCSU
- Edward P. Fitts Department of Industrial and Systems Engineering, NCSU
- Department of Clinical Sciences, College of Veterinary Medicine, NCSU
| | | | - Paul S. Weinhold
- Department of Biomedical Engineering, UNC-NCSU
- Department of Orthopaedics, School of Medicine, UNC
| |
Collapse
|
26
|
Li H, Zhou Q, Bai BL, Weng SJ, Wu ZY, Xie ZJ, Feng ZH, Cheng L, Boodhun V, Yang L. Effects of combined human parathyroid hormone (1-34) and menaquinone-4 treatment on the interface of hydroxyapatite-coated titanium implants in the femur of osteoporotic rats. J Bone Miner Metab 2018; 36:691-699. [PMID: 29280077 DOI: 10.1007/s00774-017-0893-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/26/2017] [Indexed: 01/22/2023]
Abstract
The objective of this study was to investigate the effects of human parathyroid hormone (1-34) (PTH1-34; PTH) plus menaquinone-4 (vitamin K2; MK) on the osseous integration of hydroxyapatite (HA)-coated implants in osteoporotic rats. Ovariectomized female Sprague-Dawley rats were used for the study. Twelve weeks after bilateral ovariectomy, HA-coated titanium implants were inserted bilaterally in the femoral medullary canal of the remaining 40 ovariectomized rats. All animals were then randomly assigned to four groups: Control, MK, PTH and PTH + MK. The rats from groups MK, PTH and PTH + MK received vitamin K2 (30 mg/kg/day), PTH1-34 (60 μg/kg, three times a week), or both for 12 weeks. Thereafter, serum levels of γ-carboxylated osteocalcin (Gla-OC) were quantitated by ELISA and the bilateral femurs of rats were harvested for evaluation. The combination of PTH and MK clearly increased the serum levels of Gla-OC (a specific marker for bone formation) compared to PTH or MK alone. The results of our study indicated that all treated groups had increased new bone formation around the surface of implants and increased push-out force compared to Control. In addition, PTH + MK treatment showed the strongest effects in histological, micro-computed tomography and biomechanical tests. In summary, our results confirm that treatment with PTH1-34 and MK together may have a therapeutic advantage over PTH or MK monotherapy on bone healing around HA-coated implants in osteoporotic rats.
Collapse
Affiliation(s)
- Hang Li
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiang Zhou
- Department of Orthopedics Surgery, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Bing-Li Bai
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - She-Ji Weng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zong-Yi Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhong-Jie Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhen-Hua Feng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liang Cheng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Viraj Boodhun
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Yang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
27
|
Dang M, Saunders L, Niu X, Fan Y, Ma PX. Biomimetic delivery of signals for bone tissue engineering. Bone Res 2018; 6:25. [PMID: 30181921 PMCID: PMC6115422 DOI: 10.1038/s41413-018-0025-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/22/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Bone tissue engineering is an exciting approach to directly repair bone defects or engineer bone tissue for transplantation. Biomaterials play a pivotal role in providing a template and extracellular environment to support regenerative cells and promote tissue regeneration. A variety of signaling cues have been identified to regulate cellular activity, tissue development, and the healing process. Numerous studies and trials have shown the promise of tissue engineering, but successful translations of bone tissue engineering research into clinical applications have been limited, due in part to a lack of optimal delivery systems for these signals. Biomedical engineers are therefore highly motivated to develop biomimetic drug delivery systems, which benefit from mimicking signaling molecule release or presentation by the native extracellular matrix during development or the natural healing process. Engineered biomimetic drug delivery systems aim to provide control over the location, timing, and release kinetics of the signal molecules according to the drug's physiochemical properties and specific biological mechanisms. This article reviews biomimetic strategies in signaling delivery for bone tissue engineering, with a focus on delivery systems rather than specific molecules. Both fundamental considerations and specific design strategies are discussed with examples of recent research progress, demonstrating the significance and potential of biomimetic delivery systems for bone tissue engineering.
Collapse
Affiliation(s)
- Ming Dang
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI USA
| | - Laura Saunders
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI USA
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Peter X. Ma
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI USA
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
28
|
Abstract
In lamellar bone, a network of highly oriented interconnected osteocytes is organized in concentric layers. Through their cellular processes contained within canaliculi, osteocytes are highly mechanosensitive and locally modulate bone remodeling. We review the recent developments demonstrating the significance of the osteocyte lacuno-canalicular network in bone maintenance around implant biomaterials. Drilling during implant site preparation triggers osteocyte apoptosis, the magnitude of which correlates with drilling speed and heat generation, resulting in extensive remodeling and delayed healing. In peri-implant bone, osteocytes physically communicate with implant surfaces via canaliculi and are responsive to mechanical loading, leading to changes in osteocyte numbers and morphology. Certain implant design features allow peri-implant osteocytes to retain a less aged phenotype, despite highly advanced extracellular matrix maturation. Physicochemical properties of anodically oxidized surfaces stimulate bone formation and remodeling by regulating the expression of RANKL (receptor activator of nuclear factor-κB ligand), RANK, and OPG (osteoprotegerin) from implant-adherent cells. Modulation of certain osteocyte-related molecular signaling mechanisms (e.g., sclerostin blockade) may enhance the biomechanical anchorage of implants. Evaluation of the peri-implant osteocyte lacuno-canalicular network should therefore be a necessary component in future investigations of osseointegration to more completely characterize the biological response to materials for load-bearing applications in dentistry and orthopedics.
Collapse
Affiliation(s)
- F A Shah
- 1 Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - P Thomsen
- 1 Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - A Palmquist
- 1 Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
29
|
Schindeler A, Mills RJ, Bobyn JD, Little DG. Preclinical models for orthopedic research and bone tissue engineering. J Orthop Res 2018; 36:832-840. [PMID: 29205478 DOI: 10.1002/jor.23824] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/27/2017] [Indexed: 02/04/2023]
Abstract
In this review, we broadly define and discuss the preclinical rodent models that are used for orthopedics and bone tissue engineering. These range from implantation models typically used for biocompatibility testing and high-throughput drug screening, through to fracture and critical defect models used to model bone healing and severe orthopedic injuries. As well as highlighting the key methods papers describing these techniques, we provide additional commentary based on our substantive practical experience with animal surgery and in vivo experimental design. This review also briefly touches upon the descriptive and functional outcome measures and power calculations that are necessary for an informative study. Obtaining informative and relevant research outcomes can be very dependent on the model used, and we hope this evaluation of common models will serve as a primer for new researchers looking to undertake preclinical bone studies. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:832-840, 2018.
Collapse
Affiliation(s)
- Aaron Schindeler
- Orthopedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, Sydney, New South Wales, 2145, Australia.,Discipline of Pediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Rebecca J Mills
- Orthopedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, Sydney, New South Wales, 2145, Australia
| | - Justin D Bobyn
- Orthopedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, Sydney, New South Wales, 2145, Australia.,Discipline of Pediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - David G Little
- Orthopedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, Sydney, New South Wales, 2145, Australia.,Discipline of Pediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| |
Collapse
|
30
|
Collignon AM, Amri N, Lesieur J, Sadoine J, Ribes S, Menashi S, Simon S, Berdal A, Rochefort GY, Chaussain C, Gaucher C. Sclerostin Deficiency Promotes Reparative Dentinogenesis. J Dent Res 2017; 96:815-821. [PMID: 28571484 DOI: 10.1177/0022034517698104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In humans, the SOST gene encodes sclerostin, an inhibitor of bone growth and remodeling, which also negatively regulates the bone repair process. Sclerostin has also been implicated in tooth formation, but its potential role in pulp healing remains unknown. The aim of this study was to explore the role of sclerostin in reparative dentinogenesis using Sost knockout mice ( Sost-/-). The pulps of the first maxillary molars were mechanically exposed in 3-mo-old Sost-/- and wild-type (WT) mice ( n = 14 mice per group), capped with mineral trioxide aggregate cement, and the cavities were filled with a bonded composite resin. Reparative dentinogenesis was dynamically followed up by micro-computed tomography and characterized by histological analyses. Presurgical analysis revealed a significantly lower pulp volume in Sost-/- mice compared with WT. At 30 and 49 d postsurgery, a large-forming reparative mineralized bridge, associated with osteopontin-positive mineralization foci, was observed in the Sost-/- pulps, whereas a much smaller bridge was detected in WT. At the longer time points, the bridge, which was associated with dentin sialoprotein-positive cells, had expanded in both groups but remained significantly larger in Sost-/- pulps. Sclerostin expression in the healing WT pulps was detected in the cells neighboring the forming dentin bridge. In vitro, mineralization induced by Sost-/- dental pulp cells (DPCs) was also dramatically enhanced when compared with WT DPCs. These observations were associated with an increased Sost expression in WT cells. Taken together, our data show that sclerostin deficiency hastened reparative dentinogenesis after pulp injury, suggesting that the inhibition of sclerostin may constitute a promising therapeutic strategy for improving the healing of damaged pulps.
Collapse
Affiliation(s)
- A-M Collignon
- 1 EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France.,2 AP-HP, Departments of Odontology, University Hospitals Louis Mourier and Bretonneau "National rare disease center metabolism phosphorus and calcium" (HUPNVS), Rothschild "National rare diseases center MAFACE" (HUEP), Pitié Salpêtrière (HUPSCF) and Albert Chennevier (HUHM), Paris, France
| | - N Amri
- 1 EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France.,3 INSERM UMRS 1138, Molecular Oral Pathophysiology Team, Paris Diderot and Paris Descartes University USPC, Paris, France
| | - J Lesieur
- 1 EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France
| | - J Sadoine
- 1 EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France
| | - S Ribes
- 1 EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France
| | - S Menashi
- 1 EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France
| | - S Simon
- 2 AP-HP, Departments of Odontology, University Hospitals Louis Mourier and Bretonneau "National rare disease center metabolism phosphorus and calcium" (HUPNVS), Rothschild "National rare diseases center MAFACE" (HUEP), Pitié Salpêtrière (HUPSCF) and Albert Chennevier (HUHM), Paris, France.,3 INSERM UMRS 1138, Molecular Oral Pathophysiology Team, Paris Diderot and Paris Descartes University USPC, Paris, France
| | - A Berdal
- 2 AP-HP, Departments of Odontology, University Hospitals Louis Mourier and Bretonneau "National rare disease center metabolism phosphorus and calcium" (HUPNVS), Rothschild "National rare diseases center MAFACE" (HUEP), Pitié Salpêtrière (HUPSCF) and Albert Chennevier (HUHM), Paris, France.,3 INSERM UMRS 1138, Molecular Oral Pathophysiology Team, Paris Diderot and Paris Descartes University USPC, Paris, France
| | - G Y Rochefort
- 1 EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France
| | - C Chaussain
- 1 EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France.,2 AP-HP, Departments of Odontology, University Hospitals Louis Mourier and Bretonneau "National rare disease center metabolism phosphorus and calcium" (HUPNVS), Rothschild "National rare diseases center MAFACE" (HUEP), Pitié Salpêtrière (HUPSCF) and Albert Chennevier (HUHM), Paris, France
| | - C Gaucher
- 1 EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France.,2 AP-HP, Departments of Odontology, University Hospitals Louis Mourier and Bretonneau "National rare disease center metabolism phosphorus and calcium" (HUPNVS), Rothschild "National rare diseases center MAFACE" (HUEP), Pitié Salpêtrière (HUPSCF) and Albert Chennevier (HUHM), Paris, France
| |
Collapse
|
31
|
Apostu D, Lucaciu O, Lucaciu GDO, Crisan B, Crisan L, Baciut M, Onisor F, Baciut G, Câmpian RS, Bran S. Systemic drugs that influence titanium implant osseointegration. Drug Metab Rev 2017; 49:92-104. [PMID: 28030966 DOI: 10.1080/03602532.2016.1277737] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Titanium implants are widely used on an increasing number of patients in orthopedic and dental medicine. Despite the good survival rates of these implants, failures that lead to important socio-economic consequences still exist. Recently, research aimed at improving implant fixation, a process called osseointegration, has focused on a new, innovative field: systemic delivery of drugs. Following implant fixation, patients receive systemic drugs that could either impair or enhance osseointegration; these drugs include anabolic and anti-catabolic bone-acting agents in addition to new treatments. Anabolic bone-acting agents include parathyroid hormone (PTH) peptides, simvastatin, prostaglandin EP4 receptor antagonist, vitamin D and strontium ranelate; anti-catabolic bone-acting agents include compounds like calcitonin, biphosphonates, RANK/RANKL/OPG system and selective estrogen receptor modulators (SERM). Examples of the new therapies include DKK1- and anti-sclerostin antibodies. All classes of treatments have proven to possess positive impacts such as an increase in bone mineral density and on osseointegration. In order to prevent complications from occurring after surgery, some post-operative systemic drugs are administered; these can show an impairment in the osseointegration process. These include nonsteroidal anti-inflammatory drugs, proton pump inhibitors and selective serotonin reuptake inhibitors. The effects of aspirin, acetaminophen, opioids, adjuvants, anticoagulants and antibiotics in implant fixations are not fully understood, but studies are being carried out to investigate potential ramifications. It is currently accepted that systemic pharmacological agents can either enhance or impair implant osseointegration; therefore, proper drug selection is essential. This review aims to discuss the varying effects of three different classes of treatments on improving this process.
Collapse
Affiliation(s)
- Dragos Apostu
- a Department of Orthopaedics and Traumatology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Ondine Lucaciu
- b Department of Oral Rehabilitation , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | | | - Bogdan Crisan
- d Department of Maxillofacial Surgery and Oral Implantology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Liana Crisan
- e Department of Oral and Maxillofacial Surgery , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Mihaela Baciut
- d Department of Maxillofacial Surgery and Oral Implantology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Florin Onisor
- e Department of Oral and Maxillofacial Surgery , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Grigore Baciut
- e Department of Oral and Maxillofacial Surgery , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Radu Septimiu Câmpian
- b Department of Oral Rehabilitation , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Simion Bran
- d Department of Maxillofacial Surgery and Oral Implantology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| |
Collapse
|
32
|
Shu R, Ai D, Bai D, Song J, Zhao M, Han X. The effects of SOST on implant osseointegration in ovariectomy osteoporotic mice. Arch Oral Biol 2016; 74:82-91. [PMID: 27918899 DOI: 10.1016/j.archoralbio.2016.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 11/15/2016] [Accepted: 11/20/2016] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Osteoporosis is a risk factor for implant fixation failure. The inhibition of sclerostin effectively improves bone formation and bone remodeling. Therefore, this study investigated whether SOST deficiency enhances the osseointegration of implants in a mouse model of osteoporosis induced by ovariectomy (OVX). DESIGN Osteoporosis was induced in female C57BL/6 and SOST deficient mice by OVX. Titanium implants were placed in the bilateral distal aspects of the femurs. Implants underwent sandblasting and acid-etching after which the structure, surface roughness and chemical components were investigated using scanning electron microscopy (SEM) and energy spectrum analyses. Undecalcified slices, μ-CT, histology analyses and mechanical tests were used to evaluate the osseointegration of implants. The results were compared using one-way ANOVA between four groups. RESULTS Sandblasting and acid-etching increased the roughness of the implants. OVX surgery reduced bone formation around the implants in both WT and SOST-/- mice. However, implant osseointegration was significantly improved in the SOST-/- OVX mice compared to the WT OVX mice. CONCLUSIONS Inhibition of the SOST gene improved implant fixation in the OVX osteoporotic mice, which suggests a strategy for enhancing implant osseointegration in clinical patients with osteoporosis.
Collapse
Affiliation(s)
- Rui Shu
- Department of Orthodontics and Pediatric Dentistry, State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, 14, 3rd Sec, Renminnan Rd, Chengdu, Sichuan 610041, China.
| | - Dongqing Ai
- Department of Orthodontics, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| | - Ding Bai
- Department of Orthodontics and Pediatric Dentistry, State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, 14, 3rd Sec, Renminnan Rd, Chengdu, Sichuan 610041, China.
| | - Jinlin Song
- Department of Orthodontics, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| | - Mengyuan Zhao
- Department of Orthodontics and Pediatric Dentistry, State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, 14, 3rd Sec, Renminnan Rd, Chengdu, Sichuan 610041, China.
| | - Xianglong Han
- Department of Orthodontics and Pediatric Dentistry, State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, 14, 3rd Sec, Renminnan Rd, Chengdu, Sichuan 610041, China.
| |
Collapse
|
33
|
Fu X, Tan J, Sun CG, Leng HJ, Xu YS, Song CL. Intraosseous Injection of Simvastatin in Poloxamer 407 Hydrogel Improves Pedicle-Screw Fixation in Ovariectomized Minipigs. J Bone Joint Surg Am 2016; 98:1924-1932. [PMID: 27852910 DOI: 10.2106/jbjs.15.00937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Osteoporosis leads to poor osseointegration and reduces implant stability. Statins have been found to stimulate bone formation, but the bioavailability from oral administration is low. Local application may be more effective at augmenting bone formation and enhancing implant stability. This study was performed to evaluate the efficacy of an intraosseous injection of simvastatin in thermosensitive poloxamer 407 hydrogel to enhance pedicle-screw fixation in calcium-restricted ovariectomized minipigs. METHODS Nine mature female Guangxi Bama minipigs underwent bilateral ovariectomy and were fed a calcium-restricted diet for 18 months. Simvastatin (0, 0.5, or 1 mg) in thermosensitive poloxamer 407 hydrogel was injected into the lumbar vertebrae (L4-L6), and titanium alloy pedicle screws were implanted. Bone mineral density (BMD) measurements of the lumbar vertebrae were determined by dual x-ray absorptiometry (DXA) before and 3 months after treatment. The lumbar vertebrae were harvested and analyzed with use of microcomputed tomography, biomechanical pull-out testing, histological analysis, and Western blot analysis for bone morphogenetic protein (BMP)-2 and vascular endothelial growth factor (VEGF) expression. RESULTS Evaluation over a 3-month study period demonstrated that the BMD of the vertebrae injected with 0.5 and 1.0 mg of simvastatin had increased by 31.25% and 31.09%, respectively, compared with vehicle-only injection (p ≤ 0.00014 for both) and increased by 32.12% and 28.16%, respectively, compared with the pre-treatment levels (p < 0.0001 for both). A single injection of simvastatin in poloxamer 407 increased trabecular volume fraction, thickness, and number and decreased trabecular separation (p ≤ 0.002). The bone formation and mineral apposition rates significantly increased (p ≤ 0.023). The percentage of osseointegration in the simvastatin 0.5 and 1-mg groups was 46.54% and 42.63% greater, respectively, than that in the vehicle-only group (p ≤ 0.006), and the maximum pull-out strength was 45.75% and 51.53% greater, respectively, than in the vehicle-only group (p ≤ 0.0005). BMP-2 and VEGF expressions were higher than for the vehicle-only injection. CONCLUSIONS A single intraosseous injection of simvastatin in thermosensitive poloxamer 407 hydrogel stimulated bone formation, increased BMD, improved bone microstructure, promoted osseointegration, and significantly enhanced the stability of pedicle screws in calcium-restricted ovariectomized minipigs. CLINICAL RELEVANCE These results provide rationale for evaluating intraosseous injection of simvastatin in poloxamer 407 to enhance implant fixation in patients with osteoporosis.
Collapse
Affiliation(s)
- X Fu
- Departments of Orthopedics (X.F., J.T., C.G.S., H.J.L., and C.L.S.) and Neurology (Y.S.X.), Peking University Third Hospital, Beijing, People's Republic of China
| | - J Tan
- Departments of Orthopedics (X.F., J.T., C.G.S., H.J.L., and C.L.S.) and Neurology (Y.S.X.), Peking University Third Hospital, Beijing, People's Republic of China
| | - C G Sun
- Departments of Orthopedics (X.F., J.T., C.G.S., H.J.L., and C.L.S.) and Neurology (Y.S.X.), Peking University Third Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Spinal Diseases, Beijing, People's Republic of China
| | - H J Leng
- Departments of Orthopedics (X.F., J.T., C.G.S., H.J.L., and C.L.S.) and Neurology (Y.S.X.), Peking University Third Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Spinal Diseases, Beijing, People's Republic of China
| | - Y S Xu
- Departments of Orthopedics (X.F., J.T., C.G.S., H.J.L., and C.L.S.) and Neurology (Y.S.X.), Peking University Third Hospital, Beijing, People's Republic of China
| | - C L Song
- Departments of Orthopedics (X.F., J.T., C.G.S., H.J.L., and C.L.S.) and Neurology (Y.S.X.), Peking University Third Hospital, Beijing, People's Republic of China .,Beijing Key Laboratory of Spinal Diseases, Beijing, People's Republic of China
| |
Collapse
|
34
|
MacNabb C, Patton D, Hayes JS. Sclerostin Antibody Therapy for the Treatment of Osteoporosis: Clinical Prospects and Challenges. J Osteoporos 2016; 2016:6217286. [PMID: 27313945 PMCID: PMC4899597 DOI: 10.1155/2016/6217286] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/21/2016] [Indexed: 01/22/2023] Open
Abstract
It is estimated that over 200 million adults worldwide have osteoporosis, a disease that has increasing socioeconomic impact reflected by unsustainable costs associated with disability, fracture management, hospital stays, and treatment. Existing therapeutic treatments for osteoporosis are associated with a variety of issues relating to use, clinical predictability, and health risks. Consequently, additional novel therapeutic targets are increasingly sought. A promising therapeutic candidate is sclerostin, a Wnt pathway antagonist and, as such, a negative regulator of bone formation. Sclerostin antibody treatment has demonstrated efficacy and superiority compared to other anabolic treatments for increasing bone formation in both preclinical and clinical settings. Accordingly, it has been suggested that sclerostin antibody treatment is set to achieve market approval by 2017 and aggressively compete as the gold standard for osteoporotic treatment by 2021. In anticipation of phase III trial results which may potentially signify a significant step in achieving market approval here, we review the preclinical and clinical emergence of sclerostin antibody therapies for both osteoporosis and alternative applications. Potential clinical challenges are also explored as well as ongoing developments that may impact on the eventual clinical application of sclerostin antibodies as an effective treatment of osteoporosis.
Collapse
Affiliation(s)
- Claire MacNabb
- Regenerative Medicine Institute, NUI Galway, Biosciences Research Building, Corrib Village, Dangan, Galway, Ireland
| | - D. Patton
- Regenerative Medicine Institute, NUI Galway, Biosciences Research Building, Corrib Village, Dangan, Galway, Ireland
| | - J. S. Hayes
- Regenerative Medicine Institute, NUI Galway, Biosciences Research Building, Corrib Village, Dangan, Galway, Ireland
| |
Collapse
|
35
|
Tao ZS, Zhou WS, Bai BL, Cui W, Lv YX, Yu XB, Huang ZL, Tu KK, Zhou Q, Sun T, Li H, Yang L. The effects of combined human parathyroid hormone (1-34) and simvastatin treatment on the interface of hydroxyapatite-coated titanium rods implanted into osteopenic rats femurs. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:43. [PMID: 26758890 DOI: 10.1007/s10856-015-5650-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
The effect of human parathyroid hormone 1-34 (PTH) and simvastatin (SIM) alone could promote bone healing in osteoporotic implant fixation, but there are no reports about the combined use of PTH and SIM for promotion of bone healing around implant in osteoporotic settings. This study aims to investigate effects of PTH + SIM on implant stabilization in osteopenic rats. Fourteen weeks after chronically fed a low protein diet, osteopenic rats randomly received implants. Subsequently, the animals were randomly divided into four groups: Control, SIM, PTH and PTH + SIM. Then all rats from groups PTH, SIM and PTH + SIM received PTH (40 μg/kg, three times a week), SIM (25 mg/kg, daily), or both for 12 weeks. The results of our study indicated that all treatments promoted bone healing around implant compared to Control, but PTH + SIM treatment showed significantly stronger effects than PTH or SIM alone in histological, micro-CT, and biomechanical tests. The results indicated additive effects of PTH and SIM on implant fixation in osteoporotic rats.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Wan-Shu Zhou
- Endocrine & Metabolic Diseases Unit, Affiliated Hospital of Guizhou Medical University, Guizhou, 550001, People's Republic of China
| | - Bing-li Bai
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Wei Cui
- Sichuan Provincial Orthopedics Hospital, No. 132 West First Section First Ring Road, Chengdu, 610000, Sichuan, People's Republic of China
| | - Yang-Xun Lv
- Department of Orthopaedic Surgery, Wenzhou Central Hospital, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Xian-Bin Yu
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Zheng-Liang Huang
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Kai-kai Tu
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Qiang Zhou
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Tao Sun
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Hang Li
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Lei Yang
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, People's Republic of China.
| |
Collapse
|
36
|
A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:226-32. [PMID: 26952418 DOI: 10.1016/j.msec.2016.01.034] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/05/2015] [Accepted: 01/15/2016] [Indexed: 01/19/2023]
Abstract
Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for the implants in cementless arthroplasty. However, its effect is not sufficient for osteoporotic bone. Zinc (Zn), magnesium (Mg), and strontium (Sr) present a beneficial effect on bone growth, and positively affect bone regeneration. The aim of this study was to confirm the different effects of the fixation strength of Zn, Mg, Sr-substituted hydroxyapatite-coated (Zn-HA-coated, Mg-HA-coated, Sr-HA-coated) titanium implants via electrochemical deposition in the osteoporotic condition. Female Sprague-Dawley rats were used for this study. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into four groups: group HA; group Zn-HA; group Mg-HA and group Sr-HA. Afterwards, all rats from groups HA, Zn-HA, Mg-HA and Sr-HA received implants with hydroxyapatite containing 0%, 10% Zn ions, 10% Mg ions, and 10% Sr ions. Implants were inserted bilaterally in all animals until death at 12 weeks. The bilateral femurs of rats were harvested for evaluation. All treatment groups increased new bone formation around the surface of titanium rods and push-out force; group Sr-HA showed the strongest effects on new bone formation and biomechanical strength. Additionally, there are significant differences in bone formation and push-out force was observed between groups Zn-HA and Mg-HA. This finding suggests that Zn, Mg, Sr-substituted hydroxyapatite coatings can improve implant osseointegration, and the 10% Sr coating exhibited the best properties for implant osseointegration among the tested coatings in osteoporosis rats.
Collapse
|
37
|
Yang X, Han X, Shu R, Jiang F, Xu L, Xue C, Chen T, Bai D. Effect of sclerostin removal in vivo on experimental periodontitis in mice. J Oral Sci 2016; 58:271-6. [PMID: 27349550 DOI: 10.2334/josnusd.15-0690] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xianrui Yang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University
| | - Rui Shu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University
| | - Fulin Jiang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University
| | - Li Xu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University
| | - Chaoran Xue
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University
| | - Tian Chen
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University
| | - Ding Bai
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University
| |
Collapse
|
38
|
Tinsley BA, Dukas A, Pensak MJ, Adams DJ, Tang AH, Ominsky MS, Ke HZ, Lieberman JR. Systemic Administration of Sclerostin Antibody Enhances Bone Morphogenetic Protein-Induced Femoral Defect Repair in a Rat Model. J Bone Joint Surg Am 2015; 97:1852-9. [PMID: 26582615 DOI: 10.2106/jbjs.o.00171] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Recombinant human bone morphogenetic protein (rhBMP)-2 is a potent osteoinductive agent; however, its clinical use has been reduced because of safety and efficacy concerns. In preclinical studies involving a critical-sized defect in a rat model, sclerostin antibody (Scl-Ab) treatment increased bone formation within the defect but did not result in reliable healing. The purpose of the current study was to evaluate bone repair of a critical-sized femoral defect in a rat model with use of local implantation of rhBMP-2 combined with systemic administration of Scl-Ab. METHODS A critical-sized femoral defect was created in rats randomized into three treatment groups: local rhBMP-2 and systemic Scl-Ab (Scl + BMP), local rhBMP-2 alone, and collagen sponge alone (operative control). The Scl + BMP group received local rhBMP-2 (10 μg) on a collagen sponge placed within the defect intraoperatively and then twice weekly injections of Scl-Ab (25 mg/kg) administered postoperatively. The femora were evaluated at twelve weeks with use of radiography, microcomputed tomography (microCT), histomorphometric analysis, and biomechanical testing. RESULTS At twelve weeks, all Scl + BMP and rhBMP-2 only samples were healed. No femora healed in the operative control group. Histomorphometric analysis demonstrated more bone in the Scl + BMP samples than in the samples treated with rhBMP-2 alone (p = 0.029) and the control samples (p = 0.003). MicroCT revealed that the Scl + BMP group had a 90% greater bone volume within the defect region compared with the rhBMP-2 group and a 350% greater bone volume compared with the operative control group (p < 0.001). Biomechanical testing showed that the group treated with Scl + BMP had greater torsional strength and rigidity compared with the rhBMP-2 group (p < 0.001 and p = 0.047) and the intact femoral control group (p < 0.001). Torque to failure was lower in the rhBMP-2 group compared with the intact femoral control group (p < 0.002). Mean energy to failure was higher in the Scl + BMP samples compared with the rhBMP-2 only samples (p = 0.001). CONCLUSIONS In a critical-sized femoral defect in a rat model, local rhBMP-2 combined with systemic administration of Scl-Ab resulted in more robust healing that was stronger and more rigid than results for rhBMP-2 alone and intact nonoperative femora. CLINICAL RELEVANCE Our study demonstrated that combining an osteoinductive agent with a systemically administered antibody that promotes bone formation can enhance bone repair and has potential as a therapeutic regimen in humans.
Collapse
Affiliation(s)
- Brian A Tinsley
- Department of Orthopaedic Surgery, University of Connecticut Health Center, MARB 4th floor, 263 Farmington Avenue, Farmington, CT 06030. E-mail address for B.A. Tinsley:
| | - Alex Dukas
- Department of Orthopaedic Surgery, University of Connecticut Health Center, MARB 4th floor, 263 Farmington Avenue, Farmington, CT 06030. E-mail address for B.A. Tinsley:
| | - Michael J Pensak
- Department of Orthopaedic Surgery, University of Connecticut Health Center, MARB 4th floor, 263 Farmington Avenue, Farmington, CT 06030. E-mail address for B.A. Tinsley:
| | - Douglas J Adams
- Department of Orthopaedic Surgery, University of Connecticut Health Center, MARB 4th floor, 263 Farmington Avenue, Farmington, CT 06030. E-mail address for B.A. Tinsley:
| | - Amy H Tang
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Los Angeles, CA 90033
| | - Michael S Ominsky
- Department of Metabolic Disorders, Amgen, Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320
| | - Hua Zhu Ke
- Bone Research, UCB Pharma, 208 Bath Road, Slough, Berkshire, SL1 3WE, United Kingdom
| | - Jay R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Los Angeles, CA 90033
| |
Collapse
|
39
|
The effects of combined human parathyroid hormone (1-34) and simvastatin treatment on osseous integration of hydroxyapatite-coated titanium implants in the femur of ovariectomized rats. Injury 2015; 46:2164-9. [PMID: 26404665 DOI: 10.1016/j.injury.2015.08.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/06/2015] [Accepted: 08/25/2015] [Indexed: 02/02/2023]
Abstract
The effect of human parathyroid hormone 1-34 (PTH) and simvastatin (SIM) alone could promote bone healing in osteoporotic osseous integration of the implant, but there are no reports about the combined use of PTH and SIM for promotion of bone healing around implant in osteoporotic settings still limited. This study aims to investigate effects of PTH+SIM on osseous integration of the implant in OVX rats. Female Sprague-Dawley rats were used for this study. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into four groups: group control; group SIM; group PTH and group PTH+SIM. Afterwards, all OVX rats received hydroxyapatite (HA)-coated titanium rods (external diameter and length are 1.5mm and 20mm) in the femoral medullary canal. Subsequently, the animals from group SIM, group PTH and group PTH+SIM received human parathyroid hormone 1-34 (60μg/kg, three times a week), SIM (5mg/kg daily), or both for 12 weeks. Implants were inserted bilaterally in all animals until death at 12 weeks. The bilateral femurs of rats were harvested for evaluation. All groups increased new bone formation around the surface of titanium rods and push-out force; group PTH+SIM showed the strongest effects on new bone formation and biomechanical strength. Additionally, these are significant difference observed in bone formation and push-out force between groups SIM and PTH. This finding suggests that intermittent administration of PTH or SIM alone has an effect to increase new bone formation on the surface of HA-coated implants in the osteoporotic condition, and the additive effects of combination PTH and SIM on osseous integration of the implant in OVX rats.
Collapse
|
40
|
Tao ZS, Zhou WS, Qiang Z, Tu KK, Huang ZL, Xu HM, Sun T, Lv YX, Cui W, Yang L. Intermittent administration of human parathyroid hormone (1-34) increases fixation of strontium-doped hydroxyapatite coating titanium implants via electrochemical deposition in ovariectomized rat femur. J Biomater Appl 2015; 30:952-60. [PMID: 26482573 DOI: 10.1177/0885328215610898] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previous studies have demonstrated the effect of human parathyroid hormone (1-34) (PTH) or strontium-doped hydroxyapatite coating (Sr-HA) on osteoporotic bone implantation. However, reports about effects of PTH plus Sr-HA on bone osseointegration of titanium implants in a state of osteoporosis were limited. This study was designed to investigate the effects of intermittent administration of human parathyroid hormone (1-34) on strontium-doped hydroxyapatite coating (Sr-HA) implant fixation in ovariectomized (OVX) rats. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into four groups including control group, Sr group, PTH group and PTH+Sr group. Forty OVX rats accepted implant insertion in the distal femurs, control group, and PTH group with HA implants and the Sr group and PTH+Sr group with Sr-HA implants. Animals from PTH group and PTH+Sr group then randomly received PTH (60 µg/kg, 3 times a week) until death at 12 weeks. After 12-week healing period, implants from group PTH+Sr revealed improved osseointegration compared with other treatment groups, which is manifested by the exceeding increase of bone area ratio and bone-to-implant contact, the trabecular microarchitecture and the maximal push-out force displayed by tests like histomorphometry, micro-CT, and biomechanics evaluation. These results demonstrated that PTH+ Sr-HA coatings could enhance implant osseointegration in OVX rats, and suggested the feasibility of using this method to improve implant fixation in osteoporotic bone.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, PR China
| | - Wan-Shu Zhou
- Endocrine & Metabolic Diseases Unit, Affiliated Hospital of Guizhou Medcial University, Guizhou, PR China
| | - Zhou Qiang
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, PR China
| | - Kai-kai Tu
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, PR China
| | - Zheng-Liang Huang
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, PR China
| | - Hong-Ming Xu
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, PR China
| | - Tao Sun
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, PR China
| | - Yang-Xun Lv
- Department of Orthopaedic Surgery, Wenzhou Central Hospital, Wenzhou, Zhejiang, PR China
| | - Wei Cui
- Sichuan Provincial Orthopedics Hospital, Sichuan, PR China
| | - Lei Yang
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, PR China
| |
Collapse
|
41
|
Moran MM, Virdi AS, Sena K, Mazzone SR, McNulty MA, Sumner DR. Intramembranous bone regeneration differs among common inbred mouse strains following marrow ablation. J Orthop Res 2015; 33:1374-81. [PMID: 25808034 DOI: 10.1002/jor.22901] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/10/2015] [Indexed: 02/06/2023]
Abstract
Various intact and post-injury bone phenotypes are heritable traits. In this study, we sought to determine if intramembranous bone regeneration following marrow ablation differed among common inbred mouse strains and to identify how early the differences appear. We found a ∼four-fold difference in the regenerated bone volume 21 days after marrow ablation in females from four inbred mouse strains: FVB/N (15.7 ± 8.1%, mean and standard deviation), C3H/He (15.5 ± 4.2%), C57BL/6 (12.2 ± 5.2%), and BALB/c (4.0 ± 4.4%); with BALB/c different from FVB/N (p = 0.007) and C3H/He (p = 0.002). A second experiment showed that FVB/N compared to BALB/c mice had more regenerated bone 7 and 14 days after ablation (p < 0.001), while at 21 days FVB/N mice had a greater fraction of mineralizing surface (p = 0.008) without a difference in mineral apposition rate. Thus, differences among strains are evident early during intramembranous bone regeneration following marrow ablation and appear to be associated with differences in osteogenic cell recruitment, but not osteoblast activity. The amount of regenerating bone was not correlated with other heritable traits such as the intact bone phenotype or soft tissue wound healing, suggesting that there may be independent genetic pathways for these traits.
Collapse
Affiliation(s)
- Meghan M Moran
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago
| | - Amarjit S Virdi
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago
| | - Kotaro Sena
- Department of Periodontology, Kagoshima University, Kagoshima, Japan
| | - Steven R Mazzone
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago
| | - Margaret A McNulty
- Department Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge
| | - Dale R Sumner
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago
| |
Collapse
|
42
|
Abstract
WNTs are extracellular proteins that activate different cell surface receptors linked to canonical and noncanonical WNT signalling pathways. The Wnt genes were originally discovered as important for embryonic development of fruit flies and malignant transformation of mouse mammary cancers. More recently, WNTs have been implicated in a wide spectrum of biological phenomena and diseases. During the last decade, several lines of clinical and preclinical evidence have indicated that WNT signalling is critical for trabecular and cortical bone mass, and this pathway is currently an attractive target for drug development. Based on detailed knowledge of the different WNT signalling pathways, it appears that it might be possible to develop drugs that specifically target cortical and trabecular bone. Neutralization of a bone-specific WNT inhibitor is now being evaluated as a promising anabolic treatment for patients with osteoporosis. Here, we provide the historical background to the discoveries of WNTs, describe the different WNT signalling pathways and summarize the current understanding of how these proteins regulate bone mass by affecting bone formation and resorption.
Collapse
Affiliation(s)
- U H Lerner
- Centre for Bone and Arthritis Research, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Molecular Periodontology, Umeå University, Umeå, Sweden
| | - C Ohlsson
- Centre for Bone and Arthritis Research, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
43
|
Wilkinson JM, Morris RM, Martin-Fernandez MA, Pozo JM, Frangi AF, Maheson M, Yang L. Use of high resolution dual-energy x-ray absorptiometry-region free analysis (DXA-RFA) to detect local periprosthetic bone remodeling events. J Orthop Res 2015; 33:712-6. [PMID: 25640686 DOI: 10.1002/jor.22823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/06/2015] [Indexed: 02/04/2023]
Abstract
Dual-energy x-ray absorptiometry (DXA) is the gold standard method for measuring periprosthetic bone remodeling, but relies on a region of interest (ROI) analysis approach. While this addresses issues of anatomic variability, it is insensitive to bone remodeling events at the sub-ROI level. We have validated a high-spatial resolution tool, termed DXA-region free analysis (DXA-RFA) that uses advanced image processing approaches to allow quantitation of bone mineral density (BMD) at the individual pixel (data-point) level. Here we compared the resolution of bone remodeling measurements made around a stemless femoral prosthesis in 18 subjects over 24 months using ROI-based analysis versus that made using DXA-RFA. Using the ROI approach the regional pattern of BMD change varied by region, with greatest loss in ROI5 (20%, p < 0.001), and largest gain in ROI4 (6%, p < 0.05). Analysis using DXA-RFA showed a focal zone of increased BMD localized to the prosthesis-bone interface (30-40%, p < 0.001) that was not resolved using conventional DXA analysis. The 20% bone loss observed in ROI5 with conventional DXA was resolved to a focal area adjacent to the cut surface of the infero-medial femoral neck (up to 40%, p < 0.0001). DXA-RFA enables high resolution analysis of DXA datasets without the limitations incurred using ROI-based approaches.
Collapse
Affiliation(s)
- J Mark Wilkinson
- Academic Unit of Bone Metabolism, Northern General Hospital, University of Sheffield, Sheffield, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
44
|
Virdi AS, Irish J, Sena K, Liu M, Ke HZ, McNulty MA, Sumner DR. Sclerostin antibody treatment improves implant fixation in a model of severe osteoporosis. J Bone Joint Surg Am 2015; 97:133-40. [PMID: 25609440 DOI: 10.2106/jbjs.n.00654] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The mechanical fixation of orthopaedic and dental implants is compromised by diminished bone volume, such as with osteoporosis. Systemic administration of sclerostin antibody (Scl-Ab) has been shown to enhance implant fixation in normal animals. In the present study, we tested whether Scl-Ab can improve implant fixation in established osteoporosis in a rat model. METHODS We used an ovariectomized (ovx) rat model, in which we found a 78% decrease in trabecular bone volume at the time of implant surgery; sham-ovx, age-matched rats were used as controls. After placement of a titanium implant in the medullary cavity of the distal aspect of the femur, the rats were maintained for four, eight, or twelve weeks and treated biweekly with Scl-Ab or with the delivery vehicle alone. Outcomes were measured with use of microcomputed tomography, mechanical testing, and static and dynamic histomorphometry. RESULTS Scl-Ab treatment doubled implant fixation strength in both the sham-ovx and ovx groups, although the enhancement was delayed in the ovx group. Scl-Ab treatment also enhanced bone-implant contact; increased peri-implant trabecular thickness and volume; and increased cortical thickness. These structural changes were associated with an approximately five to sevenfold increase in the bone-formation rate and a >50% depression in the eroded surface following Scl-Ab treatment. Trabecular bone thickness and bone-implant contact accounted for two-thirds of the variance in fixation strength. CONCLUSIONS In this model of severe osteoporosis, Scl-Ab treatment enhanced implant fixation by stimulating bone formation and suppressing bone resorption, leading to enhanced bone-implant contact and improved trabecular bone volume and architecture. CLINICAL RELEVANCE Systemic administration of anti-sclerostin antibodies might be a useful strategy in total joint replacement when bone mass is deficient.
Collapse
Affiliation(s)
- Amarjit S Virdi
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 South Paulina Street, Suite 507, Chicago, IL 60612. E-mail address for A.S. Virdi:
| | - John Irish
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 South Paulina Street, Suite 507, Chicago, IL 60612. E-mail address for A.S. Virdi:
| | - Kotaro Sena
- Department of Periodontology, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Min Liu
- Metabolic Disorders, Amgen, Inc., One Amgen Center Drive, 29-1-A, Thousand Oaks, CA 91320
| | - Hua Zhu Ke
- Metabolic Disorders, Amgen, Inc., One Amgen Center Drive, 29-1-A, Thousand Oaks, CA 91320
| | - Margaret A McNulty
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA 70803
| | - Dale R Sumner
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 South Paulina Street, Suite 507, Chicago, IL 60612. E-mail address for A.S. Virdi:
| |
Collapse
|
45
|
Sumner DR. Long-term implant fixation and stress-shielding in total hip replacement. J Biomech 2014; 48:797-800. [PMID: 25579990 DOI: 10.1016/j.jbiomech.2014.12.021] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2014] [Indexed: 11/16/2022]
Abstract
Implant fixation implies a strong and durable mechanical bond between the prosthetic component and host skeleton. Assuming the short-term impediments to implant fixation are successfully addressed and that longer-term issues such as late infection and mechanical failure of the components are avoided, the biological response of the host tissue to the presence of the implant is critical to long-term success. In particular, maintenance of adequate peri-prosthetic bone stock is a key factor. Two major causes of bone loss in the supporting bone are adverse bone remodeling in response to debris shed from the implant and stress-shielding. Here, I review some of the major lessons learned from studying stress-shielding-induced bone loss. It is well known that stress-shielding can be manipulated by altering implant design, but less well appreciated that the development of bone anabolic agents may make it possible to reduce the severity of stress-shielding and the associated bone loss by augmenting the host skeleton through the use of locally or systemically delivered agents. In most cases, mechanical, material and biological factors do not act in isolation, emphasizing that it is often not possible to optimize all boundary conditions.
Collapse
Affiliation(s)
- D R Sumner
- Departments of Anatomy and Cell Biology and Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, United States.
| |
Collapse
|
46
|
Abstract
➤ Osteocytes, derived from osteoblasts, reside within bone and communicate extensively with other bone cell populations to regulate bone metabolism. The mature osteocyte expresses the protein sclerostin, a negative regulator of bone mass.➤ In normal physiologic states, the protein sclerostin acts on osteoblasts at the surface of bone and is differentially expressed in response to mechanical loading, inflammatory molecules such as prostaglandin E2, and hormones such as parathyroid hormone and estrogen.➤ Pathologically, sclerostin dysregulation has been observed in osteoporosis-related fractures, failure of implant osseous integration, metastatic bone disease, and select genetic diseases of bone mass.➤ An antibody that targets sclerostin, decreasing endogenous levels of sclerostin while increasing bone mineral density, is currently in phase-III clinical trials.➤ The osteocyte has emerged as a versatile, indispensable bone cell. Its location within bone, extensive dendritic network, and close communication with systemic circulation and other bone cells produce many opportunities to treat a variety of orthopaedic conditions.
Collapse
Affiliation(s)
- Jocelyn T. Compton
- Center for Orthopaedic Research at Columbia University Medical Center, 650 West 168th Street, Box #480 (J.T.C.), Black Building 1412 (F.Y.L.), New York, NY 10032. E-mail address for J.T. Compton: . E-mail address for F.Y. Lee:
| | - Francis Y. Lee
- Center for Orthopaedic Research at Columbia University Medical Center, 650 West 168th Street, Box #480 (J.T.C.), Black Building 1412 (F.Y.L.), New York, NY 10032. E-mail address for J.T. Compton: . E-mail address for F.Y. Lee:
| |
Collapse
|
47
|
Ross RD, Edwards LH, Acerbo AS, Ominsky MS, Virdi AS, Sena K, Miller LM, Sumner DR. Bone matrix quality after sclerostin antibody treatment. J Bone Miner Res 2014; 29:1597-607. [PMID: 24470143 DOI: 10.1002/jbmr.2188] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 11/10/2022]
Abstract
Sclerostin antibody (Scl-Ab) is a novel bone-forming agent that is currently undergoing preclinical and clinical testing. Scl-Ab treatment is known to dramatically increase bone mass, but little is known about the quality of the bone formed during treatment. In the current study, global mineralization of bone matrix in rats and nonhuman primates treated with vehicle or Scl-Ab was assayed by backscattered scanning electron microscopy (bSEM) to quantify the bone mineral density distribution (BMDD). Additionally, fluorochrome labeling allowed tissue age-specific measurements to be made in the primate model with Fourier-transform infrared microspectroscopy to determine the kinetics of mineralization, carbonate substitution, crystallinity, and collagen cross-linking. Despite up to 54% increases in the bone volume after Scl-Ab treatment, the mean global mineralization of trabecular and cortical bone was unaffected in both animal models investigated. However, there were two subtle changes in the BMDD after Scl-Ab treatment in the primate trabecular bone, including an increase in the number of pixels with a low mineralization value (Z5) and a decrease in the standard deviation of the distribution. Tissue age-specific measurements in the primate model showed that Scl-Ab treatment did not affect the mineral-to-matrix ratio, crystallinity, or collagen cross-linking in the endocortical, intracortical, or trabecular compartments. Scl-Ab treatment was associated with a nonsignificant trend toward accelerated mineralization intracortically and a nearly 10% increase in carbonate substitution for tissue older than 2 weeks in the trabecular compartment (p < 0.001). These findings suggest that Scl-Ab treatment does not negatively impact bone matrix quality.
Collapse
Affiliation(s)
- Ryan D Ross
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kuchler U, Schwarze UY, Dobsak T, Heimel P, Bosshardt DD, Kneissel M, Gruber R. Dental and periodontal phenotype in sclerostin knockout mice. Int J Oral Sci 2014; 6:70-6. [PMID: 24699186 PMCID: PMC5130054 DOI: 10.1038/ijos.2014.12] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2013] [Indexed: 12/17/2022] Open
Abstract
Sclerostin is a Wnt signalling antagonist that controls bone metabolism. Sclerostin is expressed by osteocytes and cementocytes; however, its role in the formation of dental structures remains unclear. Here, we analysed the mandibles of sclerostin knockout mice to determine the influence of sclerostin on dental structures and dimensions using histomorphometry and micro-computed tomography (μCT) imaging. μCT and histomorphometric analyses were performed on the first lower molar and its surrounding structures in mice lacking a functional sclerostin gene and in wild-type controls. μCT on six animals in each group revealed that the dimension of the basal bone as well as the coronal and apical part of alveolar part increased in the sclerostin knockout mice. No significant differences were observed for the tooth and pulp chamber volume. Descriptive histomorphometric analyses of four wild-type and three sclerostin knockout mice demonstrated an increased width of the cementum and a concomitant moderate decrease in the periodontal space width. Taken together, these results suggest that the lack of sclerostin mainly alters the bone and cementum phenotypes rather than producing abnormalities in tooth structures such as dentin.
Collapse
Affiliation(s)
- Ulrike Kuchler
- 1] Department of Oral Surgery, Medical University of Vienna, Vienna, Austria [2] Austrian Cluster for Tissue Regeneration, Vienna, Austria [3] Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Berne, Switzerland
| | - Uwe Y Schwarze
- 1] Department of Oral Surgery, Medical University of Vienna, Vienna, Austria [2] Austrian Cluster for Tissue Regeneration, Vienna, Austria [3] Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Toni Dobsak
- 1] Department of Oral Surgery, Medical University of Vienna, Vienna, Austria [2] Austrian Cluster for Tissue Regeneration, Vienna, Austria [3] Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Patrick Heimel
- 1] Department of Oral Surgery, Medical University of Vienna, Vienna, Austria [2] Austrian Cluster for Tissue Regeneration, Vienna, Austria [3] Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria [4] Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Dieter D Bosshardt
- 1] Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Berne, Switzerland [2] Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Berne, Berne, Switzerland
| | - Michaela Kneissel
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Reinhard Gruber
- 1] Department of Oral Surgery, Medical University of Vienna, Vienna, Austria [2] Austrian Cluster for Tissue Regeneration, Vienna, Austria [3] Laboratory of Oral Cell Biology, School of Dental Medicine, University of Berne, Berne, Switzerland
| |
Collapse
|
49
|
Ross RD, Hamilton JL, Wilson BM, Sumner DR, Virdi AS. Pharmacologic augmentation of implant fixation in osteopenic bone. Curr Osteoporos Rep 2014; 12:55-64. [PMID: 24293098 DOI: 10.1007/s11914-013-0182-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Osteoporosis presents a challenge for successful implant fixation due to an impaired healing response. Preclinical studies have consistently reported reduced osseointegration capability in trabecular bone. Although clinical studies of implant success in dentistry have not found a negative effect due to osteoporosis, low bone mass is a significant risk factor for implant migration in orthopedics. Pharmacologic treatment options that limit bone resorption or upregulate formation have been studied preclinically. While, both treatment options improve implant fixation, direct comparisons to-date have found anti-catabolic more effective than anabolic treatments for establishing implant fixation, but combination approaches are better than either treatment alone. Clinically, anti-catabolic treatments, particularly bisphosphonates have been shown to increase the longevity of implants, while limited clinical evidence on the effects of anabolic treatment exists. Preclinical experiments are needed to determine the effects of osteoporosis and subsequent treatment on the long-term maintenance of fixation and recovery after bone loss.
Collapse
Affiliation(s)
- R D Ross
- Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Street, Suite # AcFc 507, Chicago, IL, 60612, USA
| | | | | | | | | |
Collapse
|
50
|
Anti-Sclerostin antibody inhibits internalization of Sclerostin and Sclerostin-mediated antagonism of Wnt/LRP6 signaling. PLoS One 2013; 8:e62295. [PMID: 23638027 PMCID: PMC3639248 DOI: 10.1371/journal.pone.0062295] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/19/2013] [Indexed: 12/21/2022] Open
Abstract
Sclerosteosis is a rare high bone mass disease that is caused by inactivating mutations in the SOST gene. Its gene product, Sclerostin, is a key negative regulator of bone formation and might therefore serve as a target for the anabolic treatment of osteoporosis. The exact molecular mechanism by which Sclerostin exerts its antagonistic effects on Wnt signaling in bone forming osteoblasts remains unclear. Here we show that Wnt3a-induced transcriptional responses and induction of alkaline phosphatase activity, an early marker of osteoblast differentiation, require the Wnt co-receptors LRP5 and LRP6. Unlike Dickkopf1 (DKK1), Sclerostin does not inhibit Wnt-3a-induced phosphorylation of LRP5 at serine 1503 or LRP6 at serine 1490. Affinity labeling of cell surface proteins with [125I]Sclerostin identified LRP6 as the main specific Sclerostin receptor in multiple mesenchymal cell lines. When cells were challenged with Sclerostin fused to recombinant green fluorescent protein (GFP) this was internalized, likely via a Clathrin-dependent process, and subsequently degraded in a temperature and proteasome-dependent manner. Ectopic expression of LRP6 greatly enhanced binding and cellular uptake of Sclerostin-GFP, which was reduced by the addition of an excess of non-GFP-fused Sclerostin. Finally, an anti-Sclerostin antibody inhibited the internalization of Sclerostin-GFP and binding of Sclerostin to LRP6. Moreover, this antibody attenuated the antagonistic activity of Sclerostin on canonical Wnt-induced responses.
Collapse
|