1
|
Liu G, Li W, Jiang S, Liang J, Song M, Wang L, Wang X, Liu X, Yang Z, Zhang L, Yang Y, Zhang B. ARA290, an alternative of erythropoietin, inhibits activation of NLRP3 inflammasome in schwann cells after sciatic nerve injury. Eur J Pharmacol 2025; 997:177610. [PMID: 40216181 DOI: 10.1016/j.ejphar.2025.177610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/10/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
The challenge of repairing peripheral nerve injury is a critical issue that needs to be addressed urgently. Previous research has shown that erythropoietin (EPO) and its prolonged peptides exhibit beneficial effects in neurological disorders. In our study, we demonstrated that both EPO and pyroglutamic acid helix B surface peptide (pHBSP, also known as ARA290) inhibit the early inflammatory response and promote functional recovery after sciatic nerve crush injury in rat models. Our experimental results demonstrate that significant inflammatory response occurred in Schwann cells after sciatic nerve injury, and that the activation of NLRP3 inflammasome in Schwann cells is inhibited after EPO and ARA290 treatment. Our study further demonstrated that EPO and ARA290 inhibit the activation of NLRP3 inflammasome in Schwann cells by inhibiting NF-κB phosphorylation and reducing reactive oxygen species (ROS) production. In summary, EPO and ARA290 promote repair and regeneration by inhibiting the activation of NLRP3 inflammasome after sciatic nerve injury.
Collapse
Affiliation(s)
- Guixian Liu
- Department of Immunology, School of Basic Medical College, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Wei Li
- Department of Immunology, School of Basic Medical College, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Suli Jiang
- Department of Laboratory Medicine, The Third People's Hospital of Qingdao, Qingdao, Shandong, 266071, PR China
| | - Jie Liang
- Department of Immunology, School of Basic Medical College, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Meiying Song
- Department of Immunology, School of Basic Medical College, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Luoyang Wang
- Department of Immunology, School of Basic Medical College, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Xiao Wang
- Department of Immunology, School of Basic Medical College, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Xiaoli Liu
- Department of Immunology, School of Basic Medical College, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Zijie Yang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Li Zhang
- Department of Immunology, School of Basic Medical College, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medical College, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Bei Zhang
- Department of Immunology, School of Basic Medical College, Qingdao University, Qingdao, Shandong, 266071, PR China.
| |
Collapse
|
2
|
Hamour HM, Marangoz AH, Altun G, Kaplan S. Neuroprotective effects of Garcinia kolaand curcumin on diabetic transected sciatic nerve. Biomed Mater 2025; 20:035025. [PMID: 40267944 DOI: 10.1088/1748-605x/adcfe3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/23/2025] [Indexed: 04/25/2025]
Abstract
The growing interest in peripheral nerve regeneration and developing post-traumatic repair methods under diabetes was the impetus for this study, which aims to investigate the effect of curcumin andGarcinia kola(GK) on the transected and diabetic sciatic nerves. Thirty-five male Wistar albino rats were used. The animals were divided into five groups; each consisted of seven rats. The sciatic nerve was transected in all groups of rats except the control (Cont) group, which underwent no treatment. In the transected animals, a 10 mm nerve stump was removed from the 2 cm distal to the sciatic notch. The external jugular vein was used as a conduit to repair the gap between the two ends of the sciatic nerve. Diabetes was induced in the transected + diabetes mellitus (T + DM), the transected + diabetes mellitus + GK (T + DM + GK), and the transected + diabetes mellitus + Curcumin (T + DM + Cur) groups except for the sham group. A dose of 300 mg kg-1d-1of curcumin dissolved in olive oil was administered to the T + DM + Cur group (via oral gavage every day for 28 d) and 200 mg kg-1d-1of GK to the T + DM + GK group (via oral gavage every day for 7 d). All animals were sacrificed after three months. Stereological analysis and functional and microscopic evaluations were done to evaluate the sciatic nerve regeneration and function. In the T + DM + GK and the sham groups, the number of axons increased. A slight improvement in the axonal area in the T + DM + Cur and the sham groups was also observed, and an increase in the myelin sheath thickness was found in the T + DM + GK and the sham group. When the SFI test results were evaluated, it was seen that GK had a stronger effect than curcumin in terms of functional regeneration. Additionally, no significant difference was observed between T + DM and Cont groups when the electrophysiological results were examined. The study showed GK's efficiency in treating diabetic peripheral nerve regeneration.
Collapse
Affiliation(s)
- Hala Mahgoub Hamour
- Department of Histology and Embryology, Ondokuz Mayıs University, Samsun, Turkey
| | | | - Gamze Altun
- Department of Histology and Embryology, Ondokuz Mayıs University, Samsun, Turkey
| | - Süleyman Kaplan
- Department of Histology and Embryology, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
3
|
Tanimoto K, Kodama A, Kunisaki A, Munemori M, Kamei N, Adachi N. Angiogenesis and Axonal Elongation in Decellularised Nerve Grafts Depend on the Surrounding Vascular Environment. J Hand Surg Asian Pac Vol 2025; 30:119-126. [PMID: 39773148 DOI: 10.1142/s2424835525500183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Background: Decellularised nerve transplantation has limited therapeutic efficacy for peripheral nerve injuries. In this study, we tested the hypothesis that nerve regeneration can be promoted by increasing blood circulation to the decellularised nerve through the surrounding blood-flow environment. Methods: We transplanted 20 mm decellularised nerves into sciatic nerve defects in Sprague-Dawley rats (female, 12 weeks old). In the intramuscular group, the decellularised nerve was implanted into the biceps femoris muscle and covered with the muscle to provide blood circulation. In the avascular group, the decellularised nerve was sutured to the sciatic nerve and the surrounding nerve bed was cauterised to create a non-bleeding field. In the intramuscular without repair group, the decellularised nerve was implanted in the biceps femoris muscle, but not sutured to the sciatic nerve. Axonal elongation and angiogenesis were evaluated immunohistochemically using anti-neurofilament, anti-S100 and anti-CD31 antibodies in sagittal and transverse sections of the nerve 3 weeks later. Results: In the intramuscular group, the number of neurofilaments per unit area and S100 were higher than those in the other groups (p < 0.05). CD31 staining was predominant in the intramuscular group. Axial images of the nerves confirmed the localisation of CD31-positive cells, and positive cells were found in the centre of the decellularised nerves in the intramuscular group. Conclusions: Decellularised nerve grafts wrapped with vascular-rich tissue promoted nerve regeneration by enhancing angiogenesis in transplanted nerve grafts and preventing ischemia in the centre of the nerve graft.
Collapse
Affiliation(s)
- Kaguna Tanimoto
- Department of Orthopaedic Surgery, Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akira Kodama
- Department of Orthopaedic Surgery, Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsushi Kunisaki
- Department of Orthopaedic Surgery, Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masaru Munemori
- Department of Orthopaedic Surgery, Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naosuke Kamei
- Department of Orthopaedic Surgery, Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
4
|
Hu K, Williams MCG, Kammien AJ, Canner J, Mukherjee T, Hill E, Colen D. Cost Comparison of Digital Nerve Repair Techniques. Plast Reconstr Surg 2025; 155:543e-552e. [PMID: 39085087 DOI: 10.1097/prs.0000000000011662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
BACKGROUND Direct cost comparisons of nerve allograft with other techniques for repairing short digital nerve gaps are lacking. This study compares the costs of various techniques for digital nerve repair, anticipating significant cost increases for allograft implants. METHODS The State Ambulatory Surgery and Services Databases for Florida, New York, and Wisconsin from 2015 through 2020 were used. Patients with primary repair, short autograft, conduit, and allograft were compared along total, surgical supply, operating room, and anesthesia charges. RESULTS Among 5009 patients, there were 2967 primary nerve repairs (59.2%), 77 autografts (1.5%), 1647 conduits (32.9%), and 318 allografts (6.3%). A total of 2886 patients were male (57.6%), and the mean patient age was 40.4 ± 16.3 years. Over the study period, primary repairs decreased (from 63.9% in 2015 to 56.3% in 2020), whereas allografts increased significantly (from 8.8% in 2018 to 12.6% in 2020). Median total charges varied significantly across procedures, with the most expensive being allograft ($35,295), followed by conduit ($25,717), autograft ($24,749), and primary repair ($18,767). On multivariable regression, allografts were significantly more expensive than autografts in total charges of $11,224 (95% CI, $4196 to $18,252) and supply charges of $10,484 (95% CI, $6073 to $14,896), but not in operating room or anesthesia charges. Flexor tendon repair was associated with greater total, operating room, and anesthesia charges, but had similar supply charges. CONCLUSIONS Nerve allografting is the most expensive digital nerve repair technique, most likely due to the cost of the implant. To minimize health care expenditure and ensure equitable patient access, surgeons should consider this cost along with clinical factors when choosing digital nerve repair techniques.
Collapse
Affiliation(s)
- Kevin Hu
- From the Division of Plastic and Reconstructive Surgery
| | | | | | | | | | - Elspeth Hill
- From the Division of Plastic and Reconstructive Surgery
| | - David Colen
- From the Division of Plastic and Reconstructive Surgery
| |
Collapse
|
5
|
Mohan SP, Priya SP, Tawfig N, Padmanabhan V, Babiker R, Palaniappan A, Prabhu S, Chaitanya NCSK, Rahman MM, Islam MS. The Potential Role of Adipose-Derived Stem Cells in Regeneration of Peripheral Nerves. Neurol Int 2025; 17:23. [PMID: 39997654 PMCID: PMC11858299 DOI: 10.3390/neurolint17020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Peripheral nerve injuries are common complications in surgical and dental practices, often resulting in functional deficiencies and reduced quality of life. Current treatment choices, such as autografts, have limitations, including donor site morbidity and suboptimal outcomes. Adipose-derived stem cells (ADSCs) have shown assuring regenerative potential due to their accessibility, ease of harvesting and propagation, and multipotent properties. This review investigates the therapeutic potential of ADSCs in peripheral nerve regeneration, focusing on their use in bioengineered nerve conduits and supportive microenvironments. The analysis is constructed on published case reports, organized reviews, and clinical trials from Phase I to Phase III that investigate ADSCs in managing nerve injuries, emphasizing both peripheral and orofacial applications. The findings highlight the advantages of ADSCs in promoting nerve regeneration, including their secretion of angiogenic and neurotrophic factors, support for cellular persistence, and supplementing scaffold-based tissue repair. The regenerative capabilities of ADSCs in peripheral nerve injuries offer a novel approach to augmenting nerve repair and functional recovery. The accessibility of adipose tissue and the minimally invasive nature of ADSC harvesting further encourage its prospective application as an autologous cell source in regenerative medicine. Future research is needed to ascertain standardized protocols and optimize clinical outcomes, paving the way for ADSCs to become a mainstay in nerve regeneration.
Collapse
Affiliation(s)
- Sunil P. Mohan
- Department of Oral and Maxillofacial Pathology, Sree Anjaneya Institute of Dental Sciences, Kozhikode 673323, Kerala, India
- Centre for Stem Cells and Regenerative Medicine, Malabar Medical College, Kozhikode 673315, Kerala, India
| | - Sivan P. Priya
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| | - Nada Tawfig
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| | - Vivek Padmanabhan
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| | - Rasha Babiker
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 11172, United Arab Emirates;
| | - Arunkumar Palaniappan
- Human Organ Manufacturing Engineering (HOME) Lab., Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India;
| | - Srinivasan Prabhu
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin 683104, Kerala, India;
| | - Nallan CSK Chaitanya
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| | - Muhammed Mustahsen Rahman
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| | - Md Sofiqul Islam
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| |
Collapse
|
6
|
Kim JP, Heo SC, Lee DH, Bae JS, Shin YK, Son SH, Park IY, Kim HW, Lee JH, Kim KW. Efficacy of cold and cryo-preserved nerve allografts with low-dose FK506 for motor nerve regeneration: a preclinical study. J Orthop Surg Res 2024; 19:859. [PMID: 39702298 DOI: 10.1186/s13018-024-05343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Despite their ability to regenerate as well as autografts, the use of nerve allografts is limited by the need for immunosuppression and the risk of disease transmission. Further, decellularized allografts lacking Schwann cells limit axonal regeneration in long nerve defects. This study evaluated sciatic nerve regeneration in rats implanted with cold- or cryopreserved allografts, and examined the effects of FK506, an immunosuppressant that targets calcineurin function, on motor recovery. METHODS Sixty-five male Lewis rats were divided into five groups of 13, each with a 10-mm sciatic nerve gap. Group I received an autograft, whereas Groups II and III received allografts pretreated with cryopreservation and cold preservation, respectively. Groups IV and V were also implanted with cryo- and cold-preserved allografts, but were treated with a low dose of FK506. Motor regeneration was assessed at 20 weeks by the measurement of ankle contracture, compound muscle action potential, maximal isometric tetanic force, wet muscle weight of the tibialis anterior, peroneal nerve histomorphometry, and immunohistochemistry of the reconstructed sciatic nerve. RESULTS Similar motor recovery was observed between the autografts and both types of allografts. The groups treated with FK506 showed improved recovery, particularly in terms of ankle angle and tibialis anterior muscle weight. Histomorphometry revealed a superior myelinated fiber area and nerve ratio in the cold-preserved allograft group, while Group II displayed a less well-organized morphology. CONCLUSION This study demonstrates that cold- or cryopreserved nerve allografts represent effective alternatives to autografts for peripheral nerve reconstruction, with low-dose FK506 enhancing motor recovery without necessitating immunosuppression. LEVEL OF EVIDENCE I Basic Science Level I.
Collapse
Affiliation(s)
- Jong Pil Kim
- Department of Orthopaedic Surgery, Naeunpil Hospital, Cheonan, Republic of Korea
| | - Soon Chul Heo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119, Dandae-ro, Cheonan-si, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Dae Hee Lee
- Department of Orthopaedic Surgery, Dankook University Hospital, Dankook University College of Medicine, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Republic of Korea
| | - Jun Sang Bae
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea
- Medical Laser Research Center, Dankook University, Cheonan, Republic of Korea
| | - Young Kwang Shin
- Department of Orthopaedic Surgery, Dankook University Hospital, Dankook University College of Medicine, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Republic of Korea
| | - Su Hyeok Son
- Department of Orthopaedic Surgery, Dankook University Hospital, Dankook University College of Medicine, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Republic of Korea
| | - Il Yong Park
- Department of Biomedical Engineering, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119, Dandae-ro, Cheonan-si, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119, Dandae-ro, Cheonan-si, 31116, Republic of Korea.
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Kyung Wook Kim
- Department of Orthopaedic Surgery, Dankook University Hospital, Dankook University College of Medicine, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Republic of Korea.
| |
Collapse
|
7
|
Wang S, Liu Z, Wang J, Cheng L, Hu J, Tang J. Platelet-rich plasma (PRP) in nerve repair. Regen Ther 2024; 27:244-250. [PMID: 38586873 PMCID: PMC10997806 DOI: 10.1016/j.reth.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Platelet-rich plasma (PRP) has the capability of assisting in the recovery of damaged tissues by releasing a variety of biologically active factors to initiate a hemostatic cascade reaction and promote the synthesis of new connective tissue and revascularization. It is now widely used for tissue engineering repair. In addition, PRP has demonstrated nerve repair and pain relief, and has been studied and applied to the facial nerve, median nerve, sciatic nerve, and central nerve. These suggest that PRP injection therapy has a positive effect on nerve repair. This indicates that PRP has high clinical value and potential application in nerve repair. It is worthwhile for scientists and medical workers to further explore and study PRP to expand its application in nerve repair, and to provide a more reliable scientific basis for the opening of a new approach to nerve repair.
Collapse
Affiliation(s)
- Siyu Wang
- Graduate School, Wuhan Sports University, Wuhan, 430079, Hubei, China
| | - Zhengping Liu
- Graduate School, Wuhan Sports University, Wuhan, 430079, Hubei, China
| | - Jianing Wang
- Graduate School, Wuhan Sports University, Wuhan, 430079, Hubei, China
| | - Lulu Cheng
- Graduate School, Wuhan Sports University, Wuhan, 430079, Hubei, China
- College of Acupuncture-Moxibustion and Tuina, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jinfeng Hu
- Department of Orthopedics, Wuhan University Renmin Hospital, NO. 239 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Jin Tang
- Graduate School, Wuhan Sports University, Wuhan, 430079, Hubei, China
- Department of Minimally Invasive Spinal Surgery, The Affiliated Hospital of Wuhan Sports University, NO 279 Luoyu Road, Hongshan District, Wuhan, 430079, Hubei, China
| |
Collapse
|
8
|
Van Gheem J, Rounds A, Blackwood T, Cox C, Hernandez EJ, McKee D, MacKay B. Case Series of Traumatic Peripheral Nerve Injuries in Pediatric Patients Treated with Allograft Repair. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2024; 6:801-807. [PMID: 39703582 PMCID: PMC11652274 DOI: 10.1016/j.jhsg.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/14/2024] [Indexed: 12/21/2024] Open
Abstract
Purpose In the adult literature, allograft reconstruction of gapped peripheral nerve injuries has gained popularity over autologous nerve grafting. Allografts have demonstrated similar recovery while eliminating donor site morbidity. There is no well-defined incidence or treatment of such injuries in children. Our study explores the epidemiology and outcomes of traumatic pediatric peripheral nerve injuries treated with allograft. Methods This is a retrospective case series of a prospectively maintained database of all pediatric patients who underwent nerve allograft reconstruction at a Level I trauma center between September 2011 and July 2021. Results We identified 24 allograft nerve reconstructions in 18 patients, average age 12.9 years (range 1.5-17.0) and 78% male. Five patients (28%) were injured in a motor vehicle accident, and four were injured by sharp laceration, machinery, and blast injury (22%). The most injured nerve was digital (n = 10, 42%) followed by 8 (33%) ulnar, and 4 (17%) median. The average gap length was 30.3 ± 23.8 mm (range 4-87 mm). Fifteen nerves were repaired within 24 hours (63%). Average follow-up was 13.7 ± 14.5 months (range 1.6-46.8 months). At final follow-up, 9 (38%) had full sensory recovery, 6 (25%) protective sensation, 2 (8%) deep pressure, and 1 (4%) no sensation but a positive Tinel's sign. Conclusions Allograft reconstruction is a viable option for the treatment of traumatic pediatric peripheral nerve injuries with gaps not amenable to direct repair. Type of study/level of evidence Therapeutic IV.
Collapse
Affiliation(s)
- Jacqueline Van Gheem
- Department of Orthopedic Surgery, Texas Tech University of Health Sciences Center, Lubbock, TX
| | - Alexis Rounds
- Department of Orthopedic Surgery, Texas Tech University of Health Sciences Center, Lubbock, TX
| | - Taylor Blackwood
- Department of Orthopedic Surgery, Texas Tech University of Health Sciences Center, Lubbock, TX
| | - Cameron Cox
- Department of Orthopedic Surgery, Texas Tech University of Health Sciences Center, Lubbock, TX
| | - Evan J. Hernandez
- Department of Orthopedic Surgery, Texas Tech University of Health Sciences Center, Lubbock, TX
| | - Desirae McKee
- Department of Orthopedic Surgery, Texas Tech University of Health Sciences Center, Lubbock, TX
| | - Brendan MacKay
- Department of Orthopedic Surgery, Texas Tech University of Health Sciences Center, Lubbock, TX
| |
Collapse
|
9
|
Hoh M, Geis S, Klein S, Prantl L, Burchak V, Dolderer JH. Surgical Management of Secondary Complex Microsurgical Reconstructions after Amputation and Severe Trauma Injuries: A Case Series. Life (Basel) 2024; 14:1303. [PMID: 39459603 PMCID: PMC11509778 DOI: 10.3390/life14101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/21/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION Secondary complex microsurgical reconstructions after amputation and severe trauma injuries are often necessary to optimize functional outcomes. METHODS AND PATIENTS We reviewed eight patients who underwent extensive reconstruction after severe trauma. The details of secondary procedures are further described in the article. A literature search was performed using the National Center for Biotechnology Information (NCBI) database for studies evaluating secondary procedures after complex reconstructions. DISCUSSION To date, the order and the need for performing secondary procedures have yet to be fully defined. The tissues encountered include skin, soft tissue, bone, nerve, joint, and tendon. CONCLUSIONS We described the use of a decision-theoretic approach to the secondary reconstruction. Treatment of a complex trauma should be measured by functional outcome.
Collapse
Affiliation(s)
- Marcel Hoh
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Medical Center, 95445 Bayreuth, Germany (J.H.D.)
| | - Sebastian Geis
- Department of Plastic and Reconstructive Surgery, University Regensburg, 93053 Regensburg, Germany
| | - Silvan Klein
- Department of Plastic and Reconstructive Surgery, University Regensburg, 93053 Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic and Reconstructive Surgery, University Regensburg, 93053 Regensburg, Germany
| | - Vadym Burchak
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Medical Center, 95445 Bayreuth, Germany (J.H.D.)
| | - Juergen H. Dolderer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Medical Center, 95445 Bayreuth, Germany (J.H.D.)
| |
Collapse
|
10
|
Goncalves M, Pfister G, Abecidan E, Redais C, Milaire A, Belkheyar Z, Mathieu L. Direct Suturing of Ulnar or Median Nerve Defects in High-Degree Elbow Flexion: An Experimental Cadaver Study. World Neurosurg 2024; 190:e1124-e1129. [PMID: 39182831 DOI: 10.1016/j.wneu.2024.08.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVE The aim of this study is to determine the maximum loss of median and ulnar nerve substances that can be treated by direct suture in elbow flexion and to quantify this elbow flexion. The other objective is to determine the participation of the wrist position in this direct suture in elbow flexion. METHODS We performed an experimental study on 6 ulnar nerve lesions and 6 median nerve lesions. For each defect, a direct tensionless suture was performed with elbow flexion and in three different positions of the wrist (wrist extension, neutral position, and wrist flexion). RESULTS A 90° elbow flexion allowed direct suturing of defects up to 40 mm in the 3 positions of the wrist. A bowstringing effect (i.e., increase of the perpendicular distance of the nerve from the axis of rotation of the elbow) was noted starting from 25 mm of nerve defect. Wrist extension placed tension on the nerve suture for both nerves. CONCLUSIONS The results of this first anatomical study clarified the conditions for direct suturing of ulnar and median nerve defects in the flexed elbow position and flexed wrist position. This is an approach to consider for limited nerve defects to the elbow or when allograft harvesting is to be avoided.
Collapse
Affiliation(s)
- Melody Goncalves
- Department of Orthopedic, Trauma and Reconstructive Surgery, Percy Military Hospital, Clamart, France
| | - Georges Pfister
- Department of Orthopedic, Trauma and Reconstructive Surgery, Percy Military Hospital, Clamart, France.
| | - Emma Abecidan
- Surgical school, Agence Générale des Equipements et Produits de Santé - Assistance publique des Hôpitaux de Paris, Paris, France
| | - Claire Redais
- Department of Orthopedic, Trauma and Reconstructive Surgery, Percy Military Hospital, Clamart, France
| | - Alexia Milaire
- Department of Orthopedic, Trauma and Reconstructive Surgery, Percy Military Hospital, Clamart, France
| | - Zoubir Belkheyar
- Nerve and Brachial Plexus Surgery Unit, Mont-Louis Private Hospital, Paris, France
| | - Laurent Mathieu
- Department of Orthopedic, Trauma and Reconstructive Surgery, Percy Military Hospital, Clamart, France
| |
Collapse
|
11
|
Clifford AL, Klifto CS, Li NY. Nerve Coaptation in 2023: Adjuncts to Nerve Repair Beyond Suture. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2024; 6:705-710. [PMID: 39381375 PMCID: PMC11456665 DOI: 10.1016/j.jhsg.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/20/2024] [Indexed: 10/10/2024] Open
Abstract
Effective nerve coaptation entails tensionless repair of healthy fascicles with intact fascicular architecture and a well-vascularized environment, supportive of the regenerative cellular behaviors of neurons, immune cells, and Schwann cells. Suture coaptations have historically been used to ensure that these criteria are met for end-to-end repair, nerve transfers, and allograft or autograft reconstructions; however, unfortunately, overall restoration of function remains poor. As optimal coaptation is required for return of sensorimotor function, adjunct biomaterials are increasingly being enlisted attempting to optimize these suture-based coaptations. The purpose of this review was to discuss the biological, preclinical, and clinical data for the use of fibrin glue and nerve wraps made of type 1 collagen, porcine small intestine submucosa, chitosan, and human amniotic membrane. This study provides available data on each material's ability to optimize the regenerative potential of nerve repair as well as available outcomes data. Although each biomaterial discussed has benefits to nerve regeneration, at large, data remain heterogeneous, and continued investigation is required to fully understand the specific mechanisms involved and the long-term potential clinical impacts each can provide for improvement of sensorimotor outcomes.
Collapse
Affiliation(s)
| | | | - Neill Y. Li
- Department of Orthopaedic Surgery, Duke University, Durham, NC
| |
Collapse
|
12
|
Fones L, Rivlin M, Tosti R. Cutting-Edge Approaches for Nerve Debridement Prior to Repair. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2024; 6:681-684. [PMID: 39381395 PMCID: PMC11456626 DOI: 10.1016/j.jhsg.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/20/2024] [Indexed: 10/10/2024] Open
Abstract
Peripheral nerve injuries can be devastating. Although neuropraxic and some axonotmesis injuries will recover spontaneously, nerve repair or reconstruction is required to restore function in high-grade axonotmesis or neurotmesis injuries. The first step of nerve repair or reconstruction is adequate nerve debridement with removal of necrotic and fibrous tissues. Debridement decreases neuroma formation at the repair site and produces an optimal surface for axonal regeneration. This article discusses nerve debridement, including the goals of debridement, debridement techniques, and signs of adequate nerve debridement before repair.
Collapse
Affiliation(s)
- Lilah Fones
- Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, PA
| | - Michael Rivlin
- Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, PA
| | - Rick Tosti
- Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
13
|
Liang X, Xu L, Zhou C, Fang J, Sun D, Qin C. Innovative Application of the Ilizarov Technique for Long Nerve Defect Reconstruction: A Detailed Case Report. Orthop Surg 2024; 16:2295-2300. [PMID: 39187991 PMCID: PMC11572564 DOI: 10.1111/os.14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Traditionally known for bone regeneration, the Ilizarov technique's effectiveness in nerve reconstruction, particularly for extensive nerve damage, has yet to be widely recognized. CASE PRESENTATION This report presents a case study and proposes the innovative use of the Ilizarov technique for reconstructing extended nerve defects. In this study, we reviewed a 43-year-old male diagnosed with an open fracture of the right tibia combined with soft tissue injury resulting in a mangled injury in which a large part of his right tibial bone and nerve were lost. The patient was cured and the sensorimotor function was recovered after distraction osteogenesis by the Ilizarov technique, which is a unique application of this technique to repair a substantial long nerve defect, a rare occurrence in medical literature. It highlights the method of nerve lengthening, which is achieved by attaching the nerve stump to the bone stump. This approach allows for significant nerve regeneration and ensures a stable progression of the nerve, as the bone stump acts as a carrier, overcoming the challenges of direct nerve lengthening. CONCLUSIONS The adaptability and effectiveness of the Ilizarov technique in a new area suggests the need to reconsider traditional approaches to complex nerve reconstruction. Placing this case within the context of current medical knowledge underscores the potential of this technique to revolutionize the treatment of extended nerve defects, offering hope for improved outcomes in challenging scenarios.
Collapse
Affiliation(s)
- Xiajun Liang
- Department of Orthopedics and TraumatologyThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityGuangzhouChina
| | - Lei Xu
- Department of Orthopedics and TraumatologyThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityGuangzhouChina
| | - Chunhao Zhou
- Division of Spine Surgery, Department of OrthopaedicsNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Jia Fang
- Department of Orthopedics and TraumatologyThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityGuangzhouChina
| | - Dawei Sun
- Department of Orthopedics and TraumatologyThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityGuangzhouChina
| | - Chenghe Qin
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
14
|
Alare K, Salam T, Abioye E, Utah F, Balogun O, Adedokun P, Moradeyo A, Adeniran-Yusuf A, Soyinka E, Egbo C, Alao A. The outcomes of peripheral nerve surgeries in Africa: Narrative synthesis from existing literature. Clin Neurol Neurosurg 2024; 244:108419. [PMID: 38986367 DOI: 10.1016/j.clineuro.2024.108419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND In Africa, peripheral nerve pathologies are a major source of disability, and the results of surgical therapies differ greatly among countries. The goal of this narrative review is to compile the most recent data on peripheral nerve surgery results in Africa, pinpoint critical variables that affect surgical outcomes, and offer suggestions for enhancing patient care. METHODS A comprehensive literature review was conducted, focusing on studies published over the past four decades. The sources included peer-reviewed journals, hospital records, and reports from healthcare organizations. The review examined outcomes related to functional recovery, quality of life, and postoperative complications. RESULTS The outcomes of peripheral nerve surgeries in Africa are influenced by the availability of medical infrastructure, the level of surgeon expertise, and the timeliness of the intervention. Urban centers with better resources tend to report more favorable outcomes, whereas rural areas face significant challenges. Common barriers include limited access to advanced surgical tools, a shortage of specialized surgeons, and inadequate postoperative care and rehabilitation services. Despite these challenges, successful interventions have been reported, particularly in settings where targeted training programs and international collaborations are in place. CONCLUSION Enhancing surgeon training programs, building comprehensive postoperative care and rehabilitation facilities, and investing in healthcare infrastructure are critical to improving peripheral nerve surgery results in Africa. International and regional collaborations can be extremely helpful in advancing these initiatives by enabling the sharing of knowledge and granting access to cutting-edge methods. Patients with peripheral nerve injuries across the continent may experience improved functional recovery and overall quality of life if these criteria are met.
Collapse
Affiliation(s)
- Kehinde Alare
- Department of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
| | - Temiloluwa Salam
- Department of Medicine, Olabisi Onabanjo University Teaching Hospital, Sagamu, Nigeria
| | - Elishama Abioye
- Department of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Francisca Utah
- Department of Internal Medicine, University of Uyo Teaching Hospital, Uyo, Nigeria
| | - Opeyemi Balogun
- Department of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Precious Adedokun
- Department of Surgery, Ladoke Akintola University of Technology Teaching Hospital, Ogbomoso, Nigeria
| | - Abdulrahmon Moradeyo
- Department of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | | | | | - Adedoyin Alao
- Department of Surgery, Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria
| |
Collapse
|
15
|
Kong L, Gao X, Yao X, Xie H, Kang Q, Sun W, You Z, Qian Y, Fan C. Multilevel neurium-mimetic individualized graft via additive manufacturing for efficient tissue repair. Nat Commun 2024; 15:6428. [PMID: 39079956 PMCID: PMC11289102 DOI: 10.1038/s41467-024-49980-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Complicated peripheral nerve injuries or defects, especially at branching sites, remain a prominent clinical challenge after the application of different treatment strategies. Current nerve grafts fail to match the expected shape and size for delicate and precise branched nerve repair on a case-by-case basis, and there is a lack of geometrical and microscale regenerative navigation. In this study, we develop a sugar painting-inspired individualized multilevel epi-/peri-/endoneurium-mimetic device (SpinMed) to customize natural cues, featuring a selectively protective outer sheath and an instructive core, to support rapid vascular reconstruction and consequent efficient neurite extension along the defect area. The biomimetic perineurium dictates host-guest crosslinking in which new vessels secrete multimerin 1 binding to the fibroin filler surface as an anchor, contributing to the biological endoneurium that promotes Schwann cell homing and remyelination. SpinMed implantation into rat sciatic nerve defects yields a satisfactory outcome in terms of structural reconstruction, with sensory and locomotive function restoration. We further customize SpinMed grafts based on anatomy and digital imaging, achieving rapid repair of the nerve trunk and branches superior to that achieved by autografts and decellularized grafts in a specific beagle nerve defect model, with reliable biosafety. Overall, this intelligent art-inspired biomimetic design offers a facile way to customize sophisticated high-performance nerve grafts and holds great potential for application in translational regenerative medicine.
Collapse
Affiliation(s)
- Lingchi Kong
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Xin Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 201620, Shanghai, China
| | - Xiangyun Yao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 201306, Shanghai, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co.Ltd., 310003, Hangzhou, China
| | - Qinglin Kang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Wei Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 201620, Shanghai, China.
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 201620, Shanghai, China.
| | - Yun Qian
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 201306, Shanghai, China.
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 201306, Shanghai, China.
| |
Collapse
|
16
|
Bertacchini P. Neurofascialvascular training for carpal tunnel syndrome as an evolution of neurodynamic treatment: A case report. J Bodyw Mov Ther 2024; 39:4-12. [PMID: 38876659 DOI: 10.1016/j.jbmt.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 09/03/2023] [Accepted: 10/17/2023] [Indexed: 06/16/2024]
Abstract
INTRODUCTION In this case report a new approach called neurofascialvascular training (NFVT) is described. NFVT consists of two mechanisms which improve mechanosensitivity in carpal tunnel syndrome (CTS). The first involves increased blood flow in the nerve microcirculation, while the second stimulates the reciprocal sliding between the thin sheets of connective tissue inside the nerve. The goal of these two actions is to squeeze, mobilize and reduce intraneural edema. The novelty of this approach is the simultaneous involvement of multiple physiological systems to reduce nerve mechanosensitivity. This case report describes the rehabilitation progress achieved by NFVT in a patient with CTS. MAIN SYMPTOMS AND/OR IMPORTANT CLINICAL FINDINGS A 64-year-old woman complaining of nocturnal pain and tingling with severe impairment of sleep quality for two years was diagnosed at CTS. THERAPEUTIC INTERVENTIONS The patient underwent nine 30-min exercise sessions of NFVT. OUTCOMES At each session and at the last follow-up 3 months after the end of treatment the following tests were performed: the upper limb neurodynamic test1 (ULNT1), the Hand Grip Meter and the Phdurkan test. Furthermore ultrasound, numerical rating scale and the Boston Carpal Tunnel Questionnaire (BCTQ) were also adopted. CONCLUSION NFVT can improve symptoms and motor dysfunction in a patient with CTS. TAKE-AWAY LESSON In the presence of mild carpal tunnel syndrome, active neurofascialvascular training that increases peripheral blood flow and targets fascial tissue within the peripheral nervous system can resolve symptoms and produce significant improvement within a few months of starting treatment.
Collapse
Affiliation(s)
- Paolo Bertacchini
- Master OMPT, University of Bologna, Bologna, Italy; Private Practice, Parma, Italy.
| |
Collapse
|
17
|
Takeda S, Kurimoto S, Tanaka Y, Mitsuya S, Hirata H, Murakami H, Jianmongkol S, Okamoto H. Mid-term outcomes of digital nerve injuries treated with Renerve® synthetic collagen nerve conduits: A retrospective single-center study. J Orthop Sci 2024; 29:809-816. [PMID: 37149481 DOI: 10.1016/j.jos.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/17/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Biodegradable synthetic nerve conduits have become widely used for peripheral nerve injuries. Recently, bioabsorbable collagen conduits filled with collagen fibers (Renerve®) are commercially available in Japan. We investigated the clinical efficacy and safety of Renerve® conduits for digital nerve repair. PATIENTS AND METHODS We retrospectively reviewed data of patients who underwent digital nerve repair using Renerve® conduits between August 2017 and February 2022 at our hospital and were followed up for at least 12 months. Seventeen patients (20 nerves) with a median age of 46.5 years (interquartile rage: 26-48 years) were included in the analysis. We analyzed sensory nerve function recovery and residual pain or uncomfortable tingling, as well as safety outcomes. The relationship between nerve defect length and sensory function data was assessed using Spearman's rank correlation. RESULTS Sensory nerve function at 12 months postoperatively was excellent in six, good in 10, and poor in four nerves, and that at the final follow-up (median period, 24 months; range, 12-30 months) was excellent in nine, good in 10, and poor in one nerve. All nerves with a defect length of <12 mm had excellent or good sensory outcomes. At 12 months postoperatively, the correlation coefficients between nerve defect length and Semmes-Weinstein monofilament test results, static two-point discrimination, and dynamic two-point discrimination were 0.35 (p = 0.131), 0.397 (p = 0.0827), and 0.451 (p = 0.0461), respectively. Residual pain or tingling sensation were observed in four nerves at the final follow-up. No postoperative complications were observed in any of the patients. CONCLUSIONS This study demonstrated the clinical efficacy and safety of Renerve® conduits for digital nerve repair. Our results will be useful in clinical practice because of the scarcity of real-world data on the use of Renerve® conduits for digital nerve repair.
Collapse
Affiliation(s)
- Shinsuke Takeda
- Trauma and Microsurgery Center, Toyohashi Municipal Hospital, Toyohashi, Japan; Hand and Reconstructive Unit, Department of Orthopedics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| | - Shigeru Kurimoto
- Department of Hand Surgery, Nagoya University Hospital, Nagoya, Japan
| | - Yoshihiro Tanaka
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - So Mitsuya
- Trauma and Microsurgery Center, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Hitoshi Hirata
- Department of Hand Surgery, Nagoya University Hospital, Nagoya, Japan
| | - Hideki Murakami
- Department of Orthopaedic Surgery, Nagoya City University Hospital, Nagoya, Japan
| | - Surut Jianmongkol
- Hand and Reconstructive Unit, Department of Orthopedics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Hideki Okamoto
- Department of Orthopaedic Surgery, Nagoya City University Hospital, Nagoya, Japan
| |
Collapse
|
18
|
Galli R, Uckermann O. Vibrational spectroscopy and multiphoton microscopy for label-free visualization of nervous system degeneration and regeneration. Biophys Rev 2024; 16:219-235. [PMID: 38737209 PMCID: PMC11078905 DOI: 10.1007/s12551-023-01158-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/22/2023] [Indexed: 05/14/2024] Open
Abstract
Neurological disorders, including spinal cord injury, peripheral nerve injury, traumatic brain injury, and neurodegenerative diseases, pose significant challenges in terms of diagnosis, treatment, and understanding the underlying pathophysiological processes. Label-free multiphoton microscopy techniques, such as coherent Raman scattering, two-photon excited autofluorescence, and second and third harmonic generation microscopy, have emerged as powerful tools for visualizing nervous tissue with high resolution and without the need for exogenous labels. Coherent Raman scattering processes as well as third harmonic generation enable label-free visualization of myelin sheaths, while their combination with two-photon excited autofluorescence and second harmonic generation allows for a more comprehensive tissue visualization. They have shown promise in assessing the efficacy of therapeutic interventions and may have future applications in clinical diagnostics. In addition to multiphoton microscopy, vibrational spectroscopy methods such as infrared and Raman spectroscopy offer insights into the molecular signatures of injured nervous tissues and hold potential as diagnostic markers. This review summarizes the application of these label-free optical techniques in preclinical models and illustrates their potential in the diagnosis and treatment of neurological disorders with a special focus on injury, degeneration, and regeneration. Furthermore, it addresses current advancements and challenges for bridging the gap between research findings and their practical applications in a clinical setting.
Collapse
Affiliation(s)
- Roberta Galli
- Medical Physics and Biomedical Engineering, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ortrud Uckermann
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Division of Medical Biology, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
19
|
Lopes B, Coelho A, Alvites R, Sousa AC, Sousa P, Moreira A, Atayde L, Salgado A, Geuna S, Maurício AC. Animal models in peripheral nerve transection studies: a systematic review on study design and outcomes assessment. Regen Med 2024; 19:189-203. [PMID: 37855207 DOI: 10.2217/rme-2023-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Aim: Peripheral nerve injury regeneration studies using animal models are crucial to different pre-clinical therapeutic approaches efficacy evaluation whatever the surgical technique explored. Materials & methods: A 944 articles systematic review on 'peripheral nerve injury in animal models' over the last 9 years was carried out. Results: It was found that 91% used rodents, and only 9% employed large animals. Different nerves are studied, with generated gaps (10,78 mm) and methods applied for regeneration evaluation uniformed. Sciatic nerve was the most used (88%), followed by median and facial nerves (2.6%), significantly different. Conclusion: There has not been a significant scale-up of the in vivo testing to large animal models (anatomically/physiologically closer to humans), allowing an improvement in translational medicine for clinical cases.
Collapse
Affiliation(s)
- Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, Porto, 4050-313, Portugal
- Associate Laboratory for Animal & Veterinary Science (AL4AnimalS), Lisboa, 1300-477, Portugal
| | - André Coelho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, Porto, 4050-313, Portugal
- Associate Laboratory for Animal & Veterinary Science (AL4AnimalS), Lisboa, 1300-477, Portugal
| | - Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, Porto, 4050-313, Portugal
- Associate Laboratory for Animal & Veterinary Science (AL4AnimalS), Lisboa, 1300-477, Portugal
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra 1317, Gandra, Paredes, 4585-116, Portugal
| | - Ana Catarina Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, Porto, 4050-313, Portugal
- Associate Laboratory for Animal & Veterinary Science (AL4AnimalS), Lisboa, 1300-477, Portugal
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, Porto, 4050-313, Portugal
- Associate Laboratory for Animal & Veterinary Science (AL4AnimalS), Lisboa, 1300-477, Portugal
| | - Alícia Moreira
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, Porto, 4050-313, Portugal
- Associate Laboratory for Animal & Veterinary Science (AL4AnimalS), Lisboa, 1300-477, Portugal
| | - Luís Atayde
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, Porto, 4050-313, Portugal
- Associate Laboratory for Animal & Veterinary Science (AL4AnimalS), Lisboa, 1300-477, Portugal
| | - António Salgado
- Life & Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal
- ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Stefano Geuna
- Department of Clinical & Biological Sciences, & Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, Orbassano, Turin, 10043, Italy
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, Porto, 4050-313, Portugal
- Associate Laboratory for Animal & Veterinary Science (AL4AnimalS), Lisboa, 1300-477, Portugal
| |
Collapse
|
20
|
Liu B, Alimi OA, Wang Y, Kong Y, Kuss M, Krishnan MA, Hu G, Xiao Y, Dong J, DiMaio DJ, Duan B. Differentiated mesenchymal stem cells-derived exosomes immobilized in decellularized sciatic nerve hydrogels for peripheral nerve repair. J Control Release 2024; 368:24-41. [PMID: 38367864 PMCID: PMC11411504 DOI: 10.1016/j.jconrel.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Peripheral nerve injury (PNI) and the limitations of current treatments often result in incomplete sensory and motor function recovery, which significantly impact the patient's quality of life. While exosomes (Exo) derived from stem cells and Schwann cells have shown promise on promoting PNI repair following systemic administration or intraneural injection, achieving effective local and sustained Exo delivery holds promise to treat local PNI and remains challenging. In this study, we developed Exo-loaded decellularized porcine nerve hydrogels (DNH) for PNI repair. We successfully isolated Exo from differentiated human adipose-derived mesenchymal stem cells (hADMSC) with a Schwann cell-like phenotype (denoted as dExo). These dExo were further combined with polyethylenimine (PEI), and DNH to create polyplex hydrogels (dExo-loaded pDNH). At a PEI content of 0.1%, pDNH showed cytocompatibility for hADMSCs and supported neurite outgrowth of dorsal root ganglions. The sustained release of dExos from dExo-loaded pDNH persisted for at least 21 days both in vitro and in vivo. When applied around injured nerves in a mouse sciatic nerve crush injury model, the dExo-loaded pDNH group significantly improved sensory and motor function recovery and enhanced remyelination compared to dExo and pDNH only groups, highlighting the synergistic regenerative effects. Interestingly, we observed a negative correlation between the number of colony-stimulating factor-1 receptor (CSF-1R) positive cells and the extent of PNI regeneration at the 21-day post-surgery stage. Subsequent in vitro experiments demonstrated the potential involvement of the CSF-1/CSF-1R axis in Schwann cells and macrophage interaction, with dExo effectively downregulating CSF-1/CSF-1R signaling.
Collapse
Affiliation(s)
- Bo Liu
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Olawale A Alimi
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yanfei Wang
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mena Asha Krishnan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yi Xiao
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jixin Dong
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dominick J DiMaio
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
21
|
Dai Y, Lu T, Li L, Zhang F, Xu H, Li H, Wang W, Shao M, Lyu F. Electrospun Composite PLLA-PPSB Nanofiber Nerve Conduits for Peripheral Nerve Defects Repair and Regeneration. Adv Healthc Mater 2024; 13:e2303539. [PMID: 38233357 DOI: 10.1002/adhm.202303539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/24/2023] [Indexed: 01/19/2024]
Abstract
Peripheral nerve injury (PNI) is a common clinical problem and regenerating peripheral nerve defects remain a significant challenge. Poly(polyol sebacate) (PPS) polymers are developed as promising materials for biomedical applications due to their biodegradability, biocompatibility, elastomeric properties, and ease of production. However, the application of PPS-based biomaterials in nerve tissue engineering, especially in PNI repair, is limited. In this study, PPS-based composite nanofibers poly(l-lactic acid)-poly(polycaprolactone triol-co-sebacic acid-co-N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid sodium salt) (PLLA-PPSB) are aimed to construct through electrospinning and assess their in vitro biocompatibility with Schwann cells (SCs) and in vivo repair capabilities for peripheral nerve defects. For the first time, the biocompatibility and bioactivity of PPS-based nanomaterial are examined at the molecular, cellular, and animal levels for PNI repair. Electrospun PLLA-PPSB nanofibers display favorable physicochemical properties and biocompatibility, providing an effective interface for the proliferation, glial expression, and adhesion of SCs in vitro. In vivo experiments using a 10-mm rat sciatic nerve defect model show that PLLA-PPSB nanofiber nerve conduits enhance myelin formation, axonal regeneration, angiogenesis, and functional recovery. Transcriptome analysis and biological validation indicate that PLLA-PPSB nanofibers may promote SC proliferation by activating the PI3K/Akt signaling pathway. This suggests the promising potential of PLLA-PPSB nanomaterial for PNI repair.
Collapse
Affiliation(s)
- Yuan Dai
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Tingwei Lu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 210000, China
| | - Linli Li
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Fan Zhang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Haocheng Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hailong Li
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Weizhong Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Minghao Shao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Feizhou Lyu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| |
Collapse
|
22
|
Hwang CD, Hoftiezer YAJ, Raasveld FV, Gomez-Eslava B, van der Heijden EPA, Jayakar S, Black BJ, Johnston BR, Wainger BJ, Renthal W, Woolf CJ, Eberlin KR. Biology and pathophysiology of symptomatic neuromas. Pain 2024; 165:550-564. [PMID: 37851396 DOI: 10.1097/j.pain.0000000000003055] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/07/2023] [Indexed: 10/19/2023]
Abstract
ABSTRACT Neuromas are a substantial cause of morbidity and reduction in quality of life. This is not only caused by a disruption in motor and sensory function from the underlying nerve injury but also by the debilitating effects of neuropathic pain resulting from symptomatic neuromas. A wide range of surgical and therapeutic modalities have been introduced to mitigate this pain. Nevertheless, no single treatment option has been successful in completely resolving the associated constellation of symptoms. While certain novel surgical techniques have shown promising results in reducing neuroma-derived and phantom limb pain, their effectiveness and the exact mechanism behind their pain-relieving capacities have not yet been defined. Furthermore, surgery has inherent risks, may not be suitable for many patients, and may yet still fail to relieve pain. Therefore, there remains a great clinical need for additional therapeutic modalities to further improve treatment for patients with devastating injuries that lead to symptomatic neuromas. However, the molecular mechanisms and genetic contributions behind the regulatory programs that drive neuroma formation-as well as the resulting neuropathic pain-remain incompletely understood. Here, we review the histopathological features of symptomatic neuromas, our current understanding of the mechanisms that favor neuroma formation, and the putative contributory signals and regulatory programs that facilitate somatic pain, including neurotrophic factors, neuroinflammatory peptides, cytokines, along with transient receptor potential, and ionotropic channels that suggest possible approaches and innovations to identify novel clinical therapeutics.
Collapse
Affiliation(s)
- Charles D Hwang
- Division of Plastic and Reconstructive Surgery, Department of General Surgery, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| | - Yannick Albert J Hoftiezer
- Hand and Arm Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, United States
- Department of Plastic, Reconstructive and Hand Surgery, Radboudumc, Nijmegen, the Netherlands
| | - Floris V Raasveld
- Hand and Arm Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, United States
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Barbara Gomez-Eslava
- Hand and Arm Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, United States
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - E P A van der Heijden
- Department of Plastic, Reconstructive and Hand Surgery, Radboudumc, Nijmegen, the Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Jeroen Bosch Ziekenhuis, Den Bosch, the Netherlands
| | - Selwyn Jayakar
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Bryan James Black
- Department of Biomedical Engineering, UMass Lowell, Lowell, MA, United States
| | - Benjamin R Johnston
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, United States
| | - Brian J Wainger
- Departments of Anesthesia, Critical Care & Pain Medicine and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Kyle R Eberlin
- Division of Plastic and Reconstructive Surgery, Department of General Surgery, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| |
Collapse
|
23
|
Guo A, Zhang S, Yang R, Sui C. [Not Available]. Mater Today Bio 2024; 24:100939. [PMID: 38249436 PMCID: PMC10797197 DOI: 10.1016/j.mtbio.2023.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Gelatin methacrylate (GelMA) hydrogels have gained significant traction in diverse tissue engineering applications through the utilization of 3D printing technology. As an artificial hydrogel possessing remarkable processability, GelMA has emerged as a pioneering material in the advancement of tissue engineering due to its exceptional biocompatibility and degradability. The integration of 3D printing technology facilitates the precise arrangement of cells and hydrogel materials, thereby enabling the creation of in vitro models that simulate artificial tissues suitable for transplantation. Consequently, the potential applications of GelMA in tissue engineering are further expanded. In tissue engineering applications, the mechanical properties of GelMA are often modified to overcome the hydrogel material's inherent mechanical strength limitations. This review provides a comprehensive overview of recent advancements in enhancing the mechanical properties of GelMA at the monomer, micron, and nano scales. Additionally, the diverse applications of GelMA in soft tissue engineering via 3D printing are emphasized. Furthermore, the potential opportunities and obstacles that GelMA may encounter in the field of tissue engineering are discussed. It is our contention that through ongoing technological progress, GelMA hydrogels with enhanced mechanical strength can be successfully fabricated, leading to the production of superior biological scaffolds with increased efficacy for tissue engineering purposes.
Collapse
Affiliation(s)
- Ao Guo
- Department of Trauma and Pediatric Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 231200, China
| | - Shengting Zhang
- Department of Trauma and Pediatric Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 231200, China
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Cong Sui
- Department of Trauma and Pediatric Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 231200, China
| |
Collapse
|
24
|
Ikeguchi R, Aoyama T, Noguchi T, Ushimaru M, Amino Y, Nakakura A, Matsuyama N, Yoshida S, Nagai-Tanima M, Matsui K, Arai Y, Torii Y, Miyazaki Y, Akieda S, Matsuda S. Peripheral nerve regeneration following scaffold-free conduit transplant of autologous dermal fibroblasts: a non-randomised safety and feasibility trial. COMMUNICATIONS MEDICINE 2024; 4:12. [PMID: 38278956 PMCID: PMC10817910 DOI: 10.1038/s43856-024-00438-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND The use of Bio 3D nerve conduits is a promising approach for peripheral nerve reconstruction. This study aimed to assess their safety in three patients with peripheral nerve defects in their hands. METHODS We describe a single institution, non-blinded, non-randomised control trial conducted at Kyoto University Hospital. Eligibility criteria included severed peripheral nerve injuries or a defect in the region distal to the wrist joint not caused by a congenital anomaly; a defect with a length of ≤20 mm in a nerve with a diameter ≤2 mm; failed results of sensory functional tests; ability to register in the protocol within 6 months from the day of injury; refusal of artificial nerve or autologous nerve transplantation; age 20-60 years; and willingness to participate and provide informed written consent. Six weeks before transplantation, skin was harvested, dermal fibroblasts were isolated and expanded, and Bio 3D nerve conduits were created using a Bio 3D printer. Bio 3D nerve conduits were transplanted into the patients' nerve defects. The safety of Bio 3D nerve conduits in patients with a peripheral nerve injury in the distal part of the wrist joint were assessed over a 48-week period after transplantation. RESULTS No adverse events related to the use of Bio 3D nerve conduits were observed in any patient, and all three patients completed the trial. CONCLUSIONS Bio 3D nerve conduits were successfully used for clinical nerve reconstruction without adverse events and are a possible treatment option for peripheral nerve injuries.
Collapse
Affiliation(s)
- Ryosuke Ikeguchi
- Department of Rehabilitation Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Tomoki Aoyama
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Noguchi
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mika Ushimaru
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Yoko Amino
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Akiyoshi Nakakura
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Noriko Matsuyama
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Shiori Yoshida
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Momoko Nagai-Tanima
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiko Matsui
- Center for Research and Application of Cellular Therapy, Kyoto University Hospital, Kyoto, Japan
| | - Yasuyuki Arai
- Center for Research and Application of Cellular Therapy, Kyoto University Hospital, Kyoto, Japan
| | | | | | | | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
25
|
Zou X, Dong Y, Alhaskawi A, Zhou H, Ezzi SHA, Kota VG, Abdulla MHAH, Abdalbary SA, Lu H, Wang C. Techniques and graft materials for repairing peripheral nerve defects. Front Neurol 2024; 14:1307883. [PMID: 38318237 PMCID: PMC10839026 DOI: 10.3389/fneur.2023.1307883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/15/2023] [Indexed: 02/07/2024] Open
Abstract
Peripheral nerve defects refer to damage or destruction occurring in the peripheral nervous system, typically affecting the limbs and face. The current primary approaches to address peripheral nerve defects involve the utilization of autologous nerve transplants or the transplantation of artificial material. Nevertheless, these methods possess certain limitations, such as inadequate availability of donor nerve or unsatisfactory regenerative outcomes post-transplantation. Biomaterials have been extensively studied as an alternative approach to promote the repair of peripheral neve defects. These biomaterials include both natural and synthetic materials. Natural materials consist of collagen, chitosan, and silk, while synthetic materials consist of polyurethane, polylactic acid, and polycaprolactone. Recently, several new neural repair technologies have also been developed, such as nerve regeneration bridging technology, electrical stimulation technology, and stem cell therapy technology. Overall, biomaterials and new neural repair technologies provide new methods and opportunities for repairing peripheral nerve defects. However, these methods still require further research and development to enhance their effectiveness and feasibility.
Collapse
Affiliation(s)
- Xiaodi Zou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Haiying Zhou
- Faculty of Medicine, The Chinese University of Hong Kong School of Biomedical Science, Shatin, China
| | | | | | | | - Sahar Ahmed Abdalbary
- Department of Orthopedic Physical Therapy, Faculty of Physical Therapy, Nahda University in Beni Suef, Beni Suef, Egypt
| | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, China
| | - Changxin Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
26
|
Kunisaki A, Kodama A, Ishikawa M, Ueda T, Lima MD, Kondo T, Adachi N. Oxidation-treated carbon nanotube yarns accelerate neurite outgrowth and induce axonal regeneration in peripheral nerve defect. Sci Rep 2023; 13:21799. [PMID: 38066058 PMCID: PMC10709329 DOI: 10.1038/s41598-023-48534-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Carbon nanotubes (CNTs) have the potential to promote peripheral nerve regeneration, although with limited capacity and foreign body reaction. This study investigated whether CNTs hydrophilized by oxidation can improve peripheral nerve regeneration and reduce foreign body reactions and inflammation. Three different artificial nerve conduit models were created using CNTs treated with ozone (O group), strong acid (SA group), and untreated (P group). They were implanted into a rat sciatic nerve defect model and evaluated after 8 and 16 weeks. At 16 weeks, the SA group showed significant recovery in functional and electrophysiological evaluations compared with the others. At 8 weeks, histological examination revealed a significant increase in the density of regenerated neurofilament and decreased foreign body giant cells in the SA group compared with the others. Oxidation-treated CNTs improved biocompatibility, induced nerve regeneration, and inhibited foreign-body reactions.
Collapse
Affiliation(s)
- Atsushi Kunisaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akira Kodama
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takahiro Ueda
- Nano-Science and Technology Center, LINTEC OF AMERICA, INC., Richardson, USA
| | - Marcio D Lima
- Nano-Science and Technology Center, LINTEC OF AMERICA, INC., Richardson, USA
| | - Takeshi Kondo
- Nano-Science and Technology Center, LINTEC OF AMERICA, INC., Richardson, USA
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
27
|
Allgood JE, Bittner GD, Bushman JS. Repair and regeneration of peripheral nerve injuries that ablate branch points. Neural Regen Res 2023; 18:2564-2568. [PMID: 37449590 DOI: 10.4103/1673-5374.373679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The peripheral nervous system has an extensive branching organization, and peripheral nerve injuries that ablate branch points present a complex challenge for clinical repair. Ablations of linear segments of the PNS have been extensively studied and routinely treated with autografts, acellular nerve allografts, conduits, wraps, and nerve transfers. In contrast, segmental-loss peripheral nerve injuries, in which one or more branch points are ablated so that there are three or more nerve endings, present additional complications that have not been rigorously studied or documented. This review discusses: (1) the branched anatomy of the peripheral nervous system, (2) case reports describing how peripheral nerve injuries with branched ablations have been surgically managed, (3) factors known to influence regeneration through branched nerve structures, (4) techniques and models of branched peripheral nerve injuries in animal models, and (5) conclusions regarding outcome measures and studies needed to improve understanding of regeneration through ablated branched structures of the peripheral nervous system.
Collapse
Affiliation(s)
- JuliAnne E Allgood
- Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY, USA
| | - George D Bittner
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Jared S Bushman
- Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
28
|
Zhang X, Ma Y, Chen Z, Jiang H, Fan Z. Implantable Nerve Conduit Made of a Self-Powered Microneedle Patch for Sciatic Nerve Repair. Adv Healthc Mater 2023; 12:e2301729. [PMID: 37531233 DOI: 10.1002/adhm.202301729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/11/2023] [Indexed: 08/04/2023]
Abstract
Peripheral nerve defects, particularly those of a larger size, pose a significant challenge in clinical practice due to their limited regenerative capacity. To tackle this challenge, an advanced self-powered enzyme-linked microneedle (MN) nerve conduit is designed and fabricated. This innovative conduit is composed of anodic and cathodic MN arrays, which contain glucose oxidase (GOx) and horseradish peroxidase (HRP) encapsulated in ZIF-8 nanoparticles, respectively. Through an enzymatic cascade reaction, this MN nerve conduit generates microcurrents that stimulate the regeneration of muscles, blood vessels, and nerve fibers innervated by the sciatic nerve, eventually accelerating the repair of sciatic nerve injury. It is clear that this self-powered MN nerve conduit will revolutionize traditional treatment methods for sciatic nerve injury and find widespread application in the field of nerve tissue repair.
Collapse
Affiliation(s)
- Xiangli Zhang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Gansu Province, Lanzhou, 730000, P. R. China
| | - Yuanya Ma
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Gansu Province, Lanzhou, 730000, P. R. China
| | - Ziyan Chen
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Gansu Province, Lanzhou, 730000, P. R. China
| | - Hong Jiang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Gansu Province, Lanzhou, 730000, P. R. China
| | - Zengjie Fan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Gansu Province, Lanzhou, 730000, P. R. China
| |
Collapse
|
29
|
Shermetaro J, Hernandez R, Valk J, McCall D, Lumley C. Near-Complete Transection of the Sciatic Nerve After Closed Reduction Attempt of a Dislocated Total Hip Arthroplasty. Cureus 2023; 15:e51131. [PMID: 38274906 PMCID: PMC10810627 DOI: 10.7759/cureus.51131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 01/27/2024] Open
Abstract
Sciatic nerve injuries are rare and devastating complications that can occur following total hip dislocations. These injuries are even more uncommon when resulting from a closed reduction attempt. In the literature, only one other case of sciatic nerve palsy secondary to sciatic nerve laceration has been reported. Conducting a careful neurovascular examination following a closed reduction procedure is crucial in determining the presence of sciatic nerve injury. We present a case of sciatic nerve palsy following a closed reduction attempt of a dislocated total hip arthroplasty (THA). Surgical exploration revealed a near-complete sciatic nerve laceration. The patient subsequently underwent neurolysis and nerve repair. This case highlights the importance of thorough neuromuscular examination following closed reduction of THA, with consideration for surgical exploration when necessary.
Collapse
Affiliation(s)
- Jacob Shermetaro
- Orthopedic Surgery, Corewell Health Farmington Hills, Farmington Hills, USA
| | - Ricardo Hernandez
- Orthopedic Surgery, Corewell Health Farmington Hills, Farmington Hills, USA
| | - Josiah Valk
- Orthopedic Surgery, Corewell Health Farmington Hills, Farmington Hills, USA
| | - Daniel McCall
- Orthopedic Surgery, Corewell Health Farmington Hills, Farmington Hills, USA
| | - Christopher Lumley
- Plastic Surgery, Corewell Health Farmington Hills, Farmington Hills, USA
| |
Collapse
|
30
|
Gadani A, Rabhi C, Forli A. Radial nerve lesion after medial epicondyle osteosynthesis in a pediatric patient: A rare complication of surgery. HAND SURGERY & REHABILITATION 2023; 42:451-454. [PMID: 37482276 DOI: 10.1016/j.hansur.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Fractures of the medial epicondyle are relatively common in children and may be associated with nerve lesion, especially in case of displacement. Incarceration of the ulnar nerve in the fracture site is feared in Watson-Jones stage II, rarely directly related to osteosynthesis. Depending on the degree of fracture displacement, various osteosynthesis techniques may be used; nerve injuries are a rare but known complication of these procedures. We report a case of radial nerve injury related to pinning osteosynthesis of a medial epicondyle fracture.
Collapse
Affiliation(s)
- Anaëlle Gadani
- Pediatric Orthopedic Department, Grenoble Alpes University, Grenoble Alpes University Hospital, 38043 Grenoble Cedex 09, France.
| | - Camille Rabhi
- Pediatric Orthopedic Department, Grenoble Alpes University, Grenoble Alpes University Hospital, 38043 Grenoble Cedex 09, France
| | - Alexandra Forli
- Plastic and Reconstructive Surgery, Hand Surgery Unit, Grenoble Alpes University Hospital, 38043 Grenoble Cedex 09, France
| |
Collapse
|
31
|
Zhang Y, Hou N, Zhang J, Xie B, Liang J, Chang X, Wang K, Tang X. Treatment options for digital nerve injury: a systematic review and meta-analysis. J Orthop Surg Res 2023; 18:675. [PMID: 37700356 PMCID: PMC10496177 DOI: 10.1186/s13018-023-04076-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/04/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Surgical treatment of finger nerve injury is common for hand trauma. However, there are various surgical options with different functional outcomes. The aims of this study are to compare the outcomes of various finger nerve surgeries and to identify factors associated with the postsurgical outcomes via a systematic review and meta-analysis. METHODS The literature related to digital nerve repairs were retrieved comprehensively by searching the online databases of PubMed from January 1, 1965, to August 31, 2021. Data extraction, assessment of bias risk and the quality evaluation were then performed. Meta-analysis was performed using the postoperative static 2-point discrimination (S2PD) value, moving 2-point discrimination (M2PD) value, and Semmes-Weinstein monofilament testing (SWMF) good rate, modified Highet classification of nerve recovery good rate. Statistical analysis was performed using the R (V.3.6.3) software. The random effects model was used for the analysis. A systematic review was also performed on the other influencing factors especially the type of injury and postoperative complications of digital nerve repair. RESULTS Sixty-six studies with 2446 cases were included in this study. The polyglycolic acid conduit group has the best S2PD value (6.71 mm), while the neurorrhaphy group has the best M2PD value (4.91 mm). End-to-side coaptation has the highest modified Highet's scoring (98%), and autologous nerve graft has the highest SWMF (91%). Age, the size of the gap, and the type of injury were factors that may affect recovery. The type of injury has an impact on the postoperative outcome of neurorrhaphy. Complications reported in the studies were mainly neuroma, cold sensitivity, paresthesia, postoperative infection, and pain. CONCLUSION Our study demonstrated that the results of surgical treatment of digital nerve injury are generally satisfactory; however, no nerve repair method has absolute advantages. When choosing a surgical approach to repair finger nerve injury, we must comprehensively consider various factors, especially the gap size of the nerve defect, and postoperative complications. Type of study/level of evidence Therapeutic IV.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning China
- Department of Hand and Foot Surgery, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, Shandong China
| | - Nianzong Hou
- Department of Hand and Foot Surgery, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, Shandong China
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China
| | - Jian Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning China
| | - Bing Xie
- Department of Hand and Foot Surgery, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, Shandong China
| | - Jiahui Liang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning China
| | - Xiaohu Chang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning China
| | - Kai Wang
- Department of Critical Care Medicine, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, Shandong China
| | - Xin Tang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning China
| |
Collapse
|
32
|
Xiao H, Wei C, Liu H, Li Z, Zheng C, Luo J. Lentinan alleviates sciatic nerve injury by promoting autophagy to remove myelin fragments. Phytother Res 2023; 37:4042-4058. [PMID: 37165703 DOI: 10.1002/ptr.7862] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
Lentinan, a natural drug with wide-ranging pharmacological activities, can regulate autophagy-the process through which Schwann cells (SCs) eliminate myelin fragments after peripheral nerve injury (PNI). However, the effect of lentinan after PNI and the role of accelerated myelin debris removal via autophagy in this process are unclear. This study examined the effect of lentinan on rat sciatic nerve repair following crush injury and the underlying mechanisms. After the successful establishment of the sciatic nerve compression injury model, group-specific treatments were performed. The treatment group received 20 mg/kg lentinan via intraperitoneal injection, while the model group was treated with normal saline. The recovery in each group was then evaluated. Further, a rat SC line (RSC96) was cultured in medium with/without lentinan after supplementation with homogenous myelin fractions to evaluate the removal of myelin particles. Our results showed that lentinan promotes autophagic flux in vivo via the AMPK/mTOR signaling pathway, accelerates the clearance of myelin debris by SCs, and inhibits neuronal apoptosis, thereby promoting neurological recovery. Similarly, in vitro experiments showed that lentinan promotes the phagocytosis of myelin debris by SCs. In conclusion, our results suggest that lentinan primarily promotes nerve regeneration by accelerating the autophagic clearance of myelin debris in SCs, and this process is likely regulated by the AMPK/mTOR signaling pathway. Therefore, this study provides compelling evidence that lentinan may be a cost-effective and natural treatment agent for PNI.
Collapse
Affiliation(s)
- Haili Xiao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chao Wei
- Department of Hepatobiliary surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huiying Liu
- Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiqiang Li
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cihua Zheng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
33
|
Chen L, Song X, Yao Z, Zhou C, Yang J, Yang Q, Chen J, Wu J, Sun Z, Gu L, Ma Y, Lee SJ, Zhang C, Mao HQ, Sun L. Gelatin nanofiber-reinforced decellularized amniotic membrane promotes axon regeneration and functional recovery in the surgical treatment of peripheral nerve injury. Biomaterials 2023; 300:122207. [PMID: 37352606 DOI: 10.1016/j.biomaterials.2023.122207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
Effective recovery of peripheral nerve injury (PNI) after surgical treatment relies on promoting axon regeneration and minimizing the fibrotic response. Decellularized amniotic membrane (dAM) has unique features as a natural matrix for promoting PNI repair due to its pro-regenerative extracellular matrix (ECM) structure and anti-inflammatory properties. However, the fragile nature and rapid degradation rate of dAM limit its widespread use in PNI surgery. Here we report an engineered composite membrane for PNI repair by combining dAM with gelatin (Gel) nanofiber membrane to construct a Gel nanofiber-dAM composite membrane (Gel-dAM) through interfacial bonding. The Gel-dAM showed enhanced mechanical properties and reduced degradation rate, while retaining maximal bioactivity and biocompatibility of dAM. These factors led to improved axon regeneration, reduced fibrotic response, and better functional recovery in PNI repair. As a fully natural materials-derived off-the-shelf matrix, Gel-dAM exhibits superior clinical translational potential for the surgical treatment of PNI.
Collapse
Affiliation(s)
- Long Chen
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550000, China; The Lab of Tissue Engineering and Translational Medicine, College of Medicine, Guizhou University, Guiyang, Guizhou, 550000, China
| | - Xiongbo Song
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550000, China; The Lab of Tissue Engineering and Translational Medicine, College of Medicine, Guizhou University, Guiyang, Guizhou, 550000, China
| | - Zhicheng Yao
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Conglai Zhou
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550000, China; The Lab of Tissue Engineering and Translational Medicine, College of Medicine, Guizhou University, Guiyang, Guizhou, 550000, China
| | - Junjun Yang
- The Lab of Tissue Engineering and Translational Medicine, College of Medicine, Guizhou University, Guiyang, Guizhou, 550000, China
| | - Qiming Yang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550000, China; The Lab of Tissue Engineering and Translational Medicine, College of Medicine, Guizhou University, Guiyang, Guizhou, 550000, China
| | - Junrong Chen
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550000, China; The Lab of Tissue Engineering and Translational Medicine, College of Medicine, Guizhou University, Guiyang, Guizhou, 550000, China
| | - Jiarui Wu
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550000, China; The Lab of Tissue Engineering and Translational Medicine, College of Medicine, Guizhou University, Guiyang, Guizhou, 550000, China
| | - Zeyu Sun
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550000, China
| | - Liling Gu
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550000, China
| | - Yi Ma
- The Lab of Tissue Engineering and Translational Medicine, College of Medicine, Guizhou University, Guiyang, Guizhou, 550000, China
| | - Shin-Jae Lee
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Chi Zhang
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Hai-Quan Mao
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Li Sun
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550000, China; The Lab of Tissue Engineering and Translational Medicine, College of Medicine, Guizhou University, Guiyang, Guizhou, 550000, China.
| |
Collapse
|
34
|
Li L, Chen S, Yokoyama H, Kaburagi H, Hirai T, Tsuji K, Enomoto M, Wakabayashi Y, Okawa A. Remodeling of Neuromuscular Junctions in Target Muscle Following Nerve Regeneration in Mice After Delayed Peripheral Nerve Repair. Neuroscience 2023; 524:197-208. [PMID: 37201862 DOI: 10.1016/j.neuroscience.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Peripheral nerve injury (PNI) induces severe functional loss in extremities. Progressive denervation and atrophy occur in the muscles if the nerve repair is delayed for long periods of the time. To overcome these difficulties, detailed mechanisms should be determined for neuromuscular junction (NMJ) degeneration in target muscles after PNI and regeneration after nerve repair. We established two models of end-to-end neurorrhaphy and allogeneic nerve grafting in the chronic phase after common peroneal nerve injury in female mice (n = 100 in total). We evaluated motor function, histology, and gene expression in the target muscles during their regeneration processes and compared the models. We found that the functional recovery with allogeneic nerve grafting was superior to that with end-to-end neurorrhaphy, and the number of reinnervated NMJs and Schwann cells was increased at 12 weeks after allograft. In addition, NMJ- and Schwann cell-related molecules showed high expression in the target muscle in the allograft model. These results suggest that Schwann cell migrating from the allograft might play a crucial role in nerve regeneration in the chronic phase after PNI. The relationship between the NMJ and Schwann cells should be further investigated in the target muscle.
Collapse
Affiliation(s)
- Leyang Li
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan; Department of Traumatic Orthopaedics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
| | - Su Chen
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan.
| | - Hiroyuki Yokoyama
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan.
| | - Hidetoshi Kaburagi
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan.
| | - Takashi Hirai
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan.
| | - Kunikazu Tsuji
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Mitsuhiro Enomoto
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan.
| | - Yoshiaki Wakabayashi
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan.
| | - Atsushi Okawa
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan.
| |
Collapse
|
35
|
Salles M, Horikawa F, Allegrini Jr S, Zangrando D, Yoshimoto M, Shinohara E. Clinical evaluation of the perception of post-trauma paresthesia in the mandible, using a biomimetic material: A preliminary study in humans. Heliyon 2023; 9:e18304. [PMID: 37520975 PMCID: PMC10382299 DOI: 10.1016/j.heliyon.2023.e18304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
There is a great effort from numerous research groups in the development of materials and therapeutic strategies for the functional recovery of patients who have suffered peripheral nerve injuries (PNI). In an article in vivo, the formation of a nerve bridge was observed, reconnecting the distal and proximal stumps, in the sciatic nerve of rats, indicating the effective participation of the biomaterial in the recovery of peripheral nerve injuries. For the current pilot study, 15 cases of multiple fractures of the mandible, with involvement of the inferior alveolar nerve (IAN) were selected and studied: JC (control cases) n = 6 with conventional treatment, and JT (treated cases) n = 9, with the use of biomimetic biomaterial. The evaluation of the return to sensitivity was measured through a self-assessment, where the patients assigned scores from 0 to 10, where zero (0) represented the complete absence of sensitivity and ten (10) the normality of the perception of local sensitivity. Patients were evaluated from the preoperative period to the 360th day. The statistical results obtained by the t-Student, Shapiro-Wilk normality and non-parametric One-Way ANOVA tests indicated statistically significant differences (p < 0.005; 0.005 e 0.5 respectively), between the two treatments, which were reflected in the clinical results observed, we also calculate the size of the effect represented by ϵ2, calculated by Cohen's d. The results indicate a great difference between the treatments performed,ϵ2 = 1.00. In the 6 cases followed up in the JC group, four remained with a significant deficit until the end of the evaluations and two indicated the remission of the lack of sensitivity in this period. In the JT group, in 28 days, all cases indicated complete remission of the lack of sensitivity with healing concentration. In one of the cases where there was a complete rupture of the mental nerve, the (score-10) was observed in 60 days. The observed results indicate the existence of a statistical significance between the groups and an important relationship when using the biomimetic biomaterial during the recovery of the perception of sensitivity in polytraumatized patients, compatible with the results observed in laboratory animals, which may indicate its clinical feasibility in the reduction of sequelae in PNI.
Collapse
Affiliation(s)
| | - F.K. Horikawa
- Depart. Oral and Maxillofac. Surg. Hospital Regional de Osasco SUS, São Paulo, Brazil
| | - S. Allegrini Jr
- Program in Biodentistry, Ibirapuera University (UNIB), São Paulo, SP, 04661 100, Brazil
- Católica Portuguesa University (UCP), Viseu, Portugal
| | - D. Zangrando
- Depart. Oral and Maxillofac. Surg. Hospital Regional de Osasco SUS, São Paulo, Brazil
- Department of Surgery Stomatology Pathology and Radiology of the Faculty of Dentistry of Bauru, University of São Paulo (FOB-USP) Bauru, São Paulo, Brazil
| | | | - E.H. Shinohara
- Depart. Oral and Maxillofac. Surg. Hospital Regional de Osasco SUS, São Paulo, Brazil
| |
Collapse
|
36
|
Lin JS, Jain SA. Challenges in Nerve Repair and Reconstruction. Hand Clin 2023; 39:403-415. [PMID: 37453767 DOI: 10.1016/j.hcl.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Peripheral nerve injuries may substantially impair a patient's function and quality of life. Despite appropriate treatment, outcomes often remain poor. Direct repair remains the standard of care when repair is possible without excessive tension. For larger nerve defects, nerve autografting is the gold standard. However, a considerable challenge is donor site morbidity. Processed nerve allografts and conduits are other options, but evidence supporting their use is limited to smaller nerves and shorter gaps. Nerve transfer is another technique that has seen increasing popularity. The future of care may include novel biologics and pharmacologic therapy to enhance regeneration.
Collapse
Affiliation(s)
- James S Lin
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, 241 West 11th Avenue, Suite 6081, Columbus, OH 43201, USA
| | - Sonu A Jain
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, 3rd Floor, Suite 3200, Columbus, OH 43212, USA.
| |
Collapse
|
37
|
Takeya H, Itai S, Kimura H, Kurashina Y, Amemiya T, Nagoshi N, Iwamoto T, Sato K, Shibata S, Matsumoto M, Onoe H, Nakamura M. Schwann cell-encapsulated chitosan-collagen hydrogel nerve conduit promotes peripheral nerve regeneration in rodent sciatic nerve defect models. Sci Rep 2023; 13:11932. [PMID: 37488180 PMCID: PMC10366170 DOI: 10.1038/s41598-023-39141-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023] Open
Abstract
Chitosan has various tissue regeneration effects. This study was designed to investigate the nerve regeneration effect of Schwann cell (SC)-encapsulated chitosan-collagen hydrogel nerve conduit (CCN) transplanted into a rat model of sciatic nerve defect. We prepared a CCN consisting of an outer layer of chitosan hydrogel and an inner layer of collagen hydrogel to encapsulate the intended cells. Rats with a 10-mm sciatic nerve defect were treated with SCs encapsulated in CCN (CCN+), CCN without SCs (CCN-), SC-encapsulated silicone tube (silicone+), and autologous nerve transplanting (auto). Behavioral and histological analyses indicated that motor functional recovery, axonal regrowth, and myelination of the CCN+ group were superior to those of the CCN- and silicone+ groups. Meanwhile, the CCN- and silicone+ groups showed no significant differences in the recovery of motor function and nerve histological restoration. In conclusion, SC-encapsulated CCN has a synergistic effect on peripheral nerve regeneration, especially axonal regrowth and remyelination of host SCs. In the early phase after transplantation, SC-encapsulated CCNs have a positive effect on recovery. Therefore, using SC-encapsulated CCNs may be a promising approach for massive peripheral nerve defects.
Collapse
Affiliation(s)
- Hiroaki Takeya
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Shun Itai
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama-Shi, Kanagawa, 223-8522, Japan
- Division of Medical Science, Graduate School of Biomedical Engineering, Tohoku University, 1-1 Seiryomachi, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan
| | - Hiroo Kimura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan.
| | - Yuta Kurashina
- Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-Shi, Tokyo, 184-8588, Japan
| | - Tsuyoshi Amemiya
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Takuji Iwamoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Kazuki Sato
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, Japan
| | - Shinsuke Shibata
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Hiroaki Onoe
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama-Shi, Kanagawa, 223-8522, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
| |
Collapse
|
38
|
Frostadottir D, Chemnitz A, Johansson OT LJ, Holst J, Dahlin LB. Evaluation of Processed Nerve Allograft in Peripheral Nerve Surgery: A Systematic Review and Critical Appraisal. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e5088. [PMID: 37383478 PMCID: PMC10299771 DOI: 10.1097/gox.0000000000005088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/05/2023] [Indexed: 06/30/2023]
Abstract
Peripheral nerve injuries cause substantial problems when not treated properly. A specific problem is reconstruction of nerve defects, which can be treated in different ways. This study aimed to systematically review whether processed nerve allograft (PNA) is justified in reconstruction of a nerve defect in patients after posttraumatic or iatrogenic peripheral nerve injury and to compare PNA with other established methods. Methods A systematic review with a focused question, PICO (patient, intervention, comparison, outcome) and constraints, was performed. A structured literature search, including several databases, was done to evaluate the existing evidence for outcomes and postoperative complications related to PNA. The certainty of evidence was classified according to Grading of Recommendations, Assessment, Development and Evaluations. Results No conclusions, concerning differences in outcome of nerve reconstruction using PNA compared with the use of nerve autograft or conduits, could be drawn. The level of certainty for all evaluated outcomes was very low (⊕◯◯◯). Most published studies lack a control group to patients treated with PNA; being only descriptive, making it difficult to compare PNA with established methods without substantial risk of bias. For studies including a control group, the scientific evidence was of very low certainty, due to a low number of included patients, and large, undefined loss of patients during follow-up, rendering a high risk of bias. Finally, the authors often had financial disclosures. Conclusion Properly conducted randomized controlled trial studies on the use of PNA in reconstruction of peripheral nerve injuries are needed to establish recommendations in clinical practice.
Collapse
Affiliation(s)
- Drifa Frostadottir
- From the Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
- Department of Translational Medicine—Hand Surgery, Lund University, Malmö, Sweden
| | - Anette Chemnitz
- From the Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
| | | | - Jan Holst
- Department of Vascular Disease, Skåne University Hospital, Malmö, Sweden
- Department of Research and Education, HTA syd, Skåne University Hospital, Lund, Sweden
| | - Lars B. Dahlin
- From the Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
- Department of Translational Medicine—Hand Surgery, Lund University, Malmö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
39
|
Zarrintaj P, Seidi F, Youssefi Azarfam M, Khodadadi Yazdi M, Erfani A, Barani M, Chauhan NPS, Rabiee N, Kuang T, Kucinska-Lipka J, Saeb MR, Mozafari M. Biopolymer-based composites for tissue engineering applications: A basis for future opportunities. COMPOSITES PART B: ENGINEERING 2023; 258:110701. [DOI: 10.1016/j.compositesb.2023.110701] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
40
|
Calabrò S, Kankowski S, Cescon M, Gambarotta G, Raimondo S, Haastert-Talini K, Ronchi G. Impact of Gut Microbiota on the Peripheral Nervous System in Physiological, Regenerative and Pathological Conditions. Int J Mol Sci 2023; 24:ijms24098061. [PMID: 37175764 PMCID: PMC10179357 DOI: 10.3390/ijms24098061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
It has been widely demonstrated that the gut microbiota is responsible for essential functions in human health and that its perturbation is implicated in the development and progression of a growing list of diseases. The number of studies evaluating how the gut microbiota interacts with and influences other organs and systems in the body and vice versa is constantly increasing and several 'gut-organ axes' have already been defined. Recently, the view on the link between the gut microbiota (GM) and the peripheral nervous system (PNS) has become broader by exceeding the fact that the PNS can serve as a systemic carrier of GM-derived metabolites and products to other organs. The PNS as the communication network between the central nervous system and the periphery of the body and internal organs can rather be affected itself by GM perturbation. In this review, we summarize the current knowledge about the impact of gut microbiota on the PNS, with regard to its somatic and autonomic divisions, in physiological, regenerative and pathological conditions.
Collapse
Affiliation(s)
- Sonia Calabrò
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Svenja Kankowski
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Kirsten Haastert-Talini
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Center for Systems Neuroscience Hannover (ZSN), Buenteweg 2, 30559 Hannover, Germany
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| |
Collapse
|
41
|
Perrelle JM, Boreland AJ, Gamboa JM, Gowda P, Murthy NS. Biomimetic Strategies for Peripheral Nerve Injury Repair: An Exploration of Microarchitecture and Cellularization. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023; 1:21-37. [PMID: 38343513 PMCID: PMC10857769 DOI: 10.1007/s44174-022-00039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/14/2022] [Indexed: 02/15/2024]
Abstract
Injuries to the nervous system present formidable challenges to scientists, clinicians, and patients. While regeneration within the central nervous system is minimal, peripheral nerves can regenerate, albeit with limitations. The regenerative mechanisms of the peripheral nervous system thus provide fertile ground for clinical and scientific advancement, and opportunities to learn fundamental lessons regarding nerve behavior in the context of regeneration, particularly the relationship of axons to their support cells and the extracellular matrix environment. However, few current interventions adequately address peripheral nerve injuries. This article aims to elucidate areas in which progress might be made toward developing better interventions, particularly using synthetic nerve grafts. The article first provides a thorough review of peripheral nerve anatomy, physiology, and the regenerative mechanisms that occur in response to injury. This is followed by a discussion of currently available interventions for peripheral nerve injuries. Promising biomaterial fabrication techniques which aim to recapitulate nerve architecture, along with approaches to enhancing these biomaterial scaffolds with growth factors and cellular components, are then described. The final section elucidates specific considerations when developing nerve grafts, including utilizing induced pluripotent stem cells, Schwann cells, nerve growth factors, and multilayered structures that mimic the architectures of the natural nerve.
Collapse
Affiliation(s)
- Jeremy M. Perrelle
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Andrew J. Boreland
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Graduate Program in Molecular Biosciences, Rutgers University, Piscataway, NJ, USA
| | - Jasmine M. Gamboa
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Prarthana Gowda
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - N. Sanjeeva Murthy
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
42
|
Ceran F, Pilanci O, Ozel A, Ilbay G, Karabacak R, Kanter M, Ilbay K, Kuvat SV. Use of acellular dermal matrix in peripheral nerve reconstruction: an experimental study on rat sciatic nerve defect. J Plast Surg Hand Surg 2023; 57:445-452. [PMID: 36476277 DOI: 10.1080/2000656x.2022.2152824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND In patients with nerve tissue defects, the use of autologous nerve grafts is the standard method of treatment. Alternatives to autologous, nerve grafts have attracted the attention of reconstructive surgeons. In this study, the results of nerve repairs using acellular dermal matrix (ADM) in an experimental rat sciatic nerve defect model are presented. METHODS Thirty-six Sprague-Dawley rats were randomized into 5 groups: Group 1: control group, Group 2: negative control group (n = 6), Group 3: autologous nerve graft group (n = 10), Group 4: donor site entubulated with ADM group (n = 10); and Group 5: nerve graft entubulated with ADM group (n = 10). The animals in each group were evaluated for electrophysiologic functions, gastrocnemius muscle weight and histomorphology on the 3rd and 6th month. RESULTS The compound muscle action potential was observed to be distinctly lower in Groups 3, 4 and 5 in comparison to the control group. In Group 4, the gastrocnemius ratio (GCR) values on the 6th month were statistically significantly lower than the GCR values in Group 3 and Group 5, The histological scores and myelinated axonal counts in Group 5 were statistically significantly higher than the values in Group 3 and Group 4. CONCLUSION The results of this study showed that wrapping ADM around nerve grafts resulted in better outcomes with respect to nerve healing.
Collapse
Affiliation(s)
- Fatih Ceran
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medicalpark Hospital, Batman, Turkey
| | - Ozgur Pilanci
- Department of Plastic, Reconstructive and Aesthetic Surgery, Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Asuman Ozel
- Department of Plastic, Reconstructive and Aesthetic Surgery, Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Gul Ilbay
- Faculty of Medicine, Department of Physiology, Kocaeli University, Kocaeli, Turkey
| | - Rukiye Karabacak
- Faculty of Medicine, Department of Histology, Medeniyet University, Istanbul, Turkey
| | - Mehmet Kanter
- Faculty of Medicine, Department of Histology, Medeniyet University, Istanbul, Turkey
| | - Konuralp Ilbay
- Faculty of Medicine, Department of Neurosurgery, Kocaeli University, Kocaeli, Turkey
| | - Samet Vasfi Kuvat
- Department of Plastic, Reconstructive and Aesthetic Surgery, Bagcilar Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
43
|
Pham TB, Greene JJ. Reducing Risk in Facial Reanimation Surgery. Facial Plast Surg Clin North Am 2023; 31:297-305. [PMID: 37001932 DOI: 10.1016/j.fsc.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Facial reanimation surgery can greatly improve quality of life, but these procedures are not without risk. Important considerations for risk reduction in facial reanimation surgery include preoperative risk-stratification, protecting patients' clinical media, clearly and thoroughly setting expectations, and intraoperative strategies to maximize technical success and minimize operative time.
Collapse
Affiliation(s)
- Tammy B Pham
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, 9350 Campus Point Drive, La Jolla, CA 92037, USA
| | - Jacqueline J Greene
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, 9350 Campus Point Drive, La Jolla, CA 92037, USA.
| |
Collapse
|
44
|
Grisdela PT, Ostergaard PJ, Watkins CJ, Bauer AS. Nerve Transfers in the Lower Extremity. JOURNAL OF THE PEDIATRIC ORTHOPAEDIC SOCIETY OF NORTH AMERICA 2023; 5:605. [PMID: 40433077 PMCID: PMC12088151 DOI: 10.55275/jposna-2023-605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 05/29/2025]
Abstract
The utilization of nerve transfer procedures in the upper extremity following brachial plexus injury, trauma, spinal cord injury, tumors, infection, or other etiologies are well established. Nerve injuries in the lower extremity pose several additional challenges, including longer distance to target motor end plates, delayed presentation, and concomitant limb trauma. Nerve transfers in the lower extremity have the potential to provide functional (sensory or motor) recovery distally after direct surgical coaptation of a functional donor nerve to a non-functional recipient nerve. The ability to perform pure motor or sensory fascicular transfers allows for focused recovery while limiting donor morbidity. Indications for nerve transfers in the lower extremity are evolving, but transfers have been utilized for non-recovering peroneal, obturator, femoral, or tibial nerve palsies, to provide protective sensation to the plantar aspect of the foot as well as for painful neuropathies/neuromas. There is a paucity of orthopaedic literature on this topic and our review aims to highlight the current state of lower extremity nerve transfers as they relate to the practicing orthopaedist, including future directions in the field. Key Concepts •Nerve transfers have been well-established as a treatment option for nerve injuries of the upper extremity and brachial plexus, but their use in the lower extremities is less common.•Nerve transfers may be of particular interest in the lower extremity because of the ability to cover relatively long distances as well as avoid the zone of injury, especially in far proximal injuries.•Nerve transfers of the lower extremity have been used to address motor deficit of the peroneal, femoral, obturator, and tibial nerves, as well as tibial and sural nerve sensory loss.•There is currently a paucity of orthopaedic literature on lower extremity nerve transfers and further understanding is required to better utilize these techniques to manage lower extremity peripheral nerve injury.
Collapse
Affiliation(s)
- Phillip T. Grisdela
- Boston Children's Hospital, Department of Orthopedics, Harvard Medical School, Boston, MA
| | - Peter J. Ostergaard
- Northwestern Memorial Hospital, Department of Orthopaedic Surgery, Feinberg School of Medicine, Chicago, IL
| | - Colyn J. Watkins
- Boston Children's Hospital, Department of Orthopedics, Harvard Medical School, Boston, MA
| | - Andrea S. Bauer
- Boston Children's Hospital, Department of Orthopedics, Harvard Medical School, Boston, MA
| |
Collapse
|
45
|
Yount M, Peruri A, Morgan A, Zahed M, Fritz V, Simmons Z, Millard J, Redden DT, Reina MA, Roballo KCS. Morphology and morphometry of the human obturator nerve in males and females. Anat Histol Embryol 2023; 52:490-499. [PMID: 36692228 DOI: 10.1111/ahe.12905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Peripheral nerve injury and the nerves' subsequent repair and regeneration continues to be marked clinically by poor functional recovery. The analysis of nerve morphology is an aspect which may provide an impact on successful clinical outcomes through better prediction of donor and recipient matching. In this study, we evaluated the morphological aspects of the human obturator nerve for a better understanding of its potential in nerve transplantation. Morphological characteristics of donor obturator nerves were analysed, including nerve diameter and length, fascicle count and the ratio of neural to non-neural tissue present within the cross-sectional area of the nerve's epineurium, with respect to laterality and sex. Statistical significance (p < 0.10) was determined for male obturator nerves having an average diameter of 2.67 mm compared to female obturator nerves at 1.91 mm, as well as left obturator nerves having an average of 11.21 fascicles compared to the right having an average of 10.17 fascicles. Strong positive correlations were determined between cross-sectional nerve area and limb size index, as well as between percentage of non-neural tissue and area of non-neural tissue, among males. Separately, strong correlation between percentage of non-neural tissue and area of non-neural tissue among right obturator nerves in males and females was determined . These findings indicate that there are associations and predictions that can be made about nerve morphology and that these when combined with other patient characteristics may enhance patient functional recovery following a peripheral nerve's repair.
Collapse
Affiliation(s)
- Mason Yount
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Alekhya Peruri
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Alexandra Morgan
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Malek Zahed
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Virginia Fritz
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Zachary Simmons
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Jonathan Millard
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - David T Redden
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Miguel Angel Reina
- CEU-San-Pablo University School of Medicine, Madrid, Spain.,Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Kelly C S Roballo
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA.,Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
46
|
Ronchi G, Fregnan F, Muratori L, Gambarotta G, Raimondo S. Morphological Methods to Evaluate Peripheral Nerve Fiber Regeneration: A Comprehensive Review. Int J Mol Sci 2023; 24:1818. [PMID: 36768142 PMCID: PMC9915436 DOI: 10.3390/ijms24031818] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Regeneration of damaged peripheral nerves remains one of the main challenges of neurosurgery and regenerative medicine, a nerve functionality is rarely restored, especially after severe injuries. Researchers are constantly looking for innovative strategies for tackling this problem, with the development of advanced tissue-engineered nerve conduits and new pharmacological and physical interventions, with the aim of improving patients' life quality. Different evaluation methods can be used to study the effectiveness of a new treatment, including functional tests, morphological assessment of regenerated nerve fibers and biomolecular analyses of key factors necessary for good regeneration. The number and diversity of protocols and methods, as well as the availability of innovative technologies which are used to assess nerve regeneration after experimental interventions, often makes it difficult to compare results obtained in different labs. The purpose of the current review is to describe the main morphological approaches used to evaluate the degree of nerve fiber regeneration in terms of their usefulness and limitations.
Collapse
Affiliation(s)
| | | | | | | | - Stefania Raimondo
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, 10043 Torino, TO, Italy
| |
Collapse
|
47
|
Al-Arbeed TA, Renno WM, Al-Hassan JM. Neuroregeneration of injured peripheral nerve by fraction B of catfish epidermal secretions through the reversal of the apoptotic pathway and DNA damage. Front Pharmacol 2023; 14:1085314. [PMID: 36726586 PMCID: PMC9885176 DOI: 10.3389/fphar.2023.1085314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023] Open
Abstract
Introduction: Crush injuries occur from acute traumatic nerve compression resulting in different degrees of neural damage leading to permanent functional deficits. Recently, we have shown that administration of Fraction B (FB) derived from catfish epidermal secretions accelerates healing of damaged nerve in a sciatic nerve crush injury, as it ameliorates the neurobehavioral deficits and enhances axonal regeneration, as well as protects spinal neurons and increases astrocytic activity and decreasing GAP-43 expression. The present study aimed to investigate the role of FB treatment on the apoptotic pathway in the neuroregeneration of the sciatic nerve crush injury. Methods: Male Wistar rats were randomly assigned into five groups: (I) SHAM, (II) CRUSH, (III) CRUSH + (1.5 mg/kg) FB, (IV) CRUSH + (3 mg/kg) FB, and (V) CRUSH + (4.5 mg/kg) FB. Rats underwent sciatic nerve crush surgery, followed by treatment with FB administered intraperitoneally (IP) daily for two weeks and then sacrificed at the end of the fourth week. Results: FB improved the recovery of neurobehavioral functions with a concomitant increase in axonal regeneration and neuroprotective effects on spinal cord neurons following crush injury. Further, FB enhanced Schwann cells (SCs) proliferation with a significant increase in myelin basic protein expression. FB-treated animals demonstrated higher numbers of neurons in the spinal cord, possibly through ameliorating oxidative DNA damage and alleviating the mitochondrial-dependent apoptotic pathway by inhibiting the release of cytochrome c and the activation of caspase-3 in the spinal cord neurons. Conclusion: FB alleviates the neurodegenerative changes in the lumbar spinal cord neurons and recovers the decrease in the neuronal count through its anti-apoptotic and DNA antioxidative properties.
Collapse
Affiliation(s)
- Taiba A. Al-Arbeed
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Waleed M. Renno
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait,*Correspondence: Waleed M. Renno,
| | - Jassim M. Al-Hassan
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
48
|
Reshamwala R, Shah M. Regenerative Approaches in the Nervous System. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
49
|
Pereira DE, Desai MJ. Nerves in Continuity Following Hand Trauma: A Descriptive Report. Hand (N Y) 2023; 18:126S-132S. [PMID: 34963376 PMCID: PMC9896280 DOI: 10.1177/15589447211064362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Understanding the clinical presentation of nontransected nerve injuries in acute hand trauma/wrist trauma will help in early intervention, which is vital for maximizing return of function in patients. This retrospective study evaluated patients who experienced traumatic hand injuries with nerve in continuity within the zone of injury. METHODS This was a single-center retrospective chart review of 20 patients with hand or wrist trauma resulting in damage to bone, tendon, or soft tissues within Zones II to V. Patients were 18 to 70 years of age and had documented visualization of at least one nerve within the zone of injury at the time of surgery but no documented full or partial nerve transection. The cohort was characterized using descriptive statistics including mechanism of injury, extent of strength and sensation deficits, and outcomes. Resolution of symptoms was defined as full, partial, or none. RESULTS Of the 20 patients included in the study, 15 patients (75%) showed symptoms of impaired nerve function either prior to surgery or at the first post-surgical follow-up visit. Without direct nerve treatment, only 23% (3/13) of patients experienced full recovery based on qualitative sensory assessment. However, patients reporting pain after surgery (57%; 8/14) showed full recovery from pain despite no direct nerve treatment. CONCLUSIONS In our retrospective cohort of patients with hand/wrist trauma that presented with an intact nerve in continuity, we found that a majority showed symptoms of nerve injury. Further, these patients showed slow recovery over time with a minority achieving partial or full recovery or improvement in pain.
Collapse
Affiliation(s)
| | - Mihir J. Desai
- Vanderbilt University Medical Center,
Nashville, TN, USA
| |
Collapse
|
50
|
Han N, Zhang W, Fang XX, Li QC, Pi W. Reduced graphene oxide-embedded nerve conduits loaded with bone marrow mesenchymal stem cell-derived extracellular vesicles promote peripheral nerve regeneration. Neural Regen Res 2023. [PMID: 35799543 PMCID: PMC9241414 DOI: 10.4103/1673-5374.343889] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We previously combined reduced graphene oxide (rGO) with gelatin-methacryloyl (GelMA) and polycaprolactone (PCL) to create an rGO-GelMA-PCL nerve conduit and found that the conductivity and biocompatibility were improved. However, the rGO-GelMA-PCL nerve conduits differed greatly from autologous nerve transplants in their ability to promote the regeneration of injured peripheral nerves and axonal sprouting. Extracellular vesicles derived from bone marrow mesenchymal stem cells (BMSCs) can be loaded into rGO-GelMA-PCL nerve conduits for repair of rat sciatic nerve injury because they can promote angiogenesis at the injured site. In this study, 12 weeks after surgery, sciatic nerve function was measured by electrophysiology and sciatic nerve function index, and myelin sheath and axon regeneration were observed by electron microscopy, immunohistochemistry, and immunofluorescence. The regeneration of microvessel was observed by immunofluorescence. Our results showed that rGO-GelMA-PCL nerve conduits loaded with BMSC-derived extracellular vesicles were superior to rGO-GelMA-PCL conduits alone in their ability to increase the number of newly formed vessels and axonal sprouts at the injury site as well as the recovery of neurological function. These findings indicate that rGO-GelMA-PCL nerve conduits loaded with BMSC-derived extracellular vesicles can promote peripheral nerve regeneration and neurological function recovery, and provide a new direction for the curation of peripheral nerve defect in the clinic.
Collapse
|