1
|
Karavasili C, Young T, Francis J, Blanco J, Mancini N, Chang C, Bernstock JD, Connolly ID, Shankar GM, Traverso G. Local drug delivery challenges and innovations in spinal neurosurgery. J Control Release 2024; 376:1225-1250. [PMID: 39505215 DOI: 10.1016/j.jconrel.2024.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
The development of novel therapeutics in the field of spinal neurosurgery faces a litany of translational challenges. Achieving precise drug targeting within the confined spaces associated with the spinal cord, canal and vertebra requires the development of next generation delivery systems and devices. These must be capable of overcoming inherent barriers related to drug diffusion, whilst concurrently ensuring optimal drug distribution and retention. In this review, we provide an overview of the most recent advances in the therapeutic management of diseases and disorders affecting the spine, including systems and devices capable of releasing small molecules and biopharmaceuticals that help eliminate pain and restore the mechanical function and stability of the spine. We highlight material-based approaches and minimally invasive techniques that can be employed to provide control over drug release kinetics and improve retention. We also seek to explore how the newest advancements in nanotechnology, biomaterials, additive manufacturing technologies and imaging modalities can be employed in this translational pursuit. Finally, we discuss the landscape of clinical trials and recently approved products aimed at overcoming the complexities associated with drug delivery to the spine.
Collapse
Affiliation(s)
- Christina Karavasili
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas Young
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua Francis
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Julianna Blanco
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nicholas Mancini
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Charmaine Chang
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua D Bernstock
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ian D Connolly
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ganesh M Shankar
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Giovanni Traverso
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States; Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
2
|
Tsuchiya K, Okano I, Dodo Y, Hayakawa C, Yamamura R, Maruyama H, Yasukawa T, Shirahata T, Kudo Y. Postoperative decrease in Hounsfield unit values at adjacent vertebrae after thoraco-pelvic fusion as a risk factor of proximal junctional kyphosis. J Orthop Res 2024; 42:2575-2581. [PMID: 38924116 DOI: 10.1002/jor.25924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Proximal junctional kyphosis and failure is a common complication of adult spinal deformity surgery, with osteoporosis as a risk factor. This retrospective study investigated the influence of long thoracolumbar fusion with pelvic fixation on regional bone density of adjacent vertebrae (Hounsfield units on computed tomography) and evaluated the association between bone loss and the incidence of proximal junctional kyphosis and failure. Patients who underwent long thoracolumbar fusion (pelvis to T10 or above) or single-level posterior lumbar interbody fusion (control group) between 2016 and 2022 were recruited. Routine computed tomography preoperatively and within 1-2 weeks postoperatively was performed. Postoperative changes in Hounsfield unit values in the vertebrae at one and two levels above the uppermost instrumented vertebrae (UIV + 1 and UIV + 2) were evaluated. Overall, 127 patients were recruited: 45 long fusion (age, 73.9 ± 5.6 years) and 82 proximal junctional kyphosis and failure (age, 72.5 ± 9.3 years). Postoperative computed tomography was performed at a median [interquartile range] of 3.0 [1.0-7.0] and 4.0 [1.0-7.0] days, respectively. In both groups, Hounsfield unit values at UIV + 2 were significantly decreased postoperatively. In the long-fusion group, Hounsfield unit values at UIV + 1 and UIV + 2 were significantly lower in patients with proximal junctional kyphosis and failure (within 18 months postoperatively) than in those without proximal junctional kyphosis and failure. Proximal junctional kyphosis and failure and long thoraco-pelvic fusion negatively affect regional Hounsfield unit values at adjacent levels immediately after surgery. Patients with subsequent proximal junctional kyphosis and failure show greater postoperative bone loss at adjacent levels than those without.
Collapse
Affiliation(s)
- Koki Tsuchiya
- Department of Orthopaedic Surgery, Showa University School of Medicine, Shinagawa, Japan
| | - Ichiro Okano
- Department of Orthopaedic Surgery, Showa University School of Medicine, Shinagawa, Japan
| | - Yusuke Dodo
- Department of Orthopaedic Surgery, Showa University School of Medicine, Shinagawa, Japan
| | - Chikara Hayakawa
- Department of Orthopaedic Surgery, Showa University School of Medicine, Shinagawa, Japan
| | - Ryo Yamamura
- Department of Orthopaedic Surgery, Showa University School of Medicine, Shinagawa, Japan
| | - Hiroshi Maruyama
- Department of Orthopaedic Surgery, Showa University School of Medicine, Shinagawa, Japan
| | - Taiki Yasukawa
- Department of Orthopaedic Surgery, Showa University Koto Toyosu Hospital, Koto, Japan
| | - Toshiyuki Shirahata
- Department of Orthopaedic Surgery, Showa University Koto Toyosu Hospital, Koto, Japan
| | - Yoshifumi Kudo
- Department of Orthopaedic Surgery, Showa University School of Medicine, Shinagawa, Japan
| |
Collapse
|
3
|
Tateiwa D, Iwamoto M, Kodama J, Ukon Y, Hirai H, Ikuta M, Kitahara T, Furuichi T, Bun M, Otsuru S, Okada S, Kaito T. A synthetic retinoic acid receptor γ antagonist (7C)-loaded nanoparticle enhances bone morphogenetic protein-induced bone regeneration in a rat spinal fusion model. Spine J 2024; 24:899-908. [PMID: 38092193 PMCID: PMC11610515 DOI: 10.1016/j.spinee.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/19/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND CONTEXT Bone morphogenetic proteins (BMPs) have potent osteoinductivity and have been applied clinically for challenging musculoskeletal conditions. However, the supraphysiological doses of BMPs used in clinical settings cause various side effects that prevent widespread use, and therefore the BMP dosage needs to be reduced. PURPOSE To address this problem, we synthesized 7C, a retinoic acid receptor γ antagonist-loaded nanoparticle (NP), and investigated its potential application in BMP-based bone regeneration therapy using a rat spinal fusion model. STUDY DESIGN An experimental animal study. METHODS Fifty-three male 8-week-old Sprague-Dawley rats underwent posterolateral spinal fusion and were divided into the following five treatment groups: (1) no recombinant human (rh)BMP-2 and blank-NP (Control), (2) no rhBMP-2 and 1 μg 7C-NP (7C group), (3) low-dose rhBMP-2 (0.5 μg) and 1 μg blank-NP (L-BMP group), (4) low-dose rhBMP-2 (0.5 μg) and 1 μg 7C-NP (L-BMP + 7C group), and (5) high-dose rhBMP-2 (5.0 μg) and 1 μg blank-NP (H-BMP group). Micro-computed tomography and histologic analysis were performed 2 and 6 weeks after the surgery. RESULTS The spinal fusion rates of the Control and 7C groups were both 0%, and those of the L-BMP, L-BMP + 7C, and H-BMP groups were 55.6%, 94.4%, and 100%, respectively. The L-BMP + 7C group markedly promoted cartilaginous tissue formation during BMP-induced endochondral bone formation that resulted in a significantly better spinal fusion rate and bone formation than in the L-BMP group. Although spinal fusion was slower in the L-BMP + 7C group, the L-BMP + 7C group formed a spinal fusion mass with better bone quality than the spinal fusion mass in the H-BMP group. CONCLUSIONS The combined use of 7C-NP with rhBMP-2 in a rat posterolateral lumbar fusion model increased spinal fusion rate and new bone volume without deteriorating the quality of newly formed bone. CLINICAL SIGNIFICANCE 7C-NP potentiates BMP-2-induced bone regeneration and has the potential for efficient bone regeneration with low-dose BMP-2, which can reduce the dose-dependent side effects of BMP-2 in clinical settings.
Collapse
Affiliation(s)
- Daisuke Tateiwa
- Department of Orthopaedic Surgery, Osaka General Medical Center, 3-1-56, Mandaihigashi, Sumiyoshi, Osaka, Japan
| | - Masahiro Iwamoto
- Department of Orthopaedic, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, USA
| | - Joe Kodama
- Department of Orthopaedic, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, USA
| | - Yuichiro Ukon
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiromasa Hirai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masato Ikuta
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kitahara
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takuya Furuichi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masayuki Bun
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoru Otsuru
- Department of Orthopaedic, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, USA
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
4
|
Kim YH, Lee JS, Ha KY, Kim SI, Jung HY, Kim GU, Joh Y, Park HY. Application of Escherichia coli-Derived Recombinant Human Bone Morphogenic Protein-2 to Unstable Spinal Fractures. Bioengineering (Basel) 2023; 10:1114. [PMID: 37892844 PMCID: PMC10604299 DOI: 10.3390/bioengineering10101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Recently, Escherichia coli-derived recombinant human bone morphogenetic protein-2 (E. coli-derived rhBMP-2) has been increasingly applied to different types of spinal surgeries and reported to achieve successful fusion. This pilot study aimed to evaluate the clinical efficacy and safety of rhBMP-2 in patients undergoing posterior instrumented fusions for unstable spinal fractures. (2) Methods: This study included ten consecutive patients undergoing spinal surgery using E. coli-derived rhBMP-2 with more than one year of follow-up. Radiologic outcomes were compared, including the average fracture healing period, local kyphosis correction, and clinical outcomes between preoperative and the last follow-up. (3) Results: The average time of radiographic union was 99.9 ± 45.4 (62-192) days, with an average use of 5.2 ± 3.9 months of anabolic agents. Radiologic parameters such as anterior vertebral height and vertebral wedge angle were significantly corrected postoperatively and at the last follow-up. Clinical outcomes other than leg pain were significantly improved after the surgery. In addition, four patients with preoperative neurologic deficits showed improved neurologic status. (4) Conclusions: Combined with the anabolic agents, applying E. coli-derived rhBMP-2 to the fractured vertebral body could be an effective surgical treatment for unstable spinal fractures. Further trials are needed to validate this result.
Collapse
Affiliation(s)
- Young-Hoon Kim
- Department of Orthopedic Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.-H.K.)
| | - Jun-Seok Lee
- Department of Orthopedic Surgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Kee-Yong Ha
- Department of Orthopedic Surgery, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Sang-Il Kim
- Department of Orthopedic Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.-H.K.)
| | - Ho-Young Jung
- Department of Orthopedic Surgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Geon-U Kim
- Department of Orthopedic Surgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Yongwon Joh
- Department of Orthopedic Surgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Hyung-Youl Park
- Department of Orthopedic Surgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| |
Collapse
|
5
|
Broussolle T, Roux JP, Chapurlat R, Barrey C. Murine models of posterolateral spinal fusion: A systematic review. Neurochirurgie 2023; 69:101428. [PMID: 36871885 DOI: 10.1016/j.neuchi.2023.101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Rodent models are commonly used experimentally to assess treatment effectiveness in spinal fusion. Certain factors are associated with better fusion rates. The objectives of the present study were to report the protocols most frequently used, to evaluate factors known to positively influence fusion rate, and to identify new factors. METHOD A systematic literature search of PubMed and Web of Science found 139 experimental studies of posterolateral lumbar spinal fusion in rodent models. Data for level and location of fusion, animal strain, sex, weight and age, graft, decortication, fusion assessment and fusion and mortality rates were collected and analyzed. RESULTS The standard murine model for spinal fusion was male Sprague Dawley rats of 295g weight and 13 weeks' age, using decortication, with L4-L5 as fusion level. The last two criteria were associated with significantly better fusion rates. On manual palpation, the overall mean fusion rate in rats was 58% and the autograft mean fusion rate was 61%. Most studies evaluated fusion as a binary on manual palpation, and only a few used CT and histology. Average mortality was 3.03% in rats and 1.56% in mice. CONCLUSIONS These results suggest using a rat model, younger than 10 weeks and weighing more than 300 grams on the day of surgery, to optimize fusion rates, with decortication before grafting and fusing the L4-L5 level.
Collapse
Affiliation(s)
- T Broussolle
- Department of Spine Surgery, P. Wertheimer University Hospital, GHE, hospices civils de Lyon, université Claude-Bernard Lyon 1, Lyon, France; Inserm UMR 1033, université Claude-Bernard Lyon 1, Lyon, France.
| | - Jean-Paul Roux
- Inserm UMR 1033, université Claude-Bernard Lyon 1, Lyon, France
| | - R Chapurlat
- Inserm UMR 1033, université Claude-Bernard Lyon 1, Lyon, France
| | - C Barrey
- Department of Spine Surgery, P. Wertheimer University Hospital, GHE, hospices civils de Lyon, université Claude-Bernard Lyon 1, Lyon, France; Arts et métiers ParisTech, ENSAM, 151, boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
6
|
Advances in bone regeneration with growth factors for spinal fusion: A literature review. NORTH AMERICAN SPINE SOCIETY JOURNAL 2022; 13:100193. [PMID: 36605107 PMCID: PMC9807829 DOI: 10.1016/j.xnsj.2022.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Bone tissue is regenerated via the spatiotemporal involvement of various cytokines. Among them, the bone morphogenetic protein (BMP), which plays a vital role in the bone regeneration process, has been applied clinically for the treatment of refractory orthopedic conditions. Although BMP therapy using a collagen carrier has shown efficiency in bone regeneration over the last two decades, a major challenge-considerable side effects associated with the acute release of high doses of BMPs-has also been revealed. To improve BMP efficiency, the development of new carriers and biologics that can be used in conjunction with BMPs is currently underway. In this review, we describe the current status and future prospects of bone regeneration therapy, with a focus on BMPs. Furthermore, we outline the characteristics and molecular signaling pathways involving BMPs, clinical applications of BMPs in orthopedics, clinical results of BMP use in human spinal surgeries, drugs combined with BMPs to provide synergistic effects, and novel BMP carriers.
Collapse
|
7
|
Abe T, Miyazaki M, Ishihara T, Kanezaki S, Tsubouchi Y, Tsumura H. Optimal intermittent administration interval of parathyroid hormone 1-34 for bone morphogenetic protein-induced bone formation in a rat spinal fusion model. JOR Spine 2021; 4:e1168. [PMID: 34611590 PMCID: PMC8479526 DOI: 10.1002/jsp2.1168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Both bone morphogenetic protein 2 (BMP-2) and teriparatide (parathyroid hormone [PTH] 1-34) are used to enhance bone healing. There is still no established opinion regarding the optimum dose and administration method. We investigated the optimal administration method for the combination of BMP-2 and PTH 1-34 in a rat spinal fusion model. METHODS Group I was implanted with a control carrier. Groups II, III, and IV were implanted with a carrier containing 3 μg of recombinant human BMP-2 (rhBMP-2). In addition, following implantation, PTH 1-34 injections were administered to Group III thrice a week (total, 180 μg/kg/week) and Group IV six times a week (total, 180 μg/kg/week). The rats were euthanized after 8 weeks, and their spines were explanted; assessed by manual palpation, radiographs, and high-resolution micro-computed tomography (micro-CT); and subjected to histological analysis. Serum markers of bone metabolism were also analyzed. RESULTS Manual palpation tests showed that the fusion rates in Groups III and IV were considerably higher than those in Group I. They also had higher radiographic scores than Group I and II. Micro-CT analysis revealed Tb.Th in the Group IV had higher values than that in the Group I, II, III with significant differences and Tb.Sp in the Group IV had lower values than that in the Group I, II, III with significant differences. Serum marker analysis revealed that Group IV had higher osteocalcin and lower tartrate-resistant acid phosphatase-5b than Group III. Histological analysis indicated that Group IV had enhanced trabecular bone structure. CONCLUSIONS Frequent administration of PTH may be better in making thicker and strengthening the trabecular bone structure in newly formed bone in the rat spinal fusion model using insufficient BMP-2.
Collapse
Affiliation(s)
- Tetsutaro Abe
- Faculty of Medicine, Department of Orthopedic SurgeryOita UniversityOitaJapan
| | - Masashi Miyazaki
- Faculty of Medicine, Department of Orthopedic SurgeryOita UniversityOitaJapan
| | - Toshinobu Ishihara
- Faculty of Medicine, Department of Orthopedic SurgeryOita UniversityOitaJapan
| | - Shozo Kanezaki
- Faculty of Medicine, Department of Orthopedic SurgeryOita UniversityOitaJapan
| | | | - Hiroshi Tsumura
- Faculty of Medicine, Department of Orthopedic SurgeryOita UniversityOitaJapan
| |
Collapse
|
8
|
Drakopoulos P, Flevas DA, Galanopoulos IP, Lepetsos P, Zafeiris C. Off-Label Use of Teriparatide in Spine. Cureus 2021; 13:e16522. [PMID: 34430132 PMCID: PMC8376240 DOI: 10.7759/cureus.16522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 11/12/2022] Open
Abstract
Teriparatide belongs to osteo-anabolic compounds and has been used in recent years to treat patients with osteoporosis, with the benefits of increased bone density. Its osteo-anabolic action has led to the investigation of the use of teriparatide for the improvement of bone quality. Apart from the enhancement of fracture union, teriparatide has been extensively studied in the promotion of fusion rate after spinal fusion. This study summarizes the preclinical and clinical results of the off-label use of teriparatide in the spine, and specifically its intermittent administration after instrumented spinal arthrodesis along with its impact on the spinal bone quality and spinal bone mineral density.
Collapse
Affiliation(s)
- Panagiotis Drakopoulos
- Laboratory for the Research of the Musculoskeletal System, University of Athens, KAT Hospital, Athens, GRC.,Orthopaedics, Thriasio General Hospital, Athens, GRC
| | - Dimitrios A Flevas
- Arthroscopy and Orthopaedic Surgery, Metropolitan General Hospital, Athens, GRC
| | | | | | - Christos Zafeiris
- Orthopaedics and Spine Surgery, Metropolitan General Hospital, Athens, GRC
| |
Collapse
|
9
|
A novel BMP-2-loaded hydroxyapatite/beta-tricalcium phosphate microsphere/hydrogel composite for bone regeneration. Sci Rep 2021; 11:16924. [PMID: 34413442 PMCID: PMC8376985 DOI: 10.1038/s41598-021-96484-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022] Open
Abstract
Although bone morphogenetic protein (BMP) has potent osteoinductivity, the potential adverse events attributed to its burst release prevent its widespread clinical application. Therefore, there is a strong need for BMP delivery systems that maximize osteoinductivity while preventing adverse effects. We evaluated the bone-regenerating potential of NOVOSIS putty (NP), a novel composite combining hydroxyapatite, beta-tricalcium phosphate microsphere/poloxamer 407-based hydrogel, and recombinant human (rh) BMP-2. In vitro assessment of release kinetics by enzyme-linked immunosorbent assay demonstrated sustained release of rhBMP-2 from NP and burst release from collagen sponge (CS), and in vivo assessment of release kinetics by longitudinal tracking of fluorescently labeled rhBMP-2 showed a longer biological half-life of rhBMP-2 with NP than with CS. Furthermore, osteogenic gene expression in MC3T3-E1 cells was significantly higher after co-culture with NP than after co-culture with CS, suggesting that the sustained release of rhBMP-2 from NP effectively contributed to the differentiation of osteoblasts. In a rat spinal fusion model, the volume and quality of newly formed bone was higher in the NP group than in the CS group. Use of NP results in efficient bone regeneration through sustained release of rhBMP-2 and improves the quality of BMP-induced bone.
Collapse
|
10
|
Kouketsu A, Matsui K, Kawai T, Ezoe Y, Takahashi T, Kamakura S. Teriparatide with octacalcium phosphate collagen composite stimulates osteogenic factors. Tissue Eng Part A 2021; 28:125-135. [PMID: 34278819 DOI: 10.1089/ten.tea.2021.0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Octacalcium phosphate and collagen composite (OCPcol) promotes osteogenic differentiation and angiogenesis, thereby enhancing bone regeneration. Although a newly developed freeze-dried composite of OCPcol and teriparatide (OCPcolTPTD) reinforced bone regeneration more than OCPcol, the mechanism of bone regeneration remains unresolved. Here, disks containing OCPcolTPTD, OCPcol, or β-tricalcium phosphate (β-TCP) col were inserted into rodents with calvarial bone defects, before euthanasia 4 weeks later. Immunohistochemical and histochemical analyses were performed on bone samples to evaluate bone matrix development, angiogenesis, and osteoclast and osteoblast localization. In the OCPcolTPTD and OCPcol groups, bone regeneration was observed at the surface of calvarial dura mater and around acidophilic granular cells with abundant collagenous fiber-containing cells. Furthermore, the newly formed bone in the OCPcolTPTD group showed a larger total area and individual separated area than the other groups. Various osteogenic proteins were detected in the regenerated bone and peri-bone tissues via histochemistry and immunohistochemistry. Although the expression of several osteogenic biomarkers in the OCPcolTPTD group after 4 weeks of implantation was significantly lower than that in the OCPcol group, new bone formation by OCPcolTPTD in the center of the defect, where bone regeneration is difficult, tended to be superior to that by OCPcol. These results suggest that OCPcolTPTD enhanced bone regeneration more evenly and homogenously than OCPcol.
Collapse
Affiliation(s)
- Atsumu Kouketsu
- Tohoku University Graduate School of Dentistry School of Dentistry, 89292, Division of Oral and Maxillofacial Surgery, Department of Oral Medicine and Surgery, 4-1 Seiryo-machi, Aoba-ku, Sendai, Japan, 980-8575;
| | - Keiko Matsui
- Tohoku University Graduate School of Dentistry, Division of Oral and Maxillofacial Surgery, Sendai, Miyagi, Japan;
| | | | - Yushi Ezoe
- Tohoku University Graduate School of Dentistry, Division of Oral and Maxillofacial Surgery, Sendai, Japan;
| | - Tetsu Takahashi
- Tohoku University Graduate School of Dentistry, Division of Oral and Maxillofacial Surgery, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan, 980-8575;
| | - Shinji Kamakura
- Tohoku University, Graduate School of Biomedical Engineering, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, Japan, 980-8574.,Japan;
| |
Collapse
|
11
|
Tani S, Ishikawa K, Kudo Y, Tsuchiya K, Matsuoka A, Maruyama H, Emori H, Yamamura R, Hayakawa C, Sekimizu M, Oshita Y, Ozawa T, Shirahata T, Nagai T, Toyone T, Inagaki K. The effect of denosumab on pedicle screw fixation: a prospective 2-year longitudinal study using finite element analysis. J Orthop Surg Res 2021; 16:219. [PMID: 33771178 PMCID: PMC7995779 DOI: 10.1186/s13018-021-02360-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pedicle screw loosening is a major complication following spinal fixation associated with osteoporosis in elderly. However, denosumab is a promising treatment in patients with osteoporosis. The effect of denosumab on pedicle screw fixation is unknown. Therefore, we investigated whether denosumab treatment improves pedicle screw fixation in elderly patients with osteoporosis. METHODS This was a 2-year prospective open-label study. From February 2015 to January 2016, we included 21 patients with postmenopausal osteoporosis who received initial denosumab treatment. At baseline, 12 months, and 24 months, we measured volumetric bone mineral density (BMD) using quantitative computed tomography (QCT) and performed CT-based finite element analysis (FEA). Finite element models of L4 vertebrae were created to analyze the bone strength and screw fixation. RESULTS BMD increased with denosumab treatment. FEA revealed that both pullout strength of pedicle screws and compression force of the vertebra increased significantly at 12 and 24 months following denosumab treatment. Notably, pullout strength showed a stronger correlation with three-dimensional volumetric BMD around pedicle screw placement assessed by QCT (r = 0.83, at 24 months) than with two-dimensional areal BMD assessed by dual energy X-ray absorptiometry (r = 0.35, at 24 months). CONCLUSION To our knowledge, this is the first study to reveal that denosumab treatment achieved strong pedicle screw fixation with an increase in BMD around the screw assessed by QCT and FEA; therefore, denosumab could be useful for osteoporosis treatment during spinal surgery in elderly patients with osteoporosis.
Collapse
Affiliation(s)
- Soji Tani
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Koji Ishikawa
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan.
| | - Yoshifumi Kudo
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Koki Tsuchiya
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
- Department of Orthopaedic Surgery, Yamanashi Red Cross Hospital, 6663-1 Funatsu Fujikawaguchiko-machi, Minamitsuru-gun, Yamanashi, 401-0301, Japan
| | - Akira Matsuoka
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Hiroshi Maruyama
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Haruka Emori
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
- Department of Orthopaedic Surgery, Showa University Northern Yokohama Hospital, 35-1, Chigasaki-Chuo Tsuzuki-ku, Yokohama, Kanagawa, Japan
| | - Ryo Yamamura
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Chikara Hayakawa
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Masaya Sekimizu
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Yusuke Oshita
- Department of Orthopaedic Surgery, Showa University Northern Yokohama Hospital, 35-1, Chigasaki-Chuo Tsuzuki-ku, Yokohama, Kanagawa, Japan
| | - Tomoyuki Ozawa
- Department of Orthopaedic Surgery, Tokyo Kyosai Hospital, 2-3-8, Nakameguro, Meguro, Tokyo, 153-0061, Japan
| | - Toshiyuki Shirahata
- Department of Orthopaedic Surgery, Showa University Koto Toyosu Hospital, 5-1-38 Toyosu, Koto-ku, Tokyo, 135-8577, Japan
| | - Takashi Nagai
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Tomoaki Toyone
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Katsunori Inagaki
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| |
Collapse
|
12
|
A novel negative regulatory mechanism of Smurf2 in BMP/Smad signaling in bone. Bone Res 2020; 8:41. [PMID: 33298874 PMCID: PMC7680794 DOI: 10.1038/s41413-020-00115-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/08/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) play important roles in bone metabolism. Smad ubiquitination regulatory factors (Smurfs) regulate TGF-β/BMP signaling via ubiquitination, resulting in degradation of signaling molecules to prevent excessive activation of TGF-β/BMP signaling. Though Smurf2 has been shown to negatively regulate TGF-β/Smad signaling, its involvement in BMP/Smad signaling in bone metabolism has not been thoroughly investigated. In the present study, we sought to evaluate the role of Smurf2 in BMP/Smad signaling in bone metabolism. Absorbable collagen sponges containing 3 μg of recombinant human BMP2 (rhBMP2) were implanted in the dorsal muscle pouches of wild type (WT) and Smurf2−/− mice. The rhBMP2-induced ectopic bone in Smurf2−/− mice showed greater bone mass, higher mineral apposition and bone formation rates, and greater osteoblast numbers than the ectopic bone in WT mice. In WT mice, the ectopic bone consisted of a thin discontinuous outer cortical shell and scant inner trabecular bone. In contrast, in Smurf2−/− mice, the induced bone consisted of a thick, continuous outer cortical shell and abundant inner trabecular bone. Additionally, rhBMP2-stimulated bone marrow stromal cells (BMSCs) from Smurf2−/− mice showed increased osteogenic differentiation. Smurf2 induced the ubiquitination of Smad1/5. BMP/Smad signaling was enhanced in Smurf2−/− BMSCs stimulated with rhBMP2, and the inhibition of BMP/Smad signaling suppressed osteogenic differentiation of these BMSCs. These findings demonstrate that Smurf2 negatively regulates BMP/Smad signaling, thereby identifying a new regulatory mechanism in bone metabolism.
Collapse
|
13
|
Simpson CR, Kelly HM, Murphy CM. Synergistic use of biomaterials and licensed therapeutics to manipulate bone remodelling and promote non-union fracture repair. Adv Drug Deliv Rev 2020; 160:212-233. [PMID: 33122088 DOI: 10.1016/j.addr.2020.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
Disrupted bone metabolism can lead to delayed fracture healing or non-union, often requiring intervention to correct. Although the current clinical gold standard bone graft implants and commercial bone graft substitutes are effective, they possess inherent drawbacks and are limited in their therapeutic capacity for delayed union and non-union repair. Research into advanced biomaterials and therapeutic biomolecules has shown great potential for driving bone regeneration, although few have achieved commercial success or clinical translation. There are a number of therapeutics, which influence bone remodelling, currently licensed for clinical use. Providing an alternative local delivery context for these therapies, can enhance their efficacy and is an emerging trend in bone regenerative therapeutic strategies. This review aims to provide an overview of how biomaterial design has advanced from currently available commercial bone graft substitutes to accommodate previously licensed therapeutics that target local bone restoration and healing in a synergistic manner, and the challenges faced in progressing this research towards clinical reality.
Collapse
Affiliation(s)
- Christopher R Simpson
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Helena M Kelly
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Ciara M Murphy
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.
| |
Collapse
|
14
|
Matsui K, Kawai T, Ezoe Y, Yanagisawa T, Takahashi T, Kamakura S. Segmental Bone Reconstruction by Octacalcium Phosphate Collagen Composites with Teriparatide. Tissue Eng Part A 2020; 27:561-571. [PMID: 32799756 PMCID: PMC8126423 DOI: 10.1089/ten.tea.2020.0150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Octacalcium phosphate and collagen composite (OCPcol) demonstrated superior bone regeneration and has been commercialized recently in Japan. Teriparatide (TPTD) is a bioactive recombinant form of parathyroid hormone that is approved for osteoporosis treatment. Because mandibular bone reconstruction after segmental resection is a key clinical problem, it was examined whether single-dose local administration of OCPcol with TPTD can affect recovery after this procedure. OCPcol was prepared, and a commercially available hydroxyapatite and collagen composite (HAPcol) was used as a control. A 15 mm length segmental bone defect was made in the mandibular region of male beagle dogs. The experimental animals were divided in four groups. OCPcol treated with TPTD (OCPcol + TPTD), OCPcol, HAPcol treated with TPTD (HAPcol + TPTD), or HAPcol was implanted into the defect. The radiopaque areas of the implanted site were measured and statistically analyzed, and histological examination was performed after 6 months. The value of radiopaque area in total region of OCPcol + TPTD was highest (90.8 ± 7.3 mm2), followed in order by OCPcol (49.3 ± 21.8 mm2), HAPcol + TPTD (10.6 ± 2.3 mm2), and HAPcol (6.4 ± 2.3 mm2), and that of OCPcol + TPTD was significantly higher than that of HAPcol + TPTD or HAPcol. All segmented mandibles of OCPcol + TPTD and a part of those of OCPcol were bridged with newly formed bone, whereas no bone bridges were observed in HAPcol + TPTD or HAPcol. These results suggested that OCPcol treated with TPTD enabled bone reconstruction after segmental mandibular resection more than other three groups.
Collapse
Affiliation(s)
- Keiko Matsui
- Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Tadashi Kawai
- Division of Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, Morioka, Japan
| | - Yushi Ezoe
- Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Toshiki Yanagisawa
- Bone Regenerative Engineering Laboratory, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Tetsu Takahashi
- Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Shinji Kamakura
- Bone Regenerative Engineering Laboratory, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
15
|
Okada R, Kaito T, Ishiguro H, Kushioka J, Otsuru S, Kanayama S, Bal Z, Kitaguchi K, Hashimoto K, Makino T, Takenaka S, Sakai Y, Yoshikawa H. Assessment of effects of rhBMP-2 on interbody fusion with a novel rat model. Spine J 2020; 20:821-829. [PMID: 31901554 DOI: 10.1016/j.spinee.2019.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT The effects of using off-label recombinant human bone morphogenetic protein (rhBMP)-2 for interbody fusion are controversial. Although animal models of posterolateral fusion are well-established, establishing animal models to validate the safety and efficacy of interbody fusion is difficult, which may contribute to the inconsistent clinical results. PURPOSE To develop a novel animal model of interbody fusion in rat coccygeal vertebrae without destroying bony endplates. STUDY DESIGN An experimental animal study. METHODS Forty-five male Sprague-Dawley rats underwent coccygeal interbody fusion without violating vertebral endplates. The animals were divided into three different groups based on the materials that were implanted into the interbody space (1) allogeneic iliac bone (IB) alone (IB group), (2) IB and 3 µg of rhBMP-2 (BMP low-dose group), or (3) IB and 10 µg of rhBMP-2 (BMP high-dose group). Fusion rates were investigated using microcomputed tomography 6 weeks after the operation. The incidence of adverse events, including soft-tissue swelling, delayed wound healing, osteolysis, and ectopic bone formation were evaluated. The total number of adverse events (using the adverse event score) in each group and the swelling ratio (calculated using the surgical site tissue volume [TV; TV on postoperative day 1/preoperative TV]) were also evaluated. RESULTS The fusion rates in the BMP low- and high-dose groups (33.3% and 46.7%) were not significantly different, but both were significantly higher than that in the IB group (0%) (p=.042 and .006, respectively). Significant differences in the incidence of osteolysis, adverse event scores, and swelling ratios were observed only between the BMP high-dose and IB groups (p=.043, .006 and .014, respectively). CONCLUSIONS We developed a novel rat model of interbody fusion in which the vertebral endplates were not violated, reflecting the normal clinical setting. rhBMP-2 use increased the fusion rate, but a higher dose of rhBMP-2 did not lead to a higher fusion rate than that for low-dose rhBMP-2; conversely, it led to an increase in the occurrence of adverse events. CLINICAL SIGNIFICANCE This novel rat model of coccygeal interbody fusion that preserved bony endplates has clinical significance for validating the effectiveness of biologics or bone graft substitutes before clinical trial.
Collapse
Affiliation(s)
- Rintaro Okada
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Takashi Kaito
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan.
| | - Hiroyuki Ishiguro
- Department of Orthopedic Surgery, National Hospital Organization, Osaka National Hospital, Osaka, Japan
| | - Junichi Kushioka
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Satoru Otsuru
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sadaaki Kanayama
- Department of Orthopedic Surgery, Ikeda Municipal Hospital, Ikeda, Osaka, Japan
| | - Zeynep Bal
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Kazuma Kitaguchi
- Department of Orthopedic Surgery, Toyonaka Municipal Hospital, Toyonaka, Osaka, Japan
| | | | - Takahiro Makino
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Shota Takenaka
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Yusuke Sakai
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Hideki Yoshikawa
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
16
|
Yanagisawa T, Yasuda A, Makkonen RI, Kamakura S. Bone augmentation by octacalcium phosphate and collagen composite coated with poly-lactic acid cage. Clin Exp Dent Res 2020; 6:391-399. [PMID: 32187863 PMCID: PMC7453772 DOI: 10.1002/cre2.287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/02/2022] Open
Abstract
Objective Although octacalcium phosphate and collagen composite (OCP/Col) has demonstrated excellent bone regeneration, it has never achieved bone augmentation. The present study investigated whether it could be enabled by OCP/Col disks treated with parathyroid hormone (PTH) and covered with a poly‐lactic acid (PLA) cage. Materials and methods The prepared OCP/Col disks with three different types of PLA cages (no hole, one large hole, several small holes) were implanted into subperiosteal pockets in rodent calvaria. Histological, and histomorphometric analyses were conducted at 12 weeks after implantation. Results Implants with all PLA cage variants achieved sufficient bone augmentation, and analyses showed that new bone was formed from the original bone and along the PLA cage. While the PLA cage variant with no holes sporadically evoked new bone formation even at the central area of the roof of the PLA cage, the PLA cage variants with holes had no new bone in the area of the hole or beneath the periosteum. Conclusions These results suggest that sufficient bone augmentation could be achieved by treating the OCP/Col disks with PTH and covering them with a PLA cage, and periosteum might not have been involved in the bone formation in this experiment.
Collapse
Affiliation(s)
- Toshiki Yanagisawa
- Bone Regenerative Engineering Laboratory, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Ayato Yasuda
- Bone Regenerative Engineering Laboratory, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Ria I Makkonen
- Bone Regenerative Engineering Laboratory, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Shinji Kamakura
- Bone Regenerative Engineering Laboratory, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
17
|
Hashimoto K, Kaito T, Furuya M, Seno S, Okuzaki D, Kikuta J, Tsukazaki H, Matsuda H, Yoshikawa H, Ishii M. In vivo dynamic analysis of BMP-2-induced ectopic bone formation. Sci Rep 2020; 10:4751. [PMID: 32179857 PMCID: PMC7076033 DOI: 10.1038/s41598-020-61825-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/03/2020] [Indexed: 12/29/2022] Open
Abstract
Bone morphogenetic protein (BMP)-2 plays a central role in bone-tissue engineering because of its potent bone-induction ability. However, the process of BMP-induced bone formation in vivo remains poorly elucidated. Here, we aimed to establish a method for intravital imaging of the entire process of BMP-2-induced ectopic bone formation. Using multicolor intravital imaging in transgenic mice, we visualized the spatiotemporal process of bone induction, including appearance and motility of osteoblasts and osteoclasts, angiogenesis, collagen-fiber formation, and bone-mineral deposition. Furthermore, we investigated how PTH1-34 affects BMP-2-induced bone formation, which revealed that PTH1-34 administration accelerated differentiation and increased the motility of osteoblasts, whereas it decreased morphological changes in osteoclasts. This is the first report on visualization of the entire process of BMP-2-induced bone formation using intravital imaging techniques, which, we believe, will contribute to our understanding of ectopic bone formation and provide new parameters for evaluating bone-forming activity.
Collapse
Affiliation(s)
- Kunihiko Hashimoto
- Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan.,Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
| | - Masayuki Furuya
- Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan.,Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.,Department of Orthopaedic Surgery, Japan Organization of Occupational Health and Safety Osaka Rosai Hospital, Osaka, 591-8025, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science & Technology, Osaka University, Osaka, 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan
| | - Hiroyuki Tsukazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan.,Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hideo Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science & Technology, Osaka University, Osaka, 565-0871, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
18
|
Kanezaki S, Miyazaki M, Ishihara T, Notani N, Abe T, Tsubouchi Y, Kataoka M, Tsumura H. Enhancement of the effects of intermittent parathyroid hormone (1-34) by bone morphogenetic protein in a rat femoral open fracture model. J Orthop Surg Res 2019; 14:403. [PMID: 31783887 PMCID: PMC6884813 DOI: 10.1186/s13018-019-1470-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
Background Nonunion in cases of open fracture is common. Both bone morphogenetic protein 2 (BMP-2) and parathyroid hormone (PTH) have been used to enhance bone healing. We investigated the combination of BMP-2 and PTH and examined the effects on a rat model of open femoral fractures. Methods Group I (n = 11) was implanted with control carrier. Group II (n = 12) was implanted with carrier containing 1 μg of recombinant human BMP-2 (rhBMP-2). Group III (n = 12) was implanted with carrier alone, followed by injections of PTH 1-34. Group IV (n = 11) was implanted with carrier containing 1 μg of rhBMP-2, followed by injections of PTH 1-34. Group V (n = 11) was implanted with carrier containing 10 μg of rhBMP-2. Group VI (n = 11) was implanted with carrier containing 10 μg of rhBMP-2, followed by injections of PTH 1-34. Rats were euthanized after 8 weeks, and their fractured femurs were explanted and assessed by manual palpation, radiographs, micro-computerized tomography, and histological analysis. Results Manual palpation tests showed that the fusion rates of groups III (66.7%), IV (63.6%), V (81.8%), and VI (81.8%) were considerably higher than those of group I. Groups V and VI had higher radiographic scores compared to group I. Micro-CT analysis revealed enhanced bone marrow density expressed as bone volume/tissue volume in groups V (61.88 ± 3.16%) and VI (71.14 ± 3.89%) versus group I (58.26 ± 1.86%). A histological analysis indicated that group VI had enhanced remodeling. Conclusion The combination of abundant rhBMP-2 and PTH enhanced bone healing and remodeling of newly formed bone in a rat femoral open fracture model.
Collapse
Affiliation(s)
- Shozo Kanezaki
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Yufu-shi, Oita, 879-5593, Japan.,Advanced Trauma, Emergency, and Critical Care Center, Oita University Hospital, Oita, Japan
| | - Masashi Miyazaki
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Yufu-shi, Oita, 879-5593, Japan.
| | - Toshinobu Ishihara
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Yufu-shi, Oita, 879-5593, Japan
| | - Naoki Notani
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Yufu-shi, Oita, 879-5593, Japan.,Advanced Trauma, Emergency, and Critical Care Center, Oita University Hospital, Oita, Japan
| | - Tetsutaro Abe
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Yufu-shi, Oita, 879-5593, Japan
| | - Yuhta Tsubouchi
- Department of Rehabilitation, Oita University Hospital, Oita, Japan
| | - Masashi Kataoka
- Physical Therapy Course of Study, Faculty of Welfare and Health Sciences, Oita University, Oita, Japan
| | - Hiroshi Tsumura
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Yufu-shi, Oita, 879-5593, Japan
| |
Collapse
|
19
|
D'Souza M, Macdonald NA, Gendreau JL, Duddleston PJ, Feng AY, Ho AL. Graft Materials and Biologics for Spinal Interbody Fusion. Biomedicines 2019; 7:biomedicines7040075. [PMID: 31561556 PMCID: PMC6966429 DOI: 10.3390/biomedicines7040075] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Spinal fusion is the most widely performed procedure in spine surgery. It is the preferred treatment for a wide variety of pathologies including degenerative disc disease, spondylolisthesis, segmental instability, and deformity. Surgeons have the choice of fusing vertebrae by utilizing cages containing autografts, allografts, demineralized bone matrices (DBMs), or graft substitutes such as ceramic scaffolds. Autografts from the iliac spine are the most commonly used as they offer osteogenic, osteoinductive, and osteoconductive capabilities, all while avoiding immune system rejection. Allografts obtained from cadavers and living donors can also be advantageous as they lack the need for graft extraction from the patient. DBMs are acid-extracted organic allografts with osteoinductive properties. Ceramic grafts containing hydroxyapatite can be readily manufactured and are able to provide osteoinductive support while having a long shelf life. Further, bone-morphogenetic proteins (BMPs), mesenchymal stem cells (MSCs), synthetic peptides, and autologous growth factors are currently being optimized to assist in improving vertebral fusion. Genetic therapies utilizing viral transduction are also currently being devised. This review provides an overview of the advantages, disadvantages, and future directions of currently available graft materials. The current literature on growth factors, stem cells, and genetic therapy is also discussed.
Collapse
Affiliation(s)
- Marissa D'Souza
- School of Medicine, Mercer University School of Medicine, Macon, GA 31207, USA.
| | | | - Julian L Gendreau
- School of Medicine, Mercer University School of Medicine, Macon, GA 31207, USA.
| | - Pate J Duddleston
- School of Medicine, Mercer University School of Medicine, Macon, GA 31207, USA.
| | - Austin Y Feng
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Allen L Ho
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Liu L, Lam WMR, Naidu M, Yang Z, Wang M, Ren X, Hu T, Kumarsing R, Ting K, Goh JCH, Wong HK. Synergistic Effect of NELL-1 and an Ultra-Low Dose of BMP-2 on Spinal Fusion. Tissue Eng Part A 2019; 25:1677-1689. [PMID: 31337284 DOI: 10.1089/ten.tea.2019.0124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP-2) is widely used in spinal fusion but it can cause adverse effects such as ectopic bone and adipose tissue in vivo. Neural epidermal growth factor like-like molecule-1 (NELL-1) has been shown to suppress BMP-2-induced adverse effects. However, no optimum carriers that control both NELL-1 and BMP-2 releases to elicit long-term bioactivity have been developed. In this study, we employed polyelectrolyte complex (PEC) as a control release carrier for NELL-1 and BMP-2. An ultra-low dose of BMP-2 synergistically functioned with NELL-1 on bone marrow mesenchymal stem cells osteogenic differentiation with greater mineralization in vitro. The osteoinductive ability of NELL-1 and an ultra-low dose of BMP-2 in PEC was investigated in rat posterolateral spinal fusion. Our results showed increased fusion rate, bone architecture, and improved bone stiffness at 8 weeks after surgery in the combination groups compared with NELL-1 or BMP-2 alone. Moreover, the formation of ectopic bone and adipose tissue was negligible in all the PEC groups. In summary, dual delivery of NELL-1 and an ultra-low dose of BMP-2 in the PEC control release carrier has greater fusion efficiency compared with BMP-2 alone and could potentially be a better alternative to the currently used BMP-2 treatments for spinal fusion. Impact Statement In this study, polyelectrolyte complex was used to absorb neural epidermal growth factor like-like molecule-1 (NELL-1) and bone morphogenetic protein 2 (BMP-2) to achieve controlled dual release. The addition of NELL-1 significantly reduced the effective dose of BMP-2 to 2.5% of its conventional dose in absorbable collagen sponge, to produce solid spinal fusion without significant adverse effects. This study was the first to identify the efficacy of combination NELL-1 and BMP-2 in a control release carrier in spinal fusion, which could be potentially used clinically to increase fusion rate and avoid the adverse effects commonly associated with conventional BMP-2.
Collapse
Affiliation(s)
- Ling Liu
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wing Moon Raymond Lam
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mathanapriya Naidu
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zheng Yang
- NUS Tissue Engineering Program (NUSTEP), Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Ming Wang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiafei Ren
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tao Hu
- Department of Spine Surgery, Shanghai East Hospital, Shanghai, China
| | - Ramruttun Kumarsing
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kang Ting
- Section of Orthodontics, School of Dentistry, Dental and Craniofacial Research Institute, University of California Los Angeles, Los Angeles, California
| | - James Cho-Hong Goh
- NUS Tissue Engineering Program (NUSTEP), Life Science Institute, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Hee-Kit Wong
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Tissue Engineering Program (NUSTEP), Life Science Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Abstract
Since FDA approval in 2002, teriparatide has gained popularity as an anabolic therapy for the treatment of osteoporosis. Animal studies have suggested a role for teriparatide in spine surgery. Several recent studies have demonstrated adjunctive use of teriparatide in osteoporotic patients undergoing spine fusions improves fusion rates, decreases time to union, and decreases osteoporosis-related complications such as proximal junctional kyphosis. On the basis of the available literature, we outline an algorithm for the use of teriparatide in spine surgery.
Collapse
|
22
|
Yolcu Y, Alvi M, Wanderman N, Carlson B, Sebastian A, Bydon M, Freedman B. Effect of teriparatide use on bone mineral density and spinal fusion: a narrative review of animal models. Int J Neurosci 2018; 129:814-820. [PMID: 30587048 DOI: 10.1080/00207454.2018.1564051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose of the study: Teriparatide (Human recombinant Parathyroid Hormone 1-34) is an anabolic agent that is frequently used in patients with osteoporosis and has been extensively investigated with animal model and clinical studies in current literature. The purpose of the study was to evaluate the impact of teriparatide on bone mineral density and fusion. Materials and methods: The findings from preclinical studies that have investigated the role of teriparatide in animal models are summarized in presented review. Results: Overall, the studies show an improvement in bone mineral density and increased fusion rates for osteoporotic animals undergoing spine fusion with teriparatide use. Conclusion: Further studies should be conducted for unanswered questions, such as teriparatide use before surgery, the effect on cervical fusion and surgery related complications.
Collapse
Affiliation(s)
- Yagiz Yolcu
- a Mayo Clinic Neuro-Informatics Laboratory , Mayo Clinic , Rochester , MN , USA.,b Department of Neurologic Surgery , Mayo Clinic , Rochester , MN , USA
| | - Mohammed Alvi
- a Mayo Clinic Neuro-Informatics Laboratory , Mayo Clinic , Rochester , MN , USA.,b Department of Neurologic Surgery , Mayo Clinic , Rochester , MN , USA
| | - Nathan Wanderman
- c Department of Orthopaedic Surgery , Mayo Clinic , Rochester , MN , USA
| | - Bayard Carlson
- c Department of Orthopaedic Surgery , Mayo Clinic , Rochester , MN , USA
| | - Arjun Sebastian
- c Department of Orthopaedic Surgery , Mayo Clinic , Rochester , MN , USA
| | - Mohamad Bydon
- a Mayo Clinic Neuro-Informatics Laboratory , Mayo Clinic , Rochester , MN , USA.,b Department of Neurologic Surgery , Mayo Clinic , Rochester , MN , USA
| | - Brett Freedman
- c Department of Orthopaedic Surgery , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
23
|
Jackson MA, Ohlerth S, Brink P, Simon O, Kummer M, Fürst AE. Treatment of subchondral cystic lesions (SCLs) with parathyroid hormone peptide (PTH
1‐34
)‐enriched fibrin hydrogel in three different concentrations: A dose‐blinded, randomised study. EQUINE VET EDUC 2018. [DOI: 10.1111/eve.13022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- M. A. Jackson
- Equine Department Vetsuisse Faculty University of Zurich ZurichSwitzerland
| | - S. Ohlerth
- Clinic of Diagnostic Imaging Vetsuisse Faculty University of Zurich Zurich Switzerland
| | - P. Brink
- Jagersro Equine ATG Clinic Jagersro, Malmo Sweden
| | - O. Simon
- Equine Clinic De Morette Asse Belgium
| | - M. Kummer
- Equine Department Vetsuisse Faculty University of Zurich ZurichSwitzerland
| | - A. E. Fürst
- Equine Department Vetsuisse Faculty University of Zurich ZurichSwitzerland
| |
Collapse
|
24
|
Kim SM, Rhyu KH, Lim SJ. Salvage of failed osteosynthesis for an atypical subtrochanteric femoral fracture associated with long-term bisphosphonate treatment using a 95° angled blade plate. Bone Joint J 2018; 100-B:1511-1517. [PMID: 30418051 DOI: 10.1302/0301-620x.100b11.bjj-2018-0306.r1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIMS The aim of this study was to evaluate the outcomes of a salvage procedure using a 95° angled blade plate for failed osteosynthesis of atypical subtrochanteric femoral fractures associated with the long-term use of bisphosphonates. These were compared with those for failed osteosynthesis of subtrochanteric fractures not associated with bisphosphonate treatment. PATIENTS AND METHODS Between October 2008 and July 2016, 14 patients with failed osteosynthesis of an atypical subtrochanteric femoral fracture were treated with a blade plate (atypical group). Their mean age was 67.8 years (60 to 74); all were female. During the same period, 21 patients with failed osteosynthesis of a typical subtrochanteric fracture underwent restabilization using a blade plate (typical group). Outcome variables included the time of union, postoperative complications, Harris Hip Score, and Sanders functional rating scale. RESULTS In the atypical group, union was achieved in 12 patients (85.7%) at a mean of 8.4 months (4 to 12). The mean follow-up was 31.2 months (12 to 92) The plate broke in one patient requiring further stabilization with a longer plate and strut-allograft. Another patient with failure of fixation and varus angulation at the fracture site declined further surgery. In the typical group, union was achieved in 18 patients (85.7%) at a mean of 7.9 months (4 to 12). There was no difference in the mean Harris Hip Score between the two groups (83.1 points vs 86.8 points; p = 0.522) at the time of final follow-up. Sanders functional rating scores were good or excellent in 78.6% of the atypical group and in 81.0% of the typical group. CONCLUSION The 95° angled blade plate was shown to be an effective fixation modality for nonunion of atypical subtrochanteric fractures with a high rate of union and functional improvement, comparable to those after fractures not associated with bisphosphonate treatment. Cite this article: Bone Joint J 2018;100-B:1511-17.
Collapse
Affiliation(s)
- S M Kim
- Department of Orthopaedic Surgery, Korea University Guro Hospital, Korea University School of Medicine, Seoul, South Korea
| | - K H Rhyu
- Department of Orthopedic Surgery, Kyung Hee University Hospital, College of Medicine, Kyung-Hee University, Seoul, South Korea
| | - S J Lim
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
25
|
Ide M, Yamada K, Kaneko K, Sekiya T, Kanai K, Higashi T, Saito T. Combined teriparatide and denosumab therapy accelerates spinal fusion following posterior lumbar interbody fusion. Orthop Traumatol Surg Res 2018; 104:1043-1048. [PMID: 30179720 DOI: 10.1016/j.otsr.2018.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/09/2018] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Previous studies reported that teriparatide (recombinant human parathyroid hormone) accelerated spinal fusion following posterior lumbar inter-body fusion surgery, and combination therapy using teriparatide and denosumab increased bone marrow density more than teriparatide alone. The purpose of this study is to evaluate the influence of combination therapy with teriparaide and denosumab on spinal fusion after posterior lumbar interbody fusion. MATERIALS AND METHODS Sixteen osteoporotic patients with lumbar canal stenosis were randomly divided into two treatment groups, a teriparatide group (n=8; 20μg of teriparatide daily alone, administered from a month before surgery to 12 months after surgery) and a combination group (n=8; 20μg of teriparatide administered daily from a month before surgery to 12 months after surgery with 60mg denosumab every 6 months, administered at 2 and 8 months following surgery). All patients underwent posterior lumbar interbody fusion with local bone grafts. At 3, 6, 9, and 12 months following surgery, bone mineral density at the femoral neck was measured, and biochemical markers were obtained for bone turnover for all cases. Clinical findings were quantified using the Japanese Orthopedic Association scores before surgery, and at 6 and 12 months following surgery. Fusion rates were measured using computed tomography images before surgery, and 6 and 12 months following surgery. RESULTS Alkaline phosphatase in the teriparatide group increased more than in the combination group at 3 months following surgery (p<0.05). Femoral neck BMD increased more in the combination group than in the teriparatide group at 12 months following surgery. The combination group achieved higher fusion rates than the teriparatide group at 6 months following surgery. CONCLUSIONS Combination therapy with teriparatide and denosumab increased bone mineral density more than teriparatide alone, and accelerated spinal fusion following posterior lumbar interbody fusion.
Collapse
Affiliation(s)
- Manabu Ide
- Department of Orthopedic Surgery, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama-shi, 236-0004 Kanagawa, Japan.
| | - Katsutaka Yamada
- Department of Orthopedic Surgery, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama-shi, 236-0004 Kanagawa, Japan
| | - Kanichirou Kaneko
- Department of Orthopedic Surgery, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama-shi, 236-0004 Kanagawa, Japan
| | - Tatsuhiro Sekiya
- Department of Orthopedic Surgery, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama-shi, 236-0004 Kanagawa, Japan
| | - Kenzo Kanai
- Department of Orthopedic Surgery, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama-shi, 236-0004 Kanagawa, Japan
| | - Takayuki Higashi
- Department of Orthopedic Surgery, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama-shi, 236-0004 Kanagawa, Japan
| | - Tomoyuki Saito
- Department of Orthopedic Surgery, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama-shi, 236-0004 Kanagawa, Japan
| |
Collapse
|
26
|
Liang C, Peng S, Li J, Lu J, Guan D, Jiang F, Lu C, Li F, He X, Zhu H, Au DWT, Yang D, Zhang BT, Lu A, Zhang G. Inhibition of osteoblastic Smurf1 promotes bone formation in mouse models of distinctive age-related osteoporosis. Nat Commun 2018; 9:3428. [PMID: 30143635 PMCID: PMC6109183 DOI: 10.1038/s41467-018-05974-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/06/2018] [Indexed: 11/20/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling is essential for osteogenesis. However, recombinant human BMPs (rhBMPs) exhibit large inter-individual variations in local bone formation during clinical spinal fusion. Smurf1 ubiquitinates BMP downstream molecules for degradation. Here, we classify age-related osteoporosis based on distinct intraosseous BMP-2 levels and Smurf1 activity. One major subgroup with a normal BMP-2 level and elevated Smurf1 activity (BMP-2n/Smurf1e) shows poor response to rhBMP-2 during spinal fusion, when compared to another major subgroup with a decreased BMP-2 level and normal Smurf1 activity (BMP-2d/Smurf1n). We screen a chalcone derivative, i.e., 2-(4-cinnamoylphenoxy)acetic acid, which effectively inhibits Smurf1 activity and increases BMP signaling. For BMP-2n/Smurf1e mice, the chalcone derivative enhances local bone formation during spinal fusion. After conjugating to an osteoblast-targeting and penetrating oligopeptide (DSS)6, the chalcone derivative promotes systemic bone formation in BMP-2n/Smurf1e mice. This study demonstrates a precision medicine-based bone anabolic strategy for age-related osteoporosis. BMP promotes bone formation but its efficacy is limited in some patients. Here, the authors show that osteoporosis patients with a poor response to BMP have increased expression of Smurf1, which targets BMP effectors for degradation, and demonstrate that its chemical inhibition enhances BMP-mediated bone formation in mice.
Collapse
Affiliation(s)
- Chao Liang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, 518000, Shenzhen, China
| | - Songlin Peng
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Department of Spine Surgery, Shenzhen People's Hospital, Ji Nan University Second College of Medicine, 518020, Shenzhen, China
| | - Jie Li
- School of Chinese Medicine, Faculty of Medicine, Chinese University of Hong Kong, 999077, Hong Kong, SAR, China.,Clinical Medical Laboratory of Peking University Shenzhen Hospital, 518036, Shenzhen, China
| | - Jun Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, 518000, Shenzhen, China
| | - Daogang Guan
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, 518000, Shenzhen, China
| | - Feng Jiang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Zhejiang Pharmaceutical College, 315100, Ningbo, China
| | - Cheng Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, 518000, Shenzhen, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, 518000, Shenzhen, China
| | - Xiaojuan He
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, 518000, Shenzhen, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Hailong Zhu
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China
| | - D W T Au
- Department of Biology and Chemistry, City University of Hong Kong, 999077, Hong Kong, SAR, China
| | - Dazhi Yang
- Department of Spine Surgery, Shenzhen People's Hospital, Ji Nan University Second College of Medicine, 518020, Shenzhen, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, Faculty of Medicine, Chinese University of Hong Kong, 999077, Hong Kong, SAR, China.
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China. .,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China. .,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, 518000, Shenzhen, China. .,Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, 200032, Shanghai, China.
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China. .,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China. .,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, 518000, Shenzhen, China.
| |
Collapse
|
27
|
Makino T, Tsukazaki H, Ukon Y, Tateiwa D, Yoshikawa H, Kaito T. The Biological Enhancement of Spinal Fusion for Spinal Degenerative Disease. Int J Mol Sci 2018; 19:ijms19082430. [PMID: 30126106 PMCID: PMC6121547 DOI: 10.3390/ijms19082430] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/04/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022] Open
Abstract
In this era of aging societies, the number of elderly individuals who undergo spinal arthrodesis for various degenerative diseases is increasing. Poor bone quality and osteogenic ability in older patients, due to osteoporosis, often interfere with achieving bone fusion after spinal arthrodesis. Enhancement of bone fusion requires shifting bone homeostasis toward increased bone formation and reduced resorption. Several biological enhancement strategies of bone formation have been conducted in animal models of spinal arthrodesis and human clinical trials. Pharmacological agents for osteoporosis have also been shown to be effective in enhancing bone fusion. Cytokines, which activate bone formation, such as bone morphogenetic proteins, have already been clinically used to enhance bone fusion for spinal arthrodesis. Recently, stem cells have attracted considerable attention as a cell source of osteoblasts, promising effects in enhancing bone fusion. Drug delivery systems will also need to be further developed to assure the safe delivery of bone-enhancing agents to the site of spinal arthrodesis. Our aim in this review is to appraise the current state of knowledge and evidence regarding bone enhancement strategies for spinal fusion for degenerative spinal disorders, and to identify future directions for biological bone enhancement strategies, including pharmacological, cell and gene therapy approaches.
Collapse
Affiliation(s)
- Takahiro Makino
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroyuki Tsukazaki
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yuichiro Ukon
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Daisuke Tateiwa
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hideki Yoshikawa
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takashi Kaito
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
28
|
Iwai A, Kajii F, Tanaka H, Sasaki K, Matsui K, Kawai T, Kamakura S. Bone regeneration by freeze-dried composite of octacalcium phosphate collagen and teriparatide. Oral Dis 2018; 24:1514-1521. [PMID: 29943386 DOI: 10.1111/odi.12923] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/08/2018] [Accepted: 06/20/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Octacalcium phosphate (OCP) and collagen (col) composite (OCPcol) demonstrated superior bone regeneration properties, and its commercialization appears to be forthcoming. As a practical medical material for new combination products, we developed a freeze-dried composite with OCPcol and teriparatide (TPTD) (OCPcolTPTDf), and investigated its bone regenerative properties. MATERIALS AND METHODS A disk of OCPcol was made by mixing OCP granules and atelocollagen for medical use. Then, OCPcolTPTDf was prepared by impregnation of the OCPcol disk with 1.0 or 0.1 µg of TPTD solution (OCPcolTPTDf 1.0 and OCPcolTPTDf 0.1, respectively) followed by lyophilization. In vitro release profiles of TPTD from OCPcolTPTDf were determined using an enzyme-linked immunosorbent assay. Implantation of OCPcolTPTDf or OCPcol was carried out for a rat critical-sized calvarial defect. And five defects in each group were collected after 12 weeks of implantation. RESULTS The retention-release profiles of TPTD from OCPcolTPTDf supported a higher degree of retention of TPTD. Radiographic, histological, and histomorphometric examinations indicated that regenerated bone was filled in most of the defects of the OCPcolTPTDf. Additionally, the OCPcolTPTDf groups showed significantly enhanced bone regeneration compared with the OCPcol group. CONCLUSIONS These results suggested that this newly developed bone regenerative composite could be a practical medical material.
Collapse
Affiliation(s)
- Atsushi Iwai
- Research Institute, TOYOBO Co. Ltd., Otsu, Shiga, Japan
| | - Fumihiko Kajii
- Research Institute, TOYOBO Co. Ltd., Otsu, Shiga, Japan.,Bone Regenerative Engineering Laboratory, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | | | - Kazuo Sasaki
- Research Institute, TOYOBO Co. Ltd., Otsu, Shiga, Japan
| | - Keiko Matsui
- Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Tadashi Kawai
- Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Shinji Kamakura
- Bone Regenerative Engineering Laboratory, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
29
|
Holmes CA, Ishida W, Elder BD, Lo SFL, Chen YA, Kim E, Locke J, Taylor M, Witham TF. The Effects of High-Dose Parathyroid Hormone Treatment on Fusion Outcomes in a Rabbit Model of Posterolateral Lumbar Spinal Fusion Alone and in Combination with Bone Morphogenetic Protein 2 Treatment. World Neurosurg 2018; 115:e366-e374. [DOI: 10.1016/j.wneu.2018.04.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 01/21/2023]
|
30
|
ONO-1301 Enhances in vitro Osteoblast Differentiation and in vivo Bone Formation Induced by Bone Morphogenetic Protein. Spine (Phila Pa 1976) 2018; 43:E616-E624. [PMID: 29016438 DOI: 10.1097/brs.0000000000002439] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN In vitro and in vivo assessment of osteogenic effect by prostacyclin agonist (ONO-1301). OBJECTIVE The aim of this study was to investigate the effects of ONO-1301 on in vitro osteoblastic differentiation and in vivo bone formation induced by bone morphogenetic protein (BMP). SUMMARY OF BACKGROUND DATA Among prostaglandins (PGs), PGE2 is the most abundant in bone tissue and its effects on bone formation have been well studied. PGI2 (prostacyclin) is the second most abundant PG in bone tissue and plays important roles in hemodynamics. However, the effects of PGI2 on osteoblast differentiation and bone regeneration have not been elucidated. METHODS The effects of PGI2 agonist (ONO-1301), with and without recombinant human (rh) BMP-2, on osteoblastic differentiation and cell proliferation were investigated in vitro using alkaline phosphatase (ALP) and WST-1 assays. Murine primary osteoblasts and cell lines (ST2, MC3T3-E1, C2C12, and CH310T1/2) were used for the study. The effects of ONO-1301 on rhBMP-2 induced bone formation were investigated in a mouse model of muscle pouch transplantation (ectopic model) and in a rat model of spinal fusion (orthotopic model). RESULTS ONO-1301 significantly increased ALP activity in the primary osteoblasts and ST2 cells. In addition, cotreatment with ONO-1301 and rhBMP-2 significantly increased ALP activity in the primary osteoblasts, as well as in ST2 and MC3T3-E1 cells. Cell proliferation was not affected by both ONO-1301 and ONO-1301 as well as rhBMP-2. In the ectopic model, ONO-1301 significantly increased the volume of ectopic bone whose formation was induced by BMP. In addition, in the orthotopic model, ONO-1301 significantly increased bone volume and fusion rate. CONCLUSION This study has demonstrated that the PG IP agonist ONO-1301 improves in vitro BMP-2 induced osteoblast differentiation and in vivo ectopic and orthotopic bone formation. The results suggest that ONO-1301 has a potential clinical application as an enhancer of BMP-induced bone formation. LEVEL OF EVIDENCE N/A.
Collapse
|
31
|
Abstract
PURPOSE In patients undergoing lumbar fusion, osteoporosis has been shown to lead to poorer outcomes and greater incidence of fusion-related complications. Given the undesirable effect of osteoporosis on lumbar fusion surgery, a number of medications have been proposed for use in the peri- and postoperative period to mitigate risks and enhance outcomes. The purpose of this review was to summarize and synthesize the current literature regarding medical management of osteoporosis in the context of lumbar fusion surgery. METHODS A literature search of PubMed, Embase, and Web of Science was conducted in October 2016, using permutations of various search terms related to osteoporosis, medications, and lumbar fusion. RESULTS Teriparatide injections may lead to faster, more successful fusion, and may reduce fusion-related complications. Bisphosphonate therapy likely does not hinder fusion outcomes and may be useful in reducing certain complications of fusion in osteoporotic patients. Calcitonin and selective estrogen receptor modulator therapy show mixed results, but more research is necessary to make a recommendation. Vitamin D deficiency is associated with poor fusion outcomes, but evidence for supplementation in patients with normal serum levels is weak. CONCLUSIONS Overall, the current body of research appears to support the use of teriparatide therapy to enhance lumbar fusion outcomes in the osteoporotic patient, although the extent of research on this topic is limited. Additionally, very little evidence exists to cease any of the mentioned osteoporosis treatments prior to lumbar fusion.
Collapse
Affiliation(s)
| | | | - Vafa Tabatabaie
- Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Endocrinology, Montefiore Medical Center, Bronx, NY, USA
| | - Woojin Cho
- Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Orthopaedic Surgery, Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
32
|
Duarte RM, Varanda P, Reis RL, Duarte ARC, Correia-Pinto J. Biomaterials and Bioactive Agents in Spinal Fusion. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:540-551. [DOI: 10.1089/ten.teb.2017.0072] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rui M. Duarte
- School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Orthopedic Surgery Department, Hospital de Braga, Braga, Portugal
| | - Pedro Varanda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Orthopedic Surgery Department, Hospital de Braga, Braga, Portugal
| | - Rui L. Reis
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Portugal
| | - Ana Rita C. Duarte
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Portugal
| | - Jorge Correia-Pinto
- School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Pediatric Surgery Department, Hospital de Braga, Braga, Portugal
| |
Collapse
|
33
|
Jung J, Yoo HY, Kim GT, Lee JW, Lee YA, Kim DY, Kwon YD. Short-Term Teriparatide and Recombinant Human Bone Morphogenetic Protein-2 for Regenerative Approach to Medication-Related Osteonecrosis of the Jaw: A Preliminary Study. J Bone Miner Res 2017; 32:2445-2452. [PMID: 28815779 DOI: 10.1002/jbmr.3237] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 11/09/2022]
Abstract
Our objective was to examine whether adjunct teriparatide administration and local application of recombinant human bone morphogenetic protein-2 (rhBMP-2) is beneficial for the regeneration of jaw bone in patients with medication-related osteonecrosis of the jaw (MRONJ). This study enrolled 17 patients diagnosed with MRONJ. All patients received sequestrectomy under general or local anesthesia with suspension of bisphosphonate. The bone regeneration ratio was compared on cone beam computed tomography (CBCT) scans, acquired immediately post-operation and after 6 months. The patients were divided into groups, based on their treatment regimens: teriparatide combined with rhBMP-2 (parathyroid hormone [PTH]+BMP), rhBMP-2 (BMP), and the control. Biochemical markers were also evaluated at the baseline (T0), 1 month (T1), and 3 months (T2) after surgery. Significant increase was observed in the values of the biochemical markers, serum osteocalcin, and serum C-terminal telopeptide cross-link of type I collagen, within 3 months of surgery in the PTH+BMP group, whereas the mean value in the BMP group did not show a significant change. In all groups, the MRONJ lesions were healed and new bone formation was detected in the CBCT images. The regeneration ratio was significantly greater in the group PTH+BMP than in the BMP and control groups. Significantly greater amount of bone formation was observed in the group PTH+BMP than in the BMP and control groups. Local application of rhBMP-2 alone also had a beneficial effect on bone regeneration but was not more significant than control. Based on these findings, administration of short-term teriparatide with rhBMP-2 in MRONJ patients may maximize the regeneration of bone after surgery. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Junho Jung
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Hee-Young Yoo
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Gyu-Tae Kim
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Jung-Woo Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Yeon-Ah Lee
- Divison of Rheumatology, Department of Internal Medicine, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Deog-Yoon Kim
- Department of Nuclear Medicine, School of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Center for Refractory Jawbone Diseases, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Yong-Dae Kwon
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea.,Center for Refractory Jawbone Diseases, Kyung Hee University Medical Center, Seoul, Republic of Korea
| |
Collapse
|
34
|
Kajii F, Iwai A, Tanaka H, Matsui K, Kawai T, Kamakura S. Single-dose local administration of teriparatide with a octacalcium phosphate collagen composite enhances bone regeneration in a rodent critical-sized calvarial defect. J Biomed Mater Res B Appl Biomater 2017; 106:1851-1857. [PMID: 28922546 PMCID: PMC6032915 DOI: 10.1002/jbm.b.33993] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022]
Abstract
Octacalcium phosphate and collagen composite (OCP/Col) achieves stable bone regeneration without cell transplantation in preclinical studies. Recently, a sponsor-initiated clinical trial was conducted to commercialize the material. The present study investigated bone regeneration by OCP/Col with the single local administration of teriparatide (parathyroid hormone 1-34; TPTD). OCP/Col was prepared by mixing sieved granules of OCP and atelocollagen for medical use and a disk was molded. After the creation of a rodent critical-sized calvarial defect, OCP/Col or OCP/Col with dripped TPTD solution (1.0 or 0.1 µg; OCP/Col/TPTDd1.0 or OCP/Col/TPTDd0.1) was implanted into the defect. Six defects in each group were fixed 12 weeks after implantation. Radiographic examinations indicated that radiopaque figures in defects treated with OCP/Col with TPTD (OCP/Col/TPTDd) occupied a wider range than those treated with OCP/Col. Histological results demonstrated that most of the defect in OCP/Col/TPTDd was filled with newly formed bone. A histomorphometrical examination indicated that the percentage of newly formed bone was significantly higher in the defects of OCP/Col/TPTDd 1.0 (53.6 ± 4.3%) and OCP/Col/TPTDd 0.1 (52.2 ± 7.4%) than in those of OCP/Col (40.1 ± 8.4%), whereas no significant differences were observed between OCP/Col/TPTDd1.0 and OCP/Col/TPTDd0.1. These results suggest that OCP/Col with the single local administration of TPTD enhances bone regeneration in a rodent calvarial critical-sized bone defect. © 2017 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1851-1857, 2018.
Collapse
Affiliation(s)
- Fumihiko Kajii
- Bone Regenerative Engineering Laboratory, Graduate School of Biomedical Engineering, Tohoku University, Aoba-Ku, Sendai, 980-8574, Japan.,TOYOBO Co., Ltd., Research Institute, Otsu, Shiga, 520-0292, Japan
| | - Atsushi Iwai
- TOYOBO Co., Ltd., Research Institute, Otsu, Shiga, 520-0292, Japan
| | | | - Keiko Matsui
- Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Tadashi Kawai
- Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Shinji Kamakura
- Bone Regenerative Engineering Laboratory, Graduate School of Biomedical Engineering, Tohoku University, Aoba-Ku, Sendai, 980-8574, Japan
| |
Collapse
|
35
|
Cyst-Like Osteolytic Formations in Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) Augmented Sheep Spinal Fusion. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1485-1495. [PMID: 28502475 DOI: 10.1016/j.ajpath.2017.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 11/20/2022]
Abstract
Multiple case reports using recombinant human bone morphogenetic protein-2 (rhBMP-2) have reported complications. However, the local adverse effects of rhBMP-2 application are not well documented. In this report we show that, in addition to promoting lumbar spinal fusion through potent osteogenic effects, rhBMP-2 augmentation promotes local cyst-like osteolytic formations in sheep trabecular bones that have undergone anterior lumbar interbody fusion. Three months after operation, conventional computed tomography showed that the trabecular bones of the rhBMP-2 application groups could fuse, whereas no fusion was observed in the control group. Micro-computed tomography analysis revealed that the core implant area's bone volume fraction and bone mineral density increased proportionately with rhBMP-2 dose. Multiple cyst-like bone voids were observed in peri-implant areas when using rhBMP-2 applications, and these sites showed significant bone mineral density decreases in relation to the unaffected regions. Biomechanically, these areas decreased in strength by 32% in comparison with noncystic areas. Histologically, rhBMP-2-affected void sites had an increased amount of fatty marrow, thinner trabecular bones, and significantly more adiponectin- and cathepsin K-positive cells. Despite promoting successful fusion, rhBMP-2 use in clinical applications may result in local adverse structural alterations and compromised biomechanical changes to the bone.
Collapse
|
36
|
Kim SM, Kang KC, Kim JW, Lim SJ, Hahn MH. Current Role and Application of Teriparatide in Fracture Healing of Osteoporotic Patients: A Systematic Review. J Bone Metab 2017; 24:65-73. [PMID: 28326303 PMCID: PMC5357614 DOI: 10.11005/jbm.2017.24.1.65] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 01/08/2023] Open
Abstract
Background The use of osteoanabolic agents to facilitate fracture healing has been of heightened interest to the field of orthopaedic trauma. This study aimed to evaluate the evidence of teriparatide for fracture healing and functional recovery in osteoporotic patients. Methods We performed a literature search in PubMed, EMBASE, Web of Science, and the Cochrane Library using terms including “Fracture” [tiab] AND “Teriparatide [tiab] OR “PTH” [tiab]. Results This systematic review included 6 randomized clinical trials, 4 well-controlled retrospective studies, and 1 retrospective post hoc subgroup analysis. Fracture location was 2 in pelvis, 3 in proximal femur, 1 in distal femur, 1 in shoulder, 2 in wrist and 2 in spine. The use of teriparatide yielded positive effects on radiographic bone healing in 6 studies, but was not associated with better radiographic outcome in 3. In terms of functional recovery, teriparatide injection was related with decrease in pain or shorter time to mobilization in 6 studies, but not related with pain numerical scale and mobility in 3. Conclusions Our findings suggest that teriparatide provide selective advantages to fracture healing or functional recovery in the management of osteoporotic fractures. A better understanding of the role of teriparatide on osteoporotic fractures requires greater evidences from large volume prospective trials.
Collapse
Affiliation(s)
- Sang-Min Kim
- Department of Orthopaedic Surgery, Seoul Medical Center, Seoul, Korea
| | - Kyung-Chung Kang
- Department of Orthopaedic Surgery, Kyung Hee University Hospital, Kyung Hee University, Seoul, Korea
| | - Ji Wan Kim
- Department of Orthopedic Surgery, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Seung-Jae Lim
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Myung Hoon Hahn
- Department of Orthopaedics, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
37
|
Kaito T. Biologic enhancement of spinal fusion with bone morphogenetic proteins: current position based on clinical evidence and future perspective. JOURNAL OF SPINE SURGERY 2016; 2:357-358. [PMID: 28097259 DOI: 10.21037/jss.2016.12.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Takashi Kaito
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
38
|
Ishida W, Elder BD, Holmes C, Lo SFL, Witham TF. Variables Affecting Fusion Rates in the Rat Posterolateral Spinal Fusion Model with Autogenic/Allogenic Bone Grafts: A Meta-analysis. Ann Biomed Eng 2016; 44:3186-3201. [PMID: 27473706 DOI: 10.1007/s10439-016-1701-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/21/2016] [Indexed: 01/14/2023]
Abstract
The rat posterolateral spinal fusion model with autogenic/allogenic bone graft (rat PFABG) has been increasingly utilized as an experimental model to assess the efficacy of novel fusion treatments. The objective of this study was to investigate the reliability of the rat PFABG model and examine the effects of different variables on spinal fusion. A web-based literature search from January, 1970 to September, 2015, yielded 26 studies, which included 40 rat PFABG control groups and 449 rats. Data regarding age, weight, sex, and strain of rats, graft volume, graft type, decorticated levels, surgical approach, institution, the number of control rats, fusion rate, methods of fusion assessment, and timing of fusion assessment were collected and analyzed. The primary outcome variable of interest was fusion rate, as evaluated by manual palpation. Fusion rates varied widely, from 0 to 96%. The calculated overall fusion rate was 46.1% with an I 2 value of 62.4, which indicated moderate heterogeneity. Weight >300 g, age >14 weeks, male rat, Sprague-Dawley strain, and autogenic coccyx grafts increased fusion rates with statistical significance. Additionally, an assessment time-point ≥8 weeks had a trend towards statistical significance (p = 0.070). Multi-regression analysis demonstrated that timing of assessment and age as continuous variables, as well as sex as a categorical variable, can predict the fusion rate with R 2 = 0.82. In an inter-institution reliability analysis, the pooled overall fusion rate was 50.0% [44.8, 55.3%], with statistically significant differences among fusion outcomes at different institutions (p < 0.001 and I 2 of 72.2). Due to the heterogeneity of fusion outcomes, the reliability of the rat PFABG model was relatively limited. However, selection of adequate variables can optimize its use as a control group in studies evaluating the efficacy of novel fusion therapies.
Collapse
Affiliation(s)
- Wataru Ishida
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1800 Orleans St., Room 6007, Baltimore, MD, 21287, USA
| | - Benjamin D Elder
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1800 Orleans St., Room 6007, Baltimore, MD, 21287, USA.
| | - Christina Holmes
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1800 Orleans St., Room 6007, Baltimore, MD, 21287, USA
| | - Sheng-Fu L Lo
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1800 Orleans St., Room 6007, Baltimore, MD, 21287, USA
| | - Timothy F Witham
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1800 Orleans St., Room 6007, Baltimore, MD, 21287, USA
| |
Collapse
|
39
|
Kaito T, Morimoto T, Kanayama S, Otsuru S, Kashii M, Makino T, Kitaguchi K, Furuya M, Chijimatsu R, Ebina K, Yoshikawa H. Modeling and remodeling effects of intermittent administration of teriparatide (parathyroid hormone 1-34) on bone morphogenetic protein-induced bone in a rat spinal fusion model. Bone Rep 2016; 5:173-180. [PMID: 28580385 PMCID: PMC5440964 DOI: 10.1016/j.bonr.2016.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 07/15/2016] [Indexed: 01/08/2023] Open
Abstract
Background Bone morphogenetic protein (BMP)-based tissue engineering has focused on inducing new bone efficiently. However, modeling and remodeling of BMP-induced bone have rarely been discussed. Teriparatide (parathyroid hormone [PTH] 1-34) administration initially increases markers of bone formation, followed by an increase in bone resorption markers. This unique activity would be expected to accelerate the modeling and remodeling of new BMP-induced bone. Methods Male Sprague-Dawley rats underwent posterolateral spinal fusion surgery and implantation of collagen sponge containing either 50 μg recombinant human (rh)BMP-2 or saline. PTH 1-34 (60 μg/kg, 3 times/week) or saline injections were continued from preoperative week 2 week to postoperative week 12. The volume and quality of newly formed bone were monitored by in vivo micro-computed tomography and analyses of bone histomorphometry and serum bone metabolism markers were conducted at postoperative week 12. Results Microstructural indices of the newly formed bone were significantly improved by PTH 1-34 administration, which significantly decreased the tissue volumes of the fusion mass at postoperative week 12 compared to that at postoperative week 2. Bone histomorphometry and serum analyses showed that PTH administration significantly increased both bone formation and resorption markers. Analysis of the histomorphometry of cortical bone identified predominant periosteal bone resorption and endosteal bone formation. Conclusions Long-term intermittent administration of PTH 1-34 significantly accelerated the modeling and remodeling of new BMP-induced bone. Clinical relevance Our results suggest that the combined administration of rhBMP-2 and PTH 1-34 facilitates qualitative and quantitative improvements in bone regeneration, by accelerating bone modeling and remodeling. The present study found that intermittent administration of PTH 1-34 significantly decreased the TV of new rhBMP-2-induced bone, following the initial formation of a fusion mass equivalent to that of the control group. Bone histomorphometry demonstrated predominant bone resorption at the periosteum and bone formation at the endosteum in rats receiving PTH 1-34. These results indicated that PTH 1-34 supported modeling of rhBMP-2-induced bone in addition to the remodeling effect which confirmed by bone histomorphometry and serum markers.
Collapse
Affiliation(s)
- Takashi Kaito
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tokimitsu Morimoto
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sadaaki Kanayama
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoru Otsuru
- Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, 700 Chidlren's Drive, Columbus, OH 43205, USA
| | - Masafumi Kashii
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahiro Makino
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuma Kitaguchi
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masayuki Furuya
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryota Chijimatsu
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kosuke Ebina
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Yoshikawa
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
40
|
Huang TW, Chuang PY, Lin SJ, Lee CY, Huang KC, Shih HN, Lee MS, Hsu RWW, Shen WJ. Teriparatide Improves Fracture Healing and Early Functional Recovery in Treatment of Osteoporotic Intertrochanteric Fractures. Medicine (Baltimore) 2016; 95:e3626. [PMID: 27175673 PMCID: PMC4902515 DOI: 10.1097/md.0000000000003626] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Osteoporotic intertrochanteric fractures result in serious health problems and decrease health-related quality of life (HRQoL). Faster time-to-union is important for early return to daily activities and reduction of complications. Teriparatide has been shown to accelerate fracture healing, but the literature is sparse on this topic. The aim of this study is to assess whether teriparatide accelerates fracture healing.Between 2008 and 2014, patients with osteoporotic intertrochanteric fractures who underwent surgical interventions were enrolled in this retrospective cohort study. Group 1 included patients who were not on any osteoporosis medication prior to fracture and who postoperatively received only calcium and vitamin D; patients in Group 2 were not on any osteoporosis medication prior to fracture, and received teriparatide and calcium and vitamin D postoperatively. Patients in Group 3 were those who were on alendronate prior to fracture and postfracture received teriparatide as well as calcium and vitamin D. Demographics, time-to-union, HRQoL (short-form health survey [SF]-12 physical component summary [PCS] and SF-12 mental component summary [MCS]), morbidities, mortalities, and radiographic and functional outcomes between groups were compared.A total of 189 patients were enrolled in this study. There were 83 patients in Group 1, 47 patients in Group 2, and 59 patients in Group 3. A significantly shorter time-to-union was found in the teriparatide-treated groups (mean, 13.6, 12.3, and 10.6 weeks, respectively [P = 0.002]). With regard to SF-12 PCS, the scores were significantly better in teriparatide-treated groups at 3 months (mean, 19, 28, and 29, respectively [P = 0.002]) and 6 months (mean, 28, 37, and 38, respectively [P = 0.008]). Similar inter-group differences were noted when comparing the pain scores, the ability to get around the house, the ability to get out of the house, and the ability to go shopping at 3 and 6 months. Complications and mortality were also markedly reduced in the teriparatide-treated groups.Postoperative use of teriparatide for 6 months appears to be an effective adjunct therapy in the treatment of patients with osteoporotic intertrochanteric fractures. However, because of the limited power of the study, a prospective, randomized, large-scale cohort study is still required for determining the efficacy of teriparatide.
Collapse
Affiliation(s)
- Tsan-Wen Huang
- From the Department of Orthopedic Surgery (T-WH, P-YC, S-JL, C-YL, K-CH, RW-WH) and Sports Medicine Center (RW-WH), Chang Gung Memorial Hospital, Chiayi, Taiwan; Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Taiwan (MSL); Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan (H-NS); Chang Gung University, Taoyuan, Taiwan (T-WH, K-CH, H-NS, MSL, RW-WH); and Po-Cheng Orthopedic Institute, Kaohsiung (W-JS), Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Morimoto T, Kaito T, Matsuo Y, Sugiura T, Kashii M, Makino T, Iwasaki M, Yoshikawa H. The bone morphogenetic protein-2/7 heterodimer is a stronger inducer of bone regeneration than the individual homodimers in a rat spinal fusion model. Spine J 2015; 15:1379-90. [PMID: 25733023 DOI: 10.1016/j.spinee.2015.02.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/26/2014] [Accepted: 02/18/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Bone morphogenetic proteins (BMPs) are a group of dimeric growth factors that belong to the transforming growth factor super family and are capable of eliciting new bone formation. Previous studies have suggested that the coexpression of two different BMP genes in a cell can result in the production of BMP heterodimers that are more potent than homodimers. However, because of the difficulty in optimizing the level of BMP gene expression, the coexpression of two different BMP genes also produces BMP homodimers as a by-product. These homodimers could, in theory, interact with the heterodimers. PURPOSE To elucidate the effects of a BMP-2/7 heterodimer, which were investigated in depth using purified BMP-2/7 heterodimers, BMP-2 homodimers, and BMP-7 homodimers in a rat spinal fusion model. METHODS Bilateral posterolateral fusion at L4-L5 was performed in four different groups: control group animals were implanted with collagen carriers alone; BMP-7 group animals with collagen carriers+1 μg of BMP-7 homodimer; BMP-2 group animals with collagen carriers+1 μg of BMP-2 homodimer; and BMP-2/7 group animals with collagen carriers+1 μg of the BMP-2/7 heterodimer. The following assessments were performed: bone microstructural analysis of the fusion mass and tissue volume (TV) with microcomputed tomography (micro-CT); fusion assessment with manual palpation testing and three-dimensional CT images; and bone histomorphometrical analysis of the fusion mass. RESULTS The fusion scores, as determined by radiography, and the TV of the newly formed bone, as determined by micro-CT, were significantly higher in the BMP-2/7 heterodimer group than the other groups (p<.0001). The microstructural indices of the newly formed bone did not differ between the groups. Moreover, histologic analysis of the fused spines revealed that the formation of the trabecular bone bridging the transverse process was the highest in this group. CONCLUSIONS This study demonstrated that BMP-2/7 heterodimer is a stronger inducer of bone regeneration than BMP-2 or -7 homodimers. The use of a purified BMP-2/7 heterodimer may represent an efficient alternative to the current clinical use of BMP-2 or -7 homodimers. Further studies as to the side effects of BMP-2/7 heterodimer are required.
Collapse
Affiliation(s)
- Tokimitsu Morimoto
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takashi Kaito
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Yohei Matsuo
- Department of Orthopedic Biomaterial Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaok, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Sugiura
- Department of Orthopedic Biomaterial Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaok, Suita, Osaka 565-0871, Japan
| | - Masafumi Kashii
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takahiro Makino
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Motoki Iwasaki
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hideki Yoshikawa
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|