1
|
Lorrain-Soligon L, Bizon T, Robin F, Jankovic M, Brischoux F. Variations of salinity during reproduction and development affect ontogenetic trajectories in a coastal amphibian. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11735-11748. [PMID: 38225486 DOI: 10.1007/s11356-024-31886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Although coastal ecosystems are naturally submitted to temporal variations of salinity, salinization has been increasing over time threatening coastal biodiversity. Species that exploit such habitats can thus be exposed to brackish water at different life stages. However, the impacts of variations of salinity on wildlife remain poorly understood. This is particularly true for coastal amphibians, due to the strong dependency of early life stages (embryos and larvae) on aquatic environments. In order to investigate the effect of salinity during egg laying and embryonic and larval development of coastal amphibians, we used a full-factorial design to expose reproductive adults, eggs, and larvae of coastal spined toads (Bufo spinosus) to fresh (0 g.l-1) or brackish water (4 g.l-1). At egg laying, we evaluated parental investment in reproduction. During embryonic and larval development, we assessed effects on survival, development, and growth. We highlighted strong effects of environmental salinity on reproduction (reduced egg laying time, marginally reduced egg size, and reduced investment in reproduction). Responses to salinity were highly dependent on the developmental stages of exposure (stronger effects when individuals were exposed during embryonic development). These effects carried over when exposure occurred at egg laying or during embryonic development, highlighting the importance of the environmental conditions during early life on ontogenetic trajectories. We also highlighted partial compensation when individuals were transferred back to freshwater. Whether the magnitude of these responses can allow coastal biodiversity to overcome the observed detrimental effects of salinization remain to be assessed.
Collapse
Affiliation(s)
- Léa Lorrain-Soligon
- UMR 7372: Centre d'Etudes Biologiques de Chizé (CEBC) - CNRS - La Rochelle Université, 405 route de Prissé la Charrière, 79360, Villiers en Bois, France.
| | - Timothé Bizon
- UMR 7372: Centre d'Etudes Biologiques de Chizé (CEBC) - CNRS - La Rochelle Université, 405 route de Prissé la Charrière, 79360, Villiers en Bois, France
| | - Frédéric Robin
- LPO France, Fonderies Royales, 17300, Rochefort, France
- Réserve naturelle du marais d'Yves LPO, Ferme de la belle espérance, 17340, Yves, France
| | - Marko Jankovic
- Réserve naturelle du marais d'Yves LPO, Ferme de la belle espérance, 17340, Yves, France
| | - François Brischoux
- UMR 7372: Centre d'Etudes Biologiques de Chizé (CEBC) - CNRS - La Rochelle Université, 405 route de Prissé la Charrière, 79360, Villiers en Bois, France
| |
Collapse
|
2
|
Lorrain-Soligon L, Robin F, Brischoux F. Hydric status influences salinity-dependent water selection in frogs from coastal wetlands. Physiol Behav 2022; 249:113775. [PMID: 35259400 DOI: 10.1016/j.physbeh.2022.113775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022]
Abstract
The environment is heterogeneous across spatial and temporal scales, and the behavioural responses required to adjust individuals' needs to resource availability across such variable environments should be under selective pressure. Coastal wetlands are characterized by a diversity of habitats ranging from fresh- to salt water; and individuals occurring in such complex habitats need to adjust their habitat use based on their osmotic status. In this study, we experimentally tested whether an amphibian species (Pelophylax sp.) occurring in coastal wetlands was able to discriminate and select between different salinity concentrations (0, 4, 8 and 12 g.l-1) and whether hydric status (hydrated versus dehydrated) influenced salinity-dependent water selection. We found that frogs selected water based on salinity differentially between hydrated and dehydrated individuals, with the later favoring lower salinities likely to improve their osmotic status. Interestingly, we highlighted the ability of frogs to select lower salinity before having access to water, suggesting that frogs can assess water salinity without actual contact. In coastal wetlands where salinity of water bodies can dynamically vary through space and time, such behavioural osmoregulation process is potentially a key factor affecting individual movements, habitat choice and thus species distribution. Our study further highlights the importance of salinity-dependent habitat heterogeneity and especially the presence of freshwater environments as structuring factors for the amphibian community.
Collapse
Affiliation(s)
- Léa Lorrain-Soligon
- Centre d'Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS - La Rochelle Université, 79360 Villiers en Bois, France.
| | - Frédéric Robin
- LPO France, Fonderies Royales, 17300 Rochefort, France; Réserve naturelle de Moëze-Oléron, LPO, Plaisance, 17 780 Saint-Froult, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS - La Rochelle Université, 79360 Villiers en Bois, France
| |
Collapse
|
3
|
Tornabene BJ, Breuner CW, Hossack BR. Comparative Effects of Energy-Related Saline Wastewaters and Sodium Chloride on Hatching, Survival, and Fitness-Associated Traits of Two Amphibian Species. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3137-3147. [PMID: 34407239 DOI: 10.1002/etc.5193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/05/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Salinity (sodium chloride [NaCl]) is a prevalent and persistent contaminant that negatively affects freshwater ecosystems. Although most studies focus on effects of salinity from road salts (primarily NaCl), high-salinity wastewaters from energy extraction (wastewaters) could be more harmful because they contain NaCl and other toxic components. Many amphibians are sensitive to salinity, and their eggs are thought to be the most sensitive life-history stage. However, there are few investigations with salinity that include eggs and larvae sequentially in long-term exposures. We investigated the relative effects of wastewaters from a large energy reserve, the Williston Basin (USA), and NaCl on northern leopard (Rana pipiens) and boreal chorus (Pseudacris maculata) frogs. We exposed eggs and tracked responses through larval stages (for 24 days). Wastewaters and NaCl caused similar reductions in hatching and larval survival, growth, development, and activity, while also increasing deformities. Chorus frog eggs and larvae were more sensitive to salinity than leopard frogs, suggesting species-specific responses. Contrary to previous studies, eggs of both species were less sensitive to salinity than larvae. Our ecologically relevant exposures suggest that accumulating effects can reduce survival relative to starting experiments with unexposed larvae. Alternatively, egg casings of some species may provide some protection against salinity. Notably, effects of wastewaters on amphibians were predominantly due to NaCl rather than other components. Therefore, findings from studies with other sources of increased salinity (e.g., road salts) could guide management of wastewater-contaminated ecosystems, and vice versa, to mitigate effects of salinization. Environ Toxicol Chem 2021;40:3137-3147. © 2021 SETAC.
Collapse
Affiliation(s)
- Brian J Tornabene
- Wildlife Biology Program, W. A. Franke College of Forestry & Conservation, University of Montana, Missoula, Montana, USA
| | - Creagh W Breuner
- Wildlife Biology Program, W. A. Franke College of Forestry & Conservation, University of Montana, Missoula, Montana, USA
| | - Blake R Hossack
- Wildlife Biology Program, W. A. Franke College of Forestry & Conservation, University of Montana, Missoula, Montana, USA
- Northern Rocky Mountain Science Center, US Geological Survey, Missoula, Montana, USA
| |
Collapse
|
4
|
Kuroshima S, Tominaga A. Normal Development of an Aquatic Spawning Tree Frog, Buergeria japonica (Amphibia: Rhacophoridae). CURRENT HERPETOLOGY 2021. [DOI: 10.5358/hsj.40.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shota Kuroshima
- Faculty of Education, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903–0213, JAPAN
| | - Atsushi Tominaga
- Faculty of Education, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903–0213, JAPAN
| |
Collapse
|
5
|
Yaghobi S, Vaissi S, Khas ZT, Sharifi M. Influence of Salinity on Predator–Prey Interactions between the Mosquitofish (Gambusia affinis) and Larvae of the Green Toad (Bufotes variabilis). RUSS J ECOL+ 2020. [DOI: 10.1134/s1067413620030157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Albecker MA, McCoy MW. Adaptive responses to salinity stress across multiple life stages in anuran amphibians. Front Zool 2017; 14:40. [PMID: 28775757 PMCID: PMC5539974 DOI: 10.1186/s12983-017-0222-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/10/2017] [Indexed: 11/23/2022] Open
Abstract
Background In many regions, freshwater wetlands are increasing in salinity at rates exceeding historic levels. Some freshwater organisms, like amphibians, may be able to adapt and persist in salt-contaminated wetlands by developing salt tolerance. Yet adaptive responses may be more challenging for organisms with complex life histories, because the same environmental stressor can require responses across different ontogenetic stages. Here we investigated responses to salinity in anuran amphibians: a common, freshwater taxon with a complex life cycle. We conducted a meta-analysis to define how the lethality of saltwater exposure changes across multiple life stages, surveyed wetlands in a coastal region experiencing progressive salinization for the presence of anurans, and used common garden experiments to investigate whether chronic salt exposure alters responses in three sequential life stages (reproductive, egg, and tadpole life stages) in Hyla cinerea, a species repeatedly observed in saline wetlands. Results Meta-analysis revealed differential vulnerability to salt stress across life stages with the egg stage as the most salt-sensitive. Field surveys revealed that 25% of the species known to occur in the focal region were detected in salt-intruded habitats. Remarkably, Hyla cinerea was found in large abundances in multiple wetlands with salinity concentrations 450% higher than the tadpole-stage LC50. Common garden experiments showed that coastal (chronically salt exposed) populations of H. cinerea lay more eggs, have higher hatching success, and greater tadpole survival in higher salinities compared to inland (salt naïve) populations. Conclusions Collectively, our data suggest that some species of anuran amphibians have divergent and adaptive responses to salt exposure across populations and across different life stages. We propose that anuran amphibians may be a novel and amenable natural model system for empirical explorations of adaptive responses to environmental change. Electronic supplementary material The online version of this article (doi:10.1186/s12983-017-0222-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Molly A Albecker
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC USA
| | - Michael W McCoy
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC USA
| |
Collapse
|
7
|
Haramura T. Hatching plasticity in response to salinity levels in a rhacophorid frog inhabiting a coastal area. J Zool (1987) 2016. [DOI: 10.1111/jzo.12323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- T. Haramura
- Department of Zoology; Graduate School of Science; Kyoto University; Kyoto Japan
| |
Collapse
|
8
|
Hopkins GR, Brodie ED. Occurrence of Amphibians in Saline Habitats: A Review and Evolutionary Perspective. HERPETOLOGICAL MONOGRAPHS 2015. [DOI: 10.1655/herpmonographs-d-14-00006] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Tominaga A, Matsui M, Eto K, Ota H. Phylogeny and Differentiation of Wide-Ranging Ryukyu Kajika FrogBuergeria japonica(Amphibia: Rhacophoridae): Geographic Genetic Pattern Not Simply Explained by Vicariance Through Strait Formation. Zoolog Sci 2015; 32:240-7. [DOI: 10.2108/zs140227] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Wilder AE, Welch AM. Effects of Salinity and Pesticide on Sperm Activity and Oviposition Site Selection in Green Treefrogs,Hyla cinerea. COPEIA 2014. [DOI: 10.1643/ce-14-053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Santos B, Ribeiro R, Domingues I, Pereira R, Soares AMVM, Lopes I. Salinity and copper interactive effects on Perez's frog Pelophylax perezi. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:1864-1872. [PMID: 23625701 DOI: 10.1002/etc.2257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/21/2012] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
The present study was intended to assess the influence of salinity on the effects of copper on 2 life stages of Pelophylax perezi. Single and combined effects of salinity (NaCl) and Cu on survival, malformations, body length, and biochemical markers (catalase [CAT], cholinesterases, lactate dehidrogenase [LDH], and glutathione S-transferase) of individuals were evaluated in a multifactorial design. Two experiments were performed, 1 with embryos and the other with tadpoles. Each of these life stages was exposed to individual and combinations of Cu (0.0-7.4 mg/L and 0.0-2.4 mg/L, respectively) and NaCl (0.0-10.2 g/L and 0.0-7.4 g/L, respectively) concentrations. Copper alone had a higher lethal toxicity to tadpoles (90%; 2.4 mg/L) than to embryos (65%; 7.4 mg/L). Conversely, NaCl alone had a higher lethal toxicity to embryos (100%; 6.9 g/L) than to tadpoles (50%; 7.4 g/L). The 4 lowest tested NaCl concentrations decreased the lethal effects of Cu to embryos and the incidence of malformations, but the same outcome was not observed for tadpoles. Regarding enzymatic activities, although significant interactions between Cu and NaCl were observed for the activity of CAT and LDH in embryo and tadpole, a consistent pattern of NaCl and Cu interactive effects was not observed. The authors' results suggest a life-stage dependence on the effects of exposure to the individual substances or their combination. Also, it was observed that moderate salinity might have a shield effect against Cu lethal toxicity for embryos of P. perezi. These results highlight the need within ecological risk evaluations to characterize the sensitivity of different amphibian life stages to individual chemicals but also their combination with other environmental conditions resulting from climate changes.
Collapse
Affiliation(s)
- Bárbara Santos
- Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | | | | | | | | | | |
Collapse
|
12
|
Hopkins GR, French SS, Brodie ED. Increased frequency and severity of developmental deformities in rough-skinned newt (Taricha granulosa) embryos exposed to road deicing salts (NaCl & MgCl2). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 173:264-269. [PMID: 23207496 DOI: 10.1016/j.envpol.2012.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/01/2012] [Accepted: 10/16/2012] [Indexed: 05/26/2023]
Abstract
Road-side aquatic ecosystems in North America are annually polluted with millions of tons of road deicing salts, which threaten the survival of amphibians which live and breed in these habitats. While much is known of the effects of NaCl, little is known of the second most-commonly used deicer, MgCl(2), which is now used exclusively in parts of the continent. Here we report that environmentally relevant concentrations of both NaCl and MgCl(2) cause increased incidence of developmental deformities in rough-skinned newt hatchlings that developed embryonically in these salts. In addition, we provide some of the first quantification of severity of different deformities, and reveal that increased salt concentrations increase both deformity frequency and severity. Our work contributes to the growing body of literature that suggests salamanders and newts are particularly vulnerable to salt, and that the emerging pollutant, MgCl(2) is comparable in its effects to the more traditionally-used NaCl.
Collapse
Affiliation(s)
- Gareth R Hopkins
- Department of Biology and the Ecology Center, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA.
| | | | | |
Collapse
|
13
|
Alexander LG, Lailvaux SP, Pechmann JHK, DeVries PJ. Effects of Salinity on Early Life Stages of the Gulf Coast Toad, Incilius nebulifer (Anura: Bufonidae). COPEIA 2012. [DOI: 10.1643/cp-09-206] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
|
15
|
Haramura T. Experimental Test of Spawning Site Selection by Buergeria Japonica (Anura: Rhacophoridae) in Response to Salinity Level. COPEIA 2008. [DOI: 10.1643/ch-06-091] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|