1
|
Nakamuta S, Itoh M, Mori M, Kurita M, Zhang Z, Nikaido M, Miyazaki M, Yokoyama T, Yamamoto Y, Nakamuta N. In situ hybridization analysis of odorant receptor expression in the olfactory organ of the pig-nosed turtle Carettochelys insculpta. Tissue Cell 2023; 85:102255. [PMID: 37922676 DOI: 10.1016/j.tice.2023.102255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
The turtle olfactory organ consists of upper (UCE) and lower (LCE) chamber epithelium, which send axons to the ventral and dorsal portions of the olfactory bulbs, respectively. Generally, the UCE is associated with glands and contains ciliated olfactory receptor neurons (ORNs), while the LCE is devoid of glands and contains microvillous ORNs. However, the olfactory organ of the pig-nosed turtle Carettochelys insculpta appears to be a single olfactory system morphologically: there are no associated glands; ciliated ORNs are distributed throughout the olfactory organ; and the olfactory bulb is not divided into ventral and dorsal portions. In this study, we analyzed the expression of odorant receptors (ORs), the major olfactory receptors in turtles, in the pig-nosed turtle olfactory organ, via in situ hybridization. Of 690 ORs, 375 were classified as class I and 315 as class II. Some class II ORs were expressed predominantly in the posterior dorsomedial walls of the nasal cavity, while other class II ORs and all class I ORs examined were expressed in the remaining region. These results suggest that the pig-nosed turtle olfactory organ can be divided into two regions according to the expression of ORs.
Collapse
Affiliation(s)
- Shoko Nakamuta
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Miho Itoh
- Port of Nagoya Public Aquarium, 1-3 Minato-machi, Minato-ku, Nagoya, Aichi 455-0033, Japan
| | - Masanori Mori
- Port of Nagoya Public Aquarium, 1-3 Minato-machi, Minato-ku, Nagoya, Aichi 455-0033, Japan
| | - Masanori Kurita
- Port of Nagoya Public Aquarium, 1-3 Minato-machi, Minato-ku, Nagoya, Aichi 455-0033, Japan
| | - Zicong Zhang
- Institute for the Advanced Study of Human Biology, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masao Miyazaki
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Takuya Yokoyama
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
2
|
Nakamuta S, Noda H, Kato H, Yokoyama T, Yamamoto Y, Nakamuta N. Expression patterns of the transcription factors Fezf1, Fezf2, and Bcl11b in the olfactory organs of turtle embryos. J Morphol 2023; 284:e21655. [PMID: 37856277 DOI: 10.1002/jmor.21655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Many tetrapod vertebrates have two distinct olfactory organs, the olfactory epithelium (OE) and vomeronasal organ (VNO). In turtles, the olfactory organ consists of two types of sensory epithelia, the upper chamber epithelium (UCE; corresponding to the OE) and the lower chamber epithelium (LCE; corresponding to the VNO). In many turtle species, the UCE contains ciliated olfactory receptor cells (ORCs) and the LCE contains microvillous ORCs. To date, several transcription factors involved in the development of the OE and VNO have been identified in mammals. Fez family zinc-finger protein 1 and 2 (Fezf1 and 2) are expressed in the OE and VNO, respectively, of mouse embryos, and are involved in the development and maintenance of ORCs. B-cell lymphoma/leukemia 11B (Bcl11b) is expressed in the mouse embryo OE except the dorsomedial parts of the nasal cavity, and regulates the expression of odorant receptors in the ORCs. In this study, we examined the expression of Fezf1, Fezf2, and Bcl11b in the olfactory organs of embryos in three turtle species, Pelodiscus sinensis, Trachemys scripta elegans, and Centrochelys sulcata, to evaluate their involvement in the development of reptile olfactory organs. In all three turtle species, Bcl11b was expressed in the UCE, Fezf2 in the LCE, and Fezf1 in both the UCE and LCE. These results imply that the roles of the transcription factors Fezf1, Fezf2, and Bcl11b in olfactory organ development are conserved among mammals and turtles.
Collapse
Affiliation(s)
- Shoko Nakamuta
- Laboratory of Veterinary Anatomy, Iwate University, Morioka, Japan
| | | | - Hideaki Kato
- Faculty of Education, Shizuoka University, Shizuoka, Japan
| | - Takuya Yokoyama
- Laboratory of Veterinary Anatomy, Iwate University, Morioka, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy, Iwate University, Morioka, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy, Iwate University, Morioka, Japan
| |
Collapse
|
3
|
Kondoh D, Kaneoya Y, Tonomori W, Kitayama C. Histological features and Gα olf expression patterns in the nasal cavity of sea turtles. J Anat 2023; 243:486-503. [PMID: 37042468 PMCID: PMC10439381 DOI: 10.1111/joa.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
Sea turtles use olfaction to detect volatile and water-soluble substances. The nasal cavity of green turtles (Chelonia mydas) comprises morphologically defined the anterodorsal, anteroventral, and posterodorsal diverticula, as well as a single posteroventral fossa. Here, we detailed the histological features of the nasal cavity of a mature female green turtle. The posterodorsal diverticulum contained spongy-like venous sinuses and a wave-shaped sensory epithelium that favored ventilation. Secretory structures that were significant in sensory and non-sensory epithelia were probably involved in protection against seawater. These findings suggested that green turtles efficiently intake airborne substances and dissolve water-soluble substances in mucous, while suppressing the effects of salts. In addition, positive staining of Gαs/olf that couples with olfactory, but not vomeronasal, receptors was predominant in all three types of sensory epithelium in the nasal cavity. Both of airborne and water-soluble odorants seemed to be detected in cells expressing Gαolf and olfactory receptors.
Collapse
Affiliation(s)
- Daisuke Kondoh
- Department of Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineObihiroHokkaidoJapan
| | - Yuka Kaneoya
- Department of Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineObihiroHokkaidoJapan
| | - Wataru Tonomori
- Department of Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineObihiroHokkaidoJapan
| | | |
Collapse
|
4
|
Nakamuta S, Mori M, Ito M, Kurita M, Miyazaki M, Yamamoto Y, Nakamuta N. In situ hybridization analysis of olfactory receptor expression in the sea turtle olfactory organ. Cell Tissue Res 2023:10.1007/s00441-023-03782-6. [PMID: 37266727 DOI: 10.1007/s00441-023-03782-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/08/2023] [Indexed: 06/03/2023]
Abstract
The olfactory organ of turtles consists of an upper chamber epithelium (UCE) with associated glands, and a lower chamber epithelium (LCE) devoid of glands. The UCE and LCE are referred to as the air-nose and the water-nose, respectively, because the UCE is thought to detect airborne odorants, while the LCE detects waterborne odorants. However, it is not clear how the two are used in the olfactory organ. Odorant receptors (ORs) are the major olfactory receptors in turtles; they are classified as class I and II ORs, distinguished by their primary structure. Class I ORs are suggested to be receptive to water-soluble ligands and class II ORs to volatile ligands. This study analyzed the expression of class I and II ORs in hatchlings of the green sea turtle, Chelonia mydas, through in situ hybridization, to determine the localization of OR-expressing cells in the olfactory organ. Class I OR-expressing cells were distributed mainly in the LCE, implying that the LCE is receptive to waterborne odorants. Class II OR-expressing cells were distributed in both the UCE and LCE, implying that the entire olfactory organ is receptive to airborne odorants. The widespread expression of class II ORs may increase opportunities for sea turtles to sense airborne odorants.
Collapse
Affiliation(s)
- Shoko Nakamuta
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Masanori Mori
- Port of Nagoya Public Aquarium, 1-3 Minato-machi, Minato-ku, Nagoya, Aichi, 455-0033, Japan
| | - Miho Ito
- Port of Nagoya Public Aquarium, 1-3 Minato-machi, Minato-ku, Nagoya, Aichi, 455-0033, Japan
| | - Masanori Kurita
- Port of Nagoya Public Aquarium, 1-3 Minato-machi, Minato-ku, Nagoya, Aichi, 455-0033, Japan
| | - Masao Miyazaki
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan.
| |
Collapse
|
5
|
Rincón‐Camacho L, Jungblut LD, Pandolfi M, Pozzi AG. Ultrastructural and immunohistochemical characteristics of the olfactory organ Cardinal tetra,
Paracheirodon axelrodi
(Characiformes: Characidae). J Morphol 2022; 283:815-826. [DOI: 10.1002/jmor.21473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/19/2022] [Accepted: 03/27/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Laura Rincón‐Camacho
- Laboratorio de Neuroendocrinología y Comportamiento en Peces y Anfibios, Departamento de Biodiversidad y Biología experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada‐CONICET
| | - Lucas D. Jungblut
- Laboratorio de Neuroendocrinología y Comportamiento en Peces y Anfibios, Departamento de Biodiversidad y Biología experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada‐CONICET
| | - Matías Pandolfi
- Laboratorio de Neuroendocrinología y Comportamiento en Peces y Anfibios, Departamento de Biodiversidad y Biología experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada‐CONICET
| | - Andrea G. Pozzi
- Laboratorio de Neuroendocrinología y Comportamiento en Peces y Anfibios, Departamento de Biodiversidad y Biología experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada‐CONICET
| |
Collapse
|
6
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
7
|
Olfactory subsystems in the peripheral olfactory organ of anuran amphibians. Cell Tissue Res 2020; 383:289-299. [PMID: 33247771 DOI: 10.1007/s00441-020-03330-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/27/2020] [Indexed: 10/22/2022]
Abstract
Anuran amphibians (frogs and toads) typically have a complex life cycle, involving aquatic larvae that metamorphose to semi-terrestrial juveniles and adults. However, the anuran olfactory system is best known in Xenopus laevis, an animal with secondarily aquatic adults. The larval olfactory organ contains two distinct sensory epithelia: the olfactory epithelium (OE) and vomeronasal organ (VNO). The adult organ contains three: the OE, the VNO, and a "middle cavity" epithelium (MCE), each in its own chamber. The sensory epithelia of Xenopus larvae have overlapping sensory neuron morphology (ciliated or microvillus) and olfactory receptor gene expression. The MCE of adults closely resembles the OE of larvae, and senses waterborne odorants; the adult OE is distinct and senses airborne odorants. Olfactory subsystems in other (non-pipid) anurans are diverse. Many anuran larvae show a patch of olfactory epithelium exposed in the buccal cavity (bOE), associated with a grazing feeding mode. And other anuran adults do not have a sensory MCE, but many have a distinct patch of epithelium adjacent to the OE, the recessus olfactorius (RO), which senses waterborne odorants. Olfaction plays a wide variety of roles in the life of larval and adult anurans, and some progress has been made in identifying relevant odorants, including pheromones and feeding cues. Increased knowledge of the diversity of olfactory structure, of odorant receptor expression patterns, and of factors that affect the access of odorants to sensory epithelia will enable us to better understand the adaptation of the anuran olfactory system to aquatic and terrestrial environments.
Collapse
|
8
|
Abdali SS, Nakamuta S, Yamamoto Y, Nakamuta N. Distribution of cells expressing vomeronasal receptors in the olfactory organ of turtles. J Vet Med Sci 2020; 82:1068-1079. [PMID: 32727968 PMCID: PMC7468070 DOI: 10.1292/jvms.20-0207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Generally, the olfactory organ of vertebrates consists of the olfactory epithelium (OE)
and the vomeronasal organ (VNO). The OE contains ciliated olfactory receptor neurons
(ORNs), while the VNO contains microvillous ORNs. The ORNs in the OE express odorant
receptors (ORs), while those in the VNO express type 1 and type 2
vomeronasal receptors (V1Rs and V2Rs). In turtles, the
olfactory organ consists of the upper (UCE) and lower chamber epithelia (LCE). The UCE
contains ciliated ORNs, while the LCE contains microvillous ORNs. Here we investigated the
distribution of cells expressing vomeronasal receptors in the olfactory organ of turtles.
The turtle vomeronasal receptors were encoded by two V1R genes and two
V2R genes. Among them, V2R1 and V2R26
were mainly expressed in the LCE, while V1R3 was expressed both in the
UCE and LCE. Notably, vomeronasal receptors were expressed by a limited number of ORNs,
which was confirmed by the expression of the gene encoding TRPC2, an ion channel involved
in the signal transduction of vomeronasal receptors. Furthermore, expression of
ORs by the majority of ORNs was suggested by the expression of the gene
encoding CNGA2, an ion channel involved in the signal transduction of ORs. Thus, olfaction
of turtle seems to be mediated mainly by the ORs rather than the vomeronasal receptors.
More importantly, the relationship between the fine structure of ORNs and the expression
of olfactory receptors are not conserved among turtles and other vertebrates.
Collapse
Affiliation(s)
- Sayed Sharif Abdali
- United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan.,Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Shoko Nakamuta
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Yoshio Yamamoto
- United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan.,Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Nobuaki Nakamuta
- United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan.,Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| |
Collapse
|
9
|
Kondoh D, Kitayama C, Aiko Y, Yamaguchi Y. Main airway throughout the nasal cavity of green sea turtles is lined by keratinized stratified squamous epithelium. Tissue Cell 2020; 65:101370. [PMID: 32746990 DOI: 10.1016/j.tice.2020.101370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 11/19/2022]
Abstract
Structural and histological features of the nasal cavity of sea turtles are largely different from those of other Testudines species. The sea turtle nasal cavity is a pair of tubular structures with three diverticula and an excavation in the center, and three types of sensory epithelium are present in these four significant structures. To more clarify the adaptation of the nasal cavity to marine life style in sea turtles, non-sensory epithelium in the nasal cavity of green sea turtles (Chelonia mydas) were histologically determined from nostril to choanae in this study. Unlike many other animals including terrestrial turtles, the vestibular area and nasopharyngeal duct were all lined by keratinized stratified squamous epithelium. In the main nasal cavity, the margins of each sensory epithelium turned into respiratory epithelium with goblet cells, followed by keratinized stratified squamous epithelium. Keratinized epithelium appears more appropriate in sea turtle upper airway to protect against osmotic pressure when they release seawater through the nostrils, and thus this histological feature of upper airway might reflect adaptation to marine life style.
Collapse
Affiliation(s)
- Daisuke Kondoh
- Laboratory of Veterinary Anatomy, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| | - Chiyo Kitayama
- Everlasting Nature of Asia (ELNA), Ogasawara Marine Center, Ogasawara, Tokyo 100-2101, Japan
| | - Yuki Aiko
- Laboratory of Veterinary Anatomy, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Yohei Yamaguchi
- Laboratory of Veterinary Anatomy, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
10
|
Ferrando S, Amaroli A, Gallus L, Di Blasi D, Carlig E, Rottigni M, Vacchi M, Parker SJ, Ghigliotti L. Olfaction in the Antarctic toothfish Dissostichus mawsoni: clues from the morphology and histology of the olfactory rosette and bulb. Polar Biol 2019. [DOI: 10.1007/s00300-019-02496-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Nakamuta S, Kusuda S, Yokosuka M, Taniguchi K, Yamamoto Y, Nakamuta N. Immunohistochemical analysis of the development of olfactory organs in two species of turtles Pelodiscus sinensis and Mauremys reevesii. Acta Histochem 2018; 120:806-813. [PMID: 30236832 DOI: 10.1016/j.acthis.2018.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/31/2023]
Abstract
The nasal cavity of turtles is composed of the upper and lower chambers, lined by the upper and lower chamber epithelia, respectively. In many turtles including the Reeve's turtle Mauremys reevesii, the upper chamber epithelium contains ciliated olfactory receptor neurons (ORNs) and the lower chamber epithelium contains microvillous ORNs. However, in the olfactory organ of the Chinese soft-shelled turtle Pelodiscus sinensis, both the upper and lower chamber epithelia contain ciliated ORNs. In the present study, we immunohistochemically examined the developmental process of olfactory organs in soft-shelled turtle and the Reeve's turtle to clarify the developmental origins of the lower chamber epithelium in these turtles. Obtained data indicate that olfactory organs of these turtles have identical origin and follow similar process of development, suggesting that, in the lower chamber epithelium of the nasal cavity, ciliated ORNs differentiate in soft-shelled turtle whereas microvillous ORNs differentiate in the Reeve's turtle.
Collapse
|
12
|
Ferrando S, Gallus L, Amaroli A, Gambardella C, Waryani B, Di Blasi D, Vacchi M. Gross anatomy and histology of the olfactory rosette of the shark Heptranchias perlo. ZOOLOGY 2017; 122:27-37. [PMID: 28268047 DOI: 10.1016/j.zool.2017.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/08/2016] [Accepted: 02/14/2017] [Indexed: 11/17/2022]
Abstract
Sharks belonging to the family Hexanchidae have six or seven gill slits, unlike all other elasmobranchs, which have five gill slits. Their olfactory organs have a round shape, which is common for holocephalans, but not for elasmobranchs. Thus, the shape of the olfactory organ represents a further, less striking, peculiarity of this family among elasmobranchs. Despite that, the microscopic anatomy and histology of the olfactory organ have not yet been studied in any species of this family. Here, an anatomical and histological description of the olfactory organ of the sharpnose sevengill shark Heptranchias perlo is given. The organ is a rosette, with a central raphe and 31-34 primary lamellae, which bear secondary lamellae with a more or less branched shape. The elastic connective capsule which envelops the olfactory rosette possibly changes its shape along with water influx. In the olfactory epithelium, the supporting cells also have a secretory function, while no specialized mucous cells are visible; regarding this feature the olfactory epithelium of H. perlo differs from that of other chondrichthyan species. The immunohistochemical investigation of the sensory epithelium shows the absence of immunoreactivity for Gαolf in receptor neurons, which confirms previous observations in Chondrichthyes.
Collapse
Affiliation(s)
- Sara Ferrando
- DISTAV - University of Genoa, Viale Benedetto XV 5, 16132 Genoa, Italy.
| | - Lorenzo Gallus
- DISTAV - University of Genoa, Viale Benedetto XV 5, 16132 Genoa, Italy
| | - Andrea Amaroli
- DISC - University of Genoa, Largo Rosanna Benzi 8, 16132 Genoa, Italy
| | | | - Baradi Waryani
- Department of Fresh Water Biology and Fisheries, Faculty of Natural Sciences, University of Sindh, Jamshoro, Pakistan
| | | | | |
Collapse
|
13
|
Nakamuta N, Nakamuta S, Kato H, Yamamoto Y. Morphological study on the olfactory systems of the snapping turtle, Chelydra serpentina. Tissue Cell 2016; 48:145-51. [PMID: 27059760 DOI: 10.1016/j.tice.2016.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/08/2016] [Accepted: 03/27/2016] [Indexed: 12/01/2022]
Abstract
In this study, the olfactory system of a semi-aquatic turtle, the snapping turtle, has been morphologically investigated by electron microscopy, immunohistochemistry, and lectin histochemistry. The nasal cavity of snapping turtle was divided into the upper and lower chambers, lined by the sensory epithelium containing ciliated and non-ciliated olfactory receptor neurons, respectively. Each neuron expressed both Gαolf, the α-subunit of G-proteins coupling to the odorant receptors, and Gαo, the α-subunit of G-proteins coupling to the type 2 vomeronasal receptors. The axons originating from the upper chamber epithelium projected to the ventral part of the olfactory bulb, while those from the lower chamber epithelium to the dorsal part of the olfactory bulb. Despite the identical expression of G-protein α-subunits in the olfactory receptor neurons, these two projections were clearly distinguished from each other by the differential expression of glycoconjugates. In conclusion, these data indicate the presence of two types of olfactory systems in the snapping turtle. Topographic arrangement of the upper and lower chambers and lack of the associated glands in the lower chamber epithelium suggest their possible involvement in the detection of odorants: upper chamber epithelium in the air and the lower chamber epithelium in the water.
Collapse
Affiliation(s)
- Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Shoko Nakamuta
- Laboratory of Veterinary Anatomy, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Hideaki Kato
- Faculty of Education, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
14
|
Nakamuta S, Yokosuka M, Taniguchi K, Yamamoto Y, Nakamuta N. Histochemical and ultrastructural analyses of the lubrication systems in the olfactory organs of soft-shelled turtle. J Vet Med Sci 2016; 78:769-74. [PMID: 26782135 PMCID: PMC4905829 DOI: 10.1292/jvms.15-0564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In general, the nasal cavity of turtles is divided into two chambers: the upper chamber, lined with the olfactory epithelium containing ciliated olfactory receptor cells, and the lower chamber, lined with the vomeronasal epithelium containing microvillous receptor cells. In the nasal cavity of soft-shelled turtles, however, differences between the upper and lower chamber epithelia are unclear due to the presence of ciliated receptor cells in both epithelia. In the olfactory organ of vertebrates, the surface of sensory epithelium is covered with secretory products of associated glands and supporting cells, playing important roles in the olfaction by dissolving odorants and transporting them to the olfactory receptors. Here, the associated glands and supporting cells in the olfactory organ of soft-shelled turtles were analyzed histochemically and ultrastructurally. The upper chamber epithelium possessed associated glands, constituted by cells containing serous secretory granules; whereas, the lower chamber epithelium did not. In the upper chamber epithelium, secretory granules filled the supranuclear region of supporting cells, while most of the granules were distributed near the free border of supporting cells in the lower chamber epithelium. The secretory granules in the supporting cells of both epithelia were seromucous, but alcian blue stained them differently from each other. In addition, distinct expression of carbohydrates was suggested by the differences in lectin binding. These data indicate the quantitative and qualitative differences in the secretory properties between the upper and lower chamber epithelia, suggesting their distinct roles in the olfaction.
Collapse
Affiliation(s)
- Shoko Nakamuta
- Laboratory of Veterinary Anatomy, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | | | | | | | | |
Collapse
|
15
|
Ferrando S, Gallus L, Ghigliotti L, Vacchi M, Nielsen J, Christiansen JS, Pisano E. Gross morphology and histology of the olfactory organ of the Greenland shark Somniosus microcephalus. Polar Biol 2015. [DOI: 10.1007/s00300-015-1862-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Nakamuta S, Yokosuka M, Taniguchi K, Yamamoto Y, Nakamuta N. Immunohistochemical analysis for G protein in the olfactory organs of soft-shelled turtle, Pelodiscus sinensis. J Vet Med Sci 2015; 78:245-50. [PMID: 26440778 PMCID: PMC4785113 DOI: 10.1292/jvms.15-0359] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In turtles, the epithelia lining the upper and lower chambers of the nasal cavity project axons to the ventral and dorsal parts of the olfactory bulbs, respectively. In a semi-aquatic soft-shelled turtle, Pelodiscus sinensis, more than 1,000 odorant receptor genes have been found, but it is not known where they are expressed. In this study, we aimed to clarify the distribution of cells expressing these genes in the olfactory organs of soft-shelled turtles. Immunoreactions for the Gαolf, the α subunit of G protein coupled to the odorant receptors, were detected on the surface of epithelia lining both the upper and lower chambers of the nasal cavity. The receptor cells in the epithelium of both chambers possessed cilia on the tip of their dendrites, whereas microvillous, non-ciliated, receptor cells were not found. These data suggest that the odorant receptor genes are expressed by the ciliated receptor cells in the upper and lower chamber epithelia. Precise location of the vomeronasal epithelium is not known at present.
Collapse
Affiliation(s)
- Shoko Nakamuta
- Laboratory of Veterinary Anatomy, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | | | | | | | | |
Collapse
|
17
|
Nakada T, Hagino-Yamagishi K, Nakanishi K, Yokosuka M, Saito TR, Toyoda F, Hasunuma I, Nakakura T, Kikuyama S. Expression of G proteins in the olfactory receptor neurons of the newt Cynops pyrrhogaster: their unique projection into the olfactory bulbs. J Comp Neurol 2014; 522:3501-19. [PMID: 24771457 DOI: 10.1002/cne.23619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 12/11/2022]
Abstract
We analyzed the expression of G protein α subunits and the axonal projection into the brain in the olfactory system of the semiaquatic newt Cynops pyrrhogaster by immunostaining with antibodies against Gαolf and Gαo , by in situ hybridization using probes for Gαolf , Gαo , and Gαi2 , and by neuronal tracing with DiI and DiA. The main olfactory epithelium (OE) consists of two parts, the ventral OE and dorsal OE. In the ventral OE, the Gαolf - and Gαo -expressing neurons are located in the apical and basal zone of the OE, respectively. This zonal expression was similar to that of the OE in the middle cavity of the fully aquatic toad Xenopus laevis. However, the Gαolf - and Gαo -expressing neurons in the newt ventral OE project their axons toward the main olfactory bulb (MOB) and the accessory olfactory bulb (AOB), respectively, whereas in Xenopus, the axons of both neurons project solely toward the MOB. In the dorsal OE of the newt, as in the principal cavity of Xenopus, the majority of the neurons express Gαolf and extend their axons into the MOB. In the vomeronasal organ (VNO), the neurons mostly express Gαo . These neurons and quite a few Gαolf -expressing neurons project their axons toward the AOB. This feature is similar to that in the terrestrial toad Bufo japonicus and is different from that in Xenopus, in which VNO neurons express solely Gαo , although their axons invariably project toward the AOB. We discuss the findings in the light of diversification and evolution of the vertebrate olfactory system.
Collapse
Affiliation(s)
- Tomoaki Nakada
- Department of Comparative and Behavioral Medicine, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, 180-8602, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nakamuta S, Nakamuta N, Taniguchi K, Taniguchi K. Histological and ultrastructural characteristics of the primordial vomeronasal organ in lungfish. Anat Rec (Hoboken) 2012; 295:481-91. [PMID: 22271496 DOI: 10.1002/ar.22415] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 12/28/2011] [Indexed: 11/10/2022]
Abstract
Many vertebrates have two anatomically distinct olfactory organs--the olfactory epithelium and the vomeronasal organ--to detect chemicals such as general odorants and pheromones in their environment. The vomeronasal organ is not present in fish but is present in vertebrates of a higher order than amphibians. Among all extant fishes, the lungfish is considered to be genetically and phylogenetically closest to tetrapods. In this study, we examined the olfactory organs of African lungfish, Protopterus annectens, by lectin histochemistry, immunohistochemistry, and transmission electron microscopy. Two types of sensory epithelia were identified in the olfactory organ--the olfactory epithelium covering the surface of lamellae and the sensory epithelium lining the recesses both at the base of lamellae and in the wall of the nasal sac--and designated here as the lamellar olfactory epithelium and the recess epithelium, respectively. Based on analysis of G-protein expression and ultrastructure, the lamellar olfactory epithelium resembled the olfactory epithelium of ordinary teleosts and the recess epithelium resembled the vomeronasal organ of tetrapods. Furthermore, lectin histochemistry demonstrated that the axons from the recess epithelium converge and project to the ventrolateral part of the olfactory bulb, suggesting that lungfish possess a region homologous to the accessory olfactory bulb of tetrapods. Based on these results, it seems appropriate to refer to the recess epithelium as "a primordium of the vomeronasal organ." This study may provide important clues to elucidate how the vomeronasal organ emerged during the evolution of vertebrates.
Collapse
Affiliation(s)
- Shoko Nakamuta
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | | | | | | |
Collapse
|
19
|
Hagino-Yamagishi K, Nakazawa H. Involvement of Gα(olf)-expressing neurons in the vomeronasal system of Bufo japonicus. J Comp Neurol 2012; 519:3189-201. [PMID: 21618228 DOI: 10.1002/cne.22671] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Most terrestrial vertebrates possess anatomically distinct olfactory organs: the olfactory epithelium (OE) and the vomeronasal organ (VNO). In rodents, olfactory receptors coupled to Gα(olf) are expressed in the OE, whereas vomeronasal receptors type 1 (V1R) and vomeronasal receptors type 2 (V2R), coupled to Gα(i2) and Gα(o) , respectively, are expressed in the VNO. These receptors and G proteins are thought to play important roles in olfactory perception. However, we previously reported that only V2R and Gα(o) expression is detected in the Xenopus laevis VNO. As X. laevis spends its entire life in water, we considered that expression of limited types of chemosensory machinery in the VNO might be due to adaptation of the VNO to aquatic life. Thus, we analyzed the expression of G proteins in the VNO and the accessory olfactory bulb (AOB) of the adult Japanese toad, Bufo japonicus, because this species is well adapted to a terrestrial life. By using immunohistochemical analysis in combination with in situ hybridization and DiI labeling, we found that B. japonicus Gα(olf) and Gα(o) were expressed in the apical and middle-to-basal layer of the vomeronasal neuroepithelium, and that the axons of these Gα(olf) - and Gα(o) -expressing vomeronasal neurons projected to the rostral and caudal accessory olfactory bulb, respectively. These results strongly suggest that both the Gα(olf) - and Gα(o) -mediated signal transduction pathways function in the B. japonicus VNO. The expression of Gα(olf) in the B. japonicus VNO may correlate with the detection of airborne chemical cues and with a terrestrial life.
Collapse
Affiliation(s)
- Kimiko Hagino-Yamagishi
- Integrated Neuroscience Research Project, The Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | | |
Collapse
|
20
|
Wirsig-Wiechmann CR, Colvard J, Aston CE, Dighe R, Houck LD, Feldhoff PW, Feldhoff RC. Gonadotropin-Releasing Hormone Modulates Vomeronasal Neuron Response to Male Salamander Pheromone. J Exp Neurosci 2012. [DOI: 10.4137/jen.s8414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Electrophysiological studies have shown that gonadotropin-releasing hormone (GnRH) modifies chemosensory neurons responses to odors. We have previously demonstrated that male Plethodon shermani pheromone stimulates vomeronasal neurons in the female conspecific. In the present study we used agmatine uptake as a relative measure of the effects of GnRH on this pheromone-induced neural activation of vomeronasal neurons. Whole male pheromone extract containing 3 millimolar agmatine with or without 10 micromolar GnRH was applied to the nasolabial groove of female salamanders for 45 minutes. Immunocytochemical procedures were conducted to visualize and quantify relative agmatine uptake as measured by labeling density of activated vomeronasal neurons. The relative number of labeled neurons did not differ between the two groups: pheromone alone or pheromone-GnRH. However, vomeronasal neurons exposed to pheromone-GnRH collectively demonstrated higher labeling intensity, as a percentage above background (75%) as compared with neurons exposed to pheromone alone (63%, P < 0.018). Since the labeling intensity of agmatine within neurons signifies the relative activity levels of the neurons, these results suggest that GnRH increases the response of female vomeronasal neurons to male pheromone.
Collapse
Affiliation(s)
- Celeste R. Wirsig-Wiechmann
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 S.L. Young Boulevard, Oklahoma City, OK 73104
| | - Justin Colvard
- Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112
| | - Christopher E. Aston
- Department of Pediatrics, University of Oklahoma Health Sciences Center, 1122 N.E. 13th Street, Oklahoma City, OK 73117
| | - Radhika Dighe
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 S.L. Young Boulevard, Oklahoma City, OK 73104
| | - Lynne D. Houck
- Department of Zoology, Oregon State University, Corvallis, Or 97331-2914
| | - Pamela W. Feldhoff
- Department of Biochemistry and Molecular Biology, University of Louisville Health Sciences Center, Louisville, KY 40292
| | - Richard C. Feldhoff
- Department of Biochemistry and Molecular Biology, University of Louisville Health Sciences Center, Louisville, KY 40292
| |
Collapse
|
21
|
Ferrando S, Gallus L, Gambardella C, Amaroli A, Vallarino M, Tagliafierro G. Immunolocalization of G protein α subunits in the olfactory system of Polypterus senegalus (Cladistia, Actinopterygii). Neurosci Lett 2011; 499:127-31. [PMID: 21651958 DOI: 10.1016/j.neulet.2011.05.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 05/15/2011] [Accepted: 05/20/2011] [Indexed: 11/19/2022]
Abstract
In vertebrates, the receptor neurons of the olfactory/vomeronasal systems express different receptor gene families and related G-protein types (in particular the G protein alpha subunit). There are no data in the literature about the molecular features of the olfactory/vomeronasal systems of Cladistia thus, in this work, the presence and distribution of different types of G protein alpha subunits were investigated in the olfactory organs of the bichir Polypterus senegalus, using immunohistochemistry. Gαo-like immunoreactivity was detected in the microvillous receptor neurons, with the cell body in the basal zone of the sensory epithelium, and in the crypt neurons. Gαo-like ir glomeruli were mainly localized in the anterior part of the olfactory bulb. Gαolf-like immunoreactivity in the sensory epithelium was detected in the ciliated receptor neurons, while the immunoreactive glomeruli in the olfactory bulb were mainly localized in the ventral-posterior part. No Gαq nor Gαi3 immunoreactivity was detected. These data are partially in agreement with studies that show the distribution of G protein alpha subunits in teleosts, allowing to hypothesize a common organization of the olfactory/vomeronasal systems in the group of Actinopterigians.
Collapse
Affiliation(s)
- Sara Ferrando
- Department of Biology, University of Genoa, Viale Benedetto XV 5, I-16132 Genoa, Italy.
| | | | | | | | | | | |
Collapse
|
22
|
Iqbal T, Byrd-Jacobs C. Rapid degeneration and regeneration of the zebrafish olfactory epithelium after triton X-100 application. Chem Senses 2010; 35:351-61. [PMID: 20228140 DOI: 10.1093/chemse/bjq019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effects of Triton X-100 on the olfactory epithelium (OE) of adult zebrafish were examined to study neuronal turnover in this model system. Fish were killed at various time points after detergent application and stained with hematoxylin and eosin to examine olfactory structures, immunocytochemistry to examine cell types, or DiI to examine connections to the olfactory bulb. A significant decrease in epithelial thickness of treated sides was observed 1-day posttreatment. Epithelium thickness recovered by 5 days. The most significant reduction in the OE following Triton X-100 treatment corresponded to the region of supporting cells and mature olfactory sensory neurons. Labeling for all neurons with anti-Hu and for the 3 sensory neuron subtypes of the zebrafish OE (ciliated, microvillous, and crypt neurons) diminished 1 day after lesion and returned by 5 days posttreatment. Retrograde labeling from the olfactory bulb showed that the majority of mature olfactory sensory neurons disappeared in 1 day and reappeared by 5 days after treatment. Anti-proliferating cell nuclear antigen was used to show mitotic activity, and after chemical lesion, there was an increase in proliferation in specific regions of the OE. Thus, chemical ablation causes temporary reduction with swift regeneration of the OE occurring within a week.
Collapse
Affiliation(s)
- Tania Iqbal
- Department of Biological Sciences, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008-5410, USA
| | | |
Collapse
|
23
|
Jungblut LD, Paz DA, López-Costa JJ, Pozzi AG. Heterogeneous distribution of G protein alpha subunits in the main olfactory and vomeronasal systems of Rhinella (Bufo) arenarum tadpoles. Zoolog Sci 2010; 26:722-8. [PMID: 19832685 DOI: 10.2108/zsj.26.722] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We evaluated the presence of G protein subtypes Galpha(o), Galpha(i2), and Galpha(olf) in the main olfactory system (MOS) and accessory or vomeronasal system (VNS) of Rhinella (Bufo) arenarum tadpoles, and here describe the fine structure of the sensory cells in the olfactory epithelium (OE) and vomeronasal organ (VNO). The OE shows olfactory receptor neurons (ORNs) with cilia in the apical surface, and the vomeronasal receptor neurons (VRNs) of the VNO are covered with microvilli. Immunohistochemistry detected the presence of at least two segregated populations of ORNs throughout the OE, coupled to Galpha(olf) and Galpha(o). An antiserum against Galpha(i2) was ineffective in staining the ORNs. In the VNO, Galpha(o) neurons stained strongly but lacked immunoreactivity to any other Galpha subunit in all larval stages analyzed. Western blot analyses and preabsorption experiments confirmed the specificity of the commercial antisera used. The functional significance of the heterogeneous G-protein distribution in R. arenarum tadpoles is not clear, but the study of G- protein distributions in various amphibian species is important, since this vertebrate group played a key role in the evolution of tetrapods. A more complete knowledge of the amphibian MOS and VNS would help to understand the functional organization and evolution of vertebrate chemosensory systems. This work demonstrates, for the first time, the existence of a segregated distribution of G-proteins in the OE of R. arenarum tadpoles.
Collapse
Affiliation(s)
- Lucas D Jungblut
- Laboratorio de Biología del Desarrollo, Instituto de Fisiología, Bioloíg Molecular y Neurociencias (IFIBYNE-CONICET) and Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
| | | | | | | |
Collapse
|