1
|
Chakroborty NK, Leboulle, Einspanier R, Menzel R. Behavioral and genetic correlates of heterogeneity in learning performance in individual honeybees, Apis mellifera. PLoS One 2024; 19:e0304563. [PMID: 38865313 PMCID: PMC11168654 DOI: 10.1371/journal.pone.0304563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Learning an olfactory discrimination task leads to heterogeneous results in honeybees with some bees performing very well and others at low rates. Here we investigated this behavioral heterogeneity and asked whether it was associated with particular gene expression patterns in the bee's brain. Bees were individually conditioned using a sequential conditioning protocol involving several phases of olfactory learning and retention tests. A cumulative score was used to differentiate the tested bees into high and low performers. The rate of CS+ odor learning was found to correlate most strongly with a cumulative performance score extracted from all learning and retention tests. Microarray analysis of gene expression in the mushroom body area of the brains of these bees identified a number of differentially expressed genes between high and low performers. These genes are associated with diverse biological functions, such as neurotransmission, memory formation, cargo trafficking and development.
Collapse
Affiliation(s)
- Neloy Kumar Chakroborty
- Institute Biology, Neurobiology, Freie Universität Berlin, Königin Luisestr, Berlin, Germany
| | - Leboulle
- Institute Biology, Neurobiology, Freie Universität Berlin, Königin Luisestr, Berlin, Germany
| | - Ralf Einspanier
- Department of Veterinary Medicine, Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg, Berlin, Germany
| | - Randolf Menzel
- Institute Biology, Neurobiology, Freie Universität Berlin, Königin Luisestr, Berlin, Germany
| |
Collapse
|
2
|
Zhang Y, Liu A, Kang Huang S, Evans JD, Cook SC, Palmer-Young E, Corona M, Alburaki M, Liu G, Chou Han R, Feng Li W, Hao Y, Lian Li J, Gilligan TM, Smith-Pardo AH, Banmeke O, Posada-Florez FJ, Hui Gao Y, DeGrandi-Hoffman G, Chun Xie H, Sadzewicz AM, Hamilton M, Ping Chen Y. Mediating a host cell signaling pathway linked to overwinter mortality offers a promising therapeutic approach for improving bee health. J Adv Res 2023; 53:99-114. [PMID: 36564001 PMCID: PMC10658305 DOI: 10.1016/j.jare.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/22/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Honey bees provides valuable pollination services for world food crops and wild flowering plants which are habitats of many animal species and remove carbon dioxide from the atmosphere, a powerful tool in the fight against climate change. Nevertheless, the honey bee population has been declining and the majority of colony losses occur during the winter. OBJECTIVES The goal of this study was to understand the mechanisms underlying overwinter colony losses and develop novel therapeutic strategies for improving bee health. METHODS First, pathogen prevalence in overwintering bees were screened between 2015 and 2018. Second, RNA sequencing (RNA-Seq) for transcriptional profiling of overwintering honey bees was conducted and qRT-PCR was performed to confirm the results of the differential expression of selected genes. Lastly, laboratory bioassays were conducted to measure the effects of cold challenges on bee survivorship and stress responses and to assess the effect of a novel medication for alleviating cold stress in honey bees. RESULTS We identified that sirtuin signaling pathway is the most significantly enriched pathway among the down-regulated differentially expressed genes (DEGs) in overwintering diseased bees. Moreover, we showed that the expression of SIRT1 gene, a major sirtuin that regulates energy and immune metabolism, was significantly downregulated in bees merely exposed to cold challenges, linking cold stress with altered gene expression of SIRT1. Furthermore, we demonstrated that activation of SIRT1 gene expression by SRT1720, an activator of SIRT1 expression, could improve the physiology and extend the lifespan of cold-stressed bees. CONCLUSION Our study suggests that increased energy consumption of overwintering bees for maintaining hive temperature reduces the allocation of energy toward immune functions, thus making the overwintering bees more susceptible to disease infections and leading to high winter colony losses. The novel information gained from this study provides a promising avenue for the development of therapeutic strategies for mitigating colony losses, both overwinter and annually.
Collapse
Affiliation(s)
- Yi Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guanzhou 510260, PR China; U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA; School of Chinese Medicinal Resource, Guangdong Pharmaceutical University, Yunfu 527527, PR China
| | - Andrew Liu
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Shao Kang Huang
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA; College of Animal Sciences (Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jay D Evans
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Steve C Cook
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Evan Palmer-Young
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Miguel Corona
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Mohamed Alburaki
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Ge Liu
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Ri Chou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guanzhou 510260, PR China
| | - Wen Feng Li
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Yue Hao
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA; Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing 100093, PR China
| | - Ji Lian Li
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing 100093, PR China
| | - Todd M Gilligan
- Identification Technology Program (ITP) Molecular Laboratory, USDA-APHIS-PPQ-Science & Technology (S&T), Fort Collins, CO 80526-1825, USA
| | - Allan H Smith-Pardo
- Identification Technology Program (ITP) Molecular Laboratory, USDA-APHIS-PPQ-Science & Technology (S&T), Fort Collins, CO 80526-1825, USA
| | - Olubukola Banmeke
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Francisco J Posada-Florez
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Ya Hui Gao
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | | | - Hui Chun Xie
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau in Qinghai Province, Qinghai Normal University, Xining 810000, China
| | - Alex M Sadzewicz
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Michele Hamilton
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Yan Ping Chen
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA.
| |
Collapse
|
3
|
Anderson KE, Mott BM. Ecology of Pollen Storage in Honey Bees: Sugar Tolerant Yeast and the Aerobic Social Microbiota. INSECTS 2023; 14:265. [PMID: 36975950 PMCID: PMC10058632 DOI: 10.3390/insects14030265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Honey bee colonies are resource rich and densely populated, generating a constant battle to control microbial growth. Honey is relatively sterile in comparison with beebread: a food storage medium comprising pollen mixed with honey and worker head-gland secretions. Within colonies, the microbes that dominate aerobic niches are abundant throughout social resource space including stored pollen, honey, royal jelly, and the anterior gut segments and mouthparts of both queens and workers. Here, we identify and discuss the microbial load in stored pollen associated with non-Nosema fungi (primarily yeast) and bacteria. We also measured abiotic changes associated with pollen storage and used culturing and qPCR of both fungi and bacteria to investigate changes in stored pollen microbiology by both storage time and season. Over the first week of pollen storage, pH and water availability decreased significantly. Following an initial drop in microbial abundance at day one, both yeasts and bacteria multiply rapidly during day two. Both types of microbes then decline at 3-7 days, but the highly osmotolerant yeasts persist longer than the bacteria. Based on measures of absolute abundance, bacteria and yeast are controlled by similar factors during pollen storage. This work contributes to our understanding of host-microbial interactions in the honey bee gut and colony and the effect of pollen storage on microbial growth, nutrition, and bee health.
Collapse
|
4
|
Christen V. Different effects of pesticides on transcripts of the endocrine regulation and energy metabolism in honeybee foragers from different colonies. Sci Rep 2023; 13:1985. [PMID: 36737645 PMCID: PMC9898565 DOI: 10.1038/s41598-023-29257-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Honeybees are important pollinators of many crops and contribute to biological biodiversity. For years, a decline in bee populations has been observed in certain areas. This decline in honeybees is accompanied by a decrease in pollinator services. One factor contributing to the decline of bee colonies is the exposure to pesticides. Pesticide exposure of bees, among other effects, can negatively affect orientation, memory, immune system function and gene expression. Among the altered expressed genes are transcripts of endocrine regulation and oxidative phosphorylation. Endocrine regulation plays an important role in the development of nurse bees into foragers and oxidative phosphorylation is involved in energy metabolism. Most of these transcriptional changes were investigated using mixed aged honeybees derived from the same colony. Experiments using nurse bees or foragers of the same age but from different colonies are rare. In the present study, effects of the two pesticides chlorpyrifos and pyraclostrobin on the expression of transcripts linked to endocrine regulation and oxidative phosphorylation in foragers of the same age from three different colonies are investigated to fill this gap. These two pesticides were selected because negative effects at sublethal concentrations on bees are known and because they are found in pollen and nectar of crops and wild plants. For this purpose, 20-22 days old foragers of three different colonies were exposed to different sublethal concentrations of the selected fungicides for 24 h, followed by analysis of the expression of buffy, vitellogenin, hbg-3, ilp-1, mrjp1, 2 and 3, cox5a, cox5b and cox17. Some significant changes in gene expression of both endocrine regulation transcripts and oxidative phosphorylation were shown. Furthermore, it became clear that forager bees from different colonies react differently. This is especially important in relation to the risk analysis of pesticides. In addition, it could be shown that the expression of hbg-3 in the brain of bees is a robust marker to distinguish nurse bees from foragers at the molecular biological level. In summary, this study clearly shows that pesticides, which are often detected in pollen and nectar, display negative effects at sublethal concentrations on bees and that it is important to use bees from different colonies for risk assessment of pesticides.
Collapse
Affiliation(s)
- Verena Christen
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland.
| |
Collapse
|
5
|
Shi T, Zhu Y, Liu P, Ye L, Jiang X, Cao H, Yu L. Age and Behavior-Dependent Differential miRNAs Expression in the Hypopharyngeal Glands of Honeybees ( Apis mellifera L.). INSECTS 2021; 12:insects12090764. [PMID: 34564204 PMCID: PMC8466209 DOI: 10.3390/insects12090764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/13/2021] [Accepted: 08/21/2021] [Indexed: 12/22/2022]
Abstract
This study aims to investigate the expression differences of miRNAs in the hypopharyngeal glands (HPGs) of honeybees at three developmental stages and to explore their regulation functions in the HPGs development. Small RNA sequencing was employed to analyze the miRNA profiles of HPGs in newly-emerged bees (NEB), nurse bees (NB), and forager bees (FB). Results showed that a total of 153 known miRNAs were found in the three stages, and ame-miR-276-3p, ame-miR-375-3p, ame-miR-14-3p, ame-miR-275-3p, and ame-miR-3477-5p were the top five most abundant ones. Furthermore, the expression of 11 miRNAs, 17 miRNAs, and 18 miRNAs were significantly different in NB vs. FB comparison, NB vs. NEB comparison, and in FB vs. NEB comparison, respectively, of which ame-miR-184-3p and ame-miR-252a-5p were downregulated in NB compared with that in both the FB and NEB, while ame-miR-11-3p, ame-miR-281-3p, and ame-miR-31a-5p had lower expression levels in FB compared with that in both the NB and NEB. Bioinformatic analysis showed that the potential target genes of the differentially expressed miRNAs (DEMs) were mainly enriched in several key signaling pathways, including mTOR signaling pathway, MAPK signaling pathway-fly, FoxO signaling pathway, Hippo signaling pathway-fly. Overall, our study characterized the miRNA profiles in the HPGs of honeybees at three different developmental stages and provided a basis for further study of the roles of miRNAs in HPGs development.
Collapse
Affiliation(s)
- Tengfei Shi
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (T.S.); (P.L.); (L.Y.); (X.J.); (H.C.)
| | - Yujie Zhu
- School of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;
| | - Peng Liu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (T.S.); (P.L.); (L.Y.); (X.J.); (H.C.)
| | - Liang Ye
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (T.S.); (P.L.); (L.Y.); (X.J.); (H.C.)
| | - Xingchuan Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (T.S.); (P.L.); (L.Y.); (X.J.); (H.C.)
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (T.S.); (P.L.); (L.Y.); (X.J.); (H.C.)
| | - Linsheng Yu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (T.S.); (P.L.); (L.Y.); (X.J.); (H.C.)
- Correspondence:
| |
Collapse
|
6
|
Ahmad S, Khan SA, Khan KA, Li J. Novel Insight Into the Development and Function of Hypopharyngeal Glands in Honey Bees. Front Physiol 2021; 11:615830. [PMID: 33551843 PMCID: PMC7862731 DOI: 10.3389/fphys.2020.615830] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/24/2020] [Indexed: 01/09/2023] Open
Abstract
Hypopharyngeal glands (HGs) are the most important organ of hymenopterans which play critical roles for the insect physiology. In honey bees, HGs are paired structures located bilaterally in the head, in front of the brain between compound eyes. Each gland is composed of thousands of secretory units connecting to secretory duct in worker bees. To better understand the recent progress made in understanding the structure and function of these glands, we here review the ontogeny of HGs, and the factors affecting the morphology, physiology, and molecular basis of the functionality of the glands. We also review the morphogenesis of HGs in the pupal and adult stages, and the secretory role of the glands across the ages for the first time. Furthermore, recent transcriptome, proteome, and phosphoproteome analyses have elucidated the potential mechanisms driving the HGs development and functionality. This adds a comprehensive novel knowledge of the development and physiology of HGs in honey bees over time, which may be helpful for future research investigations.
Collapse
Affiliation(s)
- Saboor Ahmad
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shahmshad Ahmed Khan
- Laboratory of Apiculture, Department of Entomology, Pir Mehr Ali Shah (PMAS)- Arid Agriculture University, Rawalpindi, Pakistan
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia.,Unit of Bee Research and Honey Production, Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Jianke Li
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Fent K, Haltiner T, Kunz P, Christen V. Insecticides cause transcriptional alterations of endocrine related genes in the brain of honey bee foragers. CHEMOSPHERE 2020; 260:127542. [PMID: 32683019 DOI: 10.1016/j.chemosphere.2020.127542] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/10/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Bees are exposed to endocrine active insecticides. Here we assessed expressional alteration of marker genes indicative of endocrine effects in the brain of honey bees. We exposed foragers to chlorpyrifos, cypermethrin and thiacloprid and assessed the expression of genes after exposure for 24 h, 48 h and 72 h. Chlorpyrifos caused the strongest expressional changes at 24 h characterized by induction of vitellogenin, major royal jelly protein (mrjp) 2 and 3, insulin-like peptide (ilp1), alpha-glucosidase (hbg3) and sima, and down-regulation of buffy. Cypermethrin caused minor induction of mrjp1, mrjp2, mmp1 and ilp1. The sima transcript showed down-regulation at 48 h and up-regulation at 72 h. Exposure to thiacloprid caused down-regulation of vitellogenin, mrjp1 and sima at 24 h, and hbg3 at 72 h, as well as induction of ilp1 at 48 h. The buffy transcript was down-regulated at 24 h and up-regulated at 48 h. Despite compound-specific expression patterns, each insecticide altered the expression of some of the suggested endocrine system related genes. Our study suggests that expressional changes of genes prominently expressed in nurse or forager bees, including down-regulation of buffy and mrjps and up-regulation of hbg3 and ilp1 may serve as indicators for endocrine activity of insecticides in foragers.
Collapse
Affiliation(s)
- Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, CH-8092, Zürich, Switzerland.
| | - Tiffany Haltiner
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland
| | - Petra Kunz
- Swiss Federal Office for the Environment, Section Biocides and Plant Protection Products, 3003, Bern, Switzerland
| | - Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland
| |
Collapse
|
8
|
Marino-Puertas L, Goulas T, Gomis-Rüth FX. Matrix metalloproteinases outside vertebrates. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2026-2035. [PMID: 28392403 DOI: 10.1016/j.bbamcr.2017.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 02/07/2023]
Abstract
The matrix metalloproteinase (MMP) family belongs to the metzincin clan of zinc-dependent metallopeptidases. Due to their enormous implications in physiology and disease, MMPs have mainly been studied in vertebrates. They are engaged in extracellular protein processing and degradation, and present extensive paralogy, with 23 forms in humans. One characteristic of MMPs is a ~165-residue catalytic domain (CD), which has been structurally studied for 14 MMPs from human, mouse, rat, pig and the oral-microbiome bacterium Tannerella forsythia. These studies revealed close overall coincidence and characteristic structural features, which distinguish MMPs from other metzincins and give rise to a sequence pattern for their identification. Here, we reviewed the literature available on MMPs outside vertebrates and performed database searches for potential MMP CDs in invertebrates, plants, fungi, viruses, protists, archaea and bacteria. These and previous results revealed that MMPs are widely present in several copies in Eumetazoa and higher plants (Tracheophyta), but have just token presence in eukaryotic algae. A few dozen sequences were found in Ascomycota (within fungi) and in double-stranded DNA viruses infecting invertebrates (within viruses). In contrast, a few hundred sequences were found in archaea and >1000 in bacteria, with several copies for some species. Most of the archaeal and bacterial phyla containing potential MMPs are present in human oral and gut microbiomes. Overall, MMP-like sequences are present across all kingdoms of life, but their asymmetric distribution contradicts the vertical descent model from a eubacterial or archaeal ancestor. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- Laura Marino-Puertas
- Proteolysis Lab, Structural Biology Unit, "María-de-Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain
| | - Theodoros Goulas
- Proteolysis Lab, Structural Biology Unit, "María-de-Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain..
| | - F Xavier Gomis-Rüth
- Proteolysis Lab, Structural Biology Unit, "María-de-Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain..
| |
Collapse
|
9
|
Vannette RL, Mohamed A, Johnson BR. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing. Sci Rep 2015; 5:16224. [PMID: 26549293 PMCID: PMC4637902 DOI: 10.1038/srep16224] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 10/12/2015] [Indexed: 12/04/2022] Open
Abstract
Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging.
Collapse
Affiliation(s)
- Rachel L Vannette
- Department of Biology, Stanford University, 488 Herrin Labs, Stanford, 94043, United States.,Department of Entomology and Nematology, University of California, 043 Briggs Hall Davis, CA 95616, United States
| | - Abbas Mohamed
- Department of Entomology and Nematology, University of California, 043 Briggs Hall Davis, CA 95616, United States
| | - Brian R Johnson
- Department of Entomology and Nematology, University of California, 043 Briggs Hall Davis, CA 95616, United States
| |
Collapse
|
10
|
Ueno T, Takeuchi H, Kawasaki K, Kubo T. Changes in the Gene Expression Profiles of the Hypopharyngeal Gland of Worker Honeybees in Association with Worker Behavior and Hormonal Factors. PLoS One 2015; 10:e0130206. [PMID: 26083737 PMCID: PMC4470657 DOI: 10.1371/journal.pone.0130206] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 05/18/2015] [Indexed: 01/24/2023] Open
Abstract
The hypopharyngeal glands (HPGs) of worker honeybees undergo physiological changes along with the age-dependent role change from nursing to foraging: nurse bee HPGs secrete mainly major royal jelly proteins, whereas forager HPGs secrete mainly α-glucosidase III, which converts the sucrose in the nectar into glucose and fructose. We previously identified two other genes, Apis mellifera buffy (Ambuffy) and Apis mellifera matrix metalloproteinase 1 (AmMMP1), with enriched expression in nurse bee and forager HPGs, respectively. In the present study, to clarify the molecular mechanisms that coordinate HPG physiology with worker behavior, we first analyzed whether Ambuffy, AmMMP1, mrjp2 (a gene encoding one of major royal jelly protein isoforms), and Hbg3 (a gene encoding α-glucosidase III) expression, is associated with worker behavior in 'single-cohort colonies' where workers of almost the same age perform different tasks. Expression of these genes correlated with the worker’s role, while controlling for age, indicating their regulation associated with the worker’s behavior. Associated gene expression suggested the possible involvement of some hormonal factors in its regulation. We therefore examined the relationship between ecdysone- and juvenile hormone (JH)-signaling, and the expression profiles of these ‘indicator’ genes (nurse bee HPG-selective genes: mrjp2 and Ambuffy, and forager HPG-selective genes: Hbg3 and AmMMP1). Expression of both ecdysone-regulated genes (ecdysone receptor, mushroom body large type Kenyon cell specific protein-1, and E74) and JH-regulated genes (Methoprene tolerant and Krüppel homolog 1) was higher in the forager HPGs than in the nurse bee HPGs, suggesting the possible roles of ecdysone- and JH-regulated genes in worker HPGs. Furthermore, 20-hydroxyecdysone-treatment repressed both nurse bee- and forager-selective gene expression, whereas methoprene-treatment enhanced the expression of forager-selective genes and repressed nurse bee-selective genes in the HPGs. Our findings suggest that both ecdysone- and JH-signaling cooperatively regulate the physiological state of the HPGs in association with the worker’s behavior.
Collapse
Affiliation(s)
- Takayuki Ueno
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113–0033, Japan
- Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe, Kyoto, 610–0395, Japan
| | - Hideaki Takeuchi
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113–0033, Japan
| | - Kiyoshi Kawasaki
- Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe, Kyoto, 610–0395, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113–0033, Japan
- * E-mail:
| |
Collapse
|
11
|
Jasper WC, Linksvayer TA, Atallah J, Friedman D, Chiu JC, Johnson BR. Large-scale coding sequence change underlies the evolution of postdevelopmental novelty in honey bees. Mol Biol Evol 2014; 32:334-46. [PMID: 25351750 DOI: 10.1093/molbev/msu292] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Whether coding or regulatory sequence change is more important to the evolution of phenotypic novelty is one of biology's major unresolved questions. The field of evo-devo has shown that in early development changes to regulatory regions are the dominant mode of genetic change, but whether this extends to the evolution of novel phenotypes in the adult organism is unclear. Here, we conduct ten RNA-Seq experiments across both novel and conserved tissues in the honey bee to determine to what extent postdevelopmental novelty is based on changes to the coding regions of genes. We make several discoveries. First, we show that with respect to novel physiological functions in the adult animal, positively selected tissue-specific genes of high expression underlie novelty by conferring specialized cellular functions. Such genes are often, but not always taxonomically restricted genes (TRGs). We further show that positively selected genes, whether TRGs or conserved genes, are the least connected genes within gene expression networks. Overall, this work suggests that the evo-devo paradigm is limited, and that the evolution of novelty, postdevelopment, follows additional rules. Specifically, evo-devo stresses that high network connectedness (repeated use of the same gene in many contexts) constrains coding sequence change as it would lead to negative pleiotropic effects. Here, we show that in the adult animal, the converse is true: Genes with low network connectedness (TRGs and tissue-specific conserved genes) underlie novel phenotypes by rapidly changing coding sequence to perform new-specialized functions.
Collapse
Affiliation(s)
| | | | - Joel Atallah
- Department of Evolution and Ecology, University of California-Davis
| | - Daniel Friedman
- Department of Evolution and Ecology, University of California-Davis
| | - Joanna C Chiu
- Department of Entomology, University of California-Davis
| | | |
Collapse
|
12
|
Liu Z, Ji T, Yin L, Shen J, Shen F, Chen G. Transcriptome sequencing analysis reveals the regulation of the hypopharyngeal glands in the honey bee, Apis mellifera carnica Pollmann. PLoS One 2013; 8:e81001. [PMID: 24339892 PMCID: PMC3858228 DOI: 10.1371/journal.pone.0081001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 10/09/2013] [Indexed: 01/08/2023] Open
Abstract
Transcriptome sequencing has become the main methodology for analyzing the relationship between genes and characteristics of interests, particularly those associated with diseases and economic traits. Because of its role of functional food for humans, commercial royal jelly (RJ) and its production are major research focuses in the field of apiculture. Multiple lines of evidence have demonstrated that many factors affect RJ output by activating or inhibiting various target genes and signaling pathways. Available coding sequences from the Honey Bee Genome Sequencing Consortium have permitted a pathway-based approach for investigating the development of the hypopharyngeal glands (HGs). In the present study, 3573941, 3562730, 3551541, 3524453, and 3615558 clean reads were obtained from the HGs of five full-sister honey bee samples using Solexa RNA sequencing technology. These reads were then assembled into 18378, 17785, 17065, 17105, and 17995 unigenes, respectively, and aligned to the DFCI Honey Bee Gene Index database. The differentially expressed genes (DEGs) data were also correlated with detailed morphological data for HGs acini.
Collapse
Affiliation(s)
- Zhenguo Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ting Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- * E-mail:
| | - Ling Yin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Shen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fang Shen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
13
|
More than royal food - Major royal jelly protein genes in sexuals and workers of the honeybee Apis mellifera. Front Zool 2013; 10:72. [PMID: 24279675 PMCID: PMC4176732 DOI: 10.1186/1742-9994-10-72] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/22/2013] [Indexed: 12/14/2022] Open
Abstract
Background In the honeybee Apis mellifera, female larvae destined to become a queen are fed with royal jelly, a secretion of the hypopharyngeal glands of young nurse bees that rear the brood. The protein moiety of royal jelly comprises mostly major royal jelly proteins (MRJPs) of which the coding genes (mrjp1-9) have been identified on chromosome 11 in the honeybee’s genome. Results We determined the expression of mrjp1-9 among the honeybee worker caste (nurses, foragers) and the sexuals (queens (unmated, mated) and drones) in various body parts (head, thorax, abdomen). Specific mrjp expression was not only found in brood rearing nurse bees, but also in foragers and the sexuals. Conclusions The expression of mrjp1 to 7 is characteristic for the heads of worker bees, with an elevated expression of mrjp1-4 and 7 in nurse bees compared to foragers. Mrjp5 and 6 were higher in foragers compared to nurses suggesting functions in addition to those of brood food proteins. Furthermore, the expression of mrjp9 was high in the heads, thoraces and abdomen of almost all female bees, suggesting a function irrespective of body section. This completely different expression profile suggests mrjp9 to code for the most ancestral major royal jelly protein of the honeybee.
Collapse
|
14
|
Buttstedt A, Moritz RFA, Erler S. Origin and function of the major royal jelly proteins of the honeybee (Apis mellifera) as members of the yellow gene family. Biol Rev Camb Philos Soc 2013; 89:255-69. [PMID: 23855350 DOI: 10.1111/brv.12052] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 12/17/2022]
Abstract
In the honeybee, Apis mellifera, the queen larvae are fed with a diet exclusively composed of royal jelly (RJ), a secretion of the hypopharyngeal gland of young worker bees that nurse the brood. Up to 15% of RJ is composed of proteins, the nine most abundant of which have been termed major royal jelly proteins (MRJPs). Although it is widely accepted that RJ somehow determines the fate of a female larva and in spite of considerable research efforts, there are surprisingly few studies that address the biochemical characterisation and functions of these MRJPs. Here we review the research on MRJPs not only in honeybees but in hymenopteran insects in general and provide metadata analyses on genome organisation of mrjp genes, corroborating previous reports that MRJPs have important functions for insect development and not just a nutritional value for developing honeybee larvae.
Collapse
Affiliation(s)
- Anja Buttstedt
- Departamentul de Apicultură şi Sericicultură, Facultatea de Zootehnie şi Biotehnologii, Universitatea de Ştiinţe Agricole şi Medicină Veterinară, Cluj-Napoca, 400372, Romania; Institut für Biologie, Zoologie-Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Halle, 06099, Germany
| | | | | |
Collapse
|
15
|
The worker honeybee fat body proteome is extensively remodeled preceding a major life-history transition. PLoS One 2011; 6:e24794. [PMID: 21969861 PMCID: PMC3182174 DOI: 10.1371/journal.pone.0024794] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 08/22/2011] [Indexed: 02/07/2023] Open
Abstract
Honeybee workers are essentially sterile female helpers that make up the majority of individuals in a colony. Workers display a marked change in physiology when they transition from in-nest tasks to foraging. Recent technological advances have made it possible to unravel the metabolic modifications associated with this transition. Previous studies have revealed extensive remodeling of brain, thorax, and hypopharyngeal gland biochemistry. However, data on changes in the abdomen is scarce. To narrow this gap we investigated the proteomic composition of abdominal tissue in the days typically preceding the onset of foraging in honeybee workers. In order to get a broader representation of possible protein dynamics, we used workers of two genotypes with differences in the age at which they initiate foraging. This approach was combined with RNA interference-mediated downregulation of an insulin/insulin-like signaling component that is central to foraging behavior, the insulin receptor substrate (irs), and with measurements of glucose and lipid levels. Our data provide new insight into the molecular underpinnings of phenotypic plasticity in the honeybee, invoke parallels with vertebrate metabolism, and support an integrated and irs-dependent association of carbohydrate and lipid metabolism with the transition from in-nest tasks to foraging.
Collapse
|
16
|
Jianke L, Mao F, Begna D, Yu F, Aijuan Z. Proteome comparison of hypopharyngeal gland development between Italian and royal jelly producing worker honeybees (Apis mellifera L.). J Proteome Res 2010; 9:6578-94. [PMID: 20882974 DOI: 10.1021/pr100768t] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hypopharyngeal gland (HG) of the honeybee (Apis mellifera L.) produces royal jelly (RJ) that is essential to feed and raise broods and queens. A strain of bees (high royal jelly producing bee, RJb) has been selected for its high RJ production, but the mechanisms of its higher yield are not understood. In this study, we compared HG acini size, RJ production, and protein differential expressions between the RJb and nonselected honeybee (Italian bee, ITb) using proteomics in combination with an electron microscopy, Western blot, and quantitative real-time PCR (qRT-PCR). Generally, the HG of both bees showed age-dependent changes in acini sizes and protein expression as worker behaviors changed from brood nursing to nectar ripening, foraging, and storage activities. The electron microscopic analysis revealed that the HG acini diameter of the RJb strain was large and produced 5 times more RJ than the ITb, demonstrating a positive correlation between the yield and HG acini size. In addition, the proteomic analysis showed that RJb significantly upregulated a large group of proteins involved in carbohydrate metabolism and energy production, those involved in protein biosynthesis, development, amino acid metabolism, nucleotide and fatty acid, transporter, protein folding, cytoskeleton, and antioxidation, which coincides with the fact that the HGs of the RJb strain produce more RJ than the ITb strain that is owing to selection pressure. We also observed age-dependent major royal jelly proteins (MRJPs) changing both in form and expressional intensity concurrent with task-switching. In addition to MRJPs, the RJb overexpressed proteins such as enolase and transitional endoplasmic reticulum ATPase, protein biosynthesis, and development proteins compared to the ITb strain to support its large HG growth and RJ secretion. Because of selection pressure, RJb pursued a different strategy of increased RJ production by involving additional proteins compared to its original counterpart ITb. To our knowledge, this morphological and proteomic comparison study on the HG of the two strains of worker honeybees associated with their age-dependent division of labor is the first of its kind. The study provided not only the quantity and quality differences in the HG from the RJb and the ITb, but also addressed the cellular and behavioral biology development question of how the RJb strain can produce RJ more efficiently than its wild type strain (ITb).
Collapse
Affiliation(s)
- Li Jianke
- Department of Beekeeping and Biotechnology, Chinese Academy of Agricultural Science/Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Beijing 100093, China
| | | | | | | | | |
Collapse
|