1
|
Inoko S, Katagiri H, Tsujimura M, Yoshie S. The existence of cells exhibiting characteristics of both Type II and Type III cells in rat taste buds. An immunohistochemical and electron-microscopic study. Odontology 2025; 113:126-134. [PMID: 38796802 DOI: 10.1007/s10266-024-00948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024]
Abstract
Taste bud cells are classified into four types by their ultrastructural features. Immunohistochemical detection of taste-signaling molecules is used to distinguish cell types of taste bud cells; however, the characteristics of taste cell types such as the immunoreactivity for taste-signaling molecules have long remained unclear. We investigated the detailed characteristics of taste cells in rat vallate taste buds by electron microscopy and immunohistochemistry for gustducin, neural cell adhesion molecule (NCAM) and vesicle-associated membrane protein 2 (VAMP2), which are known as markers of Type II cells, Type III cells and both cell types, respectively. Triple immunostaining for these molecules discriminated seven kinds of cell, including the totally immunopositive cell. Electron microscopy revealed Type III cells with a typical synaptic structure and subsurface cisterna as a specialized contact between a nerve and a Type II cell. The present study clarified the existence of cells with features of both Type II and Type III cells as a subtype of taste bud cells in the rat taste bud.
Collapse
Affiliation(s)
- Shuhei Inoko
- Histology, The Nippon Dental University Graduate School of Life Dentistry at Niigata, 1-8 Hamaura-Cho, Chuo-Ku, Niigata, 951-8580, Japan
| | - Hiroki Katagiri
- Department of Histology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-Cho, Chuo-Ku, Niigata, 951-8580, Japan
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
- Advanced Research Center, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Maiko Tsujimura
- Histology, The Nippon Dental University Graduate School of Life Dentistry at Niigata, 1-8 Hamaura-Cho, Chuo-Ku, Niigata, 951-8580, Japan.
- Department of Histology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-Cho, Chuo-Ku, Niigata, 951-8580, Japan.
- Advanced Research Center, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan.
| | - Sumio Yoshie
- Department of Histology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-Cho, Chuo-Ku, Niigata, 951-8580, Japan.
| |
Collapse
|
2
|
Reprogramming cultured human fungiform (HBO) taste cells into neuron-like cells through in vitro induction. In Vitro Cell Dev Biol Anim 2022; 58:817-829. [DOI: 10.1007/s11626-022-00724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
|
3
|
Ou M, Li Q, Ling X, Yao J, Mo X. Cocktail Formula and Application Prospects for Oral and Maxillofacial Organoids. Tissue Eng Regen Med 2022; 19:913-925. [PMID: 35612711 DOI: 10.1007/s13770-022-00455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
Oral and maxillofacial organoids (OMOs), tiny tissues and organs derived from stem cells cultured through 3-d cell culture models, can fully summarize the cell tissue structure, physiological functions and biological characteristics of the source tissues in the body. OMOs are applied in areas such as disease modelling, developmental and regenerative medicine, drug screening, personalized treatment, etc. Although the construction of organoids in various parts of the oral and maxillofacial (OM) region has achieved considerable success, the existing cocktail formulae (construction strategies) are not widely applicable for tissues of various sources due to factors including the heterogeneity of the source tissues and the dependence on laboratory technology. Most of their formulae are based on growth factor niches containing expensive recombinant proteins with their efficiency remaining to be improved. In view of this, the cocktail formulae of various parts of the OM organs are reviewed with further discussion of the application and prospects for those OMOs to find some affordable cocktail formula with strong operability and high repeatability for various maxillofacial organs. The results may help improve the efficiency of organoid construction in the laboratory and accelerate the pace of the clinical use of organoid technology.
Collapse
Affiliation(s)
- Mingyu Ou
- Youjiang Medical University for Nationalities, No. 98 Countryside Road, BaiseGuangxi, 533000, China.,Department of Stomatology, China Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Second Zhongshan Road, BaiseGuangxi, 533000, China
| | - Qing Li
- Youjiang Medical University for Nationalities, No. 98 Countryside Road, BaiseGuangxi, 533000, China.,Department of Stomatology, China Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Second Zhongshan Road, BaiseGuangxi, 533000, China
| | - Xiaofang Ling
- Youjiang Medical University for Nationalities, No. 98 Countryside Road, BaiseGuangxi, 533000, China.,Department of Stomatology, China Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Second Zhongshan Road, BaiseGuangxi, 533000, China
| | - Jinguang Yao
- Youjiang Medical University for Nationalities, No. 98 Countryside Road, BaiseGuangxi, 533000, China. .,Department of Stomatology, China Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Second Zhongshan Road, BaiseGuangxi, 533000, China.
| | - Xiaoqiang Mo
- Youjiang Medical University for Nationalities, No. 98 Countryside Road, BaiseGuangxi, 533000, China.
| |
Collapse
|
4
|
Rahman SU, Nagrath M, Ponnusamy S, Arany PR. Nanoscale and Macroscale Scaffolds with Controlled-Release Polymeric Systems for Dental Craniomaxillofacial Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1478. [PMID: 30127246 PMCID: PMC6120038 DOI: 10.3390/ma11081478] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/03/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022]
Abstract
Tremendous progress in stem cell biology has resulted in a major current focus on effective modalities to promote directed cellular behavior for clinical therapy. The fundamental principles of tissue engineering are aimed at providing soluble and insoluble biological cues to promote these directed biological responses. Better understanding of extracellular matrix functions is ensuring optimal adhesive substrates to promote cell mobility and a suitable physical niche to direct stem cell responses. Further, appreciation of the roles of matrix constituents as morphogen cues, termed matrikines or matricryptins, are also now being directly exploited in biomaterial design. These insoluble topological cues can be presented at both micro- and nanoscales with specific fabrication techniques. Progress in development and molecular biology has described key roles for a range of biological molecules, such as proteins, lipids, and nucleic acids, to serve as morphogens promoting directed behavior in stem cells. Controlled-release systems involving encapsulation of bioactive agents within polymeric carriers are enabling utilization of soluble cues. Using our efforts at dental craniofacial tissue engineering, this narrative review focuses on outlining specific biomaterial fabrication techniques, such as electrospinning, gas foaming, and 3D printing used in combination with polymeric nano- or microspheres. These avenues are providing unprecedented therapeutic opportunities for precision bioengineering for regenerative applications.
Collapse
Affiliation(s)
- Saeed Ur Rahman
- Departments of Oral Biology and Biomedical Engineering, School of Dentistry, University at Buffalo, Buffalo, NY 14214, USA.
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan.
| | - Malvika Nagrath
- Departments of Oral Biology and Biomedical Engineering, School of Dentistry, University at Buffalo, Buffalo, NY 14214, USA.
- Department of Biomedical Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada.
| | - Sasikumar Ponnusamy
- Departments of Oral Biology and Biomedical Engineering, School of Dentistry, University at Buffalo, Buffalo, NY 14214, USA.
| | - Praveen R Arany
- Departments of Oral Biology and Biomedical Engineering, School of Dentistry, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
5
|
Riedel K, Sombroek D, Fiedler B, Siems K, Krohn M. Human cell-based taste perception - a bittersweet job for industry. Nat Prod Rep 2017; 34:484-495. [PMID: 28393162 DOI: 10.1039/c6np00123h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Covering: 2000 to 2016On the molecular level humans sense food by a variety of specialized tissues which express sensory receptors to handle nutritive value. In general, this means the interplay of gustatory, olfactory, trigeminal and haptic sensation is translated into perception and leads, in terms of taste, to descriptions like sweet, bitter, salty, sour and umami. Further perceptions include astringent, cool, hot, prickle, lingering, kokumi and fatty to name predominant characterizations. It is still not fully understood how this plethora of impressions can be perceived by quite a limited number of receptors obviously being the initial compilers to judge palatability. However, since the discovery of mammalian taste receptors (TASRs) almost 30 years ago the use of taste receptors in cell-based screening campaigns is advancing in industrial approaches. The article will highlight the impacts and the limits of cell-based guided identification of taste modulators for food applications with an emphasis on sweet, bitter and savory taste as well as implications emerging from natural products.
Collapse
Affiliation(s)
- K Riedel
- BRAIN AG, Darmstädter Str. 34-36, 64673 Zwingenberg, Germany.
| | | | | | | | | |
Collapse
|
6
|
Involvement of glucocorticoid in induction of lingual T1R3 in rodents. Eur J Pharmacol 2015; 761:262-7. [DOI: 10.1016/j.ejphar.2015.05.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/20/2015] [Accepted: 05/20/2015] [Indexed: 11/22/2022]
|
7
|
Cohen SP, Buckley BK, Kosloff M, Garland AL, Bosch DE, Cheng G, Radhakrishna H, Brown MD, Willard FS, Arshavsky VY, Tarran R, Siderovski DP, Kimple AJ. Regulator of G-protein signaling-21 (RGS21) is an inhibitor of bitter gustatory signaling found in lingual and airway epithelia. J Biol Chem 2012; 287:41706-19. [PMID: 23095746 DOI: 10.1074/jbc.m112.423806] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The gustatory system detects tastants and transmits signals to the brain regarding ingested substances and nutrients. Although tastant receptors and taste signaling pathways have been identified, little is known about their regulation. Because bitter, sweet, and umami taste receptors are G protein-coupled receptors (GPCRs), we hypothesized that regulators of G protein signaling (RGS) proteins may be involved. The recent cloning of RGS21 from taste bud cells has implicated this protein in the regulation of taste signaling; however, the exact role of RGS21 has not been precisely defined. Here, we sought to determine the role of RGS21 in tastant responsiveness. Biochemical analyses confirmed in silico predictions that RGS21 acts as a GTPase-accelerating protein (GAP) for multiple G protein α subunits, including adenylyl cyclase-inhibitory (Gα(i)) subunits and those thought to be involved in tastant signal transduction. Using a combination of in situ hybridization, RT-PCR, immunohistochemistry, and immunofluorescence, we demonstrate that RGS21 is not only endogenously expressed in mouse taste buds but also in lung airway epithelial cells, which have previously been shown to express components of the taste signaling cascade. Furthermore, as shown by reverse transcription-PCR, the immortalized human airway cell line 16HBE was found to express transcripts for tastant receptors, RGS21, and downstream taste signaling components. Over- and underexpression of RGS21 in 16HBE cells confirmed that RGS21 acts to oppose bitter tastant signaling to cAMP and calcium second messenger changes. Our data collectively suggests that RGS21 modulates bitter taste signal transduction.
Collapse
Affiliation(s)
- Staci P Cohen
- Department of Pharmacology, University of North Carolina Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599-7365, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Response to: letter to the editor: culture and maintenance of taste cells in vitro. In Vitro Cell Dev Biol Anim 2011. [DOI: 10.1007/s11626-011-9440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|