1
|
Gao Y, Hossain MN, Zhao L, Deavila JM, Law NC, Zhu MJ, Murdoch GK, Du M. Spatial Transcriptomics Analysis: Maternal Obesity Impairs Myogenic Cell Migration and Differentiation during Embryonic Limb Development. Int J Mol Sci 2024; 25:9488. [PMID: 39273445 PMCID: PMC11395138 DOI: 10.3390/ijms25179488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Limb muscle is responsible for physical activities and myogenic cell migration during embryogenesis is indispensable for limb muscle formation. Maternal obesity (MO) impairs prenatal skeletal muscle development, but the effects of MO on myogenic cell migration remain to be examined. C57BL/6 mice embryos were collected at E13.5. The GeoMx DSP platform was used to customize five regions along myogenic cell migration routes (myotome, dorsal/ventral limb, limb stroma, limb tip), and data were analyzed by GeomxTools 3.6.0. A total of 2224 genes were down-regulated in the MO group. The GO enrichment analysis showed that MO inhibited migration-related biological processes. The signaling pathways guiding myogenic migration such as hepatocyte growth factor signaling, fibroblast growth factor signaling, Wnt signaling and GTPase signaling were down-regulated in the MO E13.5 limb tip. Correspondingly, the expression levels of genes involved in myogenic cell migration, such as Pax3, Gab1, Pxn, Tln2 and Arpc, were decreased in the MO group, especially in the dorsal and ventral sides of the limb. Additionally, myogenic differentiation-related genes were down-regulated in the MO limb. MO impedes myogenic cell migration and differentiation in the embryonic limb, providing an explanation for the impairment of fetal muscle development and offspring muscle function due to MO.
Collapse
Affiliation(s)
- Yao Gao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA; (Y.G.); (M.N.H.); (J.M.D.); (N.C.L.); (G.K.M.)
| | - Md Nazmul Hossain
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA; (Y.G.); (M.N.H.); (J.M.D.); (N.C.L.); (G.K.M.)
| | - Liang Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Jeanene Marie Deavila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA; (Y.G.); (M.N.H.); (J.M.D.); (N.C.L.); (G.K.M.)
| | - Nathan C. Law
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA; (Y.G.); (M.N.H.); (J.M.D.); (N.C.L.); (G.K.M.)
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA;
| | - Gordon K. Murdoch
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA; (Y.G.); (M.N.H.); (J.M.D.); (N.C.L.); (G.K.M.)
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA; (Y.G.); (M.N.H.); (J.M.D.); (N.C.L.); (G.K.M.)
| |
Collapse
|
2
|
Bonatto Paese CL, Hawkins MB, Brugmann SA, Harris MP. Atavisms in the avian hindlimb and early developmental polarity of the limb. Dev Dyn 2021; 250:1358-1367. [PMID: 33605505 DOI: 10.1002/dvdy.318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The naturally occurring chicken mutant talpid2 (ta2 ), best known for its limb and craniofacial defects, has long served as a valuable tool for developmental biologists studying growth and patterning of craniofacial structures and the limb. The mutant provides a unique tool to examine the molecular and cellular processes regulating limb development. RESULTS This mutant also provides unique insights into the evolution of developmental genetic programs. Previous work defined the appearance of atavistic dentition in ta2 embryos. Herein we describe the appearance of ancestral characters of the hindlimb in embryonic ta2 chicken embryos. CONCLUSION As the ta2 phenotype arises as a result of mutation in C2CD3 and disrupted cilia function, this mutant provides genetic and developmental insight into the causes of asymmetry in the limb and also a model for the evolution of the avian hindlimb.
Collapse
Affiliation(s)
- Christian L Bonatto Paese
- Division of Developmental Biology, Department of Pediatrics; Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Shriners Hospital, Cincinnati, Ohio, USA
| | - Michael Brent Hawkins
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Orthopedic Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Samantha A Brugmann
- Division of Developmental Biology, Department of Pediatrics; Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Shriners Hospital, Cincinnati, Ohio, USA
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Orthopedic Research, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Carril J, Barbeito CG, Tambussi CP. Making a parrot zygodactyl foot: Osteology and morphogenesis of the tarsometatarsus in the monk parakeet (Myiopsitta monachus). ZOOLOGY 2020; 144:125877. [PMID: 33302178 DOI: 10.1016/j.zool.2020.125877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 11/24/2022]
Abstract
The tarsometatarsus conformation and foot types in birds are unique traits within vertebrates. We investigate how the tarsometatarsus and the zygodactyl foot are formed during development in the monk parakeet (Myiopsitta monachus). Using bones, whole mount specimens stained for cartilage and bone, and histological sections, we focus on the osteology and morphogenesis of the tarsometatarsus. We also compare the tarsometatarsus development between the altricial monk parakeet with the precocial chicken. The results and conclusions we reached are: (1) the hypotarsus, a character of phylogenetic significance, is monocanaliculate in the adult; (2) digit I retroversion is consequence of the displacement of the articulation site of the metatarsal 1 and its torsion; (3) digit IV retroversion is linked to the development of the trochlea accesoria; (4) in ovo, the ossification and fusion of the metatarsals 2-4 begin in their mid-diaphysis and extends cylindrically to both proximal and distal directions; and (5) the differences in the development of the tarsometatarsus between the monk parakeet and the chicken evidence heterochronies, probably related with their different types of development.
Collapse
Affiliation(s)
- Julieta Carril
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias (FCV), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Buenos Aires, Argentina.
| | - Claudio G Barbeito
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias (FCV), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Buenos Aires, Argentina.
| | - Claudia P Tambussi
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Universidad Nacional de Córdoba (UNC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Córdoba, Argentina.
| |
Collapse
|
4
|
Forelimb shortening of Carcharodontosauria (Dinosauria: Theropoda): an update on evolutionary anterior micromelias in non-avian theropods. ZOOLOGY 2020; 139:125756. [PMID: 32088525 DOI: 10.1016/j.zool.2020.125756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/25/2022]
Abstract
Evolutionary teratology recognises certain anatomical modifications as developmental anomalies. Within non avian-theropod dinosaurs, the strong forelimb shortening of Tyrannosauridae, Carnotaurinae and Limusaurus - associated with a reduction or loss of autonomy - have been previously diagnosed as evolutionary anterior micromelias. The feature is here examined with Acrocanthosaurus atokensis (Carcharodontosauridae) and Gualicho shinyae (Neovenatoridae). The micromelic diagnosis is confirmed for Acrocanthosaurus, without supplementary malformations. Gualicho is considered as a borderline case, outside of the micromelic spectrum, but shows a total phalangeal loss on digit III. The reduction in the biomechanical range of Acrocanthosaurus' forelimbs was compensated by the skull and jaws as main predatory organs. The same is assumed for Gualicho, but its robust first digit and raptorial claw are to be underlined. Other gigantic-sized and derived representatives of Carcharodontosauridae probably shared the anterior micromelia condition, potentially due to developmental modifications involving differential forelimbs/hindlimbs embryological growth rates, secondarily associated with post-natal growth rates leading to large and gigantic sizes; a converging state with Tyrannosauridae. Nevertheless, whereas developmental growth rates are also considered in the shortened condition of Gualicho, there is no association with post-natal gigantism. Finally, the digit III reduction likely followed the same evolutionary pathways as Tyrannosauridae, potentially involving BMPs, Fgfs and Shh signalling.
Collapse
|
5
|
Yakushiji-Kaminatsui N, Lopez-Delisle L, Bolt CC, Andrey G, Beccari L, Duboule D. Similarities and differences in the regulation of HoxD genes during chick and mouse limb development. PLoS Biol 2018; 16:e3000004. [PMID: 30475793 PMCID: PMC6283595 DOI: 10.1371/journal.pbio.3000004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/06/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022] Open
Abstract
In all tetrapods examined thus far, the development and patterning of limbs require the activation of gene members of the HoxD cluster. In mammals, they are regulated by a complex bimodal process that controls first the proximal patterning and then the distal structure. During the shift from the former to the latter regulation, this bimodal regulatory mechanism allows the production of a domain with low Hoxd gene expression, at which both telomeric (T-DOM) and centromeric regulatory domains (C-DOM) are silent. These cells generate the future wrist and ankle articulations. We analyzed the implementation of this regulatory mechanism in chicken, i.e., in an animal for which large morphological differences exist between fore- and hindlimbs. We report that although this bimodal regulation is globally conserved between the mouse and the chick, some important modifications evolved at least between these two model systems, in particular regarding the activity of specific enhancers, the width of the TAD boundary separating the two regulations, and the comparison between the forelimb versus hindlimb regulatory controls. At least one aspect of these regulations seems to be more conserved between chick and bats than with mouse, which may relate to the extent to which forelimbs and hindlimbs of these various animals differ in their morphologies. A comparison of Hox gene regulation during the development of limbs in birds and mammals reveals that whereas the characteristic bimodal regulatory system, based on large chromatin domains, is largely conserved between these morphologically distinct structures, some differences are revealed in the way this is implemented in various vertebrates. The shapes of limbs vary greatly among tetrapod species, even between the forelimbs and hindlimbs of the same animal. Hox genes regulate the proper growth and patterning of tetrapod limbs. In order to evaluate whether variations in the complex regulation of a cluster of Hox genes—the Hoxd genes—during limb development contribute to the differences in limb shape, we compared their transcriptional control during limb bud development in the forelimbs and hindlimbs of mouse and chicken embryos. We found that the regulatory mechanism underlying Hoxd gene expression is highly conserved, but some clear differences exist. For instance, we observed a variation in the topologically associating domain (TAD; a self-interacting genomic region) boundary interval between the mouse and the chick, as well as differences in the activity of a conserved enhancer element situated within the telomeric regulatory domain. In contrast to the mouse, the chicken enhancer has a stronger activity in the forelimb buds than in the hindlimb buds, which is correlated with the striking differences in the mRNA levels of the genes. We conclude that differences in both the timing and duration of TAD activities and in the width of their boundary may parallel the important decrease in Hoxd gene transcription in chick hindlimb buds versus forelimb buds. These differences may also account for the slightly distinct regulatory strategies implemented by mammals and birds at this locus.
Collapse
Affiliation(s)
| | - Lucille Lopez-Delisle
- School of Life Sciences, Federal Institute of Technology, Lausanne, Lausanne, Switzerland
| | - Christopher Chase Bolt
- School of Life Sciences, Federal Institute of Technology, Lausanne, Lausanne, Switzerland
| | - Guillaume Andrey
- School of Life Sciences, Federal Institute of Technology, Lausanne, Lausanne, Switzerland
| | - Leonardo Beccari
- Department of Genetics and Evolution, University of Geneva, Geneva 4, Switzerland
| | - Denis Duboule
- School of Life Sciences, Federal Institute of Technology, Lausanne, Lausanne, Switzerland
- Department of Genetics and Evolution, University of Geneva, Geneva 4, Switzerland
- * E-mail:
| |
Collapse
|
6
|
Towers M. Evolution of antero-posterior patterning of the limb: Insights from the chick. Genesis 2018; 56:e23047. [PMID: 28734068 PMCID: PMC5811799 DOI: 10.1002/dvg.23047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 01/30/2023]
Abstract
The developing limbs of chicken embryos have served as pioneering models for understanding pattern formation for over a century. The ease with which chick wing and leg buds can be experimentally manipulated, while the embryo is still in the egg, has resulted in the discovery of important developmental organisers, and subsequently, the signals that they produce. Sonic hedgehog (Shh) is produced by mesenchyme cells of the polarizing region at the posterior margin of the limb bud and specifies positional values across the antero-posterior axis (the axis running from the thumb to the little finger). Detailed experimental embryology has revealed the fundamental parameters required to specify antero-posterior positional values in response to Shh signaling in chick wing and leg buds. In this review, the evolution of the avian wing and leg will be discussed in the broad context of tetrapod paleontology, and more specifically, ancestral theropod dinosaur paleontology. How the parameters that dictate antero-posterior patterning could have been modulated to produce the avian wing and leg digit patterns will be considered. Finally, broader speculations will be made regarding what the antero-posterior patterning of chick limbs can tell us about the evolution of other digit patterns, including those that were found in the limbs of the earliest tetrapods.
Collapse
Affiliation(s)
- Matthew Towers
- Department of Biomedical ScienceThe Bateson Centre, University of SheffieldWestern BankSheffieldS10 2TNUnited Kingdom
| |
Collapse
|
7
|
Functional roles of Aves class-specific cis-regulatory elements on macroevolution of bird-specific features. Nat Commun 2017; 8:14229. [PMID: 28165450 PMCID: PMC5473641 DOI: 10.1038/ncomms14229] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 12/12/2016] [Indexed: 01/01/2023] Open
Abstract
Unlike microevolutionary processes, little is known about the genetic basis of macroevolutionary processes. One of these magnificent examples is the transition from non-avian dinosaurs to birds that has created numerous evolutionary innovations such as self-powered flight and its associated wings with flight feathers. By analysing 48 bird genomes, we identified millions of avian-specific highly conserved elements (ASHCEs) that predominantly (>99%) reside in non-coding regions. Many ASHCEs show differential histone modifications that may participate in regulation of limb development. Comparative embryonic gene expression analyses across tetrapod species suggest ASHCE-associated genes have unique roles in developing avian limbs. In particular, we demonstrate how the ASHCE driven avian-specific expression of gene Sim1 driven by ASHCE may be associated with the evolution and development of flight feathers. Together, these findings demonstrate regulatory roles of ASHCEs in the creation of avian-specific traits, and further highlight the importance of cis-regulatory rewiring during macroevolutionary changes.
Collapse
|
8
|
Guinard G. Limusaurus inextricabilis(Theropoda: Ceratosauria) gives a hand to evolutionary teratology: a complementary view on avian manual digits identities. Zool J Linn Soc 2015. [DOI: 10.1111/zoj.12329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Wakasa H, Cádiz A, Echenique-Díaz LM, Iwasaki WM, Kamiyama N, Nishimura Y, Yokoyama H, Tamura K, Kawata M. Developmental stages for the divergence of relative limb length between a twig and a trunk-ground Anolis lizard species. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:410-23. [PMID: 26055630 DOI: 10.1002/jez.b.22627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 03/20/2015] [Indexed: 11/09/2022]
Abstract
The divergent evolution of niche-related traits can facilitate adaptive radiation, yet identification of the genetic or molecular mechanisms underlying such trait changes remains a major challenge in evolutionary biology. Conducting a detailed morphological comparison along growth trajectories is a powerful method for observing the formation of differences in niche-related traits. Here, we focused on hindlimb length of Anolis lizards, differences in which are related to adaptation for use of different microhabitats. We measured the length of hindlimb skeletons in different ecomorphs of anole lizards (A. sagrei, a trunk-ground ecomorph with long hindlimbs, and A. angusticeps, a twig ecomorph with short hindlimbs) from early embryonic stages to adulthood, to determine which hindlimb elements mainly differentiate the species and the timing of the formation of these differences. With respect to the digit, differences between the species mainly occurred during the embryonic stages of interdigit reduction, when the cartilage of the distal phalanges was simultaneously forming. In addition, we compared the relative length of developing autopods in early embryonic stages using whole-mount in situ hybridization before the formation of the cartilaginous bones, and the results showed that the relative growth rate of the Hoxa11-negative distal region in A. sagrei was greater than that in A. angusticeps. Our results show that there are several important developmental stages for hindlimb length differentiation between A. angusticeps and A. sagrei, depending on which hindlimb element is considered. In particular, the species differences were largely due to variations in digit length, which arose at early embryonic stages.
Collapse
Affiliation(s)
- Hajime Wakasa
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Antonio Cádiz
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Faculty of Biology, Havana University, Havana, Cuba
| | | | - Watal M Iwasaki
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Namiko Kamiyama
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yuki Nishimura
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hitoshi Yokoyama
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Koji Tamura
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Masakado Kawata
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
10
|
Tokita M. How the pterosaur got its wings. Biol Rev Camb Philos Soc 2014; 90:1163-78. [PMID: 25361444 DOI: 10.1111/brv.12150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/10/2014] [Accepted: 10/01/2014] [Indexed: 12/19/2022]
Abstract
Throughout the evolutionary history of life, only three vertebrate lineages took to the air by acquiring a body plan suitable for powered flight: birds, bats, and pterosaurs. Because pterosaurs were the earliest vertebrate lineage capable of powered flight and included the largest volant animal in the history of the earth, understanding how they evolved their flight apparatus, the wing, is an important issue in evolutionary biology. Herein, I speculate on the potential basis of pterosaur wing evolution using recent advances in the developmental biology of flying and non-flying vertebrates. The most significant morphological features of pterosaur wings are: (i) a disproportionately elongated fourth finger, and (ii) a wing membrane called the brachiopatagium, which stretches from the posterior surface of the arm and elongated fourth finger to the anterior surface of the leg. At limb-forming stages of pterosaur embryos, the zone of polarizing activity (ZPA) cells, from which the fourth finger eventually differentiates, could up-regulate, restrict, and prolong expression of 5'-located Homeobox D (Hoxd) genes (e.g. Hoxd11, Hoxd12, and Hoxd13) around the ZPA through pterosaur-specific exploitation of sonic hedgehog (SHH) signalling. 5'Hoxd genes could then influence downstream bone morphogenetic protein (BMP) signalling to facilitate chondrocyte proliferation in long bones. Potential expression of Fgf10 and Tbx3 in the primordium of the brachiopatagium formed posterior to the forelimb bud might also facilitate elongation of the phalanges of the fourth finger. To establish the flight-adapted musculoskeletal morphology shared by all volant vertebrates, pterosaurs probably underwent regulatory changes in the expression of genes controlling forelimb and pectoral girdle musculoskeletal development (e.g. Tbx5), as well as certain changes in the mode of cell-cell interactions between muscular and connective tissues in the early phase of their evolution. Developmental data now accumulating for extant vertebrate taxa could be helpful in understanding the cellular and molecular mechanisms of body-plan evolution in extinct vertebrates as well as extant vertebrates with unique morphology whose embryonic materials are hard to obtain.
Collapse
Affiliation(s)
- Masayoshi Tokita
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, U.S.A
| |
Collapse
|
11
|
Salinas-Saavedra M, Gonzalez-Cabrera C, Ossa-Fuentes L, Botelho JF, Ruiz-Flores M, Vargas AO. New developmental evidence supports a homeotic frameshift of digit identity in the evolution of the bird wing. Front Zool 2014; 11:33. [PMID: 24725625 PMCID: PMC3986427 DOI: 10.1186/1742-9994-11-33] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/07/2014] [Indexed: 01/09/2023] Open
Abstract
Background The homology of the digits in the bird wing is a high-profile controversy in developmental and evolutionary biology. The embryonic position of the digits cartilages with respect to the primary axis (ulnare and ulna) corresponds to 2, 3, 4, but comparative-evolutionary morphology supports 1, 2, 3. A homeotic frameshift of digit identity in evolution could explain how cells in embryonic positions 2, 3, 4 began developing morphologies 1, 2, 3. Another alternative is that no re-patterning of cell fates occurred, and the primary axis shifted its position by some other mechanism. In the wing, only the anterior digit lacks expression of HoxD10 and HoxD12, resembling digit 1 of other limbs, as predicted by 1, 2, 3. However, upon loss of digit 1 in evolution, the most anterior digit 2 could have lost their expression, deceitfully resembling a digit 1. To test this notion, we observed HoxD10 and HoxD12 in a limb where digit 2 is the most anterior digit: The rabbit foot. We also explored whether early inhibition of Shh signalling in the embryonic wing bud induces an experimental homeotic frameshift, or an experimental axis shift. We tested these hypotheses using DiI injections to study the fate of cells in these experimental wings. Results We found strong transcription of HoxD10 and HoxD12 was present in the most anterior digit 2 of the rabbit foot. Thus, we found no evidence to question the use of HoxD expression as support for 1, 2, 3. When Shh signalling in early wing buds is inhibited, our fate maps demonstrate that an experimental homeotic frameshift is induced. Conclusion Along with comparative morphology, HoxD expression provides strong support for 1, 2, 3 identity of wing digits. As an explanation for the offset 2, 3, 4 embryological position, the homeotic frameshift hypothesis is consistent with known mechanisms of limb development, and further proven to be experimentally possible. In contrast, the underlying mechanisms and experimental plausibility of an axis shift remain unclear.
Collapse
Affiliation(s)
- Miguel Salinas-Saavedra
- Laboratorio de Ontogenia y Filogenia. Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Cristian Gonzalez-Cabrera
- Laboratorio de Ontogenia y Filogenia. Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Luis Ossa-Fuentes
- Laboratorio de Ontogenia y Filogenia. Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Joao F Botelho
- Laboratorio de Ontogenia y Filogenia. Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Macarena Ruiz-Flores
- Laboratorio de Ontogenia y Filogenia. Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Alexander O Vargas
- Laboratorio de Ontogenia y Filogenia. Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| |
Collapse
|
12
|
Nomura N, Yokoyama H, Tamura K. Altered developmental events in the anterior region of the chick forelimb give rise to avian-specific digit loss. Dev Dyn 2014; 243:741-52. [PMID: 24616028 DOI: 10.1002/dvdy.24117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 01/23/2014] [Accepted: 02/04/2014] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Avian forelimb (wing) contains only three digits, and the three-digit formation in the bird forelimb is one of the avian-specific limb characteristics that have been evolutionarily inherited from the common ancestral form in dinosaurs. Despite many studies on digit formation in the chick limb bud, the developmental mechanisms giving rise to the three-digit forelimb in birds have not been completely clarified. RESULTS To identify which cell populations of the early limb bud contribute to digit formation in the late limb bud, fate maps of the early fore- and hindlimb buds were prepared. Based on these fate maps, we found that the digit-forming region in the forelimb bud is narrower than that in the hindlimb bud, suggesting that some developmental mechanisms on the anterior-most region lead to a reduced number of digits in the forelimb. We also found temporal differences in the onset of appearance of the ANZ (anterior necrotic zone) as well as differences in the position of the anterior edge of the AER. CONCLUSIONS Forelimb-specific events in the anterior limb bud are possible developmental mechanisms that might generate the different cell fates in the fore- and hindlimb buds, regulating the number of digits in birds.
Collapse
Affiliation(s)
- Naoki Nomura
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|