1
|
Tian SC, Song XH, Feng KK, Li CL, Tu YF, Hu YS, Shao JW. Self-oxygenating nanoplatform integrating CRISPR/Cas9 gene editing and immune activation for highly efficient photodynamic therapy. J Colloid Interface Sci 2025; 693:137632. [PMID: 40262200 DOI: 10.1016/j.jcis.2025.137632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025]
Abstract
Photodynamic therapy (PDT) has arisen as a promising method due to its spatiotemporal precision and minimal invasiveness. It encounters significant obstacles in solid tumors due to hypoxia-induced therapeutic resistance and the self-protective mechanisms of cancer cells facilitated by MutT homolog 1 (MTH1), an enzyme involved in oxidative damage repair. Herein, we fabricate a tumor-microenvironment responsive CRISPR nanoplatform based on hollow mesoporous manganese dioxide (H-MnO2) for PDT. This platform utilizes H-MnO2 to produce oxygen (O2) through the decomposition of hydrogen peroxide (H2O2) in TME, thereby mitigating hypoxia and enhancing reactive oxygen species (ROS) generation. The high concentration of glutathione (GSH) and hyaluronidase (HAase) in TME induces the release of CRISPR/Cas9 ribonucleoproteins (RNP) to target the MTH1 gene, thereby impairs oxidative damage repair pathways and amplifys ROS-mediated cytotoxicity. The released Mn2+ ions function as immunomodulatory agents, activate innate immune responses via stimulating STING signal pathway. In vitro, IHMRH NPs markedly increased intracellular O2 levels, ROS production, lipid peroxidation and DNA damage, leading to tumor cell death, immune activation, and effective gene editing. In vivo, the nanoplatform suppressed tumor growth, diminished MTH1 gene expression, stimulated dendritic cell (DC) maturation through immunogenic cell death (ICD). This multimodal nanosystem may amplifies oxidative stress, collaborates with innate and adaptive immune activation to surpass the constraints of traditional PDT. The research presents a novel framework for cancer combination therapy by systematically integrating nanotechnology with precision gene editing.
Collapse
Affiliation(s)
- Shi-Cheng Tian
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xun-Huan Song
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China; Center for Preclinical Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ke-Ke Feng
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Cheng-Lei Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yi-Fan Tu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yong-Shan Hu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
2
|
Wang Q, Yu Y, Zhuang J, Liu R, Sun C. Demystifying the cGAS-STING pathway: precision regulation in the tumor immune microenvironment. Mol Cancer 2025; 24:178. [PMID: 40506729 PMCID: PMC12160120 DOI: 10.1186/s12943-025-02380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Accepted: 06/04/2025] [Indexed: 06/16/2025] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway serves as an immune sentinel for cytosolic DNA, recognizing double-stranded DNA (dsDNA) derived from abnormally localized nuclear DNA or mitochondrial DNA (mtDNA), and plays a pivotal role in innate immune responses and tumor immune surveillance. Conventional antitumor therapies induce genomic instability and mitochondrial stress, leading to the release of nuclear DNA and mtDNA into the cytosol, thereby activating the cGAS-STING pathway. This activation triggers the production of type I interferons (IFN-I) and pro-inflammatory cytokines, which reshape the tumor immune microenvironment (TIME). However, the complexity of TIME reveals a "double-edged sword" effect of cGAS-STING signaling: while it activates antitumor immune responses, it also promotes immune escape and metastasis through the regulation of immunosuppressive cells and stromal components. This review comprehensively delineates the differential regulatory mechanisms of the pathway within TIME constituents, highlighting its multifaceted roles in tumor immunity. Furthermore, it reviews recent advances and challenges in targeting the cGAS-STING pathway for cancer immunotherapy, with the aim of advancing cGAS-STING signaling modulation as a key therapeutic strategy to reprogram TIME and overcome immunosuppression in antitumor treatment.
Collapse
Affiliation(s)
- Qingyang Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Yu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China.
| | - Ruijuan Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China.
| |
Collapse
|
3
|
Barik P, Mondal S. Immunomodulatory effects of metal nanoparticles: current trends and future prospects. NANOSCALE 2025; 17:10433-10461. [PMID: 40202489 DOI: 10.1039/d5nr01030f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The advent of nanotechnology has steered into a new era of medical advancements, with metal nanoparticles (MNPs) emerging as potent agents for precise regulation of the immune system. This review provides a comprehensive overview of the immunomodulatory roles of MNPs, including gold, silver, and metal oxide nanoparticles, in regulating innate and adaptive immunity. Additionally, we discuss the immunological effects of metal ions and metal complexes, offering a comparative analysis with nanoparticulate systems. We analyse cutting-edge strategies utilising MNPs to optimise vaccine efficacy, achieve targeted delivery to immune cells, and orchestrate inflammatory responses. Additionally, we discuss the therapeutic potential of MNPs in combating autoimmune diseases, cancers, and infectious agents, which is evaluated within the framework of precision medicine. Furthermore, we critically assess challenges such as biocompatibility, potential toxicity, and regulatory hurdles. Finally, we propose future directions for integrating MNPs with advanced delivery systems and other nanomaterials to propel the frontiers of immunotherapy. This review aims to provide a foundational understanding of MNP-mediated immunomodulation, inspiring further research and development in this burgeoning field.
Collapse
Affiliation(s)
- Puspendu Barik
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah, 26666, United Arab Emirates
- Department of Physics, College of Arts and Sciences, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Samiran Mondal
- Department of Chemistry, Rammohan College (University of Calcutta), 102/1-Raja Rammohan Sarani, Kolkata 700009, West Bengal, India.
| |
Collapse
|
4
|
Zhang M, Ji Y, Liu M, Dai Y, Zhang H, Tong S, Cai Y, Liu M, Qu N. Nano-delivery of STING agonists: Unraveling the potential of immunotherapy. Acta Biomater 2025; 197:104-120. [PMID: 40164370 DOI: 10.1016/j.actbio.2025.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/10/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
The cyclic GMP-AMP synthetase-interferon gene stimulator (cGAS-STING) pathway possesses tremendous potential in immune responses, viral defense, and anti-tumor treatment. Currently, an increasing number of nanocarriers are being engineered to convey STING agonists, with the goal of booSTING the conveying capacity of cGAS-STING agonists and augment the therapeutic potency of STING agonists. In this review, we explore the mechanisms of cGAS-STING activators, the application of different nanocarriers in the STING pathway, and the application of nanocarriers in anti-tumor therapy, antiviral therapy and autoimmune diseases. Additionally, we also discuss the adverse effects of STING pathway activation and the challenges encountered in nano delivery, we hope that future research will delve into the development of new nanocarriers and the clinical translation of nanocarriers in STING-mediated immunotherapy. STATEMENT OF SIGNIFICANCE: The cyclic GMP-AMP synthetase-interferon gene stimulator (cGAS-STING) pathway possesses tremendous potential in immune responses, viral defense, and anti-tumor treatment. In this review, we first explore the activation mechanism of cGAS-STING signal pathway and the diverse array of nanocarriers that have been employed in the context of the STING pathway, such as natural carrier, lipid nanoparticles, polymeric nanoparticles, and inorganic nanoparticles, highlighting their unique properties and the challenges they present in clinical applications. Furthermore, we discuss the research progress regarding nanocarriers in STING-mediated immunotherapy, such as the application of nanocarriers in anti-tumor therapy, antiviral therapy and autoimmune diseases therapy. Finally, the side effects of STING pathway activation and the issues encountered in nano delivery will be discussed, hoping that future research will delve into the development of new nanocarriers and the clinical translation of nanocarriers in STING-mediated immunotherapy.
Collapse
Affiliation(s)
- Meng Zhang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Yating Ji
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Mingxia Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Yixin Dai
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Hongxia Zhang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Shiyu Tong
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Yuqing Cai
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Mengjiao Liu
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Forckenbeckstrasse 55, Aachen 52074, Germany
| | - Na Qu
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
5
|
Huang J, Yang J, Yang Y, Lu X, Xu J, Lu S, Pan H, Zhou W, Li W, Chen S. Mitigating Doxorubicin-Induced Cardiotoxicity and Enhancing Anti-Tumor Efficacy with a Metformin-Integrated Self-Assembled Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415227. [PMID: 40052211 PMCID: PMC12061326 DOI: 10.1002/advs.202415227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/06/2025] [Indexed: 05/10/2025]
Abstract
Doxorubicin (Dox) is a potent chemotherapeutic agent commonly used in cancer treatment. However, cardiotoxicity severely limited its clinical application. To address this challenge, a novel self-assembled nanomedicine platform, PMDDH, is developed for the co-delivery of Dox and metformin, an antidiabetic drug with cardioprotective and anti-tumor properties. PMDDH integrates metformin into a polyethyleneimine-based bioactive excipient (PMet), with Dox intercalated into double-stranded DNA and a hyaluronic acid (HA) coating to enhance tumor targeting. The PMDDH significantly improves the pharmacokinetics and tumor-targeting capabilities of Dox, while metformin enhances the drug's anti-tumor activity by downregulating programmed cell death ligand 1 (PD-L1) and activating the AMP-activated protein kinase (AMPK) signaling pathway. Additionally, the DNA component stimulates the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway, which synergizes with Dox-induced immunogenic cell death (ICD) to promote a robust anti-tumor immune response. PMDDH markedly reduces Dox-induced cardiotoxicity by preserving mitochondrial function, reducing reactive oxygen species (ROS) production, and inducing protective autophagy in cardiomyocytes. These findings position PMDDH as a promising dual-function nanomedicine that enhances the anti-tumor efficacy of Dox while minimizing its systemic toxicity, offering a safer and more effective alternative for cancer therapy.
Collapse
Affiliation(s)
- Jiaxin Huang
- Department of PharmacySecond Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Jieru Yang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Yuanying Yang
- Department of PharmacySecond Xiangya HospitalCentral South UniversityChangshaHunan410011China
| | - Xiaofeng Lu
- Department of CardiologyShanghai General HospitalShanghai Jiao Tong University School of MedicineNo.100, Haining RdShanghai200080China
- Department of CardiologyShanghai General Hospital Jiuquan HospitalNo. 22, West StJiuquanGansu735000China
| | - Juan Xu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
- Department of CardiologyShanghai General HospitalShanghai Jiao Tong University School of MedicineNo.100, Haining RdShanghai200080China
| | - Shan Lu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Hong Pan
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical PreparationsSchool of Pharmaceutical ScienceChangsha Medical UniversityChangshaHunan410219China
| | - Wenqun Li
- Department of PharmacySecond Xiangya HospitalCentral South UniversityChangshaHunan410011China
| | - Songwen Chen
- Department of CardiologyShanghai General HospitalShanghai Jiao Tong University School of MedicineNo.100, Haining RdShanghai200080China
| |
Collapse
|
6
|
Tuo Z, Gao M, Jiang C, Zhang D, Chen X, Jiang Z, Wang J. Construction of M2 macrophage-related gene signature for predicting prognosis and revealing different immunotherapy response in bladder cancer patients. Clin Transl Oncol 2025; 27:2191-2206. [PMID: 39347941 DOI: 10.1007/s12094-024-03698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Bladder cancer development is closely associated with the dynamic interaction and communication between M2 macrophages and tumor cells. However, specific biomarkers for targeting M2 macrophages in immunotherapy remain limited and require further investigation. METHODS In this study, we identified key co-expressed genes in M2 macrophages and developed gene signatures to predict prognosis and immunotherapy response in patients. Public database provided the bioinformatics data used in the analysis. We created and verified an M2 macrophage-related gene signature in these datasets using Lasso-Cox analysis. RESULTS The predictive value and immunological functions of our risk model were examined in bladder cancer patients, and 158 genes were found to be significantly positively correlated with M2 macrophages. Moreover, we identified two molecular subgroups of bladder cancer with markedly different immunological profiles and clinical prognoses. The five key risk genes identified in this model were validated, including CALU, ECM1, LRP1, CYTL1, and CCDC102B, demonstrating the model can accurately predict prognosis and identify unique responses to immunotherapy in patients with bladder cancer. CONCLUSIONS In summary, we constructed and validated a five-gene signature related to M2 macrophages, which shows strong potential for forecasting bladder cancer prognosis and immunotherapy response.
Collapse
Affiliation(s)
- Zhouting Tuo
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Mingzhu Gao
- Department of Oncology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Chao Jiang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Duobing Zhang
- Department of Urology, Suzhou Hospital of Anhui Medical University, Suzhou, 234000, China
- Department of Urology, Suzhou Municipal Hospital of Anhui Province, Suzhou, 234000, China
| | - Xin Chen
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhiwei Jiang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Jinyou Wang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
7
|
Yousefi Rad A, Rastegari AA, Shahanipour K, Monajemi R. Moringa oleifera and Its Biochemical Compounds: Potential Multi-targeted Therapeutic Agents Against COVID-19 and Associated Cancer Progression. Biochem Genet 2025; 63:936-959. [PMID: 38583096 DOI: 10.1007/s10528-024-10758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/23/2024] [Indexed: 04/08/2024]
Abstract
The Coronavirus disease-2019 (COVID-19) pandemic is a global concern, with updated pharmacological therapeutic strategies needed. Cancer patients have been found to be more susceptible to severe COVID-19 and death, and COVID-19 can also lead to cancer progression. Traditional medicinal plants have long been used as anti-infection and anti-inflammatory agents, and Moringa oleifera (M. oleifera) is one such plant containing natural products such as kaempferol, quercetin, and hesperetin, which can reduce inflammatory responses and complications associated with viral infections and multiple cancers. This review article explores the cellular and molecular mechanisms of action of M. oleifera as an anti-COVID-19 and anti-inflammatory agent, and its potential role in reducing the risk of cancer progression in cancer patients with COVID-19. The article discusses the ability of M. oleifera to modulate NF-κB, MAPK, mTOR, NLRP3 inflammasome, and other inflammatory pathways, as well as the polyphenols and flavonoids like quercetin and kaempferol, that contribute to its anti-inflammatory properties. Overall, this review highlights the potential therapeutic benefits of M. oleifera in addressing COVID-19 and associated cancer progression. However, further investigations are necessary to fully understand the cellular and molecular mechanisms of action of M. oleifera and its natural products as anti-inflammatory, anti-COVID-19, and anti-cancer strategies.
Collapse
Affiliation(s)
- Ali Yousefi Rad
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Esfahan, Iran
| | - Ali Asghar Rastegari
- Department of Molecular and Cell Biochemistry, Falavarjan Branch, Islamic Azad University, Esfahan, Iran.
| | - Kahin Shahanipour
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Esfahan, Iran
| | - Ramesh Monajemi
- Department of Biology, Falavarjan Branch, Islamic Azad University, Esfahan, Iran
| |
Collapse
|
8
|
Chen Y, Yue S, Yu L, Cao J, Liu Y, Deng A, Lu Y, Yang J, Li H, Du J, Xia J, Li Y, Xia Y. Regulation and Function of the cGAS-STING Pathway: Mechanisms, Post-Translational Modifications, and Therapeutic Potential in Immunotherapy. Drug Des Devel Ther 2025; 19:1721-1739. [PMID: 40098909 PMCID: PMC11911240 DOI: 10.2147/dddt.s501773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Autoimmune diseases arise when the immune system attacks healthy tissues, losing tolerance for self-tissues. Normally, the immune system recognizes and defends against pathogens like bacteria and viruses. The cGAS-STING pathway, activated by pattern-recognition receptors (PRRs), plays a key role in autoimmune responses. The cGAS protein senses pathogenic DNA and synthesizes cGAMP, which induces conformational changes in STING, activating kinases IKK and TBK1 and leading to the expression of interferon genes or inflammatory mediators. This pathway is crucial in immunotherapy, activating innate immunity, enhancing antigen presentation, modulating the tumor microenvironment, and integrating into therapeutic strategies. Modulation strategies include small molecule inhibitors, oligonucleotide therapies, protein and antibody therapies, genetic and epigenetic regulation, cytokine and metabolite modulation, and nanoscale delivery systems. Post-translational modifications (PTMs) of the cGAS-STING pathway, such as phosphorylation, acetylation, ubiquitination, methylation, palmitoylation, and glycosylation, fine-tune immune responses by regulating protein activity, stability, localization, and interactions. These modifications are interconnected and collectively influence pathway functionality. We summarize the functions of cGAS-STING and its PTMs in immune and non-immune cells across various diseases, and explore potential clinical applications.
Collapse
Affiliation(s)
- Yuhan Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Si Yue
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jinghao Cao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yingchao Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Aoli Deng
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yajuan Lu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jing Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Huanjuan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yanchun Li
- Department of Clinical Laboratory, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yongming Xia
- Department of Hematology, Yuyao People’s Hospital, Yuyao, Zhejiang, People’s Republic of China
| |
Collapse
|
9
|
Fan M, Yang P, Huo L, Bao J, Tan M, Zeng J, Zhu S, Liu M, Zhao J, Miao W, Zhao Z. Cu-Mn nanocomposite for enhanced tumor cuproptosis achieved by remodeling the tumor microenvironment and activating the antitumor immunogenic responses. Acta Biomater 2025; 194:385-395. [PMID: 39870151 DOI: 10.1016/j.actbio.2025.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Cuproptosis is a newly discovered mode of cell death, which is caused by excess copper and results in cell death via the mitochondrial pathway. However, the complex tumor microenvironment (TME) is characterized by many factors, including high levels of glutathione and lack O2, limit the application of traditional cuproptosis agents in antitumor therapy. Herein, we report a hyaluronic acid modified copper-manganese composite nanomedicine (CMCNs@HA) to remodel the TME and facilitate efficient cuproptosis in tumor. The integration of CuO2 and MnO2 into CMCNs@HA endows this nanoplatform to generate O2 and deplete GSH in tumor site, ensuring the environment is beneficial to the cuproptosis of tumor. The glutathione (GSH) depletion process is accompanied by the release of Mn2+ ions. The released Mn2+ ions improve the cuproptosis through efficient chemodynamic therapy and initiate immune response via activating the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway, which significantly suppresses tumor growth and inhibits tumor metastases. In addition, the Mn2+ ions release process enables this nanoplatform to work as activable T1 contrast agent to achieve accurate tumor diagnosis. This functionally complementary composite metal nanomaterial may provide effective ideas regarding the application of cuproptosis in designing tumor therapeutic regimens. STATEMENT OF SIGNIFICANCE: Cuproptosis in combination with cGAS-STING offers significant potential for tumor treatment. Here, we constructed TME responsive copper-manganese composite nanomaterials (CMCNs@HA) to augment tumor cuproptosis. GSH depletion, hypoxia relief, and effective chemodynamic therapy caused by CMCNs@HA facilitate the progression of cuproptosis. Besides, CMCNs@HA successfully initiate immune response via activating the cyclic GMP-AMP synthase-stimulator of interferon genes pathway and significantly inhibits tumor metastases. Simultaneously, released Mn2+ ions provide real-time magnetic resonance imaging (MRI) signal changes, enabling accurate tumor diagnosis and monitoring of the therapeutic process.
Collapse
Affiliation(s)
- Mengke Fan
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Pan Yang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Linlin Huo
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jianfeng Bao
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China.
| | - Mingya Tan
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jie Zeng
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Shiqi Zhu
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Meiling Liu
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jiayi Zhao
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Wenjun Miao
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Zhenghuan Zhao
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
10
|
Li D, Shao F, Li X, Yu Q, Wu R, Wang J, Wang Z, Wusiman D, Ye L, Guo Y, Tuo Z, Wei W, Yoo KH, Cho WC, Feng D. Advancements and challenges of R-loops in cancers: Biological insights and future directions. Cancer Lett 2025; 610:217359. [PMID: 39613219 DOI: 10.1016/j.canlet.2024.217359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
R-loops involve in various biological processes under human normal physiological conditions. Disruption of R-loops can lead to disease onset and affect the progression of illnesses, particularly in cancers. Herein, we summarized and discussed the regulative networks, phenotypes and future directions of R-loops in cancers. In this review, we highlighted the following insights: (1) R-loops significantly influence cancer development, progression and treatment efficiency by regulating key genes, such as PARPs, BRCA1/2, sex hormone receptors, DHX9, and TOP1. (2) Currently, the ATM, ATR, cGAS/STING, and noncanonical pathways are the main pathways that involve in the regulatory network of R-loops in cancer. (3) Cancer biology can be modulated by R-loops-regulated phenotypes, including RNA methylation, DNA and histone methylation, oxidative stress, immune and inflammation regulation, and senescence. (4) Regulation of R-loops induces kinds of drug resistance in various cancers, suggesting that targeting R-loops maybe a promising way to overcome treatment resistance. (5) The role of R-loops in tumorigenesis remains controversial, and senescence may be a crucial research direction to unravel the mechanism of R-loop-induced tumorigenesis. Looking forward, further studies are needed to elucidate the specific mechanisms of R-loops in cancer, laying the groundwork for preclinical and clinical research.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xinrui Li
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province, 315211, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhouting Tuo
- Department of Urological Surgery, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region of China.
| | - Dechao Feng
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| |
Collapse
|
11
|
He X, Wang G, Wang Y, Zhang C. Matrine Enhances the Antitumor Efficacy of Chidamide in CTCL by Promoting Apoptosis. Recent Pat Anticancer Drug Discov 2025; 20:223-231. [PMID: 38571359 DOI: 10.2174/0115748928289036240318040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Cutaneous T-cell Lymphoma (CTCL) is a rare group of non-Hodgkin lymphoma originating from the skin, which is characterized by T-cell lymphoproliferative disorders. Chidamide, a Chinese original antineoplastic agent with independent intellectual property rights, and matrine, an extract of Chinese herbal medicine, both have been reported to exert effects on the treatment of tumors individually. However, chidamide combined with matrine has not been tested for the treatment of CTCL. METHODS Both HH and Hut78 CTCL cell lines were treated with chidamide (0.4 μmol/L), matrine (0.6 g/L), or chidamide combined with matrine for 24, 48, and 72 h. Cell viability was estimated by MTS assay at each time point. Flow cytometry was then conducted to detect cell apoptosis. The exact mechanism of chidamide combined with matrine on CTCL cells was detected by Western blotting and further validated in xenograft models of NOD/SCID mice. RESULTS AND DISCUSSION Compared to the single drug, chidamide combined with matrine showed a more significant effect on proliferation inhibition and apoptosis induction on CTCL cells both in vitro and in vivo. The results from the in vitro and in vivo studies suggested that matrine could enhance the anti-tumor effect of chidamide by increasing the protein expression of cleaved caspase- 3 and decreasing the expression of E-cadherin, NF-κB, p-Bad, and Bcl-2 to activate apoptosis. CONCLUSION Our data have demonstrated chidamide combined with matrine to exhibit elevated antitumor activity in both CTCL cells and xenograft models of NOD/SCID mice, which may be a potential treatment option for CTCL.
Collapse
Affiliation(s)
- Xinglan He
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Guanyu Wang
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Yimeng Wang
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Chunlei Zhang
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
12
|
Fu C, Guo H, Wang M, Ni C, Wu X, Chen X, Hou J, Wang L. Manganese improves CD8 + T cell recruitment via cGAS-STING in hepatocellular carcinoma. Int Immunopharmacol 2024; 143:113591. [PMID: 39549546 DOI: 10.1016/j.intimp.2024.113591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/11/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths worldwide. Chemotherapy using cisplatin, a drug that damages deoxyribonucleic acid (DNA), is not very effective in treating HCC due to its side effects and drug resistance. Manganese (Mn2+), a trace element, has been shown to enhance immune responses, but its ability to improve cisplatin-induced antitumor immunity in HCC remains unclear. The present study found that treatment with Mn2+ in combination with cisplatin promoted cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling activation and C-X-C motif chemokine ligand 10 (CXCL10) production in tumor and dendritic cells. CXCL10 is associated with CD8A levels, and its high expression is linked to better prognosis in patients with HCC. In addition, Mn2+ and cisplatin co-treatment enhanced the recruitment of CD8+ T cells through the CXCL10/CXCR3 axis. Similarly, in an orthotopic transplantation tumor model, STING activation, CD8+ T cell infiltration, and tumor cell killing levels were higher in the combined treatment group. The above findings suggest that utilizing Mn2+ in combination with cisplatin could be a potential treatment option for HCC.
Collapse
Affiliation(s)
- Chunxue Fu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital/Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Hanrui Guo
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital/Shihezi University School of Medicine, Shihezi, Xinjiang, China; Department of Clinical Laboratory, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Meiling Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital/Shihezi University School of Medicine, Shihezi, Xinjiang, China; Department of Pathology, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Caiya Ni
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital/Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiangwei Wu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital/Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xueling Chen
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital/Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jun Hou
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital/Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| | - Lianghai Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital/Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
13
|
Yuan K, Zhang C, Pan X, Hu B, Zhang J, Yang G. Immunomodulatory metal-based biomaterials for cancer immunotherapy. J Control Release 2024; 375:249-268. [PMID: 39260573 DOI: 10.1016/j.jconrel.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Cancer immunotherapy, as an emerging cancer treatment approach, harnesses the patient's own immune system to effectively prevent tumor recurrence or metastasis. However, its clinical application has been significantly hindered by relatively low immune response rates. In recent years, metal-based biomaterials have been extensively studied as effective immunomodulators and potential tools for enhancing anti-tumor immune responses, enabling the reversal of immune suppression without inducing toxic side effects. This review introduces the classification of bioactive metal elements and summarizes their immune regulatory mechanisms. In addition, we discuss the immunomodulatory roles of biomaterials constructed from various metals, including aluminum, manganese, gold, calcium, zinc, iron, magnesium, and copper. More importantly, a systematic overview of their applications in enhancing immunotherapy is provided. Finally, the prospects and challenges of metal-based biomaterials with immunomodulatory functions in cancer immunotherapy are outlined.
Collapse
Affiliation(s)
- Kangzhi Yuan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Cai Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xinlu Pan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Junjun Zhang
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou, Jiangsu 215004, China.
| | - Guangbao Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
14
|
Gupta G, Afzal M, Moglad E, Ali H, Singh TG, Kumbhar P, Disouza J, Almujri SS, Kazmi I, Alzarea SI, Hemalatha KP, Goh BH, Singh SK, Dua K. Non-coding RNAs as key regulators of Gasdermin-D mediated pyroptosis in cancer therapy. Pathol Res Pract 2024; 261:155490. [PMID: 39126977 DOI: 10.1016/j.prp.2024.155490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
Pyroptosis is an inflammatory programed cell death process that plays a crucial role in cancer therapeutic, while Gasdermin-D is a critical effector protein for pyroptosis execution. This review discusses the intricate interactions between Gasdermin-D and some non-coding RNAs (lncRNA, miRNA, siRNA) and their potential application in the regulation of pyroptosis as an anticancer therapy. Correspondingly, these ncRNAs significantly implicate in Gasdermin-D expression and function regarding the pyroptosis pathway. Functioning as competing endogenous RNAs (ceRNAs), these ncRNAs might regulate Gasdermin-D at the molecular level, underlying fatal cell death caused by cancer and tumor propagation. Therefore, these interactions appeal to therapeutics, offering new avenues for cancer treatment. It address this research gap by discussing the possible roles of ncRNAs as mediators of gasdermin-D regulation. It suggest therapeutic strategies based on the current research findings to ensure the interchange between the ideal pyroptosis and cancer cell death.
Collapse
Affiliation(s)
- Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | | | - Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala Dist, Kolhapur, Maharashtra 416113, India
| | - John Disouza
- Bombay Institute of Research and Pharmacy, Dombivli, Mumbai, Maharashtra 421203, India
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Aseer 61421, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - K P Hemalatha
- Sree Siddaganga College of Pharmacy, Tumkur, Karnataka, India
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
15
|
Abstract
Cancer constitutes a multifaceted ailment characterized by the dysregulation of numerous genes and pathways. Among these, LIM domain only 7 (LMO7) has emerged as a significant player in various cancer types, garnering substantial attention for its involvement in tumorigenesis and cancer progression. This review endeavors to furnish a comprehensive discourse on the functional intricacies and mechanisms of LMO7 in cancer, with a particular emphasis on its potential as both a therapeutic target and prognostic indicator. It delves into the molecular attributes of LMO7, its implications in cancer etiology and the underlying mechanisms propelling its oncogenic properties. Furthermore, it underscores the extant challenges and forthcoming prospects in targeting LMO7 for combating cancer.
Collapse
Affiliation(s)
- Qun Zeng
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparations, The Hunan Provincial University Key Laboratory of The Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, Hunan 410000, P.R. China
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Tingting Jiang
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparations, The Hunan Provincial University Key Laboratory of The Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, Hunan 410000, P.R. China
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Jing Wang
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparations, The Hunan Provincial University Key Laboratory of The Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, Hunan 410000, P.R. China
| |
Collapse
|
16
|
Carney E, Ghasem Zadeh Moslabeh F, Kang SY, Bunnell BA, Lee MY, Habibi N. Self-assembling peptides induced by eyes absent enzyme to boost the efficacy of doxorubicin therapy in drug-resistant breast cancer cells. Heliyon 2024; 10:e33629. [PMID: 39071664 PMCID: PMC11283099 DOI: 10.1016/j.heliyon.2024.e33629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Enzyme-induced self-assembly (EISA) is a recently developed nanotechnology technique in which small molecules are induced by cellular enzymes self-assembling into nanostructures inside cancer cells. This technique can boost the efficacy of chemotherapy drugs by avoiding drug efflux, inhibiting the cells' DNA repair mechanisms, and targeting the mitochondria. In this work, we study the self-assembly of a short peptide and its fluorescence analogue induced by Eyes absent (EYA) tyrosine phosphatases to boost the efficacy of doxorubicin (DOX) therapy in drug-resistant types of breast cancer cells, MDA-MB-231 and MCF-7. The peptides Fmoc-FF-YP and NBD-FF-YP were synthesized with the solid-phase peptide synthesis (SPPS) method and analyzed with HPLC and MALDI-TOF. Dynamic light scattering was used to determine the size distribution of peptides exposed to the EYA enzyme in vitro. The presence of EYA enzymes in breast cancer cells was confirmed using the western blotting assay. The intracellular location of the peptide self-assembly was studied by imaging fluorescence NBD-tagged peptides. The efficacy of the peptide alone and with DOX was determined against MCF-7 and MDA-MB-231 using MTT and LIVE-DEAD assays. Nucleus and cytoplasm F-actin (Phalloidin) staining was used to determine cell morphology changes in response to the combination therapy of peptides/DOX. At an optimal concentration, the peptides are not toxic to the cells; however, they boost the efficacy of DOX against drug-resistant breast cancer cells. We used state-of-the-art computer-aided techniques to predict the molecular structure of peptides and their interactions with EYA. This study demonstrates an approach for incorporating non-cytotoxic components into DOX combination therapy, thereby avoiding increased systemic burden or adverse effects.
Collapse
Affiliation(s)
- Emily Carney
- Nanomedicine Lab, Department of Biomedical Engineering, University of North Texas, Texas, United States
| | | | - Soo-Yeon Kang
- Bioprinting Lab, Department of Biomedical Engineering, University of North Texas, Texas, United States
| | - Bruce A. Bunnell
- Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, United States
| | - Moo-Yeal Lee
- Bioprinting Lab, Department of Biomedical Engineering, University of North Texas, Texas, United States
| | - Neda Habibi
- Nanomedicine Lab, Department of Biomedical Engineering, University of North Texas, Texas, United States
| |
Collapse
|
17
|
Yang J, Luo Z, Ma J, Wang Y, Cheng N. A next-generation STING agonist MSA-2: From mechanism to application. J Control Release 2024; 371:273-287. [PMID: 38789087 DOI: 10.1016/j.jconrel.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
The stimulator of interferon genes (STING) connects the innate and adaptive immune system and plays a significant role in antitumor immunity. Over the past decades, endogenous and CDN-derived STING agonists have been a hot topic in the research of cancer immunotherapies. However, these STING agonists are either in infancy with limited biological effects or have failed in clinical trials. In 2020, a non-nucleotide STING agonist MSA-2 was identified, which exhibited satisfactory antitumor effects in animal studies and is amenable to oral administration. Due to its distinctive binding mode and enhanced bioavailability, there have been accumulating interests and an array of studies on MSA-2 and its derivatives, spanning its structure-activity relationship, delivery systems, applications in combination therapies, etc. Here, we provide a comprehensive review of MSA-2 and interventional strategies based on this family of STING agonists to help more researchers extend the investigation on MSA-2 in the future.
Collapse
Affiliation(s)
- Junhan Yang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Zhenyu Luo
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jingyi Ma
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Ningtao Cheng
- School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
18
|
Fuloria S, Yadav G, Menon SV, Ali H, Pant K, Kaur M, Deorari M, Sekar M, Narain K, Kumar S, Fuloria NK. Targeting the Wnt/β-catenin cascade in osteosarcoma: The potential of ncRNAs as biomarkers and therapeutics. Pathol Res Pract 2024; 259:155346. [PMID: 38781762 DOI: 10.1016/j.prp.2024.155346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Osteosarcoma (OS) is a bone cancer which stems from several sources and presents with diverse clinical features, making evaluation and treatment difficult. Chemotherapy tolerance and restricted treatment regimens hinder progress in survival rates, requiring new and creative therapeutic strategies. The Wnt/β-catenin system has been recognised as an essential driver of OS development, providing potential avenues for therapy. Non-coding RNAs (ncRNAs), such as circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs), are essential in modulating the Wnt/β-catenin cascade in OS. MiRNAs control the system by targeting vital elements, while lncRNAs and circRNAs interact with system genes, impacting OS growth and advancement. This paper thoroughly analyses the intricate interplay between ncRNAs and the Wnt/β-catenin cascade in OS. We examine how uncontrolled levels of miRNAs, lncRNAs, and circRNAs lead to an abnormal Wnt/β-catenin network, which elevates the development, spread, and susceptibility to the treatment of OS. We emphasise the potential of ncRNAs as diagnostic indicators and avenues for treatment in OS care. The review offers valuable insights for academics and clinicians studying OS aetiology and creating new treatment techniques for the ncRNA-Wnt/β-catenin cascade. Utilising the oversight roles of ncRNAs in the Wnt/β-catenin system shows potential for enhancing the outcomes of patients and progressing precision medicine in OS therapy.
Collapse
Affiliation(s)
| | - Geeta Yadav
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, Punjab 140307, India
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Kamal Narain
- Faculty of Medicine, AIMST University, Kedah 08100, Malaysia
| | - Sokindra Kumar
- Faculty of Pharmacy, Swami Vivekanand Subharti University, Subhartipuram, Meerut-25005, U.P. India
| | | |
Collapse
|
19
|
Saadh MJ, Mustafa MA, Kumar A, Alamir HTA, Kumar A, Khudair SA, Faisal A, Alubiady MHS, Jalal SS, Shafik SS, Ahmad I, Khry FAF, Abosaoda MK. Stealth Nanocarriers in Cancer Therapy: a Comprehensive Review of Design, Functionality, and Clinical Applications. AAPS PharmSciTech 2024; 25:140. [PMID: 38890191 DOI: 10.1208/s12249-024-02843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Nanotechnology has significantly transformed cancer treatment by introducing innovative methods for delivering drugs effectively. This literature review provided an in-depth analysis of the role of nanocarriers in cancer therapy, with a particular focus on the critical concept of the 'stealth effect.' The stealth effect refers to the ability of nanocarriers to evade the immune system and overcome physiological barriers. The review investigated the design and composition of various nanocarriers, such as liposomes, micelles, and inorganic nanoparticles, highlighting the importance of surface modifications and functionalization. The complex interaction between the immune system, opsonization, phagocytosis, and the protein corona was examined to understand the stealth effect. The review carefully evaluated strategies to enhance the stealth effect, including surface coating with polymers, biomimetic camouflage, and targeting ligands. The in vivo behavior of stealth nanocarriers and their impact on pharmacokinetics, biodistribution, and toxicity were also systematically examined. Additionally, the review presented clinical applications, case studies of approved nanocarrier-based cancer therapies, and emerging formulations in clinical trials. Future directions and obstacles in the field, such as advancements in nanocarrier engineering, personalized nanomedicine, regulatory considerations, and ethical implications, were discussed in detail. The review concluded by summarizing key findings and emphasizing the transformative potential of stealth nanocarriers in revolutionizing cancer therapy. This review enhanced the comprehension of nanocarrier-based cancer therapies and their potential impact by providing insights into advanced studies, clinical applications, and regulatory considerations.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, India
| | | | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, 247341, Uttar Pradesh, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | | | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | | | - Sarah Salah Jalal
- College of Pharmacy, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Shafik Shaker Shafik
- Experimental Nuclear Radiation Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Faeza A F Khry
- Faculty of pharmacy, department of pharmaceutics, Al-Esraa University, Baghdad, Iraq
| | - Munther Kadhim Abosaoda
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Qadisiyyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
20
|
Huang P, Tang Q, Li M, Yang Q, Zhang Y, Lei L, Li S. Manganese-derived biomaterials for tumor diagnosis and therapy. J Nanobiotechnology 2024; 22:335. [PMID: 38879519 PMCID: PMC11179396 DOI: 10.1186/s12951-024-02629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 06/19/2024] Open
Abstract
Manganese (Mn) is widely recognized owing to its low cost, non-toxic nature, and versatile oxidation states, leading to the emergence of various Mn-based nanomaterials with applications across diverse fields, particularly in tumor diagnosis and therapy. Systematic reviews specifically addressing the tumor diagnosis and therapy aspects of Mn-derived biomaterials are lacking. This review comprehensively explores the physicochemical characteristics and synthesis methods of Mn-derived biomaterials, emphasizing their role in tumor diagnostics, including magnetic resonance imaging, photoacoustic and photothermal imaging, ultrasound imaging, multimodal imaging, and biodetection. Moreover, the advantages of Mn-based materials in tumor treatment applications are discussed, including drug delivery, tumor microenvironment regulation, synergistic photothermal, photodynamic, and chemodynamic therapies, tumor immunotherapy, and imaging-guided therapy. The review concludes by providing insights into the current landscape and future directions for Mn-driven advancements in the field, serving as a comprehensive resource for researchers and clinicians.
Collapse
Affiliation(s)
- Peiying Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China.
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
21
|
Beheshtizadeh N, Amiri Z, Tabatabaei SZ, Seraji AA, Gharibshahian M, Nadi A, Saeinasab M, Sefat F, Kolahi Azar H. Boosting antitumor efficacy using docetaxel-loaded nanoplatforms: from cancer therapy to regenerative medicine approaches. J Transl Med 2024; 22:520. [PMID: 38816723 PMCID: PMC11137998 DOI: 10.1186/s12967-024-05347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024] Open
Abstract
The intersection of nanotechnology and pharmacology has revolutionized the delivery and efficacy of chemotherapeutic agents, notably docetaxel, a key drug in cancer treatment. Traditionally limited by poor solubility and significant side effects, docetaxel's therapeutic potential has been significantly enhanced through its incorporation into nanoplatforms, such as nanofibers and nanoparticles. This advancement offers targeted delivery, controlled release, and improved bioavailability, dramatically reducing systemic toxicity and enhancing patient outcomes. Nanofibers provide a versatile scaffold for the controlled release of docetaxel, utilizing techniques like electrospinning to tailor drug release profiles. Nanoparticles, on the other hand, enable precise drug delivery to tumor cells, minimizing damage to healthy tissues through sophisticated encapsulation methods such as nanoprecipitation and emulsion. These nanotechnologies not only improve the pharmacokinetic properties of docetaxel but also open new avenues in regenerative medicine by facilitating targeted therapy and cellular regeneration. This narrative review highlights the transformative impact of docetaxel-loaded nanoplatforms in oncology and beyond, showcasing the potential of nanotechnology to overcome the limitations of traditional chemotherapy and pave the way for future innovations in drug delivery and regenerative therapies. Through these advancements, nanotechnology promises a new era of precision medicine, enhancing the efficacy of cancer treatments while minimizing adverse effects.
Collapse
Affiliation(s)
- Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Zahra Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, 1458889694, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyedeh Zoha Tabatabaei
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Abbas Seraji
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Maliheh Gharibshahian
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Akram Nadi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Morvarid Saeinasab
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
- Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford, UK
| | - Hanieh Kolahi Azar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Alshuhail A, Thakur A, Chandramma R, Mahesh TR, Almusharraf A, Vinoth Kumar V, Khan SB. Refining neural network algorithms for accurate brain tumor classification in MRI imagery. BMC Med Imaging 2024; 24:118. [PMID: 38773391 PMCID: PMC11110259 DOI: 10.1186/s12880-024-01285-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/29/2024] [Indexed: 05/23/2024] Open
Abstract
Brain tumor diagnosis using MRI scans poses significant challenges due to the complex nature of tumor appearances and variations. Traditional methods often require extensive manual intervention and are prone to human error, leading to misdiagnosis and delayed treatment. Current approaches primarily include manual examination by radiologists and conventional machine learning techniques. These methods rely heavily on feature extraction and classification algorithms, which may not capture the intricate patterns present in brain MRI images. Conventional techniques often suffer from limited accuracy and generalizability, mainly due to the high variability in tumor appearance and the subjective nature of manual interpretation. Additionally, traditional machine learning models may struggle with the high-dimensional data inherent in MRI images. To address these limitations, our research introduces a deep learning-based model utilizing convolutional neural networks (CNNs).Our model employs a sequential CNN architecture with multiple convolutional, max-pooling, and dropout layers, followed by dense layers for classification. The proposed model demonstrates a significant improvement in diagnostic accuracy, achieving an overall accuracy of 98% on the test dataset. The proposed model demonstrates a significant improvement in diagnostic accuracy, achieving an overall accuracy of 98% on the test dataset. The precision, recall, and F1-scores ranging from 97 to 98% with a roc-auc ranging from 99 to 100% for each tumor category further substantiate the model's effectiveness. Additionally, the utilization of Grad-CAM visualizations provides insights into the model's decision-making process, enhancing interpretability. This research addresses the pressing need for enhanced diagnostic accuracy in identifying brain tumors through MRI imaging, tackling challenges such as variability in tumor appearance and the need for rapid, reliable diagnostic tools.
Collapse
Affiliation(s)
- Asma Alshuhail
- Department of Information Systems, College of Computer Sciences and Information Technology, King Faisal University, Hofuf, Saudi Arabia
| | - Arastu Thakur
- Department of Computer Science and Engineering, Faculty of Engineering and Technology, JAIN (Deemed-to-be University), Bangalore, 562112, India
| | - R Chandramma
- Department of Computer Science & Engineering (AI & ML), Global Academy of Technology, Bangalore, India
| | - T R Mahesh
- Department of Computer Science and Engineering, Faculty of Engineering and Technology, JAIN (Deemed-to-be University), Bangalore, 562112, India
| | - Ahlam Almusharraf
- Department of Management, College of Business Administration, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - V Vinoth Kumar
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, 632001, India
| | - Surbhi Bhatia Khan
- School of Science, Engineering and Environment, University of Salford, Manchester, UK
- Department of Electrical and Computer Engineering, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
23
|
Kazemi N, Bordbar A, Bavarsad SS, Ghasemi P, Bakhshi M, Rezaeeyan H. Molecular Insights into the Relationship Between Platelet Activation and Endothelial Dysfunction: Molecular Approaches and Clinical Practice. Mol Biotechnol 2024; 66:932-947. [PMID: 38184492 DOI: 10.1007/s12033-023-01010-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/27/2023] [Indexed: 01/08/2024]
Abstract
Platelets are one of the coagulation cells. When platelet activation occurs, many mediators are released and affect endothelial cells (ECs) and lead to endothelial dysfunction (ED). ED plays an important role in the pathogenesis of many diseases, including cardiovascular disease (CVD). Platelet are of important factors in ED. The release of mediators by platelets causes the stimulation of inflammatory pathways, oxidative stress, and apoptosis, which ultimately result in ED.On the other hand, platelet activation in CVD patients can be associated with a bad prognosis. Platelet activation can increase the level of markers such as p-selectin in the serum. Also, in this study, we have discussed the role of platelet as a diagnostic factor, as well as its use as a treatment option. In addition, we discussed some of the molecular pathways that are used to target platelet activation.
Collapse
Affiliation(s)
- Niloufar Kazemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Armin Bordbar
- Department of Cardiology, Musavi Hospital, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran
| | | | - Parisa Ghasemi
- Research Committee, Medical School, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Bakhshi
- Islamic Azad University of Najaf Abad, Affiliated Hospitals, Isfahan, Iran
| | - Hadi Rezaeeyan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran.
| |
Collapse
|
24
|
Ageeli Hakami M. Diabetes and diabetic associative diseases: An overview of epigenetic regulations of TUG1. Saudi J Biol Sci 2024; 31:103976. [PMID: 38510528 PMCID: PMC10951089 DOI: 10.1016/j.sjbs.2024.103976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
The epigenetic regulation of lncRNA TUG1 has garnered significant attention in the context of diabetes and its associated disorders. TUG1's multifaceted roles in gene expression modulation, and cellular differentiation, and it plays a major role in the growth of diabetes and the issues that are related to it due to pathological processes. In diabetes, aberrant epigenetic modifications can lead to dysregulation of TUG1 expression, contributing to disrupted insulin signaling, impaired glucose metabolism, and beta-cell dysfunction. Moreover, it has been reported that TUG1 contributes to the development of problems linked to diabetes, such as nephropathy, retinopathy, and cardiovascular complications, through epigenetically mediated mechanisms. Understanding the epigenetic regulations of TUG1 offers novel insights into the primary molecular mechanisms of diabetes and provides a possible path for healing interventions. Targeting epigenetic modifications associated with TUG1 holds promise for restoring proper gene expression patterns, ameliorating insulin sensitivity, and mitigating the inception and development of diabetic associative diseases. This review highlights the intricate epigenetic landscape that governs TUG1 expression in diabetes, encompassing DNA methylation and alterations in histone structure, as well as microRNA interactions.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Huo H, Chang Y. Hemodynamic study of the ICA aneurysm evolution to attain the cerebral aneurysm rupture risk. Sci Rep 2024; 14:8984. [PMID: 38637544 PMCID: PMC11026371 DOI: 10.1038/s41598-024-59242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
The influence of the aneurysm evolution on the hemodynamic characteristic of the blood flow inside the sac region is comprehensively investigated. By using the computational method, the blood flow through the vessel and aneurysm of the sac region is examined to find the role of aneurysm evolution on the wall shear stress, pressure, and risk of aneurysm rupture. Three different models of ICA aneurysms are chosen for the investigation of the aneurysm evolution at risk of rupture. Obtained data shows that the evolution of the aneurysm decreases the wall shear stress and pressure on the sac surface while an oscillatory index of blood increases on the aneurysm wall.
Collapse
Affiliation(s)
- Huaying Huo
- Shanxi Provincial People's Hospital, TaiYuan, Shanxi, 030012, China
| | - Yigang Chang
- Shanxi Provincial People's Hospital, TaiYuan, Shanxi, 030012, China.
| |
Collapse
|
26
|
Lagzian A, Askari M, Haeri MS, Sheikhi N, Banihashemi S, Nabi-Afjadi M, Malekzadegan Y. Increased V-ATPase activity can lead to chemo-resistance in oral squamous cell carcinoma via autophagy induction: new insights. Med Oncol 2024; 41:108. [PMID: 38592406 DOI: 10.1007/s12032-024-02313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/23/2024] [Indexed: 04/10/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is a cancer type with a high rate of recurrence and a poor prognosis. Tumor chemo-resistance remains an issue for OSCC patients despite the availability of multimodal therapy options, which causes an increase in tumor invasiveness. Vacuolar ATPase (V-ATPase), appears to be one of the most significant molecules implicated in MDR in tumors like OSCC. It is primarily responsible for controlling the acidity in the solid tumors' microenvironment, which interferes with the absorption of chemotherapeutic medications. However, the exact cellular and molecular mechanisms V-ATPase plays in OSCC chemo-resistance have not been understood. Uncovering these mechanisms can contribute to combating OSCC chemo-resistance and poor prognosis. Hence, in this review, we suggest that one of these underlying mechanisms is autophagy induced by V-ATPase which can potentially contribute to OSCC chemo-resistance. Finally, specialized autophagy and V-ATPase inhibitors may be beneficial as an approach to reduce drug resistance to anticancer therapies in addition to serving as coadjuvants in antitumor treatments. Also, V-ATPase could be a prognostic factor for OSCC patients. However, in the future, more investigations are required to demonstrate these suggestions and hypotheses.
Collapse
Affiliation(s)
- Ahmadreza Lagzian
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Marziye Askari
- Department of Immunology, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Melika Sadat Haeri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nastaran Sheikhi
- Biotechnology Department, Biological Sciences Faculty, Alzahra University, Tehran, Iran
| | - Sara Banihashemi
- Department of Bioscience, School of Science and Technology, Nottingham Trend University, Nottingham, UK
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Yalda Malekzadegan
- Department of Microbiology, Saveh University of Medical Sciences, Saveh, Iran.
| |
Collapse
|
27
|
Shukla G, Singh S, Dhule C, Agrawal R, Saraswat S, Al-Rasheed A, Alqahtani MS, Soufiene BO. Point biserial correlation symbiotic organism search nanoengineering based drug delivery for tumor diagnosis. Sci Rep 2024; 14:6530. [PMID: 38503765 PMCID: PMC10951308 DOI: 10.1038/s41598-024-55159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
Nanoparticulate systems have the prospect of accounting for a new making of drug delivery systems. Nanotechnology is manifested to traverse the hurdle of both physical and biological sciences by implementing nanostructures indistinct fields of science, particularly in nano-based drug delivery. The low delivery efficiency of nanoparticles is a critical obstacle in the field of tumor diagnosis. Several nano-based drug delivery studies are focused on for tumor diagnosis. But, the nano-based drug delivery efficiency was not increased for tumor diagnosis. This work proposes a method called point biserial correlation symbiotic organism search nanoengineering-based drug delivery (PBC-SOSN). The objective and aim of the PBC-SOSN method is to achieve higher drug delivery efficiency and lesser drug delivery time for tumor diagnosis. The contribution of the PBC-SOSN is to optimized nanonengineering-based drug delivery with higher r drug delivery detection rate and smaller drug delivery error detection rate. Initially, raw data acquired from the nano-tumor dataset, and nano-drugs for glioblastoma dataset, overhead improved preprocessed samples are evolved using nano variational model decomposition-based preprocessing. After that, the preprocessed samples as input are subjected to variance analysis and point biserial correlation-based feature selection model. Finally, the preprocessed samples and features selected are subjected to symbiotic organism search nanoengineering (SOSN) to corroborate the objective. Based on these findings, point biserial correlation-based feature selection and a symbiotic organism search nanoengineering were tested for their modeling performance with a nano-tumor dataset and nano-drugs for glioblastoma dataset, finding the latter the better algorithm. Incorporated into the method is the potential to adjust the drug delivery detection rate and drug delivery error detection rate of the learned method based on selected features determined by nano variational model decomposition for efficient drug delivery.
Collapse
Affiliation(s)
| | - Sofia Singh
- Department of AI, ASET, Amity University, Noida, UP, India
| | - Chetan Dhule
- Department of Data Science, IoT, Cybersecurity (DIC), G H Raisoni College of Engineering Nagpur, Nagpur, India
| | - Rahul Agrawal
- Department of Data Science, IoT, Cybersecurity (DIC), G H Raisoni College of Engineering Nagpur, Nagpur, India
| | | | - Amal Al-Rasheed
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Ben Othman Soufiene
- PRINCE Laboratory Research, ISITcom, Hammam Sousse, University of Sousse, Sousse, Tunisia.
| |
Collapse
|
28
|
Gong H, Liu Z, Yuan C, Luo Y, Chen Y, Zhang J, Cui Y, Zeng B, Liu J, Li H, Deng Z. Identification of cuproptosis-related lncRNAs with the significance in prognosis and immunotherapy of oral squamous cell carcinoma. Comput Biol Med 2024; 171:108198. [PMID: 38417385 DOI: 10.1016/j.compbiomed.2024.108198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/22/2024] [Accepted: 02/18/2024] [Indexed: 03/01/2024]
Abstract
Cuproptosis, a recently characterized programmed cell death mechanism, has emerged as a potential contributor to tumorigenesis, metastasis, and immune modulation. Long non-coding RNAs (lncRNAs) have demonstrated diverse regulatory roles in cancer and hold promise as biomarkers. However, the involvement and prognostic significance of cuproptosis-related lncRNAs (CRLs) in oral squamous cell carcinoma (OSCC) remain poorly understood. Based on TCGA-OSCC data, we integrated single-sample gene set enrichment analysis (ssGSEA), the LASSO algorithm, and the tumor immune dysfunction and exclusion (TIDE) algorithm. We identified 11 CRLs through differential expression, Spearman correlation, and univariate Cox regression analyses. Two distinct CRL-related subtypes were unveiled, delineating divergent survival patterns, tumor microenvironments (TME), and mutation profiles. A robust CRL-based signature (including AC107027.3, AC008011.2, MYOSLID, AC005785.1, AC019080.5, AC020558.2, AC025265.1, FAM27E3, and LINC02367) prognosticated OSCC outcomes, immunotherapy responses, and anti-tumor strategies. Superior predictive power compared to other lncRNA models was demonstrated. Functional assessments confirmed the influence of FAM27E3, LINC02367, and MYOSLID knockdown on OSCC cell behaviors. Remarkably, the CRLs-based signature maintained stability across OSCC patient subgroups, underscoring its clinical potential for survival prediction. This study elucidates CRLs' roles in TME of OSCC and establishes a potential signature for precision therapy.
Collapse
Affiliation(s)
- Han Gong
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhaolong Liu
- Hunan Key Laboratory of Oral Health Research, Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Chunhui Yuan
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ying Luo
- Hunan Key Laboratory of Oral Health Research, Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Yuhan Chen
- Hunan Key Laboratory of Oral Health Research, Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Junyi Zhang
- Hunan Key Laboratory of Oral Health Research, Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Yiteng Cui
- Hunan Key Laboratory of Oral Health Research, Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Bin Zeng
- School of Stomatology, Changsha Medical University, Changsha, Hunan, China
| | - Jing Liu
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hui Li
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Zhiyuan Deng
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Oral Health Research, Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China; School of Stomatology, Changsha Medical University, Changsha, Hunan, China.
| |
Collapse
|
29
|
Khan F, Pandey P, Verma M, Upadhyay TK. Terpenoid-Mediated Targeting of STAT3 Signaling in Cancer: An Overview of Preclinical Studies. Biomolecules 2024; 14:200. [PMID: 38397437 PMCID: PMC10886526 DOI: 10.3390/biom14020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer has become one of the most multifaceted and widespread illnesses affecting human health, causing substantial mortality at an alarming rate. After cardiovascular problems, the condition has a high occurrence rate and ranks second in terms of mortality. The development of new drugs has been facilitated by increased research and a deeper understanding of the mechanisms behind the emergence and advancement of the disease. Numerous preclinical and clinical studies have repeatedly demonstrated the protective effects of natural terpenoids against a range of malignancies. Numerous potential bioactive terpenoids have been investigated in natural sources for their chemopreventive and chemoprotective properties. In practically all body cells, the signaling molecule referred to as signal transducer and activator of transcription 3 (STAT3) is widely expressed. Numerous studies have demonstrated that STAT3 regulates its downstream target genes, including Bcl-2, Bcl-xL, cyclin D1, c-Myc, and survivin, to promote the growth of cells, differentiation, cell cycle progression, angiogenesis, and immune suppression in addition to chemotherapy resistance. Researchers viewed STAT3 as a primary target for cancer therapy because of its crucial involvement in cancer formation. This therapy primarily focuses on directly and indirectly preventing the expression of STAT3 in tumor cells. By explicitly targeting STAT3 in both in vitro and in vivo settings, it has been possible to explain the protective effect of terpenoids against malignant cells. In this study, we provide a complete overview of STAT3 signal transduction processes, the involvement of STAT3 in carcinogenesis, and mechanisms related to STAT3 persistent activation. The article also thoroughly summarizes the inhibition of STAT3 signaling by certain terpenoid phytochemicals, which have demonstrated strong efficacy in several preclinical cancer models.
Collapse
Affiliation(s)
- Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India;
| | - Pratibha Pandey
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
- Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali 140413, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara 391760, India;
| |
Collapse
|
30
|
Chen X, Xu Z, Li T, Thakur A, Wen Y, Zhang K, Liu Y, Liang Q, Liu W, Qin JJ, Yan Y. Nanomaterial-encapsulated STING agonists for immune modulation in cancer therapy. Biomark Res 2024; 12:2. [PMID: 38185685 PMCID: PMC10773049 DOI: 10.1186/s40364-023-00551-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
The cGAS-STING signaling pathway has emerged as a critical mediator of innate immune responses, playing a crucial role in improving antitumor immunity through immune effector responses. Targeting the cGAS-STING pathway holds promise for overcoming immunosuppressive tumor microenvironments (TME) and promoting effective tumor elimination. However, systemic administration of current STING agonists faces challenges related to low bioavailability and potential adverse effects, thus limiting their clinical applicability. Recently, nanotechnology-based strategies have been developed to modulate TMEs for robust immunotherapeutic responses. The encapsulation and delivery of STING agonists within nanoparticles (STING-NPs) present an attractive avenue for antitumor immunotherapy. This review explores a range of nanoparticles designed to encapsulate STING agonists, highlighting their benefits, including favorable biocompatibility, improved tumor penetration, and efficient intracellular delivery of STING agonists. The review also summarizes the immunomodulatory impacts of STING-NPs on the TME, including enhanced secretion of pro-inflammatory cytokines and chemokines, dendritic cell activation, cytotoxic T cell priming, macrophage re-education, and vasculature normalization. Furthermore, the review offers insights into co-delivered nanoplatforms involving STING agonists alongside antitumor agents such as chemotherapeutic compounds, immune checkpoint inhibitors, antigen peptides, and other immune adjuvants. These platforms demonstrate remarkable versatility in inducing immunogenic responses within the TME, ultimately amplifying the potential for antitumor immunotherapy.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Tongfei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, 60637, Chicago, IL, USA
| | - Yu Wen
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Furong Laboratory, Central South University, 410008, Changsha, Hunan, China
| | - Kui Zhang
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, 60637, Chicago, IL, USA
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wangrui Liu
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
31
|
Ayaz M, Alam A, Zainab, Assad M, Javed A, Islam MS, Rafiq H, Ali M, Ahmad W, Khan A, Latif A, Al-Harrasi A, Ahmad M. Biooriented Synthesis of Ibuprofen-Clubbed Novel Bis-Schiff Base Derivatives as Potential Hits for Malignant Glioma: In Vitro Anticancer Activity and In Silico Approach. ACS OMEGA 2023; 8:49228-49243. [PMID: 38173864 PMCID: PMC10764114 DOI: 10.1021/acsomega.3c07216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/18/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
This research work is based on the synthesis of bis-Schiff base derivatives of the commercially available ibuprofen drug in outstanding yields through multistep reactions. Structures of the synthesized compounds were confirmed by the help of modern spectroscopic techniques including high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), 1H NMR, and 13C NMR. The synthesized compounds were evaluated for their anticancer activity using a normal human embryonic kidney HEK293 cell and U87-malignant glioma (ATCC-HTB-14) as a cancer cell line. All of the synthesized compounds among the series exhibited excellent to less antiproliferative activity having IC50 values ranging from 5.75 ± 0.43 to 150.45 ± 0.20 μM. Among them, compound 5e (IC50 = 5.75 ± 0.43 μM) was found as the most potent antiprolifarative agent, while 5f, 5b, 5a, 5n, 5r, 5s, 5g, 5q, 5i, and 5j exhibited good activity with IC50 values from 24.17 ± 0.46 to 43.71 ± 0.07 μM. These findings suggest that these cells (HEK293) are less cytotoxic to the activities of compounds and increase the cancer cell death in brain, while the lower cytotoxicity of the potent compounds in noncancerous cells suggests that these derivatives will provide promising treatment for patients suffering from brain cancer. The results of the docking study exposed a promising affinity of the active compounds toward casein kinase-2 enzyme, which shows green signal for cancer treatment.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department
of Chemistry, University of Malakand, Dir Lower, Khyber Pakhtunkhwa 18800, Pakistan
| | - Aftab Alam
- Department
of Chemistry, University of Malakand, Dir Lower, Khyber Pakhtunkhwa 18800, Pakistan
| | - Zainab
- College
of Chemistry and Materials Science, Hebei
Normal University, Shijiazhuang 050024, China
| | - Mohammad Assad
- Department
of Biochemistry, Abdul Wali Khan University
Mardan, Khyber
Pakhtunkhwa 23200, Pakistan
| | - Aneela Javed
- Molecular
Immunology Laboratory, Department of Healthcare Biotechnology Atta-Ur-Rahman
School of Applied Biosciences, National
University of Sciences and Technology, H-12 Campus, Islamabad 44000, Pakistan
| | - Mohammad Shahidul Islam
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Huma Rafiq
- Molecular
Immunology Laboratory, Department of Healthcare Biotechnology Atta-Ur-Rahman
School of Applied Biosciences, National
University of Sciences and Technology, H-12 Campus, Islamabad 44000, Pakistan
| | - Mumtaz Ali
- Department
of Chemistry, University of Malakand, Dir Lower, Khyber Pakhtunkhwa 18800, Pakistan
| | - Waqar Ahmad
- Department
of Chemistry, University of Malakand, Dir Lower, Khyber Pakhtunkhwa 18800, Pakistan
| | - Ajmal Khan
- Natural and
Medical Sciences Research Center, University
of Nizwa, P.O. Box 33, Birkat Al Mauz, PC 616 Nizwa, Sultanate of Oman
| | - Abdul Latif
- Department
of Chemistry, University of Malakand, Dir Lower, Khyber Pakhtunkhwa 18800, Pakistan
| | - Ahmed Al-Harrasi
- Natural and
Medical Sciences Research Center, University
of Nizwa, P.O. Box 33, Birkat Al Mauz, PC 616 Nizwa, Sultanate of Oman
| | - Manzoor Ahmad
- Department
of Chemistry, University of Malakand, Dir Lower, Khyber Pakhtunkhwa 18800, Pakistan
| |
Collapse
|
32
|
Zhang L, Pakmehr SA, Shahhosseini R, Hariri M, Fakhrioliaei A, Karkon Shayan F, Xiang W, Karkon Shayan S. Oncolytic viruses improve cancer immunotherapy by reprogramming solid tumor microenvironment. Med Oncol 2023; 41:8. [PMID: 38062315 DOI: 10.1007/s12032-023-02233-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/21/2023] [Indexed: 12/18/2023]
Abstract
Immunotherapies using immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T-cell therapy have achieved successful results against several types of human tumors, particularly hematological malignancies. However, their clinical results for the treatment of solid tumors remain poor and unsatisfactory. The immunosuppressive tumor microenvironment (TME) plays an important role by interfering with intratumoral T-cell infiltration, promoting effector T-cell exhaustion, upregulating inhibitory molecules, inducing hypoxia, and so on. Oncolytic viruses are an encouraging biocarrier that could be used in both natural and genetically engineered platforms to induce oncolysis in a targeted manner. Oncolytic virotherapy (OV) contributes to the reprogramming of the TME, thus synergizing the functional effects of current ICIs and CAR T-cell therapy to overcome resistant barriers in solid tumors. Here, we summarize the TME-related inhibitory factors affecting the therapeutic outcomes of ICIs and CAR T cells and discuss the potential of OV-based approaches to alleviate these barriers and improve future therapies for advanced solid tumors.
Collapse
Affiliation(s)
- Ling Zhang
- The Second People's Hospital of Lianyungang, Jiangsu, 222000, China
| | | | | | - Maryam Hariri
- Department of Pathobiology, Auburn University, Auburn, AL, 36832, USA
| | | | - Farid Karkon Shayan
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Wenxue Xiang
- The Second People's Hospital of Lianyungang, Jiangsu, 222000, China.
| | - Sepideh Karkon Shayan
- Student Research Committee, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
- Clinical Research Development Unit, Bohlool Hospital, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
33
|
Fattahi M, Abdollahi SA, Alibak AH, Hosseini S, Dang P. Usage of computational method for hemodynamic analysis of intracranial aneurysm rupture risk in different geometrical aspects. Sci Rep 2023; 13:20749. [PMID: 38007602 PMCID: PMC10676356 DOI: 10.1038/s41598-023-48246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/23/2023] [Indexed: 11/27/2023] Open
Abstract
The importance of the parent vessel geometrical feature on the risk of cerebral aneurysm rupture is unavoidable. This study presents inclusive details on the hemodynamics of Internal carotid artery (ICA) aneurysms with different parent vessel mean diameters. Different aspects of blood hemodynamics are compared to find a reasonable connection between parent vessel mean diameter and significant hemodynamic factors of wall shear stress (WSS), oscillatory shear index (OSI), and pressure distribution. To access hemodynamic data, computational fluid dynamics is used to model the blood stream inside the cerebral aneurysms. A hemodynamic comparison of the selected cerebral aneurysm shows that the minimum WSS is reduced by about 71% as the parent vessel's mean diameter is increased from 3.18 to 4.48 mm.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering and Technology, Duy Tan University, Da Nang, Vietnam
| | | | - Ali Hosin Alibak
- Petroleum Engineering Department, Faculty of Engineering, Soran University, Soran, Kurdistan Region, 44008, Iraq
| | - Saleh Hosseini
- Department of Chemical Engineering, University of Larestan, Larestan, Iran.
| | - Phuyen Dang
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering and Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
34
|
Fattahi M, Abdollahi SA, Alibak AH, Hosseini S, Dang P. Influence of parent vessel feature on the risk of internal carotid artery aneurysm rupture via computational method. Sci Rep 2023; 13:20544. [PMID: 37996605 PMCID: PMC10667276 DOI: 10.1038/s41598-023-47927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023] Open
Abstract
In this study, the role of sac section area and parent vessel diameter on the hemodynamic feature of the blood flow in selected internal carotid artery (ICA) aneurysms is comprehensively investigated. The changes of wall shear stress, pressure, and oscillatory shear index (OSI) of blood stream on the vessel for various aneurysms with coiling treatment. To attain hemodynamic factors, computational technique is used for the modeling of non-Newtonian transient blood flow inside the three different ICA aneurysms. Three different saccular models with various Parent vessel mean Diameter is investigated in this study. The achieved outcomes show that increasing the diameter of the parent vessel directly decreases the OSI value on the sac surface. In addition, the mean wall shear stress decreases with the increase of the parent vessel diameter.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering and Technology, Duy Tan University, Da Nang, Vietnam
| | | | - Ali Hosin Alibak
- Petroleum Engineering Department, Faculty of Engineering, Soran University, Soran, Kurdistan Region, 44008, Iraq
| | - Saleh Hosseini
- Department of Chemical Engineering, University of Larestan, Larestan, Iran.
| | - Phuyen Dang
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering and Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
35
|
Yang R, Yang L, Ghane G. Computational and statistical analyses of blood hemodynamic inside cerebral aneurysms for treatment evaluation of endovascular coiling. Sci Rep 2023; 13:20461. [PMID: 37993583 PMCID: PMC10665417 DOI: 10.1038/s41598-023-47867-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
Diagnosis of aneurysm and possibility of aneurysm rupture are crucial for avoiding brain hemorrhage. In this work, blood stream inside internal carotid arteries (ICAs) are simulated in diverse working conditions to disclose the importance of hemodynamic factors on the rupture of aneurysm. The main attention of this study is to investigate the role of hemodynamic on the aneurysm rupture. Statistical and computational methods are applied to investigate coiling porosity and blood hematocrit in 9 specific real ICA geometries. Response surface model (RSM) develops 25 runs to investigate all features of selected geometrical parameters and treatment factors. Computational fluid dynamic is used for the simulation of the blood stream in the selected aneurysms. The effects of sac section area and mean radius of parent vessel on blood hemodynamics are fully investigated. Hemodynamic factors are examined and compared at the peak systolic time instant, including pressure distributions, and velocity. Achieved results indicate that the increasing sac section area (from 36.6 to 75.4 mm2) results in 20% pressure reduction on the sac wall.
Collapse
Affiliation(s)
- Rong Yang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Lian Yang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Golnar Ghane
- Department of Medical Surgical Nursing, School of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Liu C, Dai S, Geng H, Jiang Z, Teng X, Liu K, Tuo Z, Peng L, Yang C, Bi L. Development and validation of a kidney renal clear cell carcinoma prognostic model relying on pyroptosis-related LncRNAs-A multidimensional comprehensive bioinformatics exploration. Eur J Med Res 2023; 28:341. [PMID: 37700389 PMCID: PMC10498568 DOI: 10.1186/s40001-023-01277-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is a malignant tumour that may develop in the kidney. RCC is one of the most common kinds of tumours of this sort, and its most common pathological subtype is kidney renal clear cell carcinoma (KIRC). However, the aetiology and pathogenesis of RCC still need to be clarified. Exploring the internal mechanism of RCC contributes to diagnosing and treating this disease. Pyroptosis is a critical process related to cell death. Recent research has shown that pyroptosis is a critical factor in the initiation and progression of tumour formation. Thus far, researchers have progressively uncovered evidence of the regulatory influence that long noncoding RNAs (lncRNAs) have on pyroptosis. METHODS In this work, a comprehensive bioinformatics approach was used to produce a predictive model according to pyroptosis-interrelated lncRNAs for the purpose of predicting the overall survival and molecular immune specialties of patients diagnosed with KIRC. This model was verified from multiple perspectives. RESULTS First, we discovered pyroptosis-associated lncRNAs in KIRC patients using the TCGA database and a Sankey diagram. Then, we developed and validated a KIRC patient risk model based on pyroptosis-related lncRNAs. We demonstrated the grouping power of PLnRM through PCA and used PLnRM to assess the tumour immune microenvironment and response to immunotherapy. Immunological and molecular traits of diverse PLnRM subgroups were evaluated, as were clinical KIRC patient characteristics and predictive risk models. On this basis, a predictive nomogram was developed and analyzed, and novel PLnRM candidate compounds were identified. Finally, we investigated possible medications used by KIRC patients. CONCLUSIONS The results demonstrate that the model generated has significant value for KIRC in clinical practice.
Collapse
Affiliation(s)
- Chang Liu
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shuxin Dai
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hao Geng
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhiwei Jiang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiangyu Teng
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kun Liu
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhouting Tuo
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Longfei Peng
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chao Yang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Liangkuan Bi
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China.
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
37
|
Hao Y, Ji Z, Zhou H, Wu D, Gu Z, Wang D, ten Dijke P. Lipid-based nanoparticles as drug delivery systems for cancer immunotherapy. MedComm (Beijing) 2023; 4:e339. [PMID: 37560754 PMCID: PMC10407046 DOI: 10.1002/mco2.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have shown remarkable success in cancer treatment. However, in cancer patients without sufficient antitumor immunity, numerous data indicate that blocking the negative signals elicited by immune checkpoints is ineffective. Drugs that stimulate immune activation-related pathways are emerging as another route for improving immunotherapy. In addition, the development of nanotechnology presents a promising platform for tissue and cell type-specific delivery and improved uptake of immunomodulatory agents, ultimately leading to enhanced cancer immunotherapy and reduced side effects. In this review, we summarize and discuss the latest developments in nanoparticles (NPs) for cancer immuno-oncology therapy with a focus on lipid-based NPs (lipid-NPs), including the characteristics and advantages of various types. Using the agonists targeting stimulation of the interferon genes (STING) transmembrane protein as an exemplar, we review the potential of various lipid-NPs to augment STING agonist therapy. Furthermore, we present recent findings and underlying mechanisms on how STING pathway activation fosters antitumor immunity and regulates the tumor microenvironment and provide a summary of the distinct STING agonists in preclinical studies and clinical trials. Ultimately, we conduct a critical assessment of the obstacles and future directions in the utilization of lipid-NPs to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Yang Hao
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Zhonghao Ji
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
| | - Hengzong Zhou
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Dongrun Wu
- Departure of Philosophy, Faculty of HumanitiesLeiden UniversityLeidenThe Netherlands
| | - Zili Gu
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Dongxu Wang
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|