1
|
Meher A, Palai A, Panda NR, Pati SP, Sahu D. Synthesis of zinc oxide/bismuth oxide nanocomposite photocatalyst for visible light-assisted degradation of synthetic dyes and antibacterial application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-024-35804-3. [PMID: 39775499 DOI: 10.1007/s11356-024-35804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Contamination of water resources by artificial coloring agents and the increasing incidence of bacterial illnesses are two significant environmental and public health issues that are getting worse day by day. Traditional treatment techniques frequently fail to address these problems adequately in a sustainable and environmental friendly way. In response, our study presents a novel photocatalyst that demonstrates superior photodegradation capability and antibacterial qualities in catering the above issues. Sonochemical synthesis route was adopted to synthesize the nanocomposite of zinc oxide/bismuth oxide (ZnO-Bi2O3) along with pure ZnO and Bi2O3. X-ray diffraction investigation was performed to analyze the crystallographic structure and confirmed the formation of the composite. High-resolution transmission electron microscopic analysis showed that the particle size of the composite to be in 20 to 55 nm range with the formation of heterojunction at ZnO/Bi2O3 interface. Fourier transformed infrared spectroscopic and micro Raman studies of the nanocomposite sample helped to detect the presence of stretching vibrations linked with Zn and Bi ions. X-ray photoelectron spectroscopy study revealed the chemical constitution and electronic states of the nanocomposite sample displaying the Zn 2p, Bi 4f, and O 1 s spectral lines. Investigation on the photocatalytic efficiency of the samples was done and the results showed an appreciable increase in photodegradation efficiency for the composite sample in degrading methylene blue (93.24%) and Congo red (92.47%) dyes in 180 min. The effect of pH, photocatalyst amount, and dye concentration on the efficiency of degradation was also been examined. Two primary causes of the enhanced performance of the composite are the generation of hydroxyl radicals (OH•) and the suppression of carrier recombination which is initiated by the synergistic combination of the two metal oxides in the nanocomposite. The nanocomposite sample was found to be stable and reusable for its effective use in environmental cleanup. By using the disk diffusion process, the antibacterial potential of the samples was analyzed and it was discovered that the nanocomposite showed an exceedingly superior antibacterial performance than the pristine samples in preventing the growth of two strains of bacteria, i.e., Escherichia coli and Staphylococcus aureus.
Collapse
Affiliation(s)
- Ankita Meher
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Amrita Palai
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
- Kujang College, Kujang, Jagatsinghpur, Odisha, India
| | - Nihar Ranjan Panda
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni, Khurda, Odisha, India
| | | | - Dojalisa Sahu
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India.
| |
Collapse
|
2
|
Hofseth LJ, Hebert JR, Murphy EA, Trauner E, Vikas A, Harris Q, Chumanevich AA. Allura Red AC is a xenobiotic. Is it also a carcinogen? Carcinogenesis 2024; 45:711-720. [PMID: 39129647 PMCID: PMC11464682 DOI: 10.1093/carcin/bgae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/13/2024] Open
Abstract
Merriam-Webster and Oxford define a xenobiotic as any substance foreign to living systems. Allura Red AC (a.k.a., E129; FD&C Red No. 40), a synthetic food dye extensively used in manufacturing ultra-processed foods and therefore highly prevalent in our food supply, falls under this category. The surge in synthetic food dye consumption during the 70s and 80s was followed by an epidemic of metabolic diseases and the emergence of early-onset colorectal cancer in the 1990s. This temporal association raises significant concerns, particularly given the widespread inclusion of synthetic food dyes in ultra-processed products, notably those marketed toward children. Given its interactions with key contributors to colorectal carcinogenesis such as inflammatory mediators, the microbiome, and DNA damage, there is growing interest in understanding Allura Red AC's potential impact on colon health as a putative carcinogen. This review discusses the history of Allura Red AC, current research on its effects on the colon and rectum, potential mechanisms underlying its impact on colon health, and provides future considerations. Indeed, although no governing agencies classify Allura Red AC as a carcinogen, its interaction with key guardians of carcinogenesis makes it suspect and worthy of further molecular investigation. The goal of this review is to inspire research into the impact of synthetic food dyes on colon health.
Collapse
Affiliation(s)
- Lorne J Hofseth
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, United States
| | - James R Hebert
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, 29208, United States
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, 29208, United States
| | - Elizabeth Angela Murphy
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, 29208, United States
| | - Erica Trauner
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, United States
| | - Athul Vikas
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, United States
| | - Quinn Harris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, United States
| | - Alexander A Chumanevich
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, United States
| |
Collapse
|
3
|
Şensoy E. Comparison of the effect of Sunset yellow on the stomach and small intestine of developmental period of mice. Heliyon 2024; 10:e31998. [PMID: 38882373 PMCID: PMC11176863 DOI: 10.1016/j.heliyon.2024.e31998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Sunset Yellow (SY), a synthetic food dye, is widely used in the food industry worldwide. The acceptable daily dosage for SY is 2.5 mg/kg/bw in humans. If SY is consumed in overdosage, it may cause histopathological effects in several organs. Studies in the literature about the effects of SY on growth and development in mammals are contradictory, and there are not enough of them. The investigation aims to determine SY's effects on the stomach and small intestine in different age groups of mice using histological methods. Control and treatment groups were created via mice aged 4, 8, and 10 weeks (n = 6). SY was administered by gavage at a level of 30 mg/kg/bw for 28 days to treatment groups. On the last day of the study, the mice were weighed and sacrificed by cervical dislocation. Stomach and small intestine tissues were removed from mice and transferred to 10 % formaldehyde. After passing through alcohol and xylene series and staining with Hematoxylin-Eosin, the tissues were evaluated under light and electron microscopy. The mean body weight (p = 0.01), mean stomach weight (p = 0.03), and mean small intestine weight were increased (p = 0.02) in treatment groups. In these groups, ruptures, fractures, and hemorrhage were detected in the small intestine tissue. In the stomach tissue, necrotic areas and hemorrhage were detected among the epithelial cells. The degenerations were more advanced in the weaning group. SY may be more harmful during weaning and puberty, but additional long-term studies are needed on the subject.
Collapse
Affiliation(s)
- Erhan Şensoy
- Karamanoglu Mehmetbey University Faculty of Health Science, Karaman, Turkey
| |
Collapse
|
4
|
Yang Y, Kong L, Ding Y, Xia L, Song P. Surface-enhanced Raman scattering spectroscopy monitoring and degradation of organic pollutants using a novel nanowire. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121045. [PMID: 38703653 DOI: 10.1016/j.jenvman.2024.121045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
A multifunctional Ag/AlOOH nanowires (ANW) composite substrate was constructed, which not only accomplishes highly sensitive detection of organic dye molecules, but also has excellent performance in the degradation of pollutants. The ANW in the Ag/ANW substrate possesses a high aspect ratio, which extends the distribution area of Ag and enables a large number of hot spots on the active substrate. Additionally, due to the abundant OH groups on the ANW, there is an increased number of anchor sites for adsorbed metal ions in the Ag/ANW compound, thus contributing to the enhancement and degradation of molecules. Moreover, the constructed multifunctional Ag/ANW nanocomplexes also show great promise for practical applications, providing a reference for the detection and degradation of contaminants.
Collapse
Affiliation(s)
- Yanqiu Yang
- Department of Physics, Liaoning University, Shenyang, 110036, China
| | - Lingru Kong
- Department of Physics, Liaoning University, Shenyang, 110036, China
| | - Yong Ding
- Department of Physics, Liaoning University, Shenyang, 110036, China
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang, 110036, China; Yingkou Institute of Technology, Yingkou, 115014, China
| | - Peng Song
- Department of Physics, Liaoning University, Shenyang, 110036, China.
| |
Collapse
|
5
|
Bhatt D, Vyas K, Singh S, John PJ, Soni IP. Sunset Yellow induced biochemical and histopathological alterations in rat brain sub-regions. Acta Histochem 2024; 126:152155. [PMID: 38489857 DOI: 10.1016/j.acthis.2024.152155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 01/28/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024]
Abstract
Sunset Yellow, a synthetic orange azo food dye was examined in this study for its impact on the Wistar rat brain sub-regions. The dye was administered orally to weanling rats at the Acceptable Daily Intake level (4 mg/kg/bw) for 40 days, and brain sub-regions viz., frontal cortex, cerebellum and hippocampus were examined for biochemical and histopathological changes. The results showed a significant decrease in tissue protein levels, superoxide dismutase, and catalase activity, as well as a significant increase in lipid peroxide levels in all brain sub-regions. Glutathione-S-transferase and Glutathione Reductase activities decreased, while Glutathione peroxidase activity increased. The biogenic amine levels and Acetylcholinesterase activity were also altered, with the frontal cortex and hippocampus being the most affected. Additionally, the dye caused histopathological damage in all brain sub-regions examined. This study indicates that the ADI level of Sunset Yellow may adversely affect brain tissue by causing oxidative damage.
Collapse
Affiliation(s)
- Diksha Bhatt
- Environmental Toxicology Laboratory, Department of Zoology, University of Rajasthan, Jaipur 302004, India.
| | - Krati Vyas
- Environmental Toxicology Laboratory, Department of Zoology, University of Rajasthan, Jaipur 302004, India
| | - Shakuntala Singh
- Environmental Toxicology Laboratory, Department of Zoology, University of Rajasthan, Jaipur 302004, India
| | - P J John
- Environmental Toxicology Laboratory, Department of Zoology, University of Rajasthan, Jaipur 302004, India
| | - I P Soni
- Environmental Toxicology Laboratory, Department of Zoology, University of Rajasthan, Jaipur 302004, India
| |
Collapse
|
6
|
Kaur I, Batra V, Bogireddy NK, Baveja J, Kumar Y, Agarwal V. Chemical- and green-precursor-derived carbon dots for photocatalytic degradation of dyes. iScience 2024; 27:108920. [PMID: 38352227 PMCID: PMC10863327 DOI: 10.1016/j.isci.2024.108920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Rapid industrialization and untreated industrial effluents loaded with toxic and carcinogenic contaminants, especially dyes that discharge into environmental waters, have led to a rise in water pollution, with a substantial adverse impact on marine life and humankind. Photocatalytic techniques are one of the most successful methods that help in degradation and/or removal of such contaminants. In recent years, semiconductor quantum dots are being substituted by carbon dots (CDs) as photocatalysts, due to the ease of formation, cost-effectiveness, possible sustainability and scalability, much lower toxicity, and above all its high capacity to harvest sunlight (UV, visible, and near infrared) through electron transfer that enhances the lifetime of the photogenerated charge carriers. A better understanding between the properties of the CDs and their role in photocatalytic degradation of dyes and contaminants is required for the formation of controllable structures and adjustable outcomes. The focus of this review is on CDs and its composites as photocatalysts obtained from different sustainable green as well as chemical precursors. Apart from the synthesis, characterization, and properties of the CDs, the study also highlights the effect of different parameters on the photocatalytic properties of CDs and their composites for catalytic dye degradation mechanisms in detail. Besides the present research development in the field, potential challenges and future perspectives are also presented.
Collapse
Affiliation(s)
- Inderbir Kaur
- Department of Electronic Science, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Vandana Batra
- Department of Physics, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | | | - Jasmina Baveja
- Invited Researcher at Center for Research in Engineering and Applied Sciences (CIICAp-IICBA), Autonomous State University of Morelos (UAEM), Av. Univ. 1001, Col. Chamilpa, Cuernavaca, Morelos 62209, Mexico
| | - Y. Kumar
- Departamento de Fisico Matematica, UANL, Monterrey, Mexico
| | - V. Agarwal
- Center for Research in Engineering and Applied Sciences (CIICAp-IICBA), Autonomous State University of Morelos (UAEM), Av. Univ. 1001, Col. Chamilpa, Cuernavaca, Morelos 62209, Mexico
| |
Collapse
|
7
|
Zhang Q, Chumanevich AA, Nguyen I, Chumanevich AA, Sartawi N, Hogan J, Khazan M, Harris Q, Massey B, Chatzistamou I, Buckhaults PJ, Banister CE, Wirth M, Hebert JR, Murphy EA, Hofseth LJ. The synthetic food dye, Red 40, causes DNA damage, causes colonic inflammation, and impacts the microbiome in mice. Toxicol Rep 2023; 11:221-232. [PMID: 37719200 PMCID: PMC10502305 DOI: 10.1016/j.toxrep.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
The incidence of colorectal cancer (CRC) among young people has been on the rise for the past four decades and its underlying causes are only just starting to be uncovered. Recent studies suggest that consuming ultra-processed foods and pro-inflammatory diets may be contributing factors. The increase in the use of synthetic food colors in such foods over the past 40 years, including the common synthetic food dye Allura Red AC (Red 40), coincides with the rise of early-onset colorectal cancer (EOCRC). As these ultra-processed foods are particularly appealing to children, there is a growing concern about the impact of synthetic food dyes on the development of CRC. Our study aimed to investigate the effects of Red 40 on DNA damage, the microbiome, and colonic inflammation. Despite a lack of prior research, high levels of human exposure to pro-inflammatory foods containing Red 40 highlight the urgency of exploring this issue. Our results show that Red 40 damages DNA both in vitro and in vivo and that consumption of Red 40 in the presence of a high-fat diet for 10 months leads to dysbiosis and low-grade colonic inflammation in mice. This evidence supports the hypothesis that Red 40 is a dangerous compound that dysregulates key players involved in the development of EOCRC.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Alexander A. Chumanevich
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Ivy Nguyen
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Anastasiya A. Chumanevich
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Nora Sartawi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Jake Hogan
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Minou Khazan
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Quinn Harris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Bryson Massey
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Phillip J. Buckhaults
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Carolyn E. Banister
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Michael Wirth
- Department of Biobehavioral Health & Nursing Science, College of Nursing, University of South Carolina, Columbia, SC 29208, USA
| | - James R. Hebert
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - E. Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Lorne J. Hofseth
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
8
|
Kumar A, Chinnathambi S, Kumar M, Pandian GN. Food Intake and Colorectal Cancer. Nutr Cancer 2023; 75:1710-1742. [PMID: 37572059 DOI: 10.1080/01635581.2023.2242103] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/14/2023]
Abstract
Colorectal cancer (CRC) accounts for considerable mortalities worldwide. Several modifiable risk factors, including a high intake of certain foods and beverages can cause CRC. This review summarized the latest findings on the intake of various foods, nutrients, ingredients, and beverages on CRC development, with the objective of classifying them as a risk or protective factor. High-risk food items include red meat, processed meat, eggs, high alcohol consumption, sugar-sweetened beverages, and chocolate candy. Food items that are protective include milk, cheese and other dairy products, fruits, vegetables (particularly cruciferous), whole grains, legumes (particularly soy beans), fish, tea (particularly green tea), coffee (particularly among Asians), chocolate, and moderate alcohol consumption (particularly wine). High-risk nutrients/ingredients include dietary fat from animal sources and industrial trans-fatty acids (semisolid/solid hydrogenated oils), synthetic food coloring, monosodium glutamate, titanium dioxide, and high-fructose corn sirup. Nutrients/ingredients that are protective include dietary fiber (particularly from cereals), fatty acids (medium-chain and odd-chain saturated fatty acids and highly unsaturated fatty acids, including omega-3 polyunsaturated fatty acids), calcium, polyphenols, curcumin, selenium, zinc, magnesium, and vitamins A, C, D, E, and B (particularly B6, B9, and B2). A combination of micronutrients and multi-vitamins also appears to be beneficial in reducing recurrent adenoma incidence.
Collapse
Affiliation(s)
- Akshaya Kumar
- Institute for Integrated Cell-Material Sciences (WPI-ICeMS), Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Shanmugavel Chinnathambi
- Institute for Integrated Cell-Material Sciences (WPI-ICeMS), Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | | | - Ganesh N Pandian
- Institute for Integrated Cell-Material Sciences (WPI-ICeMS), Institute for Advanced Study, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Hydrothermal synthesis of N,S-doped carbon quantum dots as a dual mode sensor for azo dye tartrazine and fluorescent ink applications. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Sultana S, Rahman MM, Aovi FI, Jahan FI, Hossain MS, Brishti SA, Yamin M, Ahmed M, Rauf A, Sharma R. Food Color Additives in Hazardous Consequences of Human Health: An Overview. Curr Top Med Chem 2023; 23:1380-1393. [PMID: 36650651 DOI: 10.2174/1568026623666230117122433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/03/2022] [Accepted: 11/12/2022] [Indexed: 01/19/2023]
Abstract
Food color additives are used to make food more appetizing. The United States Food and Drug Administration (FDA) permitted nine artificial colorings in foods, drugs, and cosmetics, whereas the European Union (EU) approved five artificial colors (E-104, 122, 124, 131, and 142) for food. However, these synthetic coloring materials raise various health hazards. The present review aimed to summarize the toxic effects of these coloring food additives on the brain, liver, kidney, lungs, urinary bladder, and thyroid gland. In this respect, we aimed to highlight the scientific evidence and the crucial need to assess potential health hazards of all colors used in food on human and nonhuman biota for better scrutiny. Blue 1 causes kidney tumor in mice, and there is evidence of death due to ingestion through a feeding tube. Blue 2 and Citrus Red 2 cause brain and urinary bladder tumors, respectively, whereas other coloring additives may cause different types of cancers and numerous adverse health effects. In light of this, this review focuses on the different possible adverse health effects caused by these food coloring additives, and possible ways to mitigate or avoid the damage they may cause. We hope that the data collected from in vitro or in vivo studies and from clinical investigations related to the possible health hazards of food color additives will be helpful to both researchers and the food industry in the future.
Collapse
Affiliation(s)
- Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Farjana Islam Aovi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Farhana Israt Jahan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Sakhawat Hossain
- Pharmaceutical Sciences Research Division, BCSIR Dhaka Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | | | - Md Yamin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
11
|
Wang J, Cheng J. Spectroscopic and molecular docking studies of the interactions of sunset yellow and allura red with human serum albumin. J Food Saf 2022. [DOI: 10.1111/jfs.13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jun Wang
- College of Life Science and Technology Hubei Engineering University Xiaogan China
| | - Jing‐jing Cheng
- College of Life Science and Technology Hubei Engineering University Xiaogan China
| |
Collapse
|
12
|
Malik S, Kaur K, Prasad S, Jha NK, Kumar V. A perspective review on medicinal plant resources for their antimutagenic potentials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62014-62029. [PMID: 34431051 DOI: 10.1007/s11356-021-16057-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Mutagens present in the environment manifest toxic effects and are considered as serious threat for human health and healthcare. Recent reports reveal that medicinal plant resources are being explored for identifying potent antimutagenic as well as cancer preventing agents. There is mounting evidence that cancer and other mutation-related diseases can be prevented with the use of medicinal pant resources including crude extracts, active fractions, phytochemicals, and pure phytomolecules. These medicinal plant resources possessing antimutagenic potentials have been shown to target molecular mechanisms underlying the mutagenic impacts. Technological advents and high-throughput screening/activity methods have revolutionized this field, though several potent plants and their active principles have been reported as effective antimutagens. The translational success rate needs to be improved, but the trends are encouraging. In this review, we present the current understandings and updates on various mutagens in the environment, toxicities related/attributed to them, the resultant mutations (and cancer), and how medicinal plants come to the rescue. A perspective review has been presented on whether and how medicinal plant resources can be an effective approach for addressing mutagens in the environment. An account of medicinal plant resources used as antimutagenic agents has been given along with the underlying mechanism of action and their therapeutic potential in various models of cancer. Recent success stories, current challenges, and future prospects are discussed.
Collapse
Affiliation(s)
- Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
| | - Kawaljeet Kaur
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Shilpa Prasad
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India.
- Department of Environmental Science, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
13
|
Ultrasensitive determination of allura red in food samples based on green-emissive carbon nanodots. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
14
|
Microbial Degradation of Azo Dyes: Approaches and Prospects for a Hazard-Free Conversion by Microorganisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084740. [PMID: 35457607 PMCID: PMC9026373 DOI: 10.3390/ijerph19084740] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Azo dyes have become a staple in various industries, as colors play an important role in consumer choices. However, these dyes pose various health and environmental risks. Although different wastewater treatments are available, the search for more eco-friendly options persists. Bioremediation utilizing microorganisms has been of great interest to researchers and industries, as the transition toward greener solutions has become more in demand through the years. This review tackles the health and environmental repercussions of azo dyes and its metabolites, available biological approaches to eliminate such dyes from the environment with a focus on the use of different microorganisms, enzymes that are involved in the degradation of azo dyes, and recent trends that could be applied for the treatment of azo dyes.
Collapse
|
15
|
MORPHOLOGICAL AND METRIC CHANGES OF THE GLANDULAR APPARATUS OF THE RAT STOMACH FUNDUS UNDER THE EFFECT OF A COMPLEX OF FOOD ADDITIVES. WORLD OF MEDICINE AND BIOLOGY 2022. [DOI: 10.26724/2079-8334-2022-1-79-189-194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Gunjal DB, Walekar LS, Pawar SP, Anbhule PV, Mali MG, Dhulap VP, Sohn D, Mahajan PG, Lee KH, Shejwal RV, Kolekar GB. Sawmill waste derived carbon dots as a fluorescent probe for synthetic dyes in soft drinks. Sci Rep 2021; 11:17996. [PMID: 34504276 PMCID: PMC8429643 DOI: 10.1038/s41598-021-97552-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/07/2021] [Indexed: 12/03/2022] Open
Abstract
Herein, for the first time the carbon dots (CDs) were synthesized by reflux method from sawmill waste material. We also represent a novel strategy based on fluorescent CDs for determination of ponceau 4R and allura red dyes in soft drinks. Interestingly, both the dyes were sensitive and showed effective fluorescence quenching of the CDs owing to the interaction between them. The analytical applicability of CDs were evaluated for detection of both the dyes with a good linear relationship between the concentration range of 0.0 to 3.0 µg mL-1 and having detection limit 0.45 and 0.47 µg mL-1 for allura red and ponceau 4R dyes respectively. Meanwhile, the potential application of this novel fluorescent probe for dyes determination in real samples was validated in different soft drink samples with good accuracy and precision. Thus, these findings provides new insights for the potential risk assessment of both the dyes. Moreover, CDs acted as an excellent fluorescent material in cellular imaging owing to their cellular uptake and localization.
Collapse
Affiliation(s)
- Datta B Gunjal
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, 416004, India
- Department of Chemistry, Lal Bahadur Shastri College of Arts, Science and Commerce, Satara, Maharashtra, 415002, India
| | - Laxman S Walekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, 416004, India
| | - Samadhan P Pawar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, 416004, India
| | - Prashant V Anbhule
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, 416004, India
| | - Mukund G Mali
- School of Chemical Sciences, Punyashlok Ahilyadevi Holkar, Solapur University, Solapur, Maharashtra, 413255, India
| | - Vinayak P Dhulap
- School of Earth Sciences, Punyashlok Ahilyadevi Holkar, Solapur University, Solapur, Maharashtra, 413255, India
| | - Daewon Sohn
- Department of Chemistry and the Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Prasad G Mahajan
- Vidya Prathisthan's Arts, Commerce and Science College, Vidyanagari, Baramati, Maharashtra, 413133, India
| | - Ki Hwan Lee
- Department of Chemistry, Kongju National University, Gongju, Chungnam, 32588, Republic of Korea
| | - Rajendra V Shejwal
- Department of Chemistry, Lal Bahadur Shastri College of Arts, Science and Commerce, Satara, Maharashtra, 415002, India.
| | - Govind B Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, 416004, India.
| |
Collapse
|
17
|
Mota IGC, Neves RAMD, Nascimento SSDC, Maciel BLL, Morais AHDA, Passos TS. Artificial Dyes: Health Risks and the Need for Revision of International Regulations. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | | | - Sara Sayonara Da Cruz Nascimento
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande Do Norte, Natal, Brazil
- Biotechnology Postgraduate Program – RENORBIO, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Bruna Leal Lima Maciel
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande Do Norte, Natal, Brazil
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande Do Norte, Natal, Brazil
| | - Ana Heloneida De Araújo Morais
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande Do Norte, Natal, Brazil
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande Do Norte, Natal, Brazil
- Biochemistry and Molecular Biology Postgraduate Program, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Thaís Souza Passos
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande Do Norte, Natal, Brazil
| |
Collapse
|
18
|
Huang Z, Lai Z, Zhu D, Wang H, Zhao C, Ruan G, Du F. Electrospun graphene oxide/MIL-101(Fe)/poly(acrylonitrile-co-maleic acid) nanofiber: A high-efficient and reusable integrated photocatalytic adsorbents for removal of dye pollutant from water samples. J Colloid Interface Sci 2021; 597:196-205. [PMID: 33872876 DOI: 10.1016/j.jcis.2021.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/27/2021] [Accepted: 04/05/2021] [Indexed: 12/20/2022]
Abstract
The electrospun graphene oxide/MIL-101(Fe)/poly(acrylonitrile-co-maleic acid) nanofibers (E-spun GO/MIL-101(Fe)/PANCMA NFs) were fabricated by a facile electrospinning method and used as integrated photocatalytic adsorbents (IPAs) to remove dye pollutant from water samples. Compared with E-spun GO/PANCMA and E-spun MIL-101(Fe)/PANCMA NFs, the fabricated E-spun GO/MIL-101(Fe)/PANCMA NFs exhibited higher adsorption ability and excellent photocatalytic activity towards a model pollutant Rhodamine B (RhB). Under the optimized conditions, the as-prepared IPAs achieved almost complete adsorption of RhB within 15 min with the maximum adsorption capacity of 10.46 mg/g. Under visible-light irradiation, 93.7% of RhB in 20 mL water sample was degraded within 20 min, and the degradation kinetics of RhB fitted well with the first-order kinetic model. In addition, LC-MS analysis of the RhB degradation products confirmed the degradation pathways, and the generated •OH radicals played important roles in the degradation process. Importantly, the E-spun GO/MIL-101(Fe)/PANCMA NFs exhibited good reusability and could be reused for consecutive 20 cycles, which make them promising candidate materials in the field of industrial applications and environmental remediation.
Collapse
Affiliation(s)
- Zhujun Huang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Zhan Lai
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Dongying Zhu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Haiyan Wang
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Chenxi Zhao
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Guihua Ruan
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Fuyou Du
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China.
| |
Collapse
|
19
|
Suryani CL, Wahyuningsih TD, Supriyadi S, Santoso U. THE POTENTIAL OF MATURE PANDAN LEAVES AS A SOURCE OF CHLOROPHYLL FOR NATURAL FOOD COLORANTS. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2020. [DOI: 10.6066/jtip.2020.31.2.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Plant leaves are the primary source of natural colorants for food, mainly due to their chlorophyll content. However, the plant types and the degree of leaf maturity determine the quality and quantity of the chlorophyll. This study aimed to determine the best maturity level of pandan (Pandanus amaryllifolius Roxb.) leaves that serves as potential source of chlorophyll for natural food colorants. Eighty three pandan plants obtained from six different farming locations in Bantul Regency, Yogyakarta, Indonesia were used as samples. The leaves were grouped into four levels of maturity using descriptive statistics based on their morphology, anatomy, color, and chlorophyll contents. The results showed that the average number of leaves ranged from 20-24 leaves per plant (at 95% confidence interval), and 96.4% of the plant had a maximum of 24 leaves. The leaf maturity was grouped into (1) young, (2) medium, (3) mature, and (4) over mature, corresponding to leaf number 1-6, 7-12, 13-18, and 19-24, respectively. The higher the leaf maturity, the higher the chlorophyll content. However, the over mature leaves were only slightly different from the mature ones. In addition, pandan leaves have specific flavor and contain carotenoid, phenolic, and flavonoid substances. Anatomically, the mesophyll’s size was greatest in the mature leaves, while the size of chloroplast was not significantly different from medium to over mature leaves. Based on the chlorophyll content and mesophyll size, it was concluded that mature pandan leaves were the best source of chlorophyll, containing chlorophyll of 623.08 mg/100 g dry weight (DW).
Collapse
|
20
|
Hofseth LJ, Hebert JR, Chanda A, Chen H, Love BL, Pena MM, Murphy EA, Sajish M, Sheth A, Buckhaults PJ, Berger FG. Early-onset colorectal cancer: initial clues and current views. Nat Rev Gastroenterol Hepatol 2020; 17:352-364. [PMID: 32086499 PMCID: PMC10711686 DOI: 10.1038/s41575-019-0253-4] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Over the past several decades, the incidence of early-onset colorectal cancer (EOCRC; in patients <50 years old) has increased at an alarming rate. Although robust and scientifically rigorous epidemiological studies have sifted out environmental elements linked to EOCRC, our knowledge of the causes and mechanisms of this disease is far from complete. Here, we highlight potential risk factors and putative mechanisms that drive EOCRC and suggest likely areas for fruitful research. In addition, we identify inconsistencies in the evidence implicating a strong effect of increased adiposity and suggest that certain behaviours (such as diet and stress) might place nonobese and otherwise healthy people at risk of this disease. Key risk factors are reviewed, including the global westernization of diets (usually involving a high intake of red and processed meats, high-fructose corn syrup and unhealthy cooking methods), stress, antibiotics, synthetic food dyes, monosodium glutamate, titanium dioxide, and physical inactivity and/or sedentary behaviour. The gut microbiota is probably at the crossroads of these risk factors and EOCRC. The time course of the disease and the fact that relevant exposures probably occur in childhood raise important methodological issues that are also discussed.
Collapse
Affiliation(s)
- Lorne J Hofseth
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA.
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA.
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
| | - James R Hebert
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology & Biostatistics, University of South Carolina, Columbia, SC, USA
| | - Anindya Chanda
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Hexin Chen
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Biology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - Bryan L Love
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Maria M Pena
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Biology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - E Angela Murphy
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Mathew Sajish
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Amit Sheth
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Computer Science and Engineering, College of Engineering, University of South Carolina, Columbia, SC, USA
| | - Phillip J Buckhaults
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Franklin G Berger
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Biology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
21
|
Motta CM, Simoniello P, Arena C, Capriello T, Panzuto R, Vitale E, Agnisola C, Tizzano M, Avallone B, Ferrandino I. Effects of four food dyes on development of three model species, Cucumis sativus, Artemia salina and Danio rerio: Assessment of potential risk for the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:1126-1135. [PMID: 31434190 DOI: 10.1016/j.envpol.2019.06.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/07/2019] [Accepted: 06/05/2019] [Indexed: 06/10/2023]
Abstract
Food dyes, or color additives, are chemicals added to industrial food products and in domestic cooking to improve the perceived flavor and attractiveness. Of natural and synthetic origin, their safety has been long discussed, and concern for human safety is now clearly manifested by warnings added on products labels. Limited attention, however, has been dedicated to the effects of these compounds on aquatic flora and fauna. For this reason, the toxicity of four different commercially available food dyes (cochineal red E120, Ponceau red E124, tartrazine yellow E102 and blue Patent E131) was assessed on three different model organisms, namely Cucumis sativus, Artemia salina and Danio rerio that occupy diverse positions in the trophic pyramid. The evidence collected indicates that food dyes may target several organs and functions, depending on the species. C. sativus rate of germination was increased by E102, while root/shoot ratio was ∼20% reduced by E102, E120 and E124, seed total chlorophylls and carotenoids were 15-20% increased by E120 and 131, and total antioxidant activity was ∼25% reduced by all dyes. Mortality and low mobility of A. salina nauplii were increased by up to 50% in presence of E124, E102 and E131, while the nauplii phototactic response was significantly altered by E102, E120 and E124. Two to four-fold increases in the hatching percentages at 48 h were induced by E124, E102 and E131 on D. rerio, associated with the occurrence of 20% of embryos showing developmental defects. These results demonstrated that the food dyes examined are far from being safe for the aquatic organisms as well as land organisms exposed during watering with contaminated water. The overall information obtained gives a realistic snapshot of the potential pollution risk exerted by food dyes and of the different organism' ability to overcome the stress induced by contamination.
Collapse
Affiliation(s)
| | - Palma Simoniello
- Department of Sciences and Technologies, University of Naples Parthenope, Naples, Italy.
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Teresa Capriello
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Raffaele Panzuto
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | | | - Claudio Agnisola
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Monica Tizzano
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Ida Ferrandino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
22
|
Sun SC, Hsieh BC, Chuang MC. Electropolymerised-hemin-catalysed reduction and analysis of tartrazine and sunset yellow. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Diana R, Panunzi B, Shikler R, Nabha S, Caruso U. A symmetrical azo-based fluorophore and the derived salen multipurpose framework for emissive layers. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Bai L, Wang S, Wang Z, Hong E, Wang Y, Xia C, Wang B. Kinetics and mechanism of photocatalytic degradation of methyl orange in water by mesoporous Nd-TiO 2-SBA-15 nanocatalyst. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:516-525. [PMID: 30831348 DOI: 10.1016/j.envpol.2019.02.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/07/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
High-efficiency nanophotocatalysts with large specific surface areas have a broad range of application prospects in the catalytic oxidation treatment of organic pollutants in wastewater. A chemical method was used to synthesize a TiO2 nanophotocatalyst with a mesoporous structure upon which a rare earth metal (Nd) was deposited, namely Nd-TiO2-SBA-15 (NTS). The prepared NTS was characterized using X-ray diffractometry, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectrometry. The photocatalytic mechanism was explored using scavenger experiments with photoinduced carriers combined with total organic carbon and UV-Vis measurements. At the same time, the kinetic properties of the NTS photocatalytic degradation of methyl orange (MO) were evaluated. The results showed that the deposition of TiO2 nanoparticles on the surface of the SBA-15 molecular sieve did not change the mesoporous structure, and Nd was uniformly distributed on the surface of the nanophotocatalyst. The photogenerated holes of the NTS played an important role in the photocatalysis process. In addition, the synthesized NTS had good adaptability in the range of pH 2-10. At pH 4, the reaction rate constant (k) of the MO photocatalytic degradation by NTS was 0.011825 mg·(L·min)-1, and the adsorption equilibrium constant (K) was 0.051359 L mg-1. In addition, the photocatalytic degradation rate of MO by NTS remained above 70%, even when the NTS was recycled four times. The NTS showed a good performance after recycling. This work provides a good foundation for the large-scale application of NTS.
Collapse
Affiliation(s)
- Liming Bai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang Province, 161000, China
| | - Shuo Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang Province, 161000, China
| | - Zhiyu Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Enlv Hong
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yu Wang
- Pharmacy Department, Qiqihar Medical University, Qiqihar, Heilongjiang Province, 161000, China
| | - Chunhui Xia
- Pharmacy Department, Qiqihar Medical University, Qiqihar, Heilongjiang Province, 161000, China
| | - Baiqi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, P. R. China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
25
|
Kanjwal MA, Lo KKS, Leung WWF. Graphene composite nanofibers as a high-performance photocatalyst for environmental remediation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.01.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
A Schiff-Base Modified Pt Nano-Catalyst for Highly Efficient Synthesis of Aromatic Azo Compounds. Catalysts 2019. [DOI: 10.3390/catal9040339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A Schiff-base modified Pt nano-catalyst was prepared via one-pot aldimine condensation and then impregnation-reduction of a platinum precursor, in which the Pt nanoparticles (NPs) with an average size of 2.3 nm were highly dispersed on the support. The as-prepared catalyst exhibited excellent activity and selectivity in the hydrogenation coupling synthesis of aromatic azo compounds from nitroaromatic under mild conditions. The strong metal–support interaction derived from the coordination of nitrogen sites on Schiff-base to Pt NPs enables stabilizing the Pt NPs and achieving the catalytic recyclability. The scheme can also tolerate various functional groups and offer an efficient method for the green synthesis of aromatic azo compounds.
Collapse
|
27
|
Al-Shabib NA, Khan JM, Malik A, Sen P, Ramireddy S, Chinnappan S, Alamery SF, Husain FM, Ahmad A, Choudhry H, Khan MI, Shahzad SA. Allura red rapidly induces amyloid-like fibril formation in hen egg white lysozyme at physiological pH. Int J Biol Macromol 2019; 127:297-305. [DOI: 10.1016/j.ijbiomac.2019.01.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/30/2022]
|
28
|
Elewa YHA, Mohamed AAR, Galal AAA, El-Naseery NI, Ichii O, Kon Y. Food Yellow4 reprotoxicity in relation to localization of DMC1 and apoptosis in rat testes: Roles of royal jelly and cod liver oil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:696-706. [PMID: 30500739 DOI: 10.1016/j.ecoenv.2018.11.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Food Yellow 4 (FY4) is a lemon-yellow-colored synthetic organic azo dye, which is used widely for imparting pleasant and attractive appearance to foods and cosmetics. The present study aimed at evaluating the possible mechanism underlying the FY4-induced reprotoxicity in rats, and the potential supportive role of royal jelly (RJ) or cod liver oil (CLO), which is a natural remedy with several pharmacological benefits, against induced toxicity. Forty-eight male rats were divided into different groups-the control group, the CLO group (0.4 mL/kg), the RJ group (300 mg/kg), the FY4 group (500 mg/kg b.w.), and the co-treated groups (FY4 + CLO or FY4 + RJ). Semen analysis, serum hormones, and enzyme activities were estimated. Immunohistochemical staining was performed using anti-PCNA, anti-Sox 9, anti-STRA8, anti-DMC1, and anti-ssDNA antibody. The FY4 group exhibited a significant decrease in sperm concentration and motility percentage (%) and a substantial reduction in the TES and LH levels. Testicular LDH, ACP, and SDH were observed to be inhibited. Furthermore, co-localization of DMC1 and ssDNA, which reflected apoptotic induction in the leptotene and zygotene spermatocytes, respectively, was observed to have markedly elevated in the FY4 treated rats, with fewer PCNA-positive and SOX9-positive cells and higher ssDNA-positive cells in the seminiferous epithelium in comparison to the control groups. Interestingly, co-treatment with CLO or RJ exhibited healthy sperms and restored their features, activated the enzyme production, and raised the levels of sexual hormones. In addition, both RJ and CLO restored the features of the testicular tissue as observed under a light microscope, and limited the apoptosis as observed through antibody staining. Collectively, the results of the present study revealed that the co-administration of RJ or CLO with FY4 improved the biochemical, hormonal, and structural aspects of the testicular tissue in rats. Therefore, CLO and RJ may be considered promising agents that would be able to improve the testicular structure and function in the FY4-exposed individuals.
Collapse
Affiliation(s)
- Yaser H A Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita-Ku, Sapporo, Japan
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
| | - Azza A A Galal
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Nesma I El-Naseery
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita-Ku, Sapporo, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita-Ku, Sapporo, Japan
| |
Collapse
|
29
|
Martynov VO, Brygadyrenko VV. The influence of the synthetic food colourings tartrazine, allura red and indigo carmine on the body weight of Tenebrio molitor (Coleoptera, Tenebrionidae) larvae. REGULATORY MECHANISMS IN BIOSYSTEMS 2018. [DOI: 10.15421/021871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Substances for protecting plants often contain colourings, the impact of which on invertebrates has been studied insufficiently. The addition of food colourings in different concentrations to the diet of saprophage beetles can affect their metabolism, causing loss of body weight. In the experiment, we determined the impact of tartrazine, allura red and indigo carmine on the body weight of Tenebrio molitor Linnaeus, 1758 larvae. The substances were added to their fodder at five concentrations (1, 0.1, 0.01, 0.001 and 0.0001 g/kg of dry fodder) during a 21-day experiment. Statistically significant data on changes in the body weight of T. molitor larvae were received after adding 1 g/kg concentration of indigo carmine and 0.1 and 1 g/kg concentrations of tartrazine. In the other variants of the experiment, no statistically significant differences were determined. Tartrazine, allura red and indigo carmine cause decrease in the body weight of T. molitor larvae, depending on the concentration of the colouring. The toxic effect of synthetic food colourings on living organisms and the low number of studies devoted to such impact on insects indicate the relevance and necessity for further research in this sphere.
Collapse
|
30
|
Khayyat LI, Essawy AE, Sorour JM, Soffar A. Sunset Yellow and Allura Red modulate Bcl2 and COX2 expression levels and confer oxidative stress-mediated renal and hepatic toxicity in male rats. PeerJ 2018; 6:e5689. [PMID: 30280050 PMCID: PMC6166620 DOI: 10.7717/peerj.5689] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/03/2018] [Indexed: 12/23/2022] Open
Abstract
Studies on the adverse health effects caused by azo dyes are insufficient and quite contradictory. This work aims to investigate the possible toxic effect of two types of widely used food additives, Sunset Yellow and Allura Red, by assessing the physiological, histopathological and ultrastructural changes in the liver and kidney. Also, we investigated the genotoxic effect of both dyes on white blood cells. Thirty adult male albino rats were divided into three groups of 10 animals each: control (received water), Sunset Yellow-treated (2.5 mg/kg body weight) and Allura Red-treated (seven mg/kg body weight). The doses were orally applied for 4 weeks. Our results indicated an increase in the biochemical markers of hepatic and renal function (Aspartate aminotransferase, alanine aminotransferase, urea, uric acid and creatinine) in animals administered with the azo dyes. We also observed a noticeable increase in MDA and a marked decrease in total antioxidant levels in azo dye-treated animals compared to controls. Conversely, both dyes adversely affected the liver and kidney of albino rats and altered their histological and fine structure, with downregulation of Bcl2 and upregulation of COX2 expression. Our comet assay results showed a significant elevation in the fold change of tail moment in response to application of Sunset Yellow but not Allura Red. Collectively, we show that Sunset Yellow and Allura Red cause histopathological and physiological aberrations in the liver and kidney of male Wistar albino rats. Moreover, Sunset Yellow but not Allura Red induces a potential genotoxic effect.
Collapse
Affiliation(s)
- Latifa I Khayyat
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Amina E Essawy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Jehan M Sorour
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed Soffar
- Division of Molecular Biology, Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
31
|
Al-Shabib NA, Khan JM, Malik A, Alsenaidy AM, Alsenaidy MA, Husain FM, Shamsi MB, Hidayathulla S, Khan RH. Negatively charged food additive dye “Allura Red” rapidly induces SDS-soluble amyloid fibril in beta-lactoglobulin protein. Int J Biol Macromol 2018; 107:1706-1716. [DOI: 10.1016/j.ijbiomac.2017.10.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
|
32
|
Andrew Lin KY, Wu CH. Efficient Adsorptive Removal of Toxic Amaranth Dye from Water using a Zeolitic Imidazolate Framework. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2017; 90:1947-1955. [PMID: 28600861 DOI: 10.2175/106143017x14902968254692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/07/2017] [Indexed: 06/07/2023]
Abstract
Adsorbents reported to remove a toxic acidic azo dye, Amaranth (AMR) are very limited, and their typical adsorption capacities are quite low. Recently, a zeolitic imidazolate framework (ZIF-67) has been proposed as a novel adsorbent as ZIF-67 possesses high surface area, superior chemical stability in water and positive charges, making it a promising adsorbent for AMR. Nevertheless, no studies have been conducted to investigate the adsorption of AMR to ZIF-67. Herein, ZIF-67 is employed for the first time to remove AMR from water via adsorption. Adsorption behaviors are investigated via determining the adsorption kinetics and isotherm. ZIF-67 also exhibits a significant higher maximum adsorption capacity (qmax = 121 mg g-1 at 30 °C) than most of the reported adsorbents. ZIF-67 can be also regenerated by washing it with NaCl solutions and the regeneration efficiency remains effective over multiple cycles, demonstrating that ZIF-67 is a promising adsorbent for AMR.
Collapse
|
33
|
Bastaki M, Farrell T, Bhusari S, Pant K, Kulkarni R. Lack of genotoxicity in vivo for food color additive Allura Red AC. Food Chem Toxicol 2017; 105:308-314. [PMID: 28458012 DOI: 10.1016/j.fct.2017.04.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/13/2017] [Accepted: 04/25/2017] [Indexed: 11/17/2022]
Abstract
Allura Red AC is an approved food color additive internationally with INS number 129, in the United States as food color subject to batch certification "Food, Drug, and Cosmetic" (FD&C) Red No. 40, and in Europe as food color additive with E number 129. In their evaluation of the color (2013), the European Food Safety Authority (EFSA) expressed concerns of potential genotoxicity, based primarily on one genotoxicity study that was not conducted according to Guidelines. The present in vivo genotoxicity study was conducted according to OECD Guidelines in response to EFSA's request for additional data. The animal species and strain, and the tissues examined were selected specifically to address the previously reported findings. The results show clear absence of genotoxic activity for Allura Red AC, in the bone marrow micronucleus assay and the Comet assay in the liver, stomach, and colon. These data addressed EFSA's concerns for genotoxicity. The Joint WHO/FAO Committee on Food Additives (JECFA) (2016) also reviewed the study and concluded that there is no genotoxicity concern for Allura Red AC. Negative findings in parallel genotoxicity studies on Tartrazine and Ponceau 4R (published separately) are consistent with lack of genotoxicity for azo dyes used as food colors.
Collapse
Affiliation(s)
- Maria Bastaki
- International Association of Color Manufacturers (IACM), 1101 17th St, Suite 700, Washington, DC 20036, United States.
| | - Thomas Farrell
- Global Regulatory Affairs, Colorcon Inc., 275 Ruth Rd, Harleysville, PA 19438, United States.
| | - Sachin Bhusari
- Global Scientific and Regulatory Affairs, The Coca-Cola Company, 1 Coca Cola Plaza, NW, Atlanta, GA 30313, United States.
| | - Kamala Pant
- Genetic Toxicology, BioReliance/Sigma-Aldrich Corp., 14920 Broschart Road, Rockville, MD 20850, United States.
| | - Rohan Kulkarni
- Toxicology, Study Management, BioReliance/Sigma-Aldrich Corp., 14920 Broschart Road, Rockville, MD 20850, United States.
| |
Collapse
|
34
|
Bastaki M, Farrell T, Bhusari S, Pant K, Kulkarni R. Lack of genotoxicity in vivo for food color additive Tartrazine. Food Chem Toxicol 2017; 105:278-284. [PMID: 28454783 DOI: 10.1016/j.fct.2017.04.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
Abstract
Tartrazine is approved as a food color additive internationally with INS number 102, in the United States as food color subject to batch certification "Food, Drug, and Cosmetic" (FD&C) Yellow No. 5, and in Europe as food color additive with E number 102. In their evaluation of the color (2013), the European Food Safety Authority (EFSA) expressed concerns of potential genotoxicity, based primarily on one genotoxicity study that was not conducted according to Guidelines. The present in vivo genotoxicity study was conducted according to OECD Guidelines in response to EFSA's request for additional data. The animal species and strain, and the tissues examined were selected specifically to address the previously reported findings. The results of this study show clear absence of genotoxic activity for Tartrazine, in the bone marrow micronucleus assay and the Comet assay in the liver, stomach, and colon. These data addressed EFSA's concerns for genotoxicity. The Joint WHO/FAO Committee on Food Additives (JECFA) (2016) also reviewed these data and concluded that there is no genotoxicity concern for Tartrazine. Negative findings in parallel genotoxicity studies on Allura Red AC and Ponceau 4R (published separately) are consistent with lack of genotoxicity for azo dyes used as food colors.
Collapse
Affiliation(s)
- Maria Bastaki
- International Association of Color Manufacturers (IACM), 1101 17th St, Suite 700, Washington, DC 20036, United States.
| | - Thomas Farrell
- Global Regulatory Affairs, Colorcon Inc., 275 Ruth Rd, Harleysville, PA 19438, United States.
| | - Sachin Bhusari
- Global Scientific and Regulatory Affairs, The Coca-Cola Company, 1 Coca Cola Plaza, NW, Atlanta, GA 30313, United States.
| | - Kamala Pant
- Genetic Toxicology, BioReliance/Sigma-Aldrich Corp., 14920 Broschart Road, Rockville, MD 20850, United States.
| | - Rohan Kulkarni
- Toxicology, Study Management, BioReliance/Sigma-Aldrich Corp., 14920 Broschart Road, Rockville, MD 20850, United States.
| |
Collapse
|
35
|
Li K, Xia Y, Ma G, Zhao Y, Pidatala VR. New LC-MS/MS Method for the Analysis of Allura Red Level in Takeaway Chinese Dishes and Urine of an Adult Chinese Population. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2588-2593. [PMID: 28266214 DOI: 10.1021/acs.jafc.6b05310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Allura red is a widely used synthetic food dye. In this study, we developed and validated a LC-MS/MS method for the quantification of allura red in three popular takeaway Chinese dishes (braised pork, soy sauce chicken, sweet and sour pork) and human urine samples. High levels of allura red ranging from 2.85 to 8.38 mg/g wet weight were detected in the surveyed Chinese dishes. Of 113 participants who frequently consume the surveyed Chinese dishes (>once a week in the past 2 years), the median of their urinary allura red level was 22.29 nM/mM creatinine (95% CI = 19.48-25.03) . Risk assessment using Cox proportional hazard models showed that a 10-fold increase in urinary allura red was positively associated with high blood pressure (odds ratio of 1.75 (95% CI = 0.78-3.96)). Our findings provide new insights for the potential risk of hypertension for long-term allura red overconsumption.
Collapse
Affiliation(s)
- Kefeng Li
- School of Medicine, University of California-San Diego , San Diego, California 92103, United States
| | - Yonghong Xia
- Intensive Care Unit, Yuhuangding Hospital , Yantai, Shandong 264000, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital , Beijing 100029, China
| | - Yanna Zhao
- Tianjin SunnyPeak Biotech Company Ltd. Tianjin 300075, China
| | - Venkataramana R Pidatala
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| |
Collapse
|
36
|
Esmaeili S, Ashrafi-Kooshk MR, Khaledian K, Adibi H, Rouhani S, Khodarahmi R. Degradation products of the artificial azo dye, Allura red, inhibit esterase activity of carbonic anhydrase II: A basic in vitro study on the food safety of the colorant in terms of enzyme inhibition. Food Chem 2016; 213:494-504. [PMID: 27451209 DOI: 10.1016/j.foodchem.2016.06.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/07/2016] [Accepted: 06/23/2016] [Indexed: 11/18/2022]
Abstract
Allura red is a widely used food colorant, but there is debate on its potential security risk. In the present study, we found that degradation products of the dye were more potent agents with higher carbonic anhydrase inhibitory action than the parent dye. The mechanism by which the compounds inhibit the enzyme activity has been determined as competitive mode. In addition, the enzyme binding properties of the compounds were investigated employing different spectroscopic techniques and molecular docking. The analyses of fluorescence quenching data revealed the existence of the same binding site for the compounds on the enzyme molecule. The thermodynamic parameters of ligand binding were not similar, which indicates that different interactions are responsible in binding of the parent dye and degradation products to the enzyme. It appears that enzyme inhibition should be considered, more seriously, as a new opened dimension in food safety.
Collapse
Affiliation(s)
- Sajjad Esmaeili
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Koestan Khaledian
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Hadi Adibi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shohre Rouhani
- Department of Organic Colorants, Institute for Color Science and Technology, 1668814811 Tehran, Iran; Center of Excellence for Color Science and Technology, Institute for Color Science and Technology, 16656118481 Tehran, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
37
|
Simultaneous Determination of 23 Azo Dyes in Paprika by Gas Chromatography-Mass Spectrometry. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0648-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
BEZERRA MDS, MALAQUIAS GDS, CASTRO E SOUSA JMD, PERON AP. Cytotoxic and genotoxic potential of powdered juices. FOOD SCIENCE AND TECHNOLOGY 2016. [DOI: 10.1590/1678-457x.0006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
|
40
|
|
41
|
Wang J, Gu H. Novel Metal Nanomaterials and Their Catalytic Applications. Molecules 2015; 20:17070-92. [PMID: 26393550 PMCID: PMC6332027 DOI: 10.3390/molecules200917070] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 11/16/2022] Open
Abstract
In the rapidly developing areas of nanotechnology, nano-scale materials as heterogeneous catalysts in the synthesis of organic molecules have gotten more and more attention. In this review, we will summarize the synthesis of several new types of noble metal nanostructures (FePt@Cu nanowires, Pt@Fe₂O₃ nanowires and bimetallic Pt@Ir nanocomplexes; Pt-Au heterostructures, Au-Pt bimetallic nanocomplexes and Pt/Pd bimetallic nanodendrites; Au nanowires, CuO@Ag nanowires and a series of Pd nanocatalysts) and their new catalytic applications in our group, to establish heterogeneous catalytic system in "green" environments. Further study shows that these materials have a higher catalytic activity and selectivity than previously reported nanocrystal catalysts in organic reactions, or show a superior electro-catalytic activity for the oxidation of methanol. The whole process might have a great impact to resolve the energy crisis and the environmental crisis that were caused by traditional chemical engineering. Furthermore, we hope that this article will provide a reference point for the noble metal nanomaterials' development that leads to new opportunities in nanocatalysis.
Collapse
Affiliation(s)
- Jiaqing Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Hongwei Gu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| |
Collapse
|
42
|
Genetic damage induced by a food coloring dye (sunset yellow) on meristematic cells of Brassica campestris L. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2015; 2015:319727. [PMID: 25954313 PMCID: PMC4411456 DOI: 10.1155/2015/319727] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/24/2015] [Accepted: 03/16/2015] [Indexed: 11/30/2022]
Abstract
We have performed the present piece of work to evaluate the effect of synthetic food coloring azo dye (sunset yellow) on actively dividing root tip cells of Brassica campestris L. Three doses of azo dye were administered for the treatment of actively dividing root tip cells, namely, 1%, 3%, and 5%, for 6-hour duration along with control. Mitotic analysis clearly revealed the azo dye induced endpoint deviation like reduction in the frequency of normal divisions in a dose dependent manner. Mitotic divisions in the control sets were found to be perfectly normal while dose based reduction in MI was registered in the treated sets. Azo dye has induced several chromosomal aberrations (genotoxic effect) at various stages of cell cycle such as stickiness of chromosomes, micronuclei formation, precocious migration of chromosome, unorientation, forward movement of chromosome, laggards, and chromatin bridge. Among all, stickiness of chromosomes was present in the highest frequency followed by partial genome elimination as micronuclei. The present study suggests that extensive use of synthetic dye should be forbidden due to genotoxic and cytotoxic impacts on living cells. Thus, there is an urgent need to assess potential hazardous effects of these dyes on other test systems like human and nonhuman biota for better scrutiny.
Collapse
|
43
|
Matsumura S, Ikeda N, Hamada S, Ohyama W, Wako Y, Kawasako K, Kasamatsu T, Nishiyama N. Repeated-dose liver and gastrointestinal tract micronucleus assays with CI Solvent Yellow 14 (Sudan I) using young adult rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 780-781:76-80. [DOI: 10.1016/j.mrgentox.2014.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 10/24/2022]
|
44
|
Gosetti F, Chiuminatto U, Mazzucco E, Mastroianni R, Marengo E. Ultra-high-performance liquid chromatography/tandem high-resolution mass spectrometry analysis of sixteen red beverages containing carminic acid: Identification of degradation products by using principal component analysis/discriminant analysis. Food Chem 2015; 167:454-62. [DOI: 10.1016/j.foodchem.2014.07.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/27/2014] [Accepted: 07/06/2014] [Indexed: 11/30/2022]
|
45
|
Kurtoglu G, Avar B, Zengin H, Kose M, Sayin K, Kurtoglu M. A novel azo-azomethine based fluorescent dye and its Co(II) and Cu(II) metal chelates. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Das RS, Singh B, Mandal A, Banerjee R, Mukhopadhyay S. Homogeneous Palladium Nanoparticles Surface Hosts Catalyzed Reduction of the Chromophoric Azo (-N=N-) Group of Dye, Acid Orange 7 by Borohydride in Alkaline Media. INT J CHEM KINET 2014. [DOI: 10.1002/kin.20883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | - Bula Singh
- Department of Chemistry; Visva-Bharati; Santiniketan 731 235 India
| | - Arabinda Mandal
- Department of Chemistry; Haldia Government College; Purba Medinipur 721 657 India
| | | | | |
Collapse
|
47
|
Carocho M, Barreiro MF, Morales P, Ferreira ICFR. Adding Molecules to Food, Pros and Cons: A Review on Synthetic and Natural Food Additives. Compr Rev Food Sci Food Saf 2014; 13:377-399. [PMID: 33412697 DOI: 10.1111/1541-4337.12065] [Citation(s) in RCA: 388] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/08/2014] [Indexed: 12/19/2022]
Abstract
The pressing issue to feed the increasing world population has created a demand to enhance food production, which has to be cheaper, but at the same time must meet high quality standards. Taste, appearance, texture, and microbiological safety are required to be preserved within a foodstuff for the longest period of time. Although considerable improvements have been achieved in terms of food additives, some are still enveloped in controversy. The lack of uniformity in worldwide laws regarding additives, along with conflicting results of many studies help foster this controversy. In this report, the most important preservatives, nutritional additives, coloring, flavoring, texturizing, and miscellaneous agents are analyzed in terms of safety and toxicity. Natural additives and extracts, which are gaining interest due to changes in consumer habits are also evaluated in terms of their benefits to health and combined effects. Technologies, like edible coatings and films, which have helped overcome some drawbacks of additives, but still pose some disadvantages, are briefly addressed. Future trends like nanoencapsulation and the development of "smart" additives and packages, specific vaccines for intolerance to additives, use of fungi to produce additives, and DNA recombinant technologies are summarized.
Collapse
Affiliation(s)
- Márcio Carocho
- Mountain Research Center (CIMO) ESA, Polytechnic Inst. of Bragança, Campus de Santa Apolónia, Apartado 1172, 5301-855 Bragança, Portugal.,Dept. of Nutrition and Bromatology II, Faculty of Pharmacy, Complutense Univ. of Madrid, Pza Ramón y Cajal, s/n, E-28040 Madrid, Spain
| | - Maria Filomena Barreiro
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Polytechnic Inst. of Bragança, Campus Santa Apolónia Apartado 1134, 5301-857 Bragança, Portugal
| | - Patricia Morales
- Dept. of Nutrition and Bromatology II, Faculty of Pharmacy, Complutense Univ. of Madrid, Pza Ramón y Cajal s/n, E-28040 Madrid s/n, E-28040 Madrid, Spain
| | - Isabel C F R Ferreira
- Mountain Research Center (CIMO) ESA, Polytechnic Inst. of Bragança, Campus de Santa Apolónia, Apartado 1172, 5301-855 Bragança, Portugal
| |
Collapse
|
48
|
Wang L, Zhang G, Wang Y. Binding properties of food colorant allura red with human serum albumin in vitro. Mol Biol Rep 2014; 41:3381-91. [PMID: 24500342 DOI: 10.1007/s11033-014-3200-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 01/25/2014] [Indexed: 12/11/2022]
Abstract
Allura red (AR) is a widely used colorant in food industry, but may have a potential security risk. In this study, the properties of interaction between AR and human serum albumin (HSA) in vitro were determined by fluorescence, UV-Vis absorption and circular dichroism (CD) spectroscopy combining with multivariate curve resolution-alternating least squares (MCR-ALS) chemometrics and molecular modeling approaches. An expanded UV-Vis data matrix was resolved by MCR-ALS method, and the concentration profiles and pure spectra for the three reaction components (AR, HSA, and AR-HSA complex) of the system were then successfully obtained to evaluate the progress interaction of AR with HSA. The calculated thermodynamic parameters indicated that hydrogen binding and hydrophobic interactions played major roles in the binding process, and the interaction induced a decrease in the protein surface hydrophobicity. The competitive experiments revealed that AR mainly located in Sudlow's site I of HSA, and this result was further supported by molecular modeling studies. Analysis of CD spectra found that the addition of AR induced the conformational changes of HSA. This study have provided new insight into the mechanism of interaction between AR and HSA.
Collapse
Affiliation(s)
- Langhong Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, 330047, Nanchang, China
| | | | | |
Collapse
|
49
|
Wang J, He J, Zhi C, Luo B, Li X, Pan Y, Cao X, Gu H. Highly efficient synthesis of azos catalyzed by the common metal copper (0) through oxidative coupling reactions. RSC Adv 2014. [DOI: 10.1039/c4ra00749b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
50
|
Abramsson-Zetterberg L, Ilbäck NG. The synthetic food colouring agent Allura Red AC (E129) is not genotoxic in a flow cytometry-based micronucleus assay in vivo. Food Chem Toxicol 2013; 59:86-9. [DOI: 10.1016/j.fct.2013.05.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 11/29/2022]
|