1
|
Soares LOS, de Araujo GF, Gomes TB, Júnior SFS, Cuprys AK, Soares RM, Saggioro EM. Antioxidant system alterations and oxidative stress caused by polyfluoroalkyl substances (PFAS) in exposed biota: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 977:179395. [PMID: 40245819 DOI: 10.1016/j.scitotenv.2025.179395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025]
Abstract
Contamination of aquatic and terrestrial organisms by Perfluoroalkyl substances (PFAS), emerging contaminants, is widespread, as these compounds are present in water, soil, air, and food, owing to their environmental persistence. PFAS exposure induces biochemical process alterations associated with the disruption of the antioxidant defense system in several species. This review aims to discuss how PFAS-induced antioxidant system alterations lead to changes in biochemical processes in different organisms exposed to these pollutants. This disruption, then leads to an imbalance in antioxidant defense systems, contributing to the formation of reactive oxidative species (ROS), which, in turn, can be exacerbate oxidative stress, induce cellular damage, enhance lipid peroxidation, destabilize lysosomal membranes, and cause genotoxic effects, ultimately compromising DNA integrity. In acute tests, PFAS have led to mortality, growth inhibition, diminished behavioral and locomotor abilities, and reproductive impairment. PFAS-induced effects differ with varying species or types of substances, and further bioaccumulation through food chains exacerbates environmental contamination, carrying considerable risks. These findings demonstrate the complex and enduring impact of PFAS on environmental health, emphasizing the importance of this review in corroborating studies on sub-lethal toxicity in exposed organisms and how these effects reflect on the environment.
Collapse
Affiliation(s)
- Lorena Oliveira Souza Soares
- Laboratory of Environmental Health Assessment and Promotion, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil; Post-Graduate Program in Public Health and Environment, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil
| | - Gabriel Farias de Araujo
- Laboratory of Environmental Health Assessment and Promotion, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil
| | - Thais Braga Gomes
- Laboratory of Environmental Health Assessment and Promotion, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil; Post-Graduate Program in Public Health and Environment, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil
| | - Sidney Fernandes Sales Júnior
- Laboratory of Environmental Health Assessment and Promotion, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil
| | - Agnieszka Katarzyna Cuprys
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Raquel Moraes Soares
- Post-Graduate Program in Environmental Technology and Water Resources, Department of Civil and Environmental Engineering - FT, University of Brasília, Darcy Ribeiro Campus, Via L3 Norte, 70910-900 Brasília, DF, Brazil
| | - Enrico Mendes Saggioro
- Laboratory of Environmental Health Assessment and Promotion, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil; Post-Graduate Program in Public Health and Environment, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Zhang J, Naveed H, Chen K, Chen L. Toxicity of Per- and Polyfluoroalkyl Substances and Their Substitutes to Terrestrial and Aquatic Invertebrates-A Review. TOXICS 2025; 13:47. [PMID: 39853045 PMCID: PMC11769487 DOI: 10.3390/toxics13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/25/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been widely used in daily life but they cause certain impacts on the environment due to their unique carbon-fluorine chemical bonds that are difficult to degrade in the environment. Toxicological studies on PFASs and their alternatives have mainly focused on vertebrates, while terrestrial and aquatic invertebrates have been studied to a lesser extent. As invertebrates at the bottom of the food chain play a crucial role in the whole ecological chain, it is necessary to investigate the toxicity of PFASs to invertebrates. In this paper, the progress of toxicological studies on PFASs and their alternatives in terrestrial and aquatic invertebrates is reviewed, and the accumulation of PFASs, their toxicity in invertebrates, as well as the neurotoxicity and toxicity to reproduction and development are summarized. This provides a reference to in-depth studies on the comprehensive assessment of the toxicity of PFASs and their alternatives, promotes further research on PFASs in invertebrates, and provides valuable recommendations for the use and regulation of alternatives to PFASs.
Collapse
Affiliation(s)
- Jiaxin Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (H.N.); (K.C.)
| | - Hassan Naveed
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (H.N.); (K.C.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (H.N.); (K.C.)
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (H.N.); (K.C.)
| |
Collapse
|
3
|
Wang M, Song B, Song T, Sun K, He J, Deng J, Fang L, Luan T, Lin L. Efflux transport proteins of Tetrahymena thermophila play important roles in resistance to perfluorooctane sulfonate exposure. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132287. [PMID: 37591171 DOI: 10.1016/j.jhazmat.2023.132287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
The biotoxicity of perfluorooctane sulfonate (PFOS) has been a concern. However, the effects of PFOS on Tetrahymena thermophila, a unicellular model organism, remain unclear. This study aimed to investigate the toxicity and detoxification mechanism of PFOS in this protozoan. PFOS did not show prominent toxic effects on T. thermophila. Cell viability of T. thermophila can be concentration-dependently increased by PFOS. PFOS also increased the stability of cell membranes and the activity of lysosomes. However, PFOS inhibited efflux transporter activities. Most of the PFOS amount remained in the culture medium during the culture periods. Only a low amount of PFOS was absorbed by cells, where PFOS molecules were mainly combined with membrane proteins. The expressions of four membrane protein genes involved in transporting xenobiotics were analyzed by real time-PCR. The gene abcg25 was significantly up-regulated. The growth of abcg25 gene knockout protozoans under PFOS treatment was slightly inhibited. However, the amount of PFOS adsorbed by the knockout protozoans showed no significant difference from the Wild-type protozoans. We concluded that the ABCG25 protein might play a key role in preventing PFOS from entering the cell or being exported from the cells to protect T. thermophila against PFOS. However, ABCG25 was not the only membrane protein able to bind with PFOS.
Collapse
Affiliation(s)
- Mengmeng Wang
- State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Bingyu Song
- State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tianyu Song
- State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Kailun Sun
- State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jin He
- State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiewei Deng
- State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ling Fang
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Tiangang Luan
- State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Li Lin
- State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
4
|
Nayak S, Sahoo G, Das II, Mohanty AK, Kumar R, Sahoo L, Sundaray JK. Poly- and Perfluoroalkyl Substances (PFAS): Do They Matter to Aquatic Ecosystems? TOXICS 2023; 11:543. [PMID: 37368643 DOI: 10.3390/toxics11060543] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
Poly- and perfluoroalkyl substances (PFASs) are a group of anthropogenic chemicals with an aliphatic fluorinated carbon chain. Due to their durability, bioaccumulation potential, and negative impacts on living organisms, these compounds have drawn lots of attention across the world. The negative impacts of PFASs on aquatic ecosystems are becoming a major concern due to their widespread use in increasing concentrations and constant leakage into the aquatic environment. Furthermore, by acting as agonists or antagonists, PFASs may alter the bioaccumulation and toxicity of certain substances. In many species, particularly aquatic organisms, PFASs can stay in the body and induce a variety of negative consequences, such as reproductive toxicity, oxidative stress, metabolic disruption, immunological toxicity, developmental toxicity, cellular damage and necrosis. PFAS bioaccumulation plays a significant role and has an impact on the composition of the intestinal microbiota, which is influenced by the kind of diet and is directly related to the host's well-being. PFASs also act as endocrine disruptor chemicals (EDCs) which can change the endocrine system and result in dysbiosis of gut microbes and other health repercussions. In silico investigation and analysis also shows that PFASs are incorporated into the maturing oocytes during vitellogenesis and are bound to vitellogenin and other yolk proteins. The present review reveals that aquatic species, especially fishes, are negatively affected by exposure to emerging PFASs. Additionally, the effects of PFAS pollution on aquatic ecosystems were investigated by evaluating a number of characteristics, including extracellular polymeric substances (EPSs) and chlorophyll content as well as the diversity of the microorganisms in the biofilms. Therefore, this review will provide crucial information on the possible adverse effects of PFASs on fish growth, reproduction, gut microbial dysbiosis, and its potential endocrine disruption. This information aims to help the researchers and academicians work and come up with possible remedial measures to protect aquatic ecosystems as future works need to be focus on techno-economic assessment, life cycle assessment, and multi criteria decision analysis systems that screen PFAS-containing samples. New innovative methods requires further development to reach detection at the permissible regulatory limits.
Collapse
Affiliation(s)
- Sipra Nayak
- Fish Genetics & Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Odisha, India
| | - Gunanidhi Sahoo
- Department of Zoology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Ipsita Iswari Das
- Fish Genetics & Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Odisha, India
| | - Aman Kumar Mohanty
- Fish Genetics & Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Odisha, India
| | - Rajesh Kumar
- Aquaculture Production and Environment Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Odisha, India
| | - Lakshman Sahoo
- Fish Genetics & Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Odisha, India
| | - Jitendra Kumar Sundaray
- Fish Genetics & Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Odisha, India
| |
Collapse
|
5
|
Logeshwaran P, Sivaram AK, Surapaneni A, Kannan K, Naidu R, Megharaj M. Exposure to perfluorooctanesulfonate (PFOS) but not perflurorooctanoic acid (PFOA) at ppb concentration induces chronic toxicity in Daphnia carinata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144577. [PMID: 33482550 DOI: 10.1016/j.scitotenv.2020.144577] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 05/27/2023]
Abstract
Widespread environmental contamination of per- and polyfluoroalkyl substances (PFAS) is well established. Nevertheless, few studies have reported on the aquatic toxicity of PFAS, especially in indicator species such as Daphnia. In this study, the toxicity of two major PFAS, namely perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS), was investigated on water flea (Daphnia carinata) using a battery of comprehensive toxicity tests, including a 48 h acute and a 21-day chronic assays. The survival, growth, and reproduction of D. carinata were monitored over a 21-day life cycle. PFOS exhibited higher toxicity than PFOA. The 48 h LC50 values (confidence interval) based on acute toxicity for PFOA and PFOS were 78.2 (54.9-105) mg L-1 and 8.8 (6.4-11.6) mg L-1, respectively. Chronic exposure to PFOS for 21 days displayed mortality and reproductive defects in D. carinata at a concentration as low as 0.001 mg L-1. Genotoxicity assessment using comet assay revealed that exposure for 96 h to PFOS at 1 and 10.0 mg L-1 significantly damaged the organism's genetic makeup. The results of this study have great implications for risk assessment of PFOS and PFOA in aquatic ecosystems, given the potential of PFOS to pose a risk to Daphnia even at lower concentrations (1 μg L-1).
Collapse
Affiliation(s)
- Panneerselvan Logeshwaran
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Anithadevi Kenday Sivaram
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Aravind Surapaneni
- South East Water, Frankston, Victoria 3199, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, Bundoora, Victoria, Australia
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Ravi Naidu
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
6
|
Xia L, Xiaodong M, Yunhe C, Junxiang L, Junzhu Z, Feifei Z, Zhenyuan S, Lei H. Transcriptomic and metabolomic insights into the adaptive response of Salix viminalis to phenanthrene. CHEMOSPHERE 2021; 262:127573. [PMID: 32745791 DOI: 10.1016/j.chemosphere.2020.127573] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 05/28/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread, persistent environmental pollutants. They exert toxic effects at different developmental stages of plants. Plant defense mechanisms against PAHs are poorly understood. To this end, transcriptomics and widely targeted metabolomic sequencing were used to study the changes in gene expression and metabolites that occur in the roots of Salix viminalis subjected to phenanthrene stress. Significant variations in genes and metabolites were observed between treatment groups and the control group. Thirteen amino acids and key genes involved in their biosynthesis were upregulated exposed to phenanthrene. Cysteine biosynthesis was upregulated. Sucrose, inositol galactoside, and mellidiose were the main carbohydrates that were largely accumulated. Glutathione biosynthesis was enhanced in order to scavenge reactive oxygen species and detoxify the phenanthrene. Glucosinolate and flavonoid biosynthesis were upregulated. The production of pinocembrin, apigenin, and epigallocatechin increased, which may play a role in antioxidation to resist phenanthrene stress. In addition, levels of six amino acids and N,N'-(p-coumaroyl)-cinnamoyl-caffeoyl-spermidine were significantly increased, which may have helped protect the plant against phenanthrene stress. These results demonstrated that S. viminalis had a positive defense strategy in response to phenanthrene challenge. Subsequent defense-related reactions may have also occurred within 24 h of phenanthrene exposure. The findings of the present study would be useful in elucidating the molecular mechanisms regulating plant responses to PAH challenges and would help guide crop and plant breeders in enhancing PAH resistance.
Collapse
Affiliation(s)
- Li Xia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; College of Agriculture and Bioengineering (Peony Institute), Heze University, Heze, 274000, Shandong, China
| | - Ma Xiaodong
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Cheng Yunhe
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
| | - Liu Junxiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zou Junzhu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhai Feifei
- School of Architectural and Artistic Design, Henan Polytechnic University, Jiaozuo, Henan, 454000, PR China
| | - Sun Zhenyuan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Han Lei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
7
|
Wang Z, Li C, Shao Y, Xue W, Wang N, Xu X, Zhang Z. Antioxidant defense system responses, lysosomal membrane stability and DNA damage in earthworms (Eisenia fetida) exposed to perfluorooctanoic acid: an integrated biomarker approach to evaluating toxicity. RSC Adv 2021; 11:26481-26492. [PMID: 35479973 PMCID: PMC9037344 DOI: 10.1039/d1ra04097a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/28/2021] [Indexed: 12/31/2022] Open
Abstract
Perfluorooctanoic acid (PFOA) is one of the most representative perfluoroalkyl substances and has garnered intense human and ecological health concerns due to its ubiquity in the environment, bio-accumulative nature and potential toxicological effects. In this study, an artificial soil containing PFOA was used to evaluate the biological toxicity of PFOA to earthworms Eisenia fetida. Six kinds of oxidative stress biomarkers, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), reduced glutathione (GSH) and lipid peroxidation (LPO), as well as lysosomal membrane stability (LMS) and DNA damage in earthworms were detected after exposure to 0, 10, 20, 40, 80 and 120 mg kg−1 PFOA in the soil for 3, 7, 14, 28, and 42 days. The results of multi-biomarker responses indicated that PFOA can induce various adverse effects on earthworms, including growth inhibition, oxidative stress and genotoxicity, resulting in lipid membrane peroxidation, decreased lysosomal membrane stability and DNA damage. LPO, LMS and DNA damage all presented dose- and time-dependent relationships. An integrated biomarker response (IBR) index was applied to summarize the multi-biomarker responses to star plots, and the IBR value was calculated as the area of the plots to indicate the integrated stress of PFOA on earthworms. The IBR index showed that the integrated stress induced by PFOA increased markedly throughout the exposure period, exhibiting a concentration-related and exposure time-related effect. The graphical changing trend of the IBR star plots, along with the multi-biomarker responses, suggested that the biomarkers of the antioxidant defense system in earthworms are sufficiently sensitive for short-term PFOA biomonitoring programs, while the bioindicators that indicate actual damage in organisms are more suitable to be employed in long-term monitoring programs for the risk assessment of PFOA. This is the first study evaluating the biological toxicity of PFOA by using an integrated biomarker approach. Our results showed that PFOA can potentially damage soil ecosystems, which provides valuable information for chemical risk assessment of PFOA in the soil environment and early warning bioindicators of soils contaminated by PFOA. The integrated biomarker response (IBR) index was calculated to evaluate the integrated toxicological effects of PFOA on earthworm Eisenia fetida.![]()
Collapse
Affiliation(s)
- Zhifeng Wang
- School of Municipal and Environmental Engineering
- Shandong Jianzhu University
- Jinan 250101
- P. R. China
| | - Chaona Li
- Jiangxi Nuclear Industry Geological Bureau Testing Center
- Nanchang 330002
- P. R. China
| | - Yuanyuan Shao
- School of Municipal and Environmental Engineering
- Shandong Jianzhu University
- Jinan 250101
- P. R. China
| | - Weina Xue
- School of Municipal and Environmental Engineering
- Shandong Jianzhu University
- Jinan 250101
- P. R. China
| | - Ning Wang
- School of Municipal and Environmental Engineering
- Shandong Jianzhu University
- Jinan 250101
- P. R. China
| | - Xiaoming Xu
- School of Municipal and Environmental Engineering
- Shandong Jianzhu University
- Jinan 250101
- P. R. China
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering
- Shandong Jianzhu University
- Jinan 250101
- P. R. China
| |
Collapse
|
8
|
Lee JW, Choi K, Park K, Seong C, Yu SD, Kim P. Adverse effects of perfluoroalkyl acids on fish and other aquatic organisms: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135334. [PMID: 31874399 DOI: 10.1016/j.scitotenv.2019.135334] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Perfluoroalkyl acids (PFAAs) have been widely used in many industrial and consumer products. They have been detected ubiquitously in ambient water along with other environmental matrices, and their adverse effects on aquatic organisms have been a subject of active investigation. Here, we intended to summarize and synthesize the existing body of knowledge on PFAA toxicity through an extensive literature review, and shed light on areas where further research is warranted. PFAA toxicity appears to be influenced by the sex and developmental stages of aquatic organisms, but not significantly by exposure route. PFAA-induced aquatic toxicity could be classified as metabolism disturbance, reproduction disruption, oxidative stress, developmental toxicity, thyroid disruption, etc. At the molecular level, these responses can be initiated by key events, such as nuclear receptor activation, reactive oxygen species induction, or interaction with a membrane, followed by a cascade of downstream responses. PFAA-induced toxicity involves diverse metabolic processes, and therefore elucidating crosstalk or interactions among diverse metabolic pathways is a challenging task. In the presence of other chemicals, PFAAs can function as agonists or antagonists, resulting in different directions of combined toxicity. Therefore, mixture toxicity with other groups of chemicals is another research opportunity. Experimental evidence supports the trans-generational toxicity of PFAAs, suggesting that their long-term consequences for aquatic ecosystems should become of concern. A recent global ban of several PFAAs resulted in an increasing dependence on PFAA alternatives. The lack of sufficient toxicological information on this emerging group of chemicals warrant caution and rigorous toxicological assessments.
Collapse
Affiliation(s)
- Jin Wuk Lee
- Research Department of Environmental Health, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Republic of Korea
| | - Kyunghwa Park
- Research Department of Environmental Health, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | - Changho Seong
- Research Department of Environmental Health, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | - Seung Do Yu
- Research Department of Environmental Health, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | - Pilje Kim
- Research Department of Environmental Health, National Institute of Environmental Research, Incheon 404-708, Republic of Korea.
| |
Collapse
|
9
|
Feng B, Wang K, Liu J, Mao G, Cui J, Xuan X, Jiang K, Zhang H. Ultrasensitive Apurinic/Apyrimidinic Site-Specific Ratio Fluorescent Rotor for Real-Time Highly Selective Evaluation of mtDNA Oxidative Damage in Living Cells. Anal Chem 2019; 91:13962-13969. [PMID: 31580062 DOI: 10.1021/acs.analchem.9b03494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The unrepaired apurinic/apyrimidinic site (AP site) in mitochondrial DNA (mtDNA) promotes misincorporation of nucleotides and further causes serious damage for the living organism. Thus, accurate quantitative detection of AP sites in mtDNA in a rapid, highly sensitive, and highly selective fashion is important for the real-time evaluation of mtDNA oxidative damage. In this study, a targeting mtDNA ultrasensitive AP site-specific fluorescent rotor (BTBM-CN2) was designed by the strategy of molecular conformation torsion adjustment ratio fluorescent signal. The specific recognition reaction is activated when it encountered AP sites in mtDNA within 20 s, and BTBM-CN2 presented a "turn-on" red fluorescence signal at 598 nm. Then, about 100 s later, BTBM-CN2 emitted a new green fluorescence signal at 480 nm, which is mainly due to the activation of the rate-limiting reaction. With increasing numbers of AP sites (1-40 in 1 × 105 bp of mtDNA), the fluorescence emission at 598 nm decreased gradually, and the new emission at 480 nm increased. Intracellular experiments indicated that BTBM-CN2 could detect AP sites in mtDNA in a rapid and quantitative fashion with high selectivity and ultrasensitivity. On the basis of the emergence of the fluorescence signal at 480 nm and its signal strength, the cell whose mtDNA was damaged could be screened by flow cytometry and its degree of damage could be evaluated in real time by comet assay. Hence, the rotor may have potential applications varying from accurate and ultrasensitive detection of AP sites to the real-time evaluation of the oxidative damage in living cells.
Collapse
|
10
|
Sivaram AK, Subashchandrabose SR, Logeshwaran P, Lockington R, Naidu R, Megharaj M. Metabolomics reveals defensive mechanisms adapted by maize on exposure to high molecular weight polycyclic aromatic hydrocarbons. CHEMOSPHERE 2019; 214:771-780. [PMID: 30296765 DOI: 10.1016/j.chemosphere.2018.09.170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/22/2018] [Accepted: 09/29/2018] [Indexed: 05/28/2023]
Abstract
Polycyclic aromatic hydrocarbons are an important group of persistent organic pollutants. Using plants to remediate PAHs has been recognized as a cost-effective and environmentally friendly technique. However, the overall impact of PAHs on the regulation of plant metabolism has not yet been explored. In this study, we analyzed the alteration in the maize (Zea mays L.) metabolome on exposure to high molecular weight PAHs such as benzo[a]pyrene (BaP) and pyrene (PYR) in a hydroponic medium, individually and as a mixture (BaP + PYR) using GC-MS. The differences in the metabolites were analyzed using XCMS (an acronym for various forms (X) of chromatography-mass spectrometry), an online-based data analysis tool. A significant variation in metabolites was observed between treatment groups and the unspiked control group. The univariate, multivariate and pathway impact analysis showed there were more significant alterations in metabolic profiles between individual PAHs and the mixture of BaP and PYR. The marked changes in the metabolites of galactose metabolism and aminoacyl tRNA biosynthesis in PAHs treated maize leaves exhibit the adaptive defensive mechanisms for individual and PAHs mixture. Therefore, the metabolomics approach is essential for an understanding of the complex biochemical responses of plants to PAHs contaminants. This knowledge will shed new light in the field of phytoremediation, bio-monitoring, and environmental risk assessment.
Collapse
Affiliation(s)
- Anithadevi Kenday Sivaram
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Suresh Ramraj Subashchandrabose
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Panneerselvan Logeshwaran
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Robin Lockington
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
11
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Vleminckx C, Vollmer G, Wallace H, Bodin L, Cravedi JP, Halldorsson TI, Haug LS, Johansson N, van Loveren H, Gergelova P, Mackay K, Levorato S, van Manen M, Schwerdtle T. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 2018; 16:e05194. [PMID: 32625773 PMCID: PMC7009575 DOI: 10.2903/j.efsa.2018.5194] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in food. Regarding PFOS and PFOA occurrence, the final data set available for dietary exposure assessment contained a total of 20,019 analytical results (PFOS n = 10,191 and PFOA n = 9,828). There were large differences between upper and lower bound exposure due to analytical methods with insufficient sensitivity. The CONTAM Panel considered the lower bound estimates to be closer to true exposure levels. Important contributors to the lower bound mean chronic exposure were 'Fish and other seafood', 'Meat and meat products' and 'Eggs and egg products', for PFOS, and 'Milk and dairy products', 'Drinking water' and 'Fish and other seafood' for PFOA. PFOS and PFOA are readily absorbed in the gastrointestinal tract, excreted in urine and faeces, and do not undergo metabolism. Estimated human half-lives for PFOS and PFOA are about 5 years and 2-4 years, respectively. The derivation of a health-based guidance value was based on human epidemiological studies. For PFOS, the increase in serum total cholesterol in adults, and the decrease in antibody response at vaccination in children were identified as the critical effects. For PFOA, the increase in serum total cholesterol was the critical effect. Also reduced birth weight (for both compounds) and increased prevalence of high serum levels of the liver enzyme alanine aminotransferase (ALT) (for PFOA) were considered. After benchmark modelling of serum levels of PFOS and PFOA, and estimating the corresponding daily intakes, the CONTAM Panel established a tolerable weekly intake (TWI) of 13 ng/kg body weight (bw) per week for PFOS and 6 ng/kg bw per week for PFOA. For both compounds, exposure of a considerable proportion of the population exceeds the proposed TWIs.
Collapse
|
12
|
Kammerlander B, Tartarotti B, Sonntag B. The Impact of UV Radiation on Paramecium Populations from Alpine Lakes. J Eukaryot Microbiol 2018; 65:250-254. [PMID: 28833929 PMCID: PMC5888136 DOI: 10.1111/jeu.12463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/29/2017] [Accepted: 07/20/2017] [Indexed: 11/29/2022]
Abstract
Paramecium populations from a clear and a glacier-fed turbid alpine lake were exposed to solar simulated ultraviolet (UVR) and photosynthetically active radiation (PAR) at 8 and 15 °C. The ciliates were tested for DNA damage (comet assay), behavioral changes, and mortality after UVR + PAR exposure. High DNA damage levels (~58% tail DNA) and abnormal swimming behavior were observed, although no significant changes in cell numbers were found irrespective of the lake origin (clear, turbid), and temperatures. We conclude that environmental stressors such as UVR and their effects may influence the adaptation of ciliates living in alpine lakes.
Collapse
Affiliation(s)
- Barbara Kammerlander
- Lake and Glacier Research GroupInstitute of Ecology, University of InnsbruckTechnikerstrasse 25Innsbruck6020Austria
- Ciliate Ecology and Taxonomy GroupResearch Department for Limnology, Mondsee, University of InnsbruckMondseestrasse 9Mondsee5310Austria
| | - Barbara Tartarotti
- Lake and Glacier Research GroupInstitute of Ecology, University of InnsbruckTechnikerstrasse 25Innsbruck6020Austria
| | - Bettina Sonntag
- Ciliate Ecology and Taxonomy GroupResearch Department for Limnology, Mondsee, University of InnsbruckMondseestrasse 9Mondsee5310Austria
| |
Collapse
|
13
|
Tsuda S. Differential toxicity between perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). J Toxicol Sci 2016; 41:SP27-SP36. [PMID: 28003637 DOI: 10.2131/jts.41.sp27] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Perfluoroalkyl substances (PFASs) are persistent environmental contaminants. Perfluorooctane sulfonate (PFOS) and Perfluorooctanoic acid (PFOA) are representatives of PFASs. Recently, the U.S. Environmental Protection Agency (US EPA) set the health advisory level as 70 parts per trillion for lifetime exposure to PFOS and PFOA from drinking water, based on the EPA's 2016 Health Effects Support Documents. Then, a monograph on PFOA was made available online by the International Agency for Research on Cancer, where the agency classified PFOA as "possibly carcinogenic to humans" (Group 2B). The distinction between PFOS and PFOA, however, may not be easily understood from the above documents. This paper discussed differential toxicity between PFOS and PFOA focusing on neurotoxicity, developmental toxicity and carcinogenicity, mainly based on these documents. The conclusions are as follows: Further mechanistic studies may be necessary for ultrasonic-induced PFOS-specific neurotoxicity. To support the hypothesis for PFOS-specific neonatal death that PFOS interacts directly with components of natural lung surfactant, in vivo studies to relate the physicochemical effects to lung collapse may be required. PFOA-induced DNA damage secondary to oxidative stress may develop to mutagenicity under the condition where PFOA-induced apoptosis is not sufficient to remove the damaged cells. A study to find whether PFOA induces apoptosis in normal human cells may contribute to assessment of human carcinogenicity. Studies for new targets such as hepatocyte nuclear factor 4α (HNF4α) may help clarify the underlying mechanism for PFOA-induced carcinogenicity.
Collapse
Affiliation(s)
- Shuji Tsuda
- Iwate Institute of Environmental Health Sciences
| |
Collapse
|
14
|
Sun Y, Wang T, Peng X, Wang P, Lu Y. Bacterial community compositions in sediment polluted by perfluoroalkyl acids (PFAAs) using Illumina high-throughput sequencing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10556-10565. [PMID: 26780047 DOI: 10.1007/s11356-016-6055-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
The characterization of bacterial community compositions and the change in perfluoroalkyl acids (PFAAs) along a natural river distribution system were explored in the present study. Illumina high-throughput sequencing was used to explore bacterial community diversity and structure in sediment polluted by PFAAs from the Xiaoqing River, the area with concentrated fluorochemical facilities in China. The concentration of PFAAs was in the range of 8.44-465.60 ng/g dry weight (dw) in sediment. Perfluorooctanoic acid (PFOA) was the dominant PFAA in all samples, which accounted for 94.2 % of total PFAAs. High-level PFOA could lead to an obvious increase in relative abundance of Proteobacteria, ε-Proteobacteria, Thiobacillus, and Sulfurimonas and the decrease in relative abundance of other bacteria. Redundancy analysis revealed that PFOA played an important role in the formation of bacterial community, and PFOA at higher concentration could reduce the diversity of bacterial community. When the concentration of PFOA was below 100 ng/g dw in sediment, no significant effect on microbial community structure was observed. Thiobacillus and Sulfurimonas were positively correlated with the concentration of PFOA, suggesting that both genera were resistant to PFOA contamination.
Collapse
Affiliation(s)
- Yajun Sun
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Tieyu Wang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Xiawei Peng
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Pei Wang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yonglong Lu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
15
|
Dong L, Yang X, Gu W, Zhao K, Ge H, Zhou J, Bai X. Connexin 43 mediates PFOS-induced apoptosis in astrocytes. CHEMOSPHERE 2015; 132:8-16. [PMID: 25770831 DOI: 10.1016/j.chemosphere.2015.02.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 06/04/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a man-made environmental pollutant that is toxic to mammals. However, the neurotoxic effects of PFOS remain largely unexplored. In this study, we determined the role of an astrocyte specific gap junction protein, connexin 43 (Cx43), in PFOS-induced apoptosis. The rate of astrocyte apoptosis was higher in cortex astrocytes after PFOS treatment. These astrocytes also showed up-regulated expression of Cx43 and higher levels of cleaved caspase-3. Elevated ROS accumulation and decreased ΔΨm also confirmed the presence of PFOS-induced apoptosis. However, the exposure of astrocytes to PFOS together with carbenoxolone (CBX) significantly reduced both Cx43 and cleaved caspase-3 levels. These results indicate that Cx43 plays a proapoptotic role in PFOS-induced apoptosis in cortex astrocyte cells.
Collapse
Affiliation(s)
- Li Dong
- Institute for Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli Road, Chaoyang District, Beijing 100021, China.
| | - Xiaoyan Yang
- Institute for Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli Road, Chaoyang District, Beijing 100021, China
| | - Wen Gu
- Institute for Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli Road, Chaoyang District, Beijing 100021, China
| | - Kangfeng Zhao
- Institute for Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli Road, Chaoyang District, Beijing 100021, China
| | - Huizheng Ge
- Beijing Biodonor Biotech Ltd., 88 The 6th Kechuang Street, Incubation Center Room 303, 101111 Beijing, China
| | - Jianjun Zhou
- Beijing Biodonor Biotech Ltd., 88 The 6th Kechuang Street, Incubation Center Room 303, 101111 Beijing, China
| | - Xuetao Bai
- Institute for Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli Road, Chaoyang District, Beijing 100021, China.
| |
Collapse
|
16
|
Wang Y, Zhang X, Wang M, Cao Y, Wang X, Liu Y, Wang J, Wang J, Wu L, Hei TK, Luan Y, Xu A. Mutagenic Effects of Perfluorooctanesulfonic Acid in gpt Delta Transgenic System Are Mediated by Hydrogen Peroxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6294-6303. [PMID: 25875360 DOI: 10.1021/acs.est.5b00530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Perfluorooctane sulfate (PFOS), a persistent organic pollutant, has recently been closely linked with an increased risk of tumorigenesis. However, PFOS has yielded negative results in various tests of genotoxicity. The present study aimed to investigate the mutagenic response to PFOS in the gpt delta transgenic mouse mutation system and to illustrate the contribution of hydrogen peroxide (H2O2) to PFOS genotoxicity. Mutations at the redBA/gam loci were determined by Spi(-) assay both in vitro and in vivo. DNA damage was measured by phosphorylated histone H2AX (γ-H2AX) and mouse bone marrow micronucleus (MN) testing. Our data showed that PFOS induced concentration-dependent increases in γ-H2AX foci and in mutation frequencies at redBA/gam loci in transgenic mouse embryonic fibroblast cells, which were confirmed by the formation of MNs in the bone marrow and the observations of mutation induction in the livers of gpt delta transgenic mice. Concurrent treatment with catalase, an efficient H2O2 scavenger, significantly decreased the formation of γ-H2AX foci and the mutation yields induced by PFOS. In addition, the generation of H2O2 was found to be closely related to the abnormal peroxisomal β-oxidation caused by PFOS. These finding might provide new mechanistical information about genotoxic effects of PFOS.
Collapse
Affiliation(s)
- Yichen Wang
- †Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, P. R. China
| | - Xuefeng Zhang
- ‡Jiangsu Tripod Preclinical Research Laboratories, Pukou Economic Development Zone, 9# Xinglong Road, Nanjing, China
| | - Meimei Wang
- †Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, P. R. China
| | - Yiyi Cao
- §Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Xinan Wang
- †Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, P. R. China
| | - Yun Liu
- †Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, P. R. China
| | - Juan Wang
- †Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, P. R. China
| | - Jing Wang
- ‡Jiangsu Tripod Preclinical Research Laboratories, Pukou Economic Development Zone, 9# Xinglong Road, Nanjing, China
| | - Lijun Wu
- †Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, P. R. China
| | - Tom K Hei
- ∥Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, New York City, New York 10027, United States
| | - Yang Luan
- §Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - An Xu
- †Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, P. R. China
| |
Collapse
|
17
|
Mayilswami S, Krishnan K, Megharaj M, Naidu R. Chronic PFOS exposure alters the expression of neuronal development-related human homologues in Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 110:288-297. [PMID: 25285771 DOI: 10.1016/j.ecoenv.2014.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 06/03/2023]
Abstract
PFOS is a toxic, persistent environmental pollutant which is widespread worldwide. PFOS contamination has entered the food chain and is interfering with normal development in man and is neurotoxic, hepatotoxic and tumorigenic. The earthworm, Eisenia fetida is one of the organisms which can help to diagnose soil health and contamination at lower levels in the food chain. Studying the chronic effects of sub-lethal PFOS exposure in such an organism is therefore appropriate. As PFOS bioaccumulates and is not easily biodegraded, it is biomagnified up the food chain. Gene expression studies will give us information to develop biomarkers for early diagnosis of soil contamination, well before this contaminant passes up the food chain. We have carried out mRNA sequencing of control and chronically PFOS exposed E. fetida and reconstructed the transcripts in silico and identified the differentially expressed genes. Our findings suggest that PFOS up/down regulates neurodegenerative-related human homologues and can cause neuronal damage in E. fetida. This information will help to understand the links between neurodegenerative disorders and environmental pollutants such as PFOS. Furthermore, these up/down regulated genes can be used as biomarkers to detect a sub-lethal presence of PFOS in soil. Neuronal calcium sensor-2, nucleoside diphosphate kinase, polyadenylate-binding protein-1 and mitochondrial Pyruvate dehydrogenase protein-X component, could be potential biomarkers for sub lethal concentrations of PFOS.
Collapse
Affiliation(s)
- Srinithi Mayilswami
- Centre for Environmental Risk Assessment and Remediation, University of South Australia & CRC CARE, Mawson Lakes, Adelaide 5095, SA, Australia
| | - Kannan Krishnan
- Centre for Environmental Risk Assessment and Remediation, University of South Australia & CRC CARE, Mawson Lakes, Adelaide 5095, SA, Australia.
| | - Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation, University of South Australia & CRC CARE, Mawson Lakes, Adelaide 5095, SA, Australia
| | - Ravi Naidu
- Centre for Environmental Risk Assessment and Remediation, University of South Australia & CRC CARE, Mawson Lakes, Adelaide 5095, SA, Australia
| |
Collapse
|
18
|
Stefani F, Rusconi M, Valsecchi S, Marziali L. Evolutionary ecotoxicology of perfluoralkyl substances (PFASs) inferred from multigenerational exposure: a case study with Chironomus riparius (Diptera, Chironomidae). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:41-51. [PMID: 25146235 DOI: 10.1016/j.aquatox.2014.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/17/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
A multigeneration toxicity test on Chironomus riparius was performed with the aim of investigating the evolutionary consequences of exposure to perfluoralkyl substances (perfluorooctane sulfonic acid, PFOS; perfluorooctanoic acid, PFOA; perfluorobutane sulfonate, PFBS). Six-hundred larvae were bred per treatment and per generation until emergence and egg deposition under a nominal concentration of 10μg/L of contaminants. Newborn larvae were used to start the next generation. Evolution of genetic variability was evaluated along a total of 10 consecutive generations based on 5 microsatellite loci. Analysis of life-history traits (survival, sex ratio and reproduction) was also carried out. Rapid genetic variability reduction was observed in all treatments, including controls, across generations due to the test conditions. Nevertheless, an increased mutation rate determined a stronger conservation of genetic variability in PFOS and, at minor extent, in PFBS exposed populations compared to controls. No significant effects were induced by exposure to PFOA. Direct mutagenicity or induced stress conditions may be at the base of increased mutation rate, indicating the potential risk of mutational load caused by exposure to PFOS and PFBS. The test provided the opportunity to evaluate the use of approximate Bayesian computation (ABC) and coalescent approaches in evolutionary ecotoxicology. A weak performance was evidenced for ABC, either in terms of bias or dispersion of effective population sizes and of estimates of mutation rate. On the contrary, coalescent simulations proved the sensitivity of traditional genetic endpoints (i.e. heterozygosity and number of alleles) to the alteration of mutation rate, but not to erosion of genetic effective size.
Collapse
Affiliation(s)
- F Stefani
- Water Research Institute-National Research Council (IRSA-CNR), via del Mulino 19, Brugherio, MB, Italy.
| | - M Rusconi
- Water Research Institute-National Research Council (IRSA-CNR), via del Mulino 19, Brugherio, MB, Italy.
| | - S Valsecchi
- Water Research Institute-National Research Council (IRSA-CNR), via del Mulino 19, Brugherio, MB, Italy.
| | - L Marziali
- Water Research Institute-National Research Council (IRSA-CNR), via del Mulino 19, Brugherio, MB, Italy.
| |
Collapse
|
19
|
Zhang L, Niu J, Wang Y, Shi J, Huang Q. Chronic effects of PFOA and PFOS on sexual reproduction of freshwater rotifer Brachionus calyciflorus. CHEMOSPHERE 2014; 114:114-20. [PMID: 25113191 DOI: 10.1016/j.chemosphere.2014.03.099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 03/13/2014] [Accepted: 03/30/2014] [Indexed: 05/27/2023]
Abstract
Rotifers play an important role in the dynamics of freshwater and coastal marine ecosystems, and are also important tools for assessing toxicity in aquatic environments. In this study, the effects of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) on the population growth rate and resting egg production of rotifer Brachionus calyciflorus were investigated. Reproductive bioassays indicated that PFOS increased the rotifer population growth rate at the concentration ⩽2.0 mg L(-1), and inhibited it at higher concentrations. For PFOA, the inhibition of population growth rate was observed when the concentration was greater than 4.0 mg L(-1). Exposure to PFOS (0.25 mg L(-1)) or PFOA (2.0 mg L(-1)) increased the mictic ratios of unexposed rotifer offspring. Population variation and increased mictic ratios were likely the two major factors leading to decline of resting egg production. The resting eggs formed under exposure to PFOA/PFOS in the range of 0.125-2.0 mg L(-1) showed higher hatching percentages in the control medium than that without PFOA/PFOS exposure. When the resting eggs were formed in the control medium and incubated in media with different levels of PFOA/PFOS, higher hatching percentages were induced by PFOS but lower hatching percentages induced by PFOA. The effects on the hatching rate of resting eggs with PFOA/PFOS exposure during the hatching period were greater than those with exposure during resting egg formation period, and the effect of PFOS was greater than that of PFOA. Both PFOA and PFOS exhibited slight effect on the hatching pattern.
Collapse
Affiliation(s)
- Lilan Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Junfeng Niu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Yujuan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Jianghong Shi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, United States
| |
Collapse
|
20
|
Insights into three whole-genome duplications gleaned from the Paramecium caudatum genome sequence. Genetics 2014; 197:1417-28. [PMID: 24840360 DOI: 10.1534/genetics.114.163287] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Paramecium has long been a model eukaryote. The sequence of the Paramecium tetraurelia genome reveals a history of three successive whole-genome duplications (WGDs), and the sequences of P. biaurelia and P. sexaurelia suggest that these WGDs are shared by all members of the aurelia species complex. Here, we present the genome sequence of P. caudatum, a species closely related to the P. aurelia species group. P. caudatum shares only the most ancient of the three WGDs with the aurelia complex. We found that P. caudatum maintains twice as many paralogs from this early event as the P. aurelia species, suggesting that post-WGD gene retention is influenced by subsequent WGDs and supporting the importance of selection for dosage in gene retention. The availability of P. caudatum as an outgroup allows an expanded analysis of the aurelia intermediate and recent WGD events. Both the Guanine+Cytosine (GC) content and the expression level of preduplication genes are significant predictors of duplicate retention. We find widespread asymmetrical evolution among aurelia paralogs, which is likely caused by gradual pseudogenization rather than by neofunctionalization. Finally, cases of divergent resolution of intermediate WGD duplicates between aurelia species implicate this process acts as an ongoing reinforcement mechanism of reproductive isolation long after a WGD event.
Collapse
|
21
|
Zhang L, Niu J, Li Y, Wang Y, Sun D. Evaluating the sub-lethal toxicity of PFOS and PFOA using rotifer Brachionus calyciflorus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 180:34-40. [PMID: 23727565 DOI: 10.1016/j.envpol.2013.04.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 05/27/2023]
Abstract
The acute and chronic effects of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) on the rotifer Brachionus calyciflorus (B. calyciflorus) were investigated at the organismal and the population level. The acute toxicity of PFOS to rotifers was approximately 2.5-fold greater than that of PFOA. From 0.25 to 2.0 mg L(-1), PFOS exhibited higher toxicity than PFOA on the F0-generation of B. calyciflorus, including effects on body size, juvenile periods, net reproductive rate, and generation time. Both PFOS and PFOA exposure induced a smaller egg size in B. calyciflorus, suggesting that these risks can be transferred from mother to offspring. The 28-day population growth studies showed that PFOS and PFOA reduced the population density and increased the mictic ratio. Our results demonstrated that both PFOS and PFOA had adverse effects on B. calyciflorus, not only at the individual level but also at the population level.
Collapse
Affiliation(s)
- Lilan Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | | | | | | | | |
Collapse
|
22
|
Investigation of DNA damage treated with perfluorooctane sulfonate (PFOS) on ZrO2/DDAB active nano-order film. Biosens Bioelectron 2012; 35:180-185. [DOI: 10.1016/j.bios.2012.02.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/08/2012] [Accepted: 02/20/2012] [Indexed: 11/22/2022]
|
23
|
O'Brien JM, Austin AJ, Williams A, Yauk CL, Crump D, Kennedy SW. Technical-grade perfluorooctane sulfonate alters the expression of more transcripts in cultured chicken embryonic hepatocytes than linear perfluorooctane sulfonate. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:2846-2859. [PMID: 21994020 DOI: 10.1002/etc.700] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Recently it was discovered that the perfluorooctane sulfonate (PFOS) detected in wildlife, such as fish-eating birds, had a greater proportion of linear PFOS (L-PFOS) than the manufactured technical product (T-PFOS), which contains linear and branched isomers. This suggests toxicological studies based on T-PFOS data may inaccurately assess exposure risk to wildlife. To determine whether PFOS effects were influenced by isomer content, we compared the transcriptional profiles of cultured chicken embryonic hepatocytes (CEH) exposed to either L-PFOS or T-PFOS using Agilent microarrays. At equal concentrations (10 µM), T-PFOS altered the expression of more transcripts (340, >1.5-fold change, p < 0.05) compared with L-PFOS (130 transcripts). Higher concentrations of L-PFOS (40 µM) were also less transcriptionally disruptive (217 transcripts) than T-PFOS at 10 µM. Functional analysis showed that L-PFOS and T-PFOS affected genes involved in lipid metabolism, hepatic system development, and cellular growth and proliferation. Pathway and interactome analysis suggested that genes may be affected through the RXR receptor, oxidative stress response, TP53 signaling, MYC signaling, Wnt/β-catenin signaling, and PPARγ and SREBP receptors. In all functional categories and pathways examined, the response elicited by T-PFOS was greater than that of L-PFOS. These data show that T-PFOS elicits a greater transcriptional response in CEH than L-PFOS alone and demonstrates the importance of considering the isomer-specific toxicological properties of PFOS when assessing exposure risk.
Collapse
Affiliation(s)
- Jason M O'Brien
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
24
|
E. Gato W, C. Means J. Single Cell Gel Electrophoretic Analysis of 2-Aminoanthracene Exposed F-344 Rats. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/ajbmb.2011.275.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|