1
|
Kumagai Y, Abiko Y, Akiyama M, Unoki T, Shinkai Y. Multi-defense pathways against electrophiles through adduct formation by low molecular weight substances with sulfur atoms. Toxicol Sci 2025; 203:1-10. [PMID: 39374550 DOI: 10.1093/toxsci/kfae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
There is a variety of electrophiles in the environment. In addition, there are precursor chemicals that undergo metabolic activation by enzymes and conversion to electrophiles in the body. Although electrophiles covalently bind to protein nucleophiles, they also form adducts associated with adaptive or toxic responses. Low molecular weight compounds containing sulfur are capable of blocking such adduct formation by capturing the electrophiles. In this review, we present our findings on the capture and inactivation of electrophiles by: (i) intracellular glutathione, (ii) reactive sulfur species, and (iii) extracellular cysteine (formed during the production of sulfur adducts). These actions not only substantially suppress electrophilic activity but also regulate protein adduct formation.
Collapse
Affiliation(s)
- Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yumi Abiko
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masahiro Akiyama
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takamitsu Unoki
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasuhiro Shinkai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
2
|
Aoki H, Shinkai Y, Akiyama M, Yamazaki S, Nishida M, Kumagai Y. Extracellularly secreted cysteine derived from cystine regulates oxidative and electrophilic stress in HepG2 cells. Free Radic Res 2024; 58:323-332. [PMID: 38733204 DOI: 10.1080/10715762.2024.2350524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/03/2024] [Indexed: 05/13/2024]
Abstract
While cysteine (CysSH) is known to be exported into the extracellular space, its biological significance is not well understood. The present study examined the movement of extracellular CysSH using stable isotope-labeled cystine (CysSSCys), which is transported into cells and reduced to CysSH. Exposure of HepG2 cells to 100 µM stable isotope-labeled CysSSCys resulted in 70 µM labeled CysSH in cell medium 1 h after CysSSCys exposure. When the cell medium was collected and incubated with either hydrogen peroxide (H2O2) or atmospheric electrophiles, such as 1,2-naphthoquinone, 1,4-naphthoquinone and 1,4-benzoquinone, CysSH in the cell medium was almost completely consumed. In contrast, extracellular levels of CysSH were unaltered during exposure of HepG2 cells to H2O2 for up to 2 h, suggesting redox cycling of CysSSCys/CysSH in the cell system. Experiments with and without changing cell medium containing CysSH from HepG2 cells revealed that oxidative and electrophilic modifications of cellular proteins, caused by exposure to H2O2 and 1,2-naphthoquinone, were significantly repressed by CysSH in the medium. We also examined participation of enzymes and/or antioxidants in intracellular reduction of CysSSCys to CysSH. These results provide new findings that extracellular CysSH derived from CysSSCys plays a role in the regulation of oxidative and electrophilic stress.
Collapse
Affiliation(s)
- Hanako Aoki
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yasuhiro Shinkai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
- Environmental Biology Laboratory, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masahiro Akiyama
- Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Satoshi Yamazaki
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Motohiro Nishida
- Graduate School of Pharmaceutical Sciences, Kyusyu University, Fukuoka, Japan
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
- Graduate School of Pharmaceutical Sciences, Kyusyu University, Fukuoka, Japan
| |
Collapse
|
3
|
Kato Y, Sakanishi A, Matsuda K, Hattori M, Kaneko I, Nishikawa M, Ikushiro S. Covalent adduction of serotonin-derived quinones to the SARS-CoV-2 main protease expressed in a cultured cell. Free Radic Biol Med 2023; 206:74-82. [PMID: 37391098 PMCID: PMC10300202 DOI: 10.1016/j.freeradbiomed.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
The SARS-CoV-2 main protease is an essential molecule for viral replication and is often targeted by medications to treat the infection. In this study, we investigated the possible inhibitory action of endogenous quinones on the enzyme. Recombinant SARS-CoV-2 main protease was exposed to tryptamine-4,5-dione (TD) or quinone from 5-hydroxyindoleacetic acid (Q5HIAA). As a result, the protease activity was considerably decreased in a dose-dependent manner. The IC50 values of the quinones toward the enzyme were approximately 0.28 μM (TD) and 0.49 μM (Q5HIAA). Blot analyses using specific antibodies to quinone-modified proteins revealed that quinones were adducted to the enzyme at concentrations as low as 0.12 μM. Intact mass analyses showed that one or two quinone molecules were covalently adducted onto the main protease. Chymotrypsin-digested main protease analyses revealed that the quinones bind to thiol residues at the enzyme's active site. When TD or Q5HIAA were exposed to cultured cells expressing the viral enzyme, quinone-modified enzyme was identified in the cell lysate, suggesting that even extracellularly generated quinones could react with the viral enzyme expressed in an infected cell. Thus, these endogenous quinones could act as inhibitors of the viral enzyme.
Collapse
Affiliation(s)
- Yoji Kato
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, 670-0092, Japan; Research Institute for Food and Nutritional Sciences, University of Hyogo, Himeji, Hyogo, 670-0092, Japan.
| | - Asahi Sakanishi
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, 670-0092, Japan
| | - Kaoru Matsuda
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, 670-0092, Japan
| | - Mai Hattori
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, 670-0092, Japan
| | - Ichiro Kaneko
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, 670-0092, Japan; Research Institute for Food and Nutritional Sciences, University of Hyogo, Himeji, Hyogo, 670-0092, Japan
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
4
|
Shinkai Y, Onose Y, Akiyama M, Hirose R, Kumagai Y. Capture of Electrophilic Quinones in the Extracellular Space: Evidence for a Phase Zero Reaction. Chem Res Toxicol 2023; 36:23-31. [PMID: 36525601 DOI: 10.1021/acs.chemrestox.2c00223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Electrophilic quinones are produced during the combustion of gasoline in the atmosphere. Although these reactive species covalently bind to protein-based nucleophiles in cells, resulting in the formation of protein adducts involved in the modulation of redox signaling pathways and cytotoxicity, the extracellular regulation of quinones is not understood. In this study, incubation of 1,2-naphthoquinone (1,2-NQ) with the low-molecular-weight fraction of mouse plasma resulted in the consumption of cysteine (CysSH) in the plasma in a concentration-dependent manner. Covalent modification of albumin was markedly repressed by the addition of either the low-molecular-weight fraction of mouse plasma or CysSH, suggesting that CysSH protects by forming a conjugate with 1,2-NQ. Similar phenomena also occurred for other atmospheric quinones 1,4-NQ and 1,4-benzoquinone (1,4-BQ). The addition of cystine to a culture medium without amino acids enhanced the release of CysSH from A431 cells and blocked 1,2-NQ-mediated arylation of intracellular proteins, suggesting that 1,2-NQ interacts with extracellular CysSH. Liquid chromatography-tandem mass spectrometry analysis revealed that 1,2-NQ and 1,4-BQ undergoes nucleophilic attack by CysSH, yielding a 1,2-NQH2-SCys adduct and 1,4-BQH2-SCys adduct, respectively. Unlike 1,2-NQ and 1,4-BQ, the authentic 1,2-NQH2-SCys adduct and 1,4-BQH2-SCys adduct had little effect on the covalent modification of cellular proteins and viability of A431 cells. These results suggest that electrophilic quinones are readily trapped by CysSH released from A431 cells, forming less-toxic CysSH adducts and thereby repressing covalent modification of cellular proteins. These findings provide evidence for the existence of a "phase zero" reaction of electrophiles prior to their uptake by cells.
Collapse
Affiliation(s)
- Yasuhiro Shinkai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yusuke Onose
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Masahiro Akiyama
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan.,Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Reiko Hirose
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
5
|
Seki N, Akiyama M, Yamakawa H, Hase K, Kumagai Y, Kim YG. Adverse effects of methylmercury on gut bacteria and accelerated accumulation of mercury in organs due to disruption of gut microbiota. J Toxicol Sci 2021; 46:91-97. [PMID: 33536393 DOI: 10.2131/jts.46.91] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Methylmercury (MeHg), an environmental electrophile, binds covalently to the cysteine residues of proteins in organs, altering protein function and causing cytotoxicity. MeHg has also been shown to alter the composition of gut microbes. The gut microbiota is a complex community, the disturbance of which has been linked to the development of certain diseases. However, the relationship between MeHg and gut bacteria remains poorly understood. In this study, we showed that MeHg binds covalently to gut bacterial proteins via cysteine residues. We examined the effects of MeHg on the growth of selected Lactobacillus species, namely, L. reuteri, L. gasseri, L. casei, and L. acidophilus, that are frequently either positively or negatively correlated with human diseases. The results revealed that MeHg inhibits the growth of Lactobacillus to varying degrees depending on the species. Furthermore, the growth of L. reuteri, which was inhibited by MeHg exposure, was restored by Na2S2 treatment. By comparing mice with and without gut microbiota colonization, we found that gut bacteria contribute to the production of reactive sulfur species such as hydrogen sulfide and hydrogen persulfide in the gut. We also discovered that the removal of gut bacteria accelerated accumulation of mercury in the cerebellum, liver, and lungs of mice subsequent to MeHg exposure. These results accordingly indicate that MeHg is captured and inactivated by the hydrogen sulfide and hydrogen persulfide produced by intestinal microbes, thereby providing evidence for the role played by gut microbiota in reducing MeHg toxicity.
Collapse
Affiliation(s)
- Natsumi Seki
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University
| | - Masahiro Akiyama
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba
| | - Hiroto Yamakawa
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba
| | - Koji Hase
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba
| | - Yun-Gi Kim
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University
| |
Collapse
|
6
|
Shinkai Y, Ding Y, Miura T, Kumagai Y. Aggregation of β-crystallin through covalent binding to 1,2-naphthoquinone is rescued by α-crystallin chaperone. J Toxicol Sci 2020; 45:37-43. [DOI: 10.2131/jts.45.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Yasuhiro Shinkai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Yunjie Ding
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Takashi Miura
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| |
Collapse
|
7
|
Kato Y, Suga N. Covalent adduction of endogenous and food-derived quinones to a protein: its biological significance. J Clin Biochem Nutr 2018; 62:213-220. [PMID: 29892159 PMCID: PMC5990407 DOI: 10.3164/jcbn.18-26] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 03/05/2018] [Indexed: 01/09/2023] Open
Abstract
There are many chemically reactive compounds, including quinone, in living systems and also food. Even after the ingestion of food polyphenols, quinones derived from catechol moieties could form endogenously in the body. Dopaquinone, dopamine quinone, estrogen-derived quinones, tryptamine-4,5-dione, and ubiquinone are examples of an endogenous quinone. These indicate that quinone is ubiquitously formed or present in living systems and food. Quinones can induce a variety of hazardous effects and also could have beneficial physiological effects. This review focuses on the chemical reactivity of quinone toward a biomolecule and its biological action.
Collapse
Affiliation(s)
- Yoji Kato
- Laboratory of Free Radical and Food Function, School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan.,Research Institute of Food and Nutrition, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan
| | - Naoko Suga
- Laboratory of Free Radical and Food Function, School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan
| |
Collapse
|
8
|
Kumagai Y, Abiko Y, Cong NL. Chemical toxicology of reactive species in the atmosphere: two decades of progress in an electron acceptor and an electrophile. J Toxicol Sci 2017; 41:SP37-SP47. [PMID: 28003638 DOI: 10.2131/jts.41.sp37] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Air pollutants such as diesel exhaust particles (DEP) are thought to cause pulmonary diseases such as asthma as a result of oxidative stress. While DEP contain a large number of polycyclic aromatic hydrocarbons, we have focused on 9,10-phenanthrenequinone (9,10-PQ) and 1,2-naphthoquinone (1,2-NQ) because of their chemical properties based on their oxidative and chemical modification capabilities. We have found that 9,10-PQ interacts with electron donors such as NADPH (in the presence of enzymes) and dithiols, resulting in generation of excess reactive oxygen species (ROS) through redox cycling. We have also shown that 1,2-NQ is able to modify protein thiols, leading to protein adducts associated with activation of redox signal transduction pathways at lower concentrations and toxicity at higher concentrations. In this review, we briefly introduce our findings from the last two decades.
Collapse
|
9
|
Abiko Y, Puga A, Kumagai Y. Covalent binding of quinones activates the Ah receptor in Hepa1c1c7 cells. J Toxicol Sci 2016; 40:873-86. [PMID: 26558468 DOI: 10.2131/jts.40.873] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Highly reactive quinone species produced by photooxidation and/or metabolic activation of mono- or bi-aromatic hydrocarbons modulate cellular homeostasis and electrophilic signal transduction pathways through the covalent modification of proteins. Polycyclic aromatic hydrocarbons, but not mono- or bi-aromatic hydrocarbons, are well recognized as ligands for the aryl hydrocarbon receptor (AhR). However, quinone species produced from mono- and bi-aromatic hydrocarbons could potentially cause AhR activation. To clarify the AhR response to mono- and bi-aromatic hydrocarbon quinones, we studied Cyp1a1 (cytochrome P450 1A1) induction and AhR activation by these quinones. We detected Cyp1a1 induction during treatment with quinones in Hepa1c1c7 cells, but not their parent compounds. Nine of the twelve quinones with covalent binding capability for proteins induced Cyp1a1. Cyp1a1 induction mediated by 1,2-naphthoquinone (1,2-NQ), 1,4-NQ, 1,4-benzoquinone (1,4-BQ) and tert-butyl-1,4-BQ was suppressed by a specific AhR inhibitor and was not observed in c35 cells, which do not have a functional AhR. These quinones stimulated AhR nuclear translocation and interaction with the AhR nuclear translocator. Interestingly, 1,2-NQ covalently modified AhR, which was detected by an immunoprecipitation assay using a specific antibody against 1,2-NQ, resulting in enhancement of xenobiotic responsive element (XRE)-derived luciferase activity and binding of AhR to the Cyp1a1 promoter region. While mono- and bi-aromatic hydrocarbons are generally believed to be poor ligands for AhR and hence unable to induce Cyp1a1, our study suggests that the quinones of these molecules are able to modify AhR and activate the AhR/XRE pathway, thereby inducing Cyp1a1. Since we previously reported that 1,2-NQ and tert-butyl-1,4-BQ also activate NF-E2-related factor 2, it seems likely that some of quinones are bi-functional inducers for phase-I and phase-II reaction of xenobiotics.
Collapse
Affiliation(s)
- Yumi Abiko
- Faculty of Medicine, University of Tsukuba
| | | | | |
Collapse
|
10
|
Wages PA, Lavrich KS, Zhang Z, Cheng WY, Corteselli E, Gold A, Bromberg P, Simmons SO, Samet JM. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress. Chem Res Toxicol 2015; 28:2411-8. [PMID: 26605980 DOI: 10.1021/acs.chemrestox.5b00424] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ) induce oxidative stress by redox cycling, which generates hydrogen peroxide (H2O2). Cysteinyl thiolate residues on regulatory proteins are subjected to oxidative modification by H2O2 in physiological contexts and are also toxicological targets of oxidant stress induced by environmental contaminants. We investigated whether exposure to environmentally relevant concentrations of 1,2-NQ can induce H2O2-dependent oxidation of cysteinyl thiols in regulatory proteins as a readout of oxidant stress in human airway epithelial cells. BEAS-2B cells were exposed to 0-1000 μM 1,2-NQ for 0-30 min, and levels of H2O2 were measured by ratiometric spectrofluorometry of HyPer. H2O2-dependent protein sulfenylation was measured using immunohistochemistry, immunoblotting, and isotopic mass spectrometry. Catalase overexpression was used to investigate the relationship between H2O2 generation and protein sulfenylation in cells exposed to 1,2-NQ. Multiple experimental approaches showed that exposure to 1,2-NQ at concentrations as low as 3 μM induces H2O2-dependent protein sulfenylation in BEAS-2B cells. Moreover, the time of onset and duration of 1,2-NQ-induced sulfenylation of the regulatory proteins GAPDH and PTP1B showed significant differences. Oxidative modification of regulatory cysteinyl thiols in human lung cells exposed to relevant concentrations of an ambient air contaminant represents a novel marker of oxidative environmental stress.
Collapse
Affiliation(s)
- Phillip A Wages
- Curriculum in Toxicology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7310, United States
| | - Katelyn S Lavrich
- Curriculum in Toxicology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7310, United States
| | - Zhenfa Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7400, United States
| | - Wan-Yun Cheng
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Elizabeth Corteselli
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7400, United States
| | - Avram Gold
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7400, United States
| | - Philip Bromberg
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7310, United States
| | - Steven O Simmons
- National Center for Computational Toxicology, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - James M Samet
- Curriculum in Toxicology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7310, United States.,Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Chapel Hill, North Carolina 27711, United States
| |
Collapse
|
11
|
Characterization of quinone derived protein adducts and their selective identification using redox cycling based chemiluminescence assay. J Chromatogr A 2015; 1403:96-103. [PMID: 26044383 DOI: 10.1016/j.chroma.2015.05.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022]
Abstract
The cytotoxic mechanism of many quinones has been correlated to covalent modification of cellular proteins. However, the identification of relevant proteins targets is essential but challenging goals. To better understand the quinones cytotoxic mechanism, human serum albumin (HSA) was incubated in vitro with different concentration of menadione (MQ). In this respect, the initial nucleophilic addition of proteins to quinone converts the conjugates to redox-cycling quinoproteins with altered conformation and secondary structure and extended life span than the short lived, free quinones. The conjugation of MQ with nucleophilic sites likewise, free cysteine as well as ɛ-amino group of lysine residue of HSA has been found to be in concentration dependent manner. The conventional methods for modified proteins identification in complex mixtures are complicated and time consuming. Herein, we describe a highly selective, sensitive, simple, and fast strategy for quinoproteins identification. The suggested strategy exploited the unique redox-cycling capability of quinoproteins in presence of a reductant, dithiothreitol (DTT), to generate reactive oxygen species (ROS) that gave sufficient chemiluminescence (CL) when mixed with luminol. The CL approach is highly selective and sensitive to detect the quinoproteins in ten-fold molar excess of native proteins without adduct enrichment. The approach was also coupled with gel filtration chromatography (GFC) and used to identify adducts in complex mixture of proteins in vitro as well as in rat plasma after MQ administration. Albumin was identified as the main protein in human and rat plasma forming adduct with MQ. Overall, the identification of quinoproteins will encourage further studies of toxicological impact of quinones on human health.
Collapse
|
12
|
Shinkai Y, Abiko Y, Ida T, Miura T, Kakehashi H, Ishii I, Nishida M, Sawa T, Akaike T, Kumagai Y. Reactive Sulfur Species-Mediated Activation of the Keap1-Nrf2 Pathway by 1,2-Naphthoquinone through Sulfenic Acids Formation under Oxidative Stress. Chem Res Toxicol 2015; 28:838-47. [PMID: 25807370 DOI: 10.1021/tx500416y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sulfhydration by a hydrogen sulfide anion and electrophile thiolation by reactive sulfur species (RSS) such as persulfides/polysulfides (e.g., R-S-SH/R-S-Sn-H(R)) are unique reactions in electrophilic signaling. Using 1,2-dihydroxynaphthalene-4-thioacetate (1,2-NQH2-SAc) as a precursor to 1,2-dihydroxynaphthalene-4-thiol (1,2-NQH2-SH) and a generator of reactive oxygen species (ROS), we demonstrate that protein thiols can be modified by a reactive sulfenic acid to form disulfide adducts that undergo rapid cleavage in the presence of glutathione (GSH). As expected, 1,2-NQH2-SAc is rapidly hydrolyzed and partially oxidized to yield 1,2-NQ-SH, resulting in a redox cycling reaction that produces ROS through a chemical disproportionation reaction. The sulfenic acid forms of 1,2-NQ-SH and 1,2-NQH2-SH were detected by derivatization experiments with dimedone. 1,2-NQH2-SOH modified Keap1 at Cys171 to produce a Keap1-S-S-1,2-NQH2 adduct. Subsequent exposure of A431 cells to 1,2-NQ or 1,2-NQH2-SAc caused an extensive chemical modification of cellular proteins in both cases. Protein adduction by 1,2-NQ through a thio ether (C-S-C) bond slowly declined through a GSH-dependent S-transarylation reaction, whereas that originating from 1,2-NQH2-SAc through a disulfide (C-S-S-C) bond was rapidly restored to the free protein thiol in the cells. Under these conditions, 1,2-NQH2-SAc activated Nrf2 and upregulated its target genes, which were enhanced by pretreatment with buthionine sulfoximine (BSO), to deplete cellular GSH. Pretreatment of catalase conjugated with poly(ethylene glycol) suppressed Nrf2 activation by 1,2-NQH2-SAc. These results suggest that RSS-mediated reversible electrophilic signaling takes place through sulfenic acids formation under oxidative stress.
Collapse
Affiliation(s)
- Yasuhiro Shinkai
- †Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,¶Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yumi Abiko
- †Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,¶Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Tomoaki Ida
- ‡Laboratory of Environmental Health Sciences, Tohoku University School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Takashi Miura
- †Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hidenao Kakehashi
- †Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Isao Ishii
- §Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Motohiro Nishida
- ∥Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Tomohiro Sawa
- ⊥Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Takaaki Akaike
- ‡Laboratory of Environmental Health Sciences, Tohoku University School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Yoshito Kumagai
- †Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,¶Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
13
|
Abiko Y, Luong NC, Kumagai Y. A Biotin-PEAC 5-maleimide labeling assay to detect electrophiles. J Toxicol Sci 2015; 40:405-11. [DOI: 10.2131/jts.40.405] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Yumi Abiko
- Faculty of Medicine, University of Tsukuba
| | - Nho Cong Luong
- Master’s Program of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Yoshito Kumagai
- Master’s Program of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
- Faculty of Medicine, University of Tsukuba
| |
Collapse
|
14
|
Beei C, Iwamoto N, Inaba T, Shinkai Y, Kumagai Y. Activation of EGFR/MEK/ERK/AP-1 signaling mediated by 1,2-naphthoquinone, an atmospheric electrophile, in human pulmonary A549 cells. J Toxicol Sci 2014; 38:793-7. [PMID: 24067727 DOI: 10.2131/jts.38.793] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1,2-Naphthoquinone (1,2-NQ) is found to be an electrophile contaminated in the atmosphere. Although we found that 1,2-NQ activates epidermal growth factor receptor (EGFR) coupled to inhibition of protein tyrosine phosphatase 1B (PTP1B) activity through covalent modification of Cys121 in human epithelial A431 cells, modulation of its downstream signal transduction pathway caused by 1,2-NQ remains to be elucidated. In the present study, we examined whether 1,2-NQ could affect such cellular signaling in human pulmonary A549 cells. Exposure of A549 cells to 1,2-NQ increased EGFR phosphorylation, resulting in activation of MEK/ERK signaling that was blocked by either PD15035 or PD98059. As a result, DNA binding activity of transcription factor AP-1 was enhanced during exposure to 1,2-NQ in the cells. These results suggest that the atmospheric electrophile phosphorylates EGFR, thereby activating the MEK/ERK/AP-1 signal transduction pathway in A549 cells.
Collapse
Affiliation(s)
- Chang Beei
- Master's Program in Environmental Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba
| | | | | | | | | |
Collapse
|
15
|
Toyama T, Shinkai Y, Yazawa A, Kakehashi H, Kaji T, Kumagai Y. Glutathione-mediated reversibility of covalent modification of ubiquitin carboxyl-terminal hydrolase L1 by 1,2-naphthoquinone through Cys152, but not Lys4. Chem Biol Interact 2014; 214:41-8. [PMID: 24582816 DOI: 10.1016/j.cbi.2014.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/31/2013] [Accepted: 02/19/2014] [Indexed: 12/13/2022]
Abstract
Covalent modification of cellular proteins by electrophiles affects electrophilic signal transduction and the dysfunction of enzymes that is involved in cytotoxicity. We have recently found a unique reaction which restores glyceraldehyde-3-phosphate dehydrogenase (GAPDH) that has been modified by 1,2-naphthoquinone (1,2-NQ) through a glutathione (GSH)-dependent S-transarylation reaction. We report here that ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) undergoes the same reaction. Exposure of human neuroblastoma SH-SY5Y cells to 1,2-NQ after pretreatment with buthionine sulfoximine (BSO) to deplete GSH resulted in an enhancement of covalent modification of UCH-L1 by 1,2-NQ. With recombinant human UCH-L1, we demonstrated that UCH-L1 underwent arylation by 1,2-NQ through Cys152 and Lys4, thereby decreasing its catalytic activity. Addition of GSH to an incubation mixture of 1,2-NQ-UCH-L1 adduct partially restored this decline in enzyme activity which was accompanied by decreased covalent attachment of 1,2-NQ, together with production of 1,2-NQ-GSH adduct. UCH-L1 in which Lys4 was mutated exhibited a lower level of covalent modification and enzyme inhibition, but completely recovered after addition of GSH. Taken together, these results suggest that Cys152 modification in UCH-L1 by 1,2-NQ is reversible via GSH-mediated S-transarylation reaction whereas Lys4 modification by 1,2-NQ is irreversible by GSH. Because UCH-L1 dysfunction has been associated with neurodegeneration, the electrophilic modification of Lys rather than Cys in UCH-L1 may be implicated in such neurodegenerative diseases.
Collapse
Affiliation(s)
- Takashi Toyama
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Research Fellow of the Japan Society for the Promotion of Science, 1-8 Chiyoda, Tokyo 102-8472, Japan
| | - Yasuhiro Shinkai
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Aki Yazawa
- College of Biological Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hidenao Kakehashi
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Toshiyuki Kaji
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yoshito Kumagai
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
16
|
Abiko Y, Kumagai Y. Interaction of Keap1 Modified by 2-tert-Butyl-1,4-benzoquinone with GSH: Evidence for S-Transarylation. Chem Res Toxicol 2013; 26:1080-7. [DOI: 10.1021/tx400085h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yumi Abiko
- Doctoral Program
in Biomedical
Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki
305-8575, Japan
| | - Yoshito Kumagai
- Doctoral Program
in Biomedical
Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki
305-8575, Japan
- Faculty
of Medicine, University of Tsukuba, 1-1-1
Tennodai, Tsukuba, Ibaraki
305-8575, Japan
| |
Collapse
|
17
|
Toyama T, Shinkai Y, Kaji T, Kumagai Y. A convenient method to assess chemical modification of protein thiols by electrophilic metals. J Toxicol Sci 2013; 38:477-84. [DOI: 10.2131/jts.38.477] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Takashi Toyama
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
- Research Fellow of the Japan Society for the Promotion of Science
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Yasuhiro Shinkai
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Toshiyuki Kaji
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Yoshito Kumagai
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| |
Collapse
|
18
|
Shinkai Y, Iwamoto N, Miura T, Ishii T, Cho AK, Kumagai Y. Redox cycling of 1,2-naphthoquinone by thioredoxin1 through Cys32 and Cys35 causes inhibition of its catalytic activity and activation of ASK1/p38 signaling. Chem Res Toxicol 2012; 25:1222-30. [PMID: 22587396 DOI: 10.1021/tx300069r] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1,2-Naphthoquinone (1,2-NQ) is an atmospheric chemical capable of (1) redox cycling with electron donors and (2) covalent modification of nucleophilic groups on proteins. In the present study, we investigated its interaction with the redox protein, thioredoxin1 (Trx1), which led to oxidative stress-dependent cell damage. In experiments with purified wild-type Trx1 and its double mutant (32S/35S Trx1), we found that incubation of Trx1 with 1,2-NQ resulted in a redox cycling reaction, generating superoxide and hydrogen peroxide involving Cys32 and Cys35 and an arylation reaction resulting in covalent modification of Lys85 together with a loss of Trx activity. A significant fraction of the lost Trx1 activity following interaction with 1,2-NQ was restored by dithiothreitol. Exposure of RAW264.7 cells to 1,2-NQ generated reactive oxygen species (ROS) and caused a decrease in Trx activity. Trx is a negative regulator of apoptosis signal-regulating kinase 1 (ASK1), and under the conditions of the experiment, 1,2-NQ activated ASK1 and p38, leading to PARP cleavage and apoptotic cell death that were blocked by pretreatment with polyethylene glycol-catalase. These results suggest that Trx1 readily undergoes oxidative modification by 1,2-NQ through the proximal thiols Cys32 and Cys35. It seems likely that ROS production concomitant with decline in cellular Trx activity plays a role in the activation of ASK1/p38 signaling to promote apoptotic cell death cause by 1,2-NQ exposure.
Collapse
Affiliation(s)
- Yasuhiro Shinkai
- Environmental Medicine Section, Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Takayama N, Iwamoto N, Sumi D, Shinkai Y, Tanaka-Kagawa T, Jinno H, Kumagai Y. Peroxiredoxin 6 is a molecular target for 1,2-naphthoquinone, an atmospheric electrophile, in human pulmonary epithelial A549 cells. J Toxicol Sci 2012; 36:817-21. [PMID: 22129745 DOI: 10.2131/jts.36.817] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1,2-Naphthoquinone (1,2-NQ) is an electrophile found in the atmosphere, which reacts readily with protein nucleophiles to form a stable protein adduct. Peroxiredoxin 6 (Prdx6) is predominantly expressed in lung tissue and functions in antioxidant defense by facilitating the repair of damaged cell membranes via reduction of peroxidized phospholipids. In the present study, human A549 pulmonary epithelial cells were exposed to 1,2-NQ to explore whether 1,2-NQ can bind covalently to Prdx6, thereby disrupting its catalytic activity. Two-dimensional SDS/PAGE followed by western blot analysis with a specific antibody against 1,2-NQ showed that Prdx6 was covalently modified by 1,2-NQ. Using purified human Prdx6, it was found that 1,2-NQ bound covalently to Prdx6 through Cys47, Lys144 and Cys91, resulting in a significant reduction in phospholipase A(2) activity. These results suggest that arylation of Prdx6 by 1,2-NQ may, at least in part, be involved in the cellular toxicity induced by 1,2-NQ.
Collapse
|
20
|
Hirose R, Miura T, Sha R, Shinkai Y, Tanaka-Kagawa T, Kumagai Y. A method for detecting covalent modification of sensor proteins associated with 1,4-naphthoquinone-induced activation of electrophilic signal transduction pathways. J Toxicol Sci 2012; 37:891-8. [DOI: 10.2131/jts.37.891] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Reiko Hirose
- Environmental Medicine Section, Faculty of Medicine, University of Tsukuba
| | - Takashi Miura
- Doctoral Programs in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Ryo Sha
- Leading Graduate School Doctoral Program, PhD Program in Human Biology, University of Tsukuba
| | - Yasuhiro Shinkai
- Environmental Medicine Section, Faculty of Medicine, University of Tsukuba
- Doctoral Programs in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
- Leading Graduate School Doctoral Program, PhD Program in Human Biology, University of Tsukuba
| | | | - Yoshito Kumagai
- Environmental Medicine Section, Faculty of Medicine, University of Tsukuba
- Doctoral Programs in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
- Leading Graduate School Doctoral Program, PhD Program in Human Biology, University of Tsukuba
| |
Collapse
|
21
|
Miura T, Shinkai Y, Hirose R, Iwamoto N, Cho AK, Kumagai Y. Glyceraldehyde-3-phosphate dehydrogenase as a quinone reductase in the suppression of 1,2-naphthoquinone protein adduct formation. Free Radic Biol Med 2011; 51:2082-9. [PMID: 21963991 DOI: 10.1016/j.freeradbiomed.2011.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 11/16/2022]
Abstract
1,2-Naphthoquinone (1,2-NQ) is electrophilic, and forms covalent bonds with protein thiols, but its two-electron reduction product 1,2-dihydroxynaphthalene (1,2-NQH(2)) is not, so enzymes catalyzing the reduction with reduced pyridine nucleotides as cofactors could protect cells from electrophile-based chemical insults. To assess this possibility, we examined proteins isolated from the 9000g supernatant from mouse liver for 1,2-NQ reductase activity using an HPLC assay procedure for the hydroquinone of 1,2-NQ and Cibacron Blue 3GA column chromatography and Western blot analysis with specific antibody to determine 1,2-NQ-bound proteins. Among the proteins with high affinities for pyridine nucleotides that also inhibited 1,2-NQ-protein adduct formation in the presence of NADH, a 37-kDa protein was found and identified as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Using recombinant human GAPDH, we found that this glycolytic enzyme indeed catalyzes the two-electron reduction of 1,2-NQ accompanied by extensive NADH consumption under 20% oxygen conditions. When either 1,2-NQH(2) or 1,2-NQ was incubated with GAPDH in the presence of NADH, minimal covalent bonding to the enzyme occurred compared to that in its absence. These results indicate that GAPDH can inhibit 1,2-NQ-based electrophilic protein modification by conversion to the nonelectrophilic 1,2-NQH(2) via an NADH-dependent process.
Collapse
Affiliation(s)
- Takashi Miura
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Kumagai Y, Shinkai Y, Miura T, Cho AK. The chemical biology of naphthoquinones and its environmental implications. Annu Rev Pharmacol Toxicol 2011; 52:221-47. [PMID: 21942631 DOI: 10.1146/annurev-pharmtox-010611-134517] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quinones are a group of highly reactive organic chemical species that interact with biological systems to promote inflammatory, anti-inflammatory, and anticancer actions and to induce toxicities. This review describes the chemistry, biochemistry, and cellular effects of 1,2- and 1,4-naphthoquinones and their derivatives. The naphthoquinones are of particular interest because of their prevalence as natural products and as environmental chemicals, present in the atmosphere as products of fuel and tobacco combustion. 1,2- and 1,4-naphthoquinones are also toxic metabolites of naphthalene, the major polynuclear aromatic hydrocarbon present in ambient air. Quinones exert their actions through two reactions: as prooxidants, reducing oxygen to reactive oxygen species; and as electrophiles, forming covalent bonds with tissue nucleophiles. The targets for these reactions include regulatory proteins such as protein tyrosine phosphatases; Kelch-like ECH-associated protein 1, the regulatory protein for NF-E2-related factor 2; and the glycolysis enzyme glyceraldehyde-3-phosphate dehydrogenase. Through their actions on regulatory proteins, quinones affect various cell signaling pathways that promote and protect against inflammatory responses and cell damage. These actions vary with the specific quinone and its concentration. Effects of exposure to naphthoquinones as environmental chemicals can vary with the physical state, i.e., whether the quinone is particle bound or is in the vapor state. The exacerbation of pulmonary diseases by air pollutants can, in part, be attributed to quinone action.
Collapse
Affiliation(s)
- Yoshito Kumagai
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | |
Collapse
|
23
|
Miura T, Kakehashi H, Shinkai Y, Egara Y, Hirose R, Cho AK, Kumagai Y. GSH-mediated S-transarylation of a quinone glyceraldehyde-3-phosphate dehydrogenase conjugate. Chem Res Toxicol 2011; 24:1836-44. [PMID: 21827172 DOI: 10.1021/tx200025y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Many cellular proteins with reactive thiols form covalent bonds with electrophiles, thereby modifying their structures and activities. Here, we describe the recovery of a glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), from such an electrophilic attack by 1,2-napthoquinone (1,2-NQ). GAPDH readily formed a covalent bond with 1,2-NQ through Cys152 at a low concentration (0.2 μM) in a cell-free system, but when human epithelial A549 cells were exposed to this quinone at 20 μM, only minimal binding was observed although extensive binding to numerous other cellular proteins occurred. Depletion of cellular glutathione (GSH) with buthionine sulfoximine (BSO) resulted in some covalent modification of cellular GAPDH by 1,2-NQ and a significant reduction of GAPDH activity in the cells. Incubation of native, but not boiled, human GAPDH that had been modified by 1,2-NQ with GSH resulted in a concentration-dependent removal of 1,2-NQ from the GAPDH conjugate, accompanied by partial recovery of lost catalytic activity and formation of a 1,2-NQ-GSH adduct (1,2-NQ-SG). While GAPDH is recognized as a multifunctional protein, our results show that GAPDH also has a unique ability to recover from electrophilic modification by 1,2-NQ through a GSH-dependent S-transarylation reaction.
Collapse
Affiliation(s)
- Takashi Miura
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Abiko Y, Miura T, Phuc BH, Shinkai Y, Kumagai Y. Participation of covalent modification of Keap1 in the activation of Nrf2 by tert-butylbenzoquinone, an electrophilic metabolite of butylated hydroxyanisole. Toxicol Appl Pharmacol 2011; 255:32-9. [DOI: 10.1016/j.taap.2011.05.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/16/2011] [Accepted: 05/16/2011] [Indexed: 12/01/2022]
|
25
|
Miura T, Shinkai Y, Jiang HY, Iwamoto N, Sumi D, Taguchi K, Yamamoto M, Jinno H, Tanaka-Kagawa T, Cho AK, Kumagai Y. Initial Response and Cellular Protection through the Keap1/Nrf2 System during the Exposure of Primary Mouse Hepatocytes to 1,2-Naphthoquinone. Chem Res Toxicol 2011; 24:559-67. [DOI: 10.1021/tx100427p] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | | | | | | | - Keiko Taguchi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Hideto Jinno
- Division of Environmental Chemistry, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Toshiko Tanaka-Kagawa
- Division of Environmental Chemistry, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Arthur K. Cho
- Southern California Particle Center, University of California, Los Angeles, California 90095, United States
| | - Yoshito Kumagai
- Southern California Particle Center, University of California, Los Angeles, California 90095, United States
| |
Collapse
|