1
|
Ashraf A, Zechmann B, Bruce ED. Hypoxia-inducible factor 1α modulates acrolein-induced cellular damage in bronchial epithelial cells. Toxicology 2025; 515:154158. [PMID: 40252947 DOI: 10.1016/j.tox.2025.154158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
Acrolein, a highly reactive α,β-unsaturated aldehyde, is a widespread environmental pollutant. It is generated during the incomplete combustion of materials such as tobacco smoke, petrol, coal, forest fires, and plastics, as well as from the overheating of frying oils. Acrolein is known to induce cellular damage and oxidative stress. This study investigates the critical role of hypoxia-inducible factor 1α (HIF-1α), which is a transcription factor required to regulate cell survival and angiogenesis, in protecting bronchial epithelial cells from acrolein-induced cytotoxicity and DNA damage under normoxic and hypoxic conditions. To our knowledge, no prior study has comprehensively evaluated the effects of HIF-1α on cellular responses to acrolein under normoxic and hypoxic conditions in vitro. Therefore, the goal of this study was to explore how silencing HIF-1α influences cellular responses to acrolein, and our study focused on changes in cytotoxicity, metabolic activity, DNA damage, and oxidative stress using the BEAS-2B cell line. We observed enhanced cell damage and reduced viability in cells exposed to acrolein when silenced with HIF-1α, particularly in hypoxic environments. While results indicate that silencing HIF-1α significantly increases cytotoxicity and DNA damage under hypoxia compared to normoxic conditions, oxidative stress indicator levels did not rise noticeably under hypoxia following HIF-1α silencing. This research warrants further investigation to indicate the importance of HIF-1α in adapting to environmental and hypoxic stressors, which are commonly found in chronic lung diseases and ischemic conditions.
Collapse
Affiliation(s)
- Asha Ashraf
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76706, USA
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, Waco, TX, USA
| | - Erica D Bruce
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76706, USA.
| |
Collapse
|
2
|
Kauneliene V, Bagdonas E, Aldonyte R, Raudoniute J, Ciuzas D, Bagdoniene L, Pocevičiūtė G, Prasauskas T, Krugly E, Martuzevicius D. Cytotoxicity of the exhaled aerosol particles from the usage of conventional cigarette and heated tobacco product as determined by a novel "Cells-on-Particles" exposure model in vitro. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124870. [PMID: 39218201 DOI: 10.1016/j.envpol.2024.124870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The exposure and health implications of exhaled aerosol particles from tobacco products remain a critical area of concern in public health. This research aimed to characterize the cytotoxicity of exhaled aerosol particles from conventional cigarettes (CC) and heated tobacco products (HTP) using a novel "Cells-on-Particles" integrated aerosol sampling and cytotoxicity in vitro testing platform. The research uniquely captures the physical and chemical characteristics of aerosols by depositing them onto fibrous matrixes, enabling a more accurate representation of exposure conditions. New insights were provided into the differences between CC and HTP in terms of particle size distributions, cell viability, metabolic activity, and the expression of genes related to xenobiotic metabolism and oxidative stress. This approach marks a significant advancement in the field by offering a more direct and representative method to evaluate the potential health hazards of tobacco aerosol particles.
Collapse
Affiliation(s)
- Violeta Kauneliene
- Department of Environmental Technology, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19-504, LT50254, Kaunas, Lithuania.
| | - Edvardas Bagdonas
- Department of Regenerative Medicine, Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ruta Aldonyte
- Department of Regenerative Medicine, Centre for Innovative Medicine, Vilnius, Lithuania
| | - Jovile Raudoniute
- Department of Regenerative Medicine, Centre for Innovative Medicine, Vilnius, Lithuania
| | - Darius Ciuzas
- Department of Environmental Technology, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19-504, LT50254, Kaunas, Lithuania
| | - Lauryna Bagdoniene
- Department of Environmental Technology, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19-504, LT50254, Kaunas, Lithuania
| | - Gailė Pocevičiūtė
- Department of Environmental Technology, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19-504, LT50254, Kaunas, Lithuania
| | - Tadas Prasauskas
- Department of Environmental Technology, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19-504, LT50254, Kaunas, Lithuania
| | - Edvinas Krugly
- Department of Environmental Technology, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19-504, LT50254, Kaunas, Lithuania
| | - Dainius Martuzevicius
- Department of Environmental Technology, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19-504, LT50254, Kaunas, Lithuania
| |
Collapse
|
3
|
Huang X, Zhang M, Wang J, Hu F. Association between interleukin-6 levels and stroke: a systematic review and meta-analysis. J Int Med Res 2024; 52:3000605241274626. [PMID: 39246071 PMCID: PMC11382220 DOI: 10.1177/03000605241274626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
OBJECTIVES We aimed to evaluate the association of interleukin-6 (IL-6) expression levels with stroke. METHODS According to the set search strategy, we systematically screened relevant studies using PubMed and extracted study results regarding IL-6 from the literature for comprehensive quantitative analysis to explore the relationship between IL-6 level and stroke risk. RESULTS This study included 15 publications with a total of 1696 participants, with 975 cases in the case group and 721 cases in the control group. Meta-analysis showed that IL-6 levels were significantly higher in the stroke population than those in the control group (standardized mean difference = 1.22, 95% confidence interval = 0.79-1.64). Subgroup analysis showed that there was no significant difference in heterogeneity for IL-6 detection methods between the two groups (I2 = 0, P = 0.47). The difference in heterogeneity test results regarding geographic region was statistically significant (I2 = 89.7%, P < 0.01). The results of heterogeneity testing for mean participant age were also statistically significant (I2 = 84.3%, P = 0.01). CONCLUSION The present study results showed that IL-6 may be significantly associated with stroke development.
Collapse
Affiliation(s)
- Xinyi Huang
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Manman Zhang
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Jiaojiao Wang
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Fuyong Hu
- School of Public Health, Bengbu Medical University, Bengbu, China
| |
Collapse
|
4
|
Park SH, Kang JH, Bae YS. The role and regulation of phospholipase D in metabolic disorders. Adv Biol Regul 2024; 91:100988. [PMID: 37845091 DOI: 10.1016/j.jbior.2023.100988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
Phospholipase D (PLD) is an enzyme that catalyzes the hydrolysis of phosphatidylcholine into phosphatidic acid and free choline. In mammals, PLD exists in two well-characterized isoforms, PLD1 and PLD2, and it plays pivotal roles as signaling mediators in various cellular functions, such as cell survival, differentiation, and migration. These isoforms are predominantly expressed in diverse cell types, including many immune cells, such as monocytes and macrophages, as well as non-immune cells, such as epithelial and endothelial cells. Several previous studies have revealed that the stimulation of these cells leads to an increase in PLD expression and its enzymatic products, potentially influencing the pathological responses in a wide spectrum of diseases. Metabolic diseases, exemplified by conditions, such as diabetes, obesity, hypertension, and atherosclerosis, pose significant global health challenges. Abnormal activation or dysfunction of PLD emerges as a potential contributing factor to the pathogenesis and progression of these metabolic disorders. Therefore, it is crucial to thoroughly investigate and understand the intricate relationship between PLD and metabolic diseases. In this review, we provide an in-depth overview of the functional roles and molecular mechanisms of PLD involved in metabolic diseases. By delving into the intricate interplay between PLD and metabolic disorders, this review aims to offer insights into the potential therapeutic interventions.
Collapse
Affiliation(s)
- Seon Hyang Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji Hyeon Kang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
5
|
Bedford R, Smith G, Rothwell E, Martin S, Medhane R, Casentieri D, Daunt A, Freiberg G, Hollings M. A multi-organ, lung-derived inflammatory response following in vitro airway exposure to cigarette smoke and next-generation nicotine delivery products. Toxicol Lett 2023; 387:35-49. [PMID: 37774809 DOI: 10.1016/j.toxlet.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Despite increasing use of in vitro models that closely resemble in vivo human biology, their application in understanding downstream effects of airway toxicity, such as inflammation, are at an early stage. In this study, we used various assays to examine the inflammatory response induced in MucilAir™ tissues and A549 cells exposed to three products known to induce toxicity. Reduced barrier integrity was observed in tissues following exposure to each product, with reduced viability and increased cytotoxicity also shown. Similar changes in viability were also observed in A549 cells. Furthermore, whole cigarette smoke (CS) induced downstream phenotypic THP-1 changes and endothelial cell adhesion, an early marker of atherosclerosis. In contrast, exposure to next-generation delivery product (NGP) aerosol did not induce this response. Cytokine, histological and RNA analysis highlighted increased biomarkers linked to inflammatory pathways and immune cell differentiation following exposure to whole cigarette smoke, including GM-CSF, IL-1β, cleaved caspase-3 and cytochrome P450 enzymes. As a result of similar observations in human airway inflammation, we propose that our exposure platform could act as a representative model for studying such events in vitro. Furthermore, this model could be used to test the inflammatory or anti-inflammatory impact posed by inhaled compounds delivered to the lung.
Collapse
Affiliation(s)
- R Bedford
- Labcorp Early Development Laboratories Limited, Harrogate, UK.
| | - G Smith
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - E Rothwell
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - S Martin
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - R Medhane
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - D Casentieri
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - A Daunt
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - G Freiberg
- Labcorp Early Development Laboratories Limited, Eye, UK
| | - M Hollings
- Labcorp Early Development Laboratories Limited, Harrogate, UK.
| |
Collapse
|
6
|
Cai JA, Zhang YZ, Yu ED, Ding WQ, Li ZS, Zhong L, Cai QC. Association of cigarette smoking with risk of colorectal cancer subtypes classified by gut microbiota. Tob Induc Dis 2023; 21:99. [PMID: 37529669 PMCID: PMC10377954 DOI: 10.18332/tid/168515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 08/03/2023] Open
Abstract
INTRODUCTION Both cigarette smoking and gut microbiota play important roles in colorectal carcinogenesis. We explored whether the association between smoking and colorectal cancer (CRC) risk varies by gut microbial enterotypes and how smoking-related enterotypes promote colorectal carcinogenesis. METHODS A case-control study was conducted. Fecal microbiota was determined by 16S rDNA sequencing. The cases with CRC or adenoma were subclassified by gut microbiota enterotypes. Multivariate analyses were used to test associations between smoking and the odds of colorectal neoplasm subtypes. Mann-Whitney U tests were used to find differential genera, genes, and pathways between the subtypes. RESULTS Included in the study were 130 CRC patients (type I: n=77; type II: n=53), 120 adenoma patients (type I: n=66; type II: n=54), and 130 healthy participants. Smoking increased the odds for type II tumors significantly (all p for trend <0.05) but not for type I tumors. The associations of smoking with increased odds of colorectal neoplasm significantly differed by gut microbiota enterotypes (p<0.05 for heterogeneity). An increase in carcinogenic bacteria (genus Escherichia shigella) and a decrease in probiotics (family Lachnospiraceae and Ruminococcaceae) in type II tumors may drive disease progression by upregulating oncogenic signaling pathways and inflammatory/oxidative stress response pathways, as well as protein phospholipase D1/2, cytochrome C, and prostaglandin-endoperoxide synthase 2 expression. CONCLUSIONS Smoking was associated with a higher odds of type II colorectal neoplasms but not type I tumors, supporting a potential role for the gut microbiota in mediating the association between smoking and colorectal neoplasms.
Collapse
Affiliation(s)
- Jia-An Cai
- Department of Gastroenterology and Endoscopy, Huashan Hospital, Fudan University, Shanghai, China
| | - Yong-Zhen Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Gastroenterology, 928 Hospital of PLA Joint Logistics Force, Haikou, China
| | - En-Da Yu
- Department of General Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wei-Qun Ding
- Department of Gastroenterology and Endoscopy, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- National Clinical Research Center for Digestive Diseases, Shanghai, China
| | - Liang Zhong
- Department of Gastroenterology and Endoscopy, Huashan Hospital, Fudan University, Shanghai, China
| | - Quan-Cai Cai
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- National Clinical Research Center for Digestive Diseases, Shanghai, China
| |
Collapse
|
7
|
Li M, Jin S, Zhang Z, Ma H, Yang X. Interleukin-6 facilitates tumor progression by inducing ferroptosis resistance in head and neck squamous cell carcinoma. Cancer Lett 2021; 527:28-40. [PMID: 34902522 DOI: 10.1016/j.canlet.2021.12.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022]
Abstract
Ferroptosis resistance is an important mechanism of tumor progression. Interleukin-6 (IL-6) is a representative inflammatory cytokine during chronic inflammation; however, our current understanding of its regulatory role of ferroptosis during carcinogenesis of head and neck squamous cell carcinoma is limited. Chromatin immunoprecipitation and functional observations were performed to investigate xCT-regulatory function of IL-6. We observed a gradual increase in lipid peroxide 4-hydroxynonenal and IL-6 levels during progression from normal oral mucosa to leukoplakia and HNSCC. Meanwhile, the expression of xCT, a key amino acid antiporter assisting ferroptosis resistance, was correlated with IL-6 levels. The upregulated expression of xCT in HNSCC is associated with poor prognosis. Silencing of xCT inhibited HNSCC cell proliferation in vitro and tumor growth in vivo, inducing ferroptosis. Mechanistically, IL-6 transcriptionally activates xCT expression through the JAK2/STAT3 pathway. Furthermore, IL-6 reversed ferroptosis and growth suppression that was induced by xCT knockdown or ferroptosis inducer erastin. Our results demonstrate the critical role of IL-6-induced ferroptosis resistance during HNSCC carcinogenesis. The IL-6/STAT3/xCT axis acts as a novel mechanism driving tumor progression and thus may potentially be utilized as a target for tumor prevention and therapy.
Collapse
Affiliation(s)
- Mingyu Li
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, No. 639, Zhizaoju Rd, Shanghai, 200011, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Rd, Shanghai, 200011, China; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, No. 639, Zhizaoju Rd, Shanghai, 200011, China.
| | - Shufang Jin
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, No. 639, Zhizaoju Rd, Shanghai, 200011, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Rd, Shanghai, 200011, China; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, No. 639, Zhizaoju Rd, Shanghai, 200011, China.
| | - Zhiyuan Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, No. 639, Zhizaoju Rd, Shanghai, 200011, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Rd, Shanghai, 200011, China; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, No. 639, Zhizaoju Rd, Shanghai, 200011, China.
| | - Hailong Ma
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, No. 639, Zhizaoju Rd, Shanghai, 200011, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Rd, Shanghai, 200011, China; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, No. 639, Zhizaoju Rd, Shanghai, 200011, China.
| | - Xi Yang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, No. 639, Zhizaoju Rd, Shanghai, 200011, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Rd, Shanghai, 200011, China; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, No. 639, Zhizaoju Rd, Shanghai, 200011, China.
| |
Collapse
|
8
|
Su Y, Han W, Kovacs-Kasa A, Verin AD, Kovacs L. HDAC6 Activates ERK in Airway and Pulmonary Vascular Remodeling of COPD. Am J Respir Cell Mol Biol 2021; 65:603-614. [PMID: 34280336 DOI: 10.1165/rcmb.2020-0520oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a multisystemic respiratory disease which is associated with progressive airway and pulmonary vascular remodeling due to the increased proliferation of bronchial and pulmonary arterial smooth muscle cells (BSMCs and PASMCs) and overproduction of extracellular matrix (ECM), e.g., collagen. Cigarette smoke (CS) and several mediators such as PDGF and IL-6 play critical role in the COPD pathogenesis. Histone deacetylase 6 (HDAC6) has been shown to be implicated in vascular remodeling. However, the HDAC6 signaling in airway and pulmonary vascular remodeling of COPD and the underlying mechanisms remain undetermined. Here we show that HDAC6 expression is upregulated in lungs of COPD patients and animal model. We also found that cigarette smoke extract (CSE), PDGF and IL-6 increase the protein levels and activation of HDAC6 in BSMCs and PASMCs. Furthermore, CSE and these stimulants induced deacetylation and phosphorylation of ERK1/2 and increased collagen synthesis and proliferation of BSMCs and PASMCs which were prevented by HDAC6 inhibition. Inhibition of ERK1/2 also diminished the CSE, PDGF and IL-6-caused elevation in collagen levels and cell proliferation. Pharmacological HDAC6 inhibition by tubastatin A prevented the CS-stimulated increases in the thickness of the bronchial and pulmonary arterial wall, airway resistance, emphysema as well as right ventricular (RV) systolic pressure (RVSP) and RV hypertrophy in rat model of COPD. These data demonstrate that the upregulated HDAC6 governs the collagen synthesis and proliferation of BSMCs and PASMCs leading to airway and vascular remodeling in COPD.
Collapse
Affiliation(s)
- Yunchao Su
- Augusta University Medical College of Georgia, 160343, Department of Pharmacology, Augusta, Georgia, United States
| | - Weihong Han
- Augusta University, 1421, Augusta, Georgia, United States
| | | | | | - Laszlo Kovacs
- Augusta University, 1421, Augusta, Georgia, United States;
| |
Collapse
|
9
|
Sepand MR, Maghsoudi AS, Shadboorestan A, Mirnia K, Aghsami M, Raoufi M. Cigarette smoke-induced toxicity consequences of intracellular iron dysregulation and ferroptosis. Life Sci 2021; 281:119799. [PMID: 34229007 DOI: 10.1016/j.lfs.2021.119799] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 01/18/2023]
Abstract
Despite numerous studies on the mechanisms of cigarette smoking toxicity over the past three decades, some aspects remain obscure. Recent developments have drawn attention to some hopeful indicators that allow us to advance our awareness of cigarette-induced cell death. Ferroptosis is considered a type of governed death of cells distinguished by the iron-dependent lipid hydroperoxide deposition to fatal concentrations. Ferroptosis has been linked with pathological settings such as neurodegenerative diseases, cancer, heart attack, hemorrhagic stroke, traumatic brain injury, ischemia-reperfusion injury, and renal dysfunction. This review tries to explain the causal role of ferroptosis cascade in cigarette smoke-mediated toxicity and cell death, highlighting associations on potential action mechanisms and proposing suggestions for its detoxifying and therapeutic interventions.
Collapse
Affiliation(s)
- Mohammad Reza Sepand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Armin Salek Maghsoudi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kayvan Mirnia
- Department of Neonatology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Aghsami
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran; Physical Chemistry I and Research Center of Micro and Nanochemistry (Cμ), University of Siegen, Siegen, Germany.
| |
Collapse
|
10
|
Naderi N, Farias R, Abou Rjeili M, Mostafavi-Pour-Manshadi SMY, Krishnan S, Li PZ, Baglole CJ, Bourbeau J. Investigating the effect of pretreatment with azithromycin on inflammatory mediators in bronchial epithelial cells exposed to cigarette smoke. Exp Lung Res 2020; 47:98-109. [PMID: 33336605 DOI: 10.1080/01902148.2020.1857470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Purpose of the study: Macrolide therapy is effective in reducing chronic obstructive pulmonary disease (COPD) exacerbations. Our recent study has shown the effectiveness of taking azithromycin in COPD patients, not only ex-smokers but also current smokers. Beyond their anti-microbial effects, macrolides have anti-inflammatory and immunomodulatory properties. The aim of this study was to determine if pretreatment with azithromycin modulates cigarette smoke-induced inflammation in airway epithelial cells. We hypothesized that pretreatment with azithromycin decreases exacerbation frequency by modulating inflammation in human airway epithelial cells exposed to cigarette smoke. Materials and methods: BEAS-2B bronchial epithelial cells were incubated with 5% cigarette smoke extract (CSE) for 3 h, 6 h, and 24 h. Then, airway epithelial cells were pretreated with azithromycin and exposed to 5% CSE. In each stage, the expression and release of IL-6 and IL-8 mRNA were analyzed by quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Results: There was a significant increase of IL-6 and IL-8 mRNA, as well as an increase in extracellular IL-8 protein following exposure to 5% CSE. When cells were pretreated with azithromycin and exposed to 5% CSE for 3 h, there was a significant dose-dependent decrease in the expression of IL-6 mRNA. A final concentration of 9 µg/mL of azithromycin was sufficient to decrease IL-6, IL-8 mRNA, and extracellular IL-8 levels. Conclusion: Pretreatment with azithromycin decreased the expression of IL-6 and IL-8 mRNA and the release of IL-8 in bronchial epithelial cells exposed to cigarette smoke. These results demonstrate the direct effect of azithromycin on inflammatory mediators in bronchial epithelial cells exposed to cigarette smoke.
Collapse
Affiliation(s)
- Nafiseh Naderi
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of McGill University Health Center, McGill University, Montréal, Canada
| | - Raquel Farias
- Snyder Institute for Chronic Diseases, Department of Critical Care Medicine, University of Calgary, Calgary, Canada
| | - Mira Abou Rjeili
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of McGill University Health Center, McGill University, Montréal, Canada
| | | | - Suurya Krishnan
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of McGill University Health Center, McGill University, Montréal, Canada
| | - Pei Zhi Li
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of McGill University Health Center, McGill University, Montréal, Canada
| | - Carolyn J Baglole
- Departments of Medicine, Pathology & Pharmacology & Therapeutics, McGill University, Montreal, Canada.,Research Institute of the McGill University Health Center, Montreal, Canada
| | - Jean Bourbeau
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of McGill University Health Center, McGill University, Montréal, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Canada
| |
Collapse
|
11
|
High Serum Level of IL-17 in Patients with Chronic Obstructive Pulmonary Disease and the Alpha-1 Antitrypsin PiZ Allele. Pulm Med 2020; 2020:9738032. [PMID: 32089881 PMCID: PMC7011399 DOI: 10.1155/2020/9738032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is multifactorial disease, which is characterized by airflow limitation and can be provoked by genetic factors, including carriage of the PiZ allele of the protease inhibitor (Pi) gene, encoding alpha-1 antitrypsin (A1AT). Both homozygous and heterozygous PiZ allele carriers can develop COPD. It was found recently that normal A1AT regulates cytokine levels, including IL-17, which is involved in COPD progression. The aim of this study was to determine whether homozygous or heterozygous PiZ allele carriage leads to elevated level of IL-17 and other proinflammatory cytokines in COPD patients. Materials and Methods. Serum samples and clinical data were obtained from 44 COPD patients, who included 6 PiZZ, 8 PiMZ, and 30 PiMM A1AT phenotype carriers. Serum concentrations of IL-17, IL-6, IL-8, IFN-γ, and TNF-α were measured by the enzyme-linked immunosorbent assay (ELISA). All A1AT phenotypes were verified by narrow pH range isoelectrofocusing with selective A1AT staining. A turbidimetric method was used for quantitative A1AT measurements. Results. COPD patients with both PiZZ and PiMZ phenotypes demonstrated elevated IL-17 and decreased IFN-γ levels in comparison to patients with the PiMM phenotype of A1AT. Thereafter, the ratio IL-17/IFN-γ in PiZZ and PiMZ groups greatly exceeded the values of the PiMM group. Homozygous PiZ allele carriers also had significantly higher levels of IL-6 and lower levels of IL-8, and IL-6 values correlated negatively with A1AT concentrations. Conclusions. The presence of the PiZ allele in both homozygous and heterozygous states is associated with altered serum cytokine levels, including elevated IL-17, IL-17/IFN-γ ratio, and IL-6 (only PiZZ), but lower IFN-γ and IL-8.
Collapse
|
12
|
Lin BC, Li QY, Tian L, Liu HL, Liu XH, Shi Y, He C, Ding SS, Yan J, Li K, Bian LP, Lai WQ, Zhang W, Li X, Xi ZG. Identification of apoptosis-associated protein factors distinctly expressed in cigarette smoke condensate-exposed airway bronchial epithelial cells. J Biochem Mol Toxicol 2020; 34:e22444. [PMID: 31954379 DOI: 10.1002/jbt.22444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/13/2019] [Accepted: 01/08/2020] [Indexed: 11/07/2022]
Abstract
Smoking is associated with an increased risk of respiratory diseases, including lung cancer and asthma. However, the mechanisms or diagnostic markers for smoking-related diseases remain largely unknown. Here we investigated the role of cigarette smoke condensate (CSC) in the regulation of human bronchial epithelial cell (BEAS-2B) behavior. We found that exposure to CSC significantly inhibited BEAS-2B cell viability, impaired cell morphology, induced cell apoptosis, triggered oxidative damage, and promoted inflammatory response, which suggests a deleterious effect of CSC on bronchial epithelial cells. In addition, CSC markedly altered the expression of apoptosis-associated protein factors, including p21, soluble tumor necrosis factor receptor 1, and Fas ligand. In sum, our study identified a panel of novel protein factors that may mediate the actions of CSC on bronchial epithelial cells and have a predictive value for the development and progression of smoking-related diseases, thus providing insights into the development of potential diagnostic and therapeutic strategies against these diseases.
Collapse
Affiliation(s)
- Ben-Cheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Qiu-Yue Li
- Department of Occupation Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Huan-Liang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiao-Hua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yue Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chen He
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Su-Su Ding
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Li-Ping Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Wen-Qing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Wei Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiang Li
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Zhu-Ge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
13
|
Gene expression microarray public dataset reanalysis in chronic obstructive pulmonary disease. PLoS One 2019; 14:e0224750. [PMID: 31730674 PMCID: PMC6857915 DOI: 10.1371/journal.pone.0224750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) was classified by the Centers for Disease Control and Prevention in 2014 as the 3rd leading cause of death in the United States (US). The main cause of COPD is exposure to tobacco smoke and air pollutants. Problems associated with COPD include under-diagnosis of the disease and an increase in the number of smokers worldwide. The goal of our study is to identify disease variability in the gene expression profiles of COPD subjects compared to controls, by reanalyzing pre-existing, publicly available microarray expression datasets. Our inclusion criteria for microarray datasets selected for smoking status, age and sex of blood donors reported. Our datasets used Affymetrix, Agilent microarray platforms (7 datasets, 1,262 samples). We re-analyzed the curated raw microarray expression data using R packages, and used Box-Cox power transformations to normalize datasets. To identify significant differentially expressed genes we used generalized least squares models with disease state, age, sex, smoking status and study as effects that also included binary interactions, followed by likelihood ratio tests (LRT). We found 3,315 statistically significant (Storey-adjusted q-value <0.05) differentially expressed genes with respect to disease state (COPD or control). We further filtered these genes for biological effect using results from LRT q-value <0.05 and model estimates’ 10% two-tailed quantiles of mean differences between COPD and control), to identify 679 genes. Through analysis of disease, sex, age, and also smoking status and disease interactions we identified differentially expressed genes involved in a variety of immune responses and cell processes in COPD. We also trained a logistic regression model using the common array genes as features, which enabled prediction of disease status with 81.7% accuracy. Our results give potential for improving the diagnosis of COPD through blood and highlight novel gene expression disease signatures.
Collapse
|
14
|
Xie C, Zhu J, Jiang Y, Chen J, Wang X, Geng S, Wu J, Zhong C, Li X, Meng Z. Sulforaphane Inhibits the Acquisition of Tobacco Smoke-Induced Lung Cancer Stem Cell-Like Properties via the IL-6/ΔNp63α/Notch Axis. Theranostics 2019; 9:4827-4840. [PMID: 31367260 PMCID: PMC6643434 DOI: 10.7150/thno.33812] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Tobacco smoke (TS) critically contributes to the development of lung cancer; however, the underlying molecular mechanisms remain unclear. The induction of cancer stem cells (CSCs) by TS represents an early event in tumor initiation. The lung cancer-related gene ΔNp63α is highly expressed in epithelial tissues and drives tumor formation and cancer stem cell properties. This study investigated the role of ΔNp63α in the long-term acquisition of TS-induced lung CSC-like properties. Methods: The expression levels of ΔNp63α, lung CSC markers, and interleukin (IL)-6 in lung carcinoma specimens were determined by western blotting and enzyme linked immunosorbent assays. Human bronchial epithelial (HBE) cells were chronically exposed to 2 % cigarette smoke extract for 55 passages, following which colony formation capacity, expression of proteins associated with malignant transformation, lung CSC markers, and tumor incidence were investigated. The effects of ΔNp63α on long-term TS exposure-induced lung CSC-like properties and Notch activation were analyzed using tumorsphere formation ability, immunofluorescence assays, luciferase reporter assays, and western blotting. The roles of IL-6 on chronic TS exposure-induced lung CSC-like properties and ΔNp63α expression were also examined. Moreover, the effects of sulforaphane (SFN) on TS-transformed lung CSC-like properties, IL-6 and ΔNp63α expression, and Notch signaling were investigated in vitro and in vivo. Results: Higher levels of ΔNp63α were observed in the lung cancer tissues of smokers than in those of non-smokers, whereas ΔNp63α was positively correlated with CD133 and Oct4 expression in lung cancer tissues. Data from the in vivo and in vitro experiments demonstrated that long-term TS exposure-transformed HBE (THBE) cells acquired lung CSC-like properties. Furthermore, ΔNp63α transcriptionally activated the Notch signaling pathway to promote the acquisition of CSC-like properties by the THBE cells. TS upregulated IL-6, which increased ΔNp63α expression in THBE sphere-forming cells. Finally, SFN inhibited the TS-induced CSC-like properties of THBE cells via the IL-6/ΔNp63α/Notch axis. Conclusion: Our data suggest that the IL-6/ΔNp63α/Notch axis plays an important role in the long-term TS exposure-induced acquisition of lung CSC-like properties and SFN intervention.
Collapse
Affiliation(s)
- Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jianyun Zhu
- Suzhou Digestive Diseases and Nutrition Research Center, North District of Suzhou Municipal Hospital. The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, China
| | - Ye Jiang
- Department of Food and School Hygiene, Taizhou Municipal Center for Disease Control and Prevention, Taizhou, Zhejiang, 318000, China
| | - Jiaqi Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xueqi Wang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Shanshan Geng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jieshu Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Zili Meng
- Department of Respiratory Medicine, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| |
Collapse
|
15
|
The effects of cigarette smoking extracts on cell cycle and tumor spread: novel evidence. Future Sci OA 2019. [DOI: 10.4155/fsoa-2019-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Pezzuto A, Citarella F, Croghan I, Tonini G. The effects of cigarette smoking extracts on cell cycle and tumor spread: novel evidence. Future Sci OA 2019; 5:FSO394. [PMID: 31205749 PMCID: PMC6556819 DOI: 10.2144/fsoa-2019-0017] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoking is a major preventable risk factor for lung cancer, contributing to lung cancer progression and metastasis. Moreover, cigarette smoking correlates with increased metastasis frequency of pancreatic, breast and bladder cancer. The aim of this review was to examine the role of cigarette smoke extract in cell cycle and cancer progression. Clinical impact and the effects of cigarette smoke extract on carcinogenesis are discussed. 98 of the over 5000 chemicals in tobacco smoke are known carcinogens that can act on cancer genes such as K-RAS and p53. Through various mechanisms these compounds can activate molecules involved in the cell cycle, such as cyclins, and molecules involved in apoptosis and autophagy, such as Beclin-1 or LC3B. A search of the literature, including in vitro and in vivo studies, was carried out and the results summarized. There is evidence of cancerogenic effects of cigarette smoke compounds. Cigarette smoke extract is a tobacco condensate obtained by filtration processes. Studies have shown that it can modify the cell cycle, inducing uncontrolled cell proliferation. This effect occurs through activation of genetic and epigenetic pathways and increasing the expression of proteins involved in inflammation. The pathways activated by cigarette smoke extract open up opportunities for researchers to develop new targeted therapies toward the specific molecules involved. Furthermore, the effects exerted by cigarette smoke extract on normal epithelial cells hold potential for use in the development of prevention medicine and early cancer diagnosis.
Collapse
Affiliation(s)
- Aldo Pezzuto
- Cardiovascular & Thoracic Department, AOU Sant'Andrea, Sapienza - Università di Roma, Roma, Italy
| | | | - Ivana Croghan
- Department of Medicine Clinical Research Office & Primary Care Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Giuseppe Tonini
- Oncology Department, Campus Bio-Medico Università di Roma, Roma, Italy
| |
Collapse
|
17
|
Phospholipase D and the Mitogen Phosphatidic Acid in Human Disease: Inhibitors of PLD at the Crossroads of Phospholipid Biology and Cancer. Handb Exp Pharmacol 2019; 259:89-113. [PMID: 31541319 DOI: 10.1007/164_2019_216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lipids are key building blocks of biological membranes and are involved in complex signaling processes such as metabolism, proliferation, migration, and apoptosis. Extracellular signaling by growth factors, stress, and nutrients is transmitted through receptors that activate lipid-modifying enzymes such as the phospholipases, sphingosine kinase, or phosphoinositide 3-kinase, which then modify phospholipids, sphingolipids, and phosphoinositides. One such important enzyme is phospholipase D (PLD), which cleaves phosphatidylcholine to yield phosphatidic acid and choline. PLD isoforms have dual role in cells. The first involves maintaining cell membrane integrity and cell signaling, including cell proliferation, migration, cytoskeletal alterations, and invasion through the PLD product PA, and the second involves protein-protein interactions with a variety of binding partners. Increased evidence of elevated PLD expression and activity linked to many pathological conditions, including cancer, neurological and inflammatory diseases, and infection, has motivated the development of dual- and isoform-specific PLD inhibitors. Many of these inhibitors are reported to be efficacious and safe in cells and mouse disease models, suggesting the potential for PLD inhibitors as therapeutics for cancer and other diseases. Current knowledge and ongoing research of PLD signaling networks will help to evolve inhibitors with increased efficacy and safety for clinical studies.
Collapse
|
18
|
Kopa PN, Pawliczak R. Effect of smoking on gene expression profile – overall mechanism, impact on respiratory system function, and reference to electronic cigarettes. Toxicol Mech Methods 2018; 28:397-409. [DOI: 10.1080/15376516.2018.1461289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Paulina Natalia Kopa
- Department of Immunopathology, Division of Allergology, Immunology and Dermatology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| | - Rafał Pawliczak
- Department of Immunopathology, Division of Allergology, Immunology and Dermatology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
19
|
Resistin as a Prooxidant Factor and Predictor of Endothelium Damage in Patients with Mild Acute Pancreatitis Exposed to Tobacco Smoke Xenobiotics. Mediators Inflamm 2017; 2017:3039765. [PMID: 29081601 PMCID: PMC5634610 DOI: 10.1155/2017/3039765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/27/2017] [Indexed: 12/17/2022] Open
Abstract
Objectives The study was aimed to assess the influence of tobacco smoke exposure on the intensity of inflammation measured by IL-6, α1-antitripsin (AAT) and α1-acid glycoprotein (AGP) concentrations, and Cd level and oxidative stress intensity measured by advanced oxidation protein product (AOPP) concentration in the blood of healthy subjects and AP patients during hospitalization. Endothelin-1 (ET-1) and resistin concentrations, markers of endothelium injury, were determined. Results An increased IL-6 concentration in healthy smokers compared to nonsmokers and AP patients compared to controls was shown. An increased AAT and AGP concentrations during hospitalization of AP patients were noted, in both smokers (AAT, AGP) and nonsmokers (AAT). In comparison to control groups, in AP patients, a 2-fold increased resistin concentration correlating with ET-1 concentration and decreased albumin concentration accompanied by increased AOPP concentration were demonstrated. AOPP concentration was higher in smokers with AP compared to nonsmokers and gradually enhanced during their hospitalization. Conclusions Tobacco smoke exposure can have a proinflammatory effect in both healthy subjects and AP patients. Increased resistin concentration in AP patients negatively correlating with albumin concentration has prooxidative effect on this protein resulting in enhanced AOPP level. Increased resistin concentration can intensify AAT and AGP production during AP.
Collapse
|
20
|
Phospholipase D1 expression analysis in relapsing-remitting multiple sclerosis patients. Neurol Sci 2017; 38:865-872. [DOI: 10.1007/s10072-017-2857-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 02/16/2017] [Indexed: 10/20/2022]
|
21
|
Yao L, Zhu LP, Xu XY, Tan LL, Sadilek M, Fan H, Hu B, Shen XT, Yang J, Qiao B, Yang S. Discovery of novel xylosides in co-culture of basidiomycetes Trametes versicolor and Ganoderma applanatum by integrated metabolomics and bioinformatics. Sci Rep 2016; 6:33237. [PMID: 27616058 PMCID: PMC5018966 DOI: 10.1038/srep33237] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/23/2016] [Indexed: 12/14/2022] Open
Abstract
Transcriptomic analysis of cultured fungi suggests that many genes for secondary metabolite synthesis are presumably silent under standard laboratory condition. In order to investigate the expression of silent genes in symbiotic systems, 136 fungi-fungi symbiotic systems were built up by co-culturing seventeen basidiomycetes, among which the co-culture of Trametes versicolor and Ganoderma applanatum demonstrated the strongest coloration of confrontation zones. Metabolomics study of this co-culture discovered that sixty-two features were either newly synthesized or highly produced in the co-culture compared with individual cultures. Molecular network analysis highlighted a subnetwork including two novel xylosides (compounds 2 and 3). Compound 2 was further identified as N-(4-methoxyphenyl)formamide 2-O-β-D-xyloside and was revealed to have the potential to enhance the cell viability of human immortalized bronchial epithelial cell line of Beas-2B. Moreover, bioinformatics and transcriptional analysis of T. versicolor revealed a potential candidate gene (GI: 636605689) encoding xylosyltransferases for xylosylation. Additionally, 3-phenyllactic acid and orsellinic acid were detected for the first time in G. applanatum, which may be ascribed to response against T.versicolor stress. In general, the described co-culture platform provides a powerful tool to discover novel metabolites and help gain insights into the mechanism of silent gene activation in fungal defense.
Collapse
Affiliation(s)
- Lu Yao
- School of Life Science, Qingdao Agricultural University, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao 266109, Shandong Province, China
| | - Li-Ping Zhu
- School of Life Science, Qingdao Agricultural University, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao 266109, Shandong Province, China
| | - Xiao-Yan Xu
- School of Life Science, Qingdao Agricultural University, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao 266109, Shandong Province, China
| | - Ling-Ling Tan
- School of Life Science, Qingdao Agricultural University, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao 266109, Shandong Province, China
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States of America
| | - Huan Fan
- Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Bo Hu
- Industrial Product Division, Intrexon Corporation, South San Francisco, CA 94080, United States of America
| | - Xiao-Ting Shen
- School of Life Science, Qingdao Agricultural University, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao 266109, Shandong Province, China
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Bin Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300070, China
| | - Song Yang
- School of Life Science, Qingdao Agricultural University, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao 266109, Shandong Province, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| |
Collapse
|