1
|
Omori H, Chikamoto J, Nagahara M, Hirata M, Otoi T. Evaluating variations in bilirubin glucuronidation activity by protease inhibitors in canine and human primary hepatocytes cultured in a 3D culture system. Toxicol In Vitro 2023; 93:105689. [PMID: 37660998 DOI: 10.1016/j.tiv.2023.105689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/18/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Bilirubin is excreted into the bile from hepatocytes, mainly as monoglucuronosyl and bisglucuronosyl conjugates, reflecting bilirubin glucuronidation activity. However, there is limited information on the in vitro evaluation of liver cell lines or primary hepatocytes. This study aimed to investigate variations in the bilirubin metabolic function of canine and human hepatocyte spheroids formed in a three-dimensional (3D) culture system indicated by the formation of bilirubin glucuronides when protease inhibitors such as atazanavir, indinavir, ritonavir, and nelfinavir were treated with bilirubin. The culture supernatant was collected for bilirubin glucuronidation assessment and the cells were used to evaluate viability. On day 8 of culture, both canine and human hepatocyte spheroids showed high albumin secretion and distinct spheroid formation, and their bilirubin glucuronidation activities were evaluated considering cell viability. Treatment with atazanavir and ritonavir remarkably inhibited bilirubin glucuronide formation, wherein atazanavir showed the highest inhibition, particularly in human hepatocyte spheroids. These results may reflect the effects on cellular uptake of bilirubin and its intracellular metabolic function. Thus, primary hepatocytes cultured in a 3D culture system may be a useful in vitro system for the comprehensive evaluation of bilirubin metabolic function and risk assessment in bilirubin metabolic disorders for drug development.
Collapse
Affiliation(s)
- Hisayoshi Omori
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan; Preclinical Basic Research, Taiho Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Junko Chikamoto
- Preclinical Basic Research, Taiho Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Megumi Nagahara
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan; Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Maki Hirata
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan; Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Takeshige Otoi
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan; Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan.
| |
Collapse
|
2
|
Comparative analysis of bilirubin glucuronidation activity in canine and human primary hepatocytes using a 3D culture system. In Vitro Cell Dev Biol Anim 2022; 58:712-718. [PMID: 35913527 DOI: 10.1007/s11626-022-00711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/13/2022] [Indexed: 11/05/2022]
Abstract
Species differences in bilirubin glucuronidation activity are observed between humans and dogs through liver microsomes and recombinant UDP-glucuronosyltransferase 1A1. Humans exhibit higher activity than that of dogs. In this study, bilirubin glucuronidation activity was examined in canine and human primary hepatocyte spheroids formed using a 3D culture system. When spheroid development in canine and human primary hepatocytes was evaluated on days 7 and 14 after the start of culture, canine primary hepatocyte spheroids had a more distinct spherical shape than human hepatocyte spheroids, irrespective of the culture period. Furthermore, mono- and di-glucuronide generation detected in spheroids were significantly higher (P < 0.05) in human primary hepatocytes than in canine primary hepatocytes after 24 h of incubation with bilirubin for each culture period. These results suggest that there are species differences in the bilirubin glucuronidation activity of primary hepatocytes with spheroid formation between humans and dogs, with the activity being higher in humans than in dogs.
Collapse
|
3
|
Goudar VS, Koduri MP, Ta YNN, Chen Y, Chu LA, Lu LS, Tseng FG. Impact of a Desmoplastic Tumor Microenvironment for Colon Cancer Drug Sensitivity: A Study with 3D Chimeric Tumor Spheroids. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48478-48491. [PMID: 34633791 DOI: 10.1021/acsami.1c18249] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Three-dimensional (3D) spheroid culture provides opportunities to model tumor growth closer to its natural context. The collagen network in the extracellular matrix supports autonomic tumor cell proliferation, but its presence and role in tumor spheroids remain unclear. In this research, we developed an in vitro 3D co-culture model in a microwell 3D (μ-well 3D) cell-culture array platform to mimic the tumor microenvironment (TME). The modular setup is used to characterize the paracrine signaling molecules and the role of the intraspheroidal collagen network in cancer drug resistance. The μ-well 3D platform is made up of poly(dimethylsiloxane) that contains 630 round wells for individual spheroid growth. Inside each well, the growth surface measured 500 μm in diameter and was functionalized with the amphiphilic copolymer. HCT-8 colon cancer cells and/or NIH3T3 fibroblasts were seeded in each well and incubated for up to 9 days for TME studies. It was observed that NIH3T3 cells promoted the kinetics of tumor organoid formation. The two types of cells self-organized into core-shell chimeric tumor spheroids (CTSs) with fibroblasts confined to the shell and cancer cells localized to the core. Confocal microscopy analysis indicated that a type-I collagen network developed inside the CTS along with increased TGF-β1 and α-SMA proteins. The results were correlated with a significantly increased stiffness in 3D co-cultured CTS up to 52 kPa as compared to two-dimensional (2D) co-culture. CTS was more resistant to 5-FU (IC50 = 14.0 ± 3.9 μM) and Regorafenib (IC50 = 49.8 ± 9.9 μM) compared to cells grown under the 2D condition 5-FU (IC50 = 12.2 ± 3.7 μM) and Regorafenib (IC50 = 5.9 ± 1.9 μM). Targeted collagen homeostasis with Sclerotiorin led to damaged collagen structure and disrupted the type-I collagen network within CTS. Such a treatment significantly sensitized collagen-supported CTS to 5-FU (IC50 = 4.4 ± 1.3 μM) and to Regorafenib (IC50 = 0.5 ± 0.2 μM). In summary, the efficient formation of colon cancer CTSs in a μ-well 3D culture platform allows exploration of the desmoplastic TME. The novel role of intratumor collagen quality as a drug sensitization target warrants further investigation.
Collapse
Affiliation(s)
- Venkanagouda S Goudar
- Department of Engineering and System Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Manohar Prasad Koduri
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
- Department of Mechanical, Materials, and Aerospace, School of Engineering, University of Liverpool, Harrison Hughes Building, Liverpool L693GH, U.K
| | - Yen-Nhi Ngoc Ta
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Li-An Chu
- Department of Biomedical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Long-Sheng Lu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan, ROC
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan, ROC
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan, ROC
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan, ROC
| | - Fan-Gang Tseng
- Department of Engineering and System Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC
| |
Collapse
|
4
|
Yamazaki T, Tokiwa T. Elevated levels of expression of cytochrome P450 3A4 in a human liver epithelial cell line in differentiation-inducing conditions. Hum Cell 2021; 34:750-758. [PMID: 33495943 DOI: 10.1007/s13577-021-00487-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
Cytochrome P450 (CYP) enzymes, especially CYP3A4 play a major role in the metabolism of xenobiotics in human liver. CYP3A4-expressing human liver or hepatoma cell lines may be good cell substitutes of human hepatocytes for drug metabolism studies. However, there are only a few cell lines expressing high levels of CYP3A4. The aim of this study is to investigate the expression of CYP3A4 and its mechanism in an immortalized non-tumorigenic human liver epithelial cell line, THLE-5b in differentiation-inducing conditions. When THLE-5b cells were cultivated in culture medium supplemented with hepatocytic differentiation-inducing factors, they showed hepatocytic morphology. In addition, elevated levels of expression not only of α1-antitrypsin (AAT) and albumin (ALB) mRNAs, but also of CYP3A4 mRNA, which are functional hepatocyte markers, were observed compared with the control. Among hepatocytic differentiation-inducing factors, dexamethasone (DEX) and insulin-transferrin-sodium selenite (ITS) seemed to be involved in elevation of expression of CYP3A4 mRNA. The mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitor U0126 or the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 reduced CYP3A4 mRNA levels of THLE-5b cells. Furthermore, the CpG site of the CYP3A4 promoter region in THLE-5b cells was found to be unmethylated, although in low CYP3A4-expressing HepG2 cells, the site was methylated. In conclusion, THLE-5b cells, which are unmethylated at the CpG site of the CYP3A4 promoter region, express CYP3A4 mRNA through the MEK/ERK1/2 and PI3K/Akt signaling pathways and acquire hepatocytic functions in differentiation-inducing conditions. Thus, THLE-5b cells could be a useful cell system for the study of drug metabolism.
Collapse
Affiliation(s)
- Taisuke Yamazaki
- Department of Liver Cell Biology, Kohno Clinical Medicine Research Institute, 3-4-4 Kita-shinagawa, Shinagawa-ku, Tokyo, 140-0001, Japan.
| | - Takayoshi Tokiwa
- Department of Liver Cell Biology, Kohno Clinical Medicine Research Institute, 3-4-4 Kita-shinagawa, Shinagawa-ku, Tokyo, 140-0001, Japan
| |
Collapse
|
5
|
Fujimi TJ, Mezaki Y, Masaki T, Tajima A, Nakamura M, Yoshikawa A, Murai N, Aizawa M, Kojima S, Matsumoto Y, Aizaki H, Matsuura T. Investigation of the effects of urea cycle amino acids on the expression of ALB and CEBPB in the human hepatocellular carcinoma cell line FLC-4. Hum Cell 2020; 33:590-598. [PMID: 32474770 PMCID: PMC7324429 DOI: 10.1007/s13577-020-00383-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/24/2020] [Indexed: 11/17/2022]
Abstract
Cell lines are powerful tools for research into liver function at the molecular level. However, they are generally unsuitable for rigorously assessing the effects of amino acid composition, because many lines require serum-containing medium for their maintenance. Here, we aimed to investigate the effects of ornithine and arginine, which are included in the characteristic metabolic process in hepatocyte, on a human hepatoma-derived cell line (FLC-4) that can be cultured in serum-free medium. FLC-4 cells were cultured under the following three conditions: + ornithine/ – arginine, – ornithine/ – arginine, and –ornithine/ + arginine. Albumin expression evaluated by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay and showed no obvious differences based on the presence of ornithine or arginine. However, the mRNA levels of two liver-enriched transcription factors (CEBPB and HNF1A), which are involved in regulating albumin expression, were significantly higher in cells grown in medium-containing arginine than that in cells grown in ornithine-containing medium. Western blotting showed that the levels both activating and inhibitory C/EBPβ isoforms were significantly increased in cells grown in arginine medium. Furthermore, we have found that depletion of both ornithine and arginine, the polyamine sources, in the medium did not cause polyamine deficiency. When ornithine and arginine were depleted, albumin production was significantly reduced at the mRNA level, CEBPB mRNA levels were increased, and the level of activating form of C/EBPβ was increased. The results of this study suggest that in hepatocyte, these two amino acids might have different functions, and because of which they elicit disparate cellular responses.
Collapse
Affiliation(s)
- Takahiko J Fujimi
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, Namegaya, Chigasaki, Kanagawa, Japan. .,Department of Laboratory Medicine, The Jikei University School of Medicine, Nishi-shinbashi, Minato-ku, Tokyo, Japan.
| | - Yoshihiro Mezaki
- Department of Laboratory Medicine, The Jikei University School of Medicine, Nishi-shinbashi, Minato-ku, Tokyo, Japan
| | - Takahiro Masaki
- Department of Laboratory Medicine, The Jikei University School of Medicine, Nishi-shinbashi, Minato-ku, Tokyo, Japan
| | - Ayasa Tajima
- Department of Molecular Biology, The Jikei University School of Medicine, Nishi-shinbashi, Minato-ku, Tokyo, Japan
| | - Mariko Nakamura
- Department of Laboratory Medicine, The Jikei University School of Medicine, Nishi-shinbashi, Minato-ku, Tokyo, Japan
| | - Akira Yoshikawa
- Department of Laboratory Medicine, The Jikei University School of Medicine, Nishi-shinbashi, Minato-ku, Tokyo, Japan.,Department of Applied Chemistry, School of Science and Technology, Meiji University, Higashimita, Tama-ku, Kawasaki, Japan
| | - Noriyuki Murai
- Department of Molecular Biology, The Jikei University School of Medicine, Nishi-shinbashi, Minato-ku, Tokyo, Japan
| | - Mamoru Aizawa
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Higashimita, Tama-ku, Kawasaki, Japan
| | - Soichi Kojima
- Liver Cancer Prevention Research Unit, RIKEN Center for Integrative Medical Sciences, Hirosawa, Wako, Saitama, Japan
| | - Yoshihiro Matsumoto
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, The Jikei University School of Medicine, Nishi-shinbashi, Minato-ku, Tokyo, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Tomokazu Matsuura
- Department of Laboratory Medicine, The Jikei University School of Medicine, Nishi-shinbashi, Minato-ku, Tokyo, Japan
| |
Collapse
|
6
|
Hirano T, Hirata M, Fujimoto S, Nguyen NT, Le QA, Tanihara F, Otoi T. Comparative analysis of bilirubin glucuronidation activity in 2D- and 3D-cultured human hepatocellular carcinoma HepG2 cells. In Vitro Cell Dev Biol Anim 2020; 56:277-280. [PMID: 32394241 DOI: 10.1007/s11626-020-00451-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/03/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Takayuki Hirano
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
- Toxicology Laboratory, TAIHO Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Maki Hirata
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan.
| | | | - Nhien Thi Nguyen
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Quynh Anh Le
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Fuminori Tanihara
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Takeshige Otoi
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| |
Collapse
|
7
|
Yokobori K, Azuma I, Chiba K, Akita H, Furihata T, Kobayashi K. Indirect activation of constitutive androstane receptor in three-dimensionally cultured HepG2 cells. Biochem Pharmacol 2019; 168:26-37. [PMID: 31202736 DOI: 10.1016/j.bcp.2019.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/11/2019] [Indexed: 11/17/2022]
Abstract
Constitutive androstane receptor (CAR), a member of the nuclear receptor superfamily, is retained as an inactive form phosphorylated at threonine in the cytoplasm of hepatocytes. Upon activation, CAR is dephosphorylated to move into the nucleus and induces the transcription of genes. Thus, nuclear translocation is a key step for CAR activation in hepatocytes. However, this nuclear translocation has not been demonstrated in conventional two-dimensionally-cultured immortalized cell lines such as HepG2, in which CAR spontaneously accumulates in the nucleus. In this study, we showed that treatment with the indirect CAR activator phenobarbital activated transcription of the CYP3A4 gene in three-dimensionally (3D)-cultured HepG2 cells. CAR was retained as its phosphorylated form in the cytoplasm and was translocated to the nucleus in 3D-cultured HepG2 cells in response to treatment with phenobarbital. Moreover, okadaic acid and epidermal growth factor, were found to repress phenobarbital-induced CAR nuclear translocation and subsequent activation of the CYP3A4 gene promoter. These results suggested that 3D-cultured HepG2 cells properly regulated CAR activation as has been observed in hepatocytes.
Collapse
Affiliation(s)
- Kosuke Yokobori
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Ikuko Azuma
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kan Chiba
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tomomi Furihata
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kaoru Kobayashi
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| |
Collapse
|
8
|
Cho N, Kobayashi K, Yoshida M, Kogure N, Takayama H, Chiba K. Identification of novel glutathione adducts of benzbromarone in human liver microsomes. Drug Metab Pharmacokinet 2016; 32:46-52. [PMID: 28131653 DOI: 10.1016/j.dmpk.2016.10.412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 12/16/2022]
Abstract
Benzbromarone (BBR) is a potent uricosuric drug that can cause serious liver injury. Our recent study suggested that 1'-hydroxy BBR, one of major metabolites of BBR, is metabolized to a cytotoxic metabolite that could be detoxified by glutathione (GSH). The aim of this study was to clarify whether GSH adducts are formed from 1'-hydroxy BBR in human liver microsomes (HLM). Incubation of 1'-hydroxy BBR with GSH in HLM did not result in the formation of GSH adducts, but 1',6-dihydroxy BBR was formed. In addition, incubation of 1',6-dihydroxy BBR with GSH in HLM resulted in the formation of three novel GSH adducts (M1, M2 and M3). The structures of M1 and M2 were estimated to be GSH adducts in which the 1-hydroxyethyl group at the C-2 position and the hydroxyl group at the C-1' position of 1',6-dihydroxy BBR were substituted by GSH, respectively. We also found that the 6-hydroxylation of 1'-hydroxy BBR is mainly catalyzed by CYP2C9 and that several CYPs and/or non-enzymatic reaction are involved in the formation of GSH adducts from 1',6-dihydroxy BBR. The results indicate that 1'-hydroxy BBR is metabolized to reactive metabolites via 1',6-dihydroxy BBR formation, suggesting that these reactive metabolites are responsible for BBR-induced liver injury.
Collapse
Affiliation(s)
- Naoki Cho
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Kaoru Kobayashi
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan.
| | - Mina Yoshida
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Noriyuki Kogure
- Department of Bio-functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Hiromitsu Takayama
- Department of Bio-functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Kan Chiba
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| |
Collapse
|
9
|
Ghosh C, Hossain M, Spriggs A, Ghosh A, Grant GA, Marchi N, Perucca E, Janigro D. Sertraline-induced potentiation of the CYP3A4-dependent neurotoxicity of carbamazepine: an in vitro study. Epilepsia 2015; 56:439-49. [PMID: 25656284 PMCID: PMC4413932 DOI: 10.1111/epi.12923] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2014] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Drug toxicity is a hurdle to drug development and to clinical translation of basic research. Antiepileptic drugs such as carbamazepine (CBZ) and selective serotonin reuptake inhibitors such as sertraline (SRT) are commonly co-prescribed to patients with epilepsy and comorbid depression. Because SRT may interfere with cytochrome P450 (CYP) enzyme activity and CYPs have been implicated in the conversion of CBZ to reactive cytotoxic metabolites, we investigated in vitro models to determine whether SRT affects the neurotoxic potential of CBZ and the mechanisms involved. METHODS Human fetal brain-derived dopaminergic neurons, human brain microvascular endothelial cells (HBMECs), and embryonic kidney (HEK) cells were used to evaluate cytotoxicity of CBZ and SRT individually and in combination. Nitrite and glutathione (GSH) levels were measured with drug exposure. To validate the role of CYP3A4 in causing neurotoxicity, drug metabolism was compared to cell death in HEK CYP3A4 overexpressed and cells pretreated with the CYP3A4 inhibitor ketoconazole. RESULTS In all cellular systems tested, exposure to CBZ (127 μM) or SRT (5 μM) alone caused negligible cytotoxicity. By contrast CBZ, tested at a much lower concentration (17 μM) in combination with SRT (5 μM), produced prominent cytotoxicity within 15 min exposure. In neurons and HBMECs, cytotoxicity was associated with increased nitrite levels, suggesting involvement of free radicals as a pathogenetic mechanism. Pretreatment of HBMECs with reduced GSH or with the GSH precursor N-acetyl-L-cysteine prevented cytotoxic response. In HEK cells, the cytotoxic response to the CBZ + SRT combination correlated with the rate of CBZ biotransformation and production of 2-hydroxy CBZ, further suggesting a causative role of reactive metabolites. In the same system, cytotoxicity was potentiated by overexpression of CYP3A4, and prevented by CYP3A4 inhibitor. SIGNIFICANCE These results demonstrate an unexpected neurotoxic interaction between CBZ and SRT, apparently related to increased CYP3A4-mediated production of reactive CBZ metabolites. The potential clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Chaitali Ghosh
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Bio-medical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
| | - Mohammad Hossain
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Bio-medical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
| | - Addison Spriggs
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Bio-medical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
| | - Arnab Ghosh
- Department of Pathobiology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
| | - Gerald A. Grant
- Department of Neurosurgery and Neurobiology, Stanford University School of Medicine, Stanford, California, U.S.A
| | - Nicola Marchi
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics, CNRS, Montpellier, France
| | - Emilio Perucca
- Department of Internal Medicine and Therapeutics, University of Pavia and C. Mondino National Neurological Institute, Pavia, Italy
| | - Damir Janigro
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Bio-medical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Neurosurgery, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
| |
Collapse
|
10
|
Mimura H, Kobayashi K, Xu L, Hashimoto M, Ejiri Y, Hosoda M, Chiba K. Effects of cytokines on CYP3A4 expression and reversal of the effects by anti-cytokine agents in the three-dimensionally cultured human hepatoma cell line FLC-4. Drug Metab Pharmacokinet 2014; 30:105-10. [PMID: 25760537 DOI: 10.1016/j.dmpk.2014.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/31/2014] [Accepted: 08/08/2014] [Indexed: 11/29/2022]
Abstract
The expression of hepatic cytochrome P450 (CYP) enzymes is altered under pathological conditions with increased levels of cytokines. In this study, we analyzed the effects of cytokines (interleukin [IL]-1β, IL-6 and tumor necrosis factor α) on the expression of CYP3A4 using newly introduced three-dimensionally cultured human hepatocarcinoma FLC-4 cells. The mRNA level of CYP3A4 was significantly decreased by IL-1β, IL-6 and tumor necrosis factor-α. Formation of α-hydroxytriazolam catalyzed by CYP3A was decreased by IL-1β and IL-6. Pre-treatment with IL-6 enhanced the cytotoxic effects of gefitinib and paclitaxel. In addition, tocilizumab and IL-1 receptor antagonist restored the decreased expression of CYP3A4 mRNA by IL-6 and IL-1β, respectively. These results obtained by using three-dimensionally cultured FLC-4 cells are consistent with results obtained by using primary human hepatocytes and results of clinical studies. Therefore, three-dimensionally cultured FLC-4 cell system may be a promising cellular tool to assess the effects of cytokines on CYP3A4 expression.
Collapse
Affiliation(s)
- Hanaka Mimura
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kaoru Kobayashi
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | - Linxiaoqing Xu
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Mari Hashimoto
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yoko Ejiri
- Tsukuba Research Center, Kuraray, Co., Ltd., Tsukuba, Japan
| | - Masaya Hosoda
- Tsukuba Research Center, Kuraray, Co., Ltd., Tsukuba, Japan
| | - Kan Chiba
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
11
|
Sanoh S, Santoh M, Takagi M, Kanayama T, Sugihara K, Kotake Y, Ejiri Y, Horie T, Kitamura S, Ohta S. Fluorometric assessment of acetaminophen-induced toxicity in rat hepatocyte spheroids seeded on micro-space cell culture plates. Toxicol In Vitro 2014; 28:1176-82. [PMID: 24878114 DOI: 10.1016/j.tiv.2014.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/09/2014] [Accepted: 05/08/2014] [Indexed: 12/26/2022]
Abstract
Hepatotoxicity induced by the metabolic activation of drugs is a major concern in drug discovery and development. Three-dimensional (3-D) cultures of hepatocyte spheroids may be superior to monolayer cultures for evaluating drug metabolism and toxicity because hepatocytes in spheroids maintain the expression of various metabolizing enzymes and transporters, such as cytochrome P450 (CYP). In this study, we examined the hepatotoxicity due to metabolic activation of acetaminophen (APAP) using fluorescent indicators of cell viability and intracellular levels of glutathione (GSH) in rat hepatocyte spheroids grown on micro-space cell culture plates. The mRNA expression levels of some drug-metabolizing enzymes were maintained during culture. Additionally, this culture system was compatible with microfluorometric imaging under confocal laser scanning microscopy. APAP induced a decrease in intracellular ATP at 10mM, which was blocked by the CYP inhibitor 1-aminobenzotriazole (ABT). APAP (10mM, 24h) decreased the levels of both intracellular ATP and GSH, and GSH-conjugated APAP (APAP-GSH) were formed. All three effects were blocked by ABT, confirming a contribution of APAP metabolic activation by CYP to spheroid toxicity. Fluorometric imaging of hepatocyte spheroids on micro-space cell culture plates may allow the screening of drug-induced hepatotoxicity during pharmaceutical development.
Collapse
Affiliation(s)
- Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Masataka Santoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Masashi Takagi
- Faculty of Pharmaceutical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Tatsuya Kanayama
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazumi Sugihara
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshinkai, Kure, Hiroshima 737-0112, Japan
| | - Yaichiro Kotake
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoko Ejiri
- Tsukuba Research Center, Kuraray Co., Ltd., 41 Miyukigaoka, Tsukuba, Ibaraki 305-0841, Japan
| | - Toru Horie
- De Three Research Laboratories, 25-4 Saigo, Tsukuba, Ibaraki 305-0036, Japan
| | - Shigeyuki Kitamura
- Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
12
|
Astashkina A, Grainger DW. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. Adv Drug Deliv Rev 2014; 69-70:1-18. [PMID: 24613390 DOI: 10.1016/j.addr.2014.02.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 12/18/2022]
Abstract
Drug failure due to toxicity indicators remains among the primary reasons for staggering drug attrition rates during clinical studies and post-marketing surveillance. Broader validation and use of next-generation 3-D improved cell culture models are expected to improve predictive power and effectiveness of drug toxicological predictions. However, after decades of promising research significant gaps remain in our collective ability to extract quality human toxicity information from in vitro data using 3-D cell and tissue models. Issues, challenges and future directions for the field to improve drug assay predictive power and reliability of 3-D models are reviewed.
Collapse
|
13
|
Kato R, Shigemoto K, Akiyama H, Ieda A, Ijiri Y, Hayashi T. Human Hepatocarcinoma Functional Liver Cell-4 Cell Line Exhibits High Expression of Drug-Metabolizing Enzymes in Three-Dimensional Culture. Biol Pharm Bull 2014; 37:1782-7. [DOI: 10.1248/bpb.b14-00438] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ryuji Kato
- Laboratory of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| | - Kota Shigemoto
- Laboratory of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| | - Hiromasa Akiyama
- Laboratory of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| | - Asaka Ieda
- Laboratory of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| | - Yoshio Ijiri
- Laboratory of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| | - Tetsuya Hayashi
- Laboratory of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| |
Collapse
|
14
|
Saiki R, Hayashi D, Ikuo Y, Nishimura K, Ishii I, Kobayashi K, Chiba K, Toida T, Kashiwagi K, Igarashi K. Acrolein stimulates the synthesis of IL-6 and C-reactive protein (CRP) in thrombosis model mice and cultured cells. J Neurochem 2013; 127:652-9. [DOI: 10.1111/jnc.12336] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/11/2013] [Accepted: 06/10/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Ryotaro Saiki
- Graduate School of Pharmaceutical Sciences; Chiba University; Chuo-ku Chiba Japan
- Amine Pharma Research Institute; Innovation Plaza at Chiba University; Chuo-ku Chiba Japan
| | - Daisuke Hayashi
- Graduate School of Pharmaceutical Sciences; Chiba University; Chuo-ku Chiba Japan
| | - Yukiko Ikuo
- Graduate School of Pharmaceutical Sciences; Chiba University; Chuo-ku Chiba Japan
| | - Kazuhiro Nishimura
- Graduate School of Pharmaceutical Sciences; Chiba University; Chuo-ku Chiba Japan
| | - Itsuko Ishii
- Graduate School of Pharmaceutical Sciences; Chiba University; Chuo-ku Chiba Japan
| | - Kaoru Kobayashi
- Graduate School of Pharmaceutical Sciences; Chiba University; Chuo-ku Chiba Japan
| | - Kan Chiba
- Graduate School of Pharmaceutical Sciences; Chiba University; Chuo-ku Chiba Japan
| | - Toshihiko Toida
- Graduate School of Pharmaceutical Sciences; Chiba University; Chuo-ku Chiba Japan
| | - Keiko Kashiwagi
- Faculty of Pharmacy; Chiba Institute of Science; Choshi Chiba Japan
| | - Kazuei Igarashi
- Graduate School of Pharmaceutical Sciences; Chiba University; Chuo-ku Chiba Japan
- Amine Pharma Research Institute; Innovation Plaza at Chiba University; Chuo-ku Chiba Japan
| |
Collapse
|
15
|
Merrick BA, Phadke DP, Auerbach SS, Mav D, Stiegelmeyer SM, Shah RR, Tice RR. RNA-Seq profiling reveals novel hepatic gene expression pattern in aflatoxin B1 treated rats. PLoS One 2013; 8:e61768. [PMID: 23630614 PMCID: PMC3632591 DOI: 10.1371/journal.pone.0061768] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/13/2013] [Indexed: 01/16/2023] Open
Abstract
Deep sequencing was used to investigate the subchronic effects of 1 ppm aflatoxin B1 (AFB1), a potent hepatocarcinogen, on the male rat liver transcriptome prior to onset of histopathological lesions or tumors. We hypothesized RNA-Seq would reveal more differentially expressed genes (DEG) than microarray analysis, including low copy and novel transcripts related to AFB1’s carcinogenic activity compared to feed controls (CTRL). Paired-end reads were mapped to the rat genome (Rn4) with TopHat and further analyzed by DESeq and Cufflinks-Cuffdiff pipelines to identify differentially expressed transcripts, new exons and unannotated transcripts. PCA and cluster analysis of DEGs showed clear separation between AFB1 and CTRL treatments and concordance among group replicates. qPCR of eight high and medium DEGs and three low DEGs showed good comparability among RNA-Seq and microarray transcripts. DESeq analysis identified 1,026 differentially expressed transcripts at greater than two-fold change (p<0.005) compared to 626 transcripts by microarray due to base pair resolution of transcripts by RNA-Seq, probe placement within transcripts or an absence of probes to detect novel transcripts, splice variants and exons. Pathway analysis among DEGs revealed signaling of Ahr, Nrf2, GSH, xenobiotic, cell cycle, extracellular matrix, and cell differentiation networks consistent with pathways leading to AFB1 carcinogenesis, including almost 200 upregulated transcripts controlled by E2f1-related pathways related to kinetochore structure, mitotic spindle assembly and tissue remodeling. We report 49 novel, differentially-expressed transcripts including confirmation by PCR-cloning of two unique, unannotated, hepatic AFB1-responsive transcripts (HAfT’s) on chromosomes 1.q55 and 15.q11, overexpressed by 10 to 25-fold. Several potentially novel exons were found and exon refinements were made including AFB1 exon-specific induction of homologous family members, Ugt1a6 and Ugt1a7c. We find the rat transcriptome contains many previously unidentified, AFB1-responsive exons and transcripts supporting RNA-Seq’s capabilities to provide new insights into AFB1-mediated gene expression leading to hepatocellular carcinoma.
Collapse
MESH Headings
- Aflatoxin B1/toxicity
- Animals
- Carcinogens/toxicity
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- E2F1 Transcription Factor/physiology
- Exons
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Regulatory Networks
- Glucuronosyltransferase/genetics
- Glucuronosyltransferase/metabolism
- High-Throughput Nucleotide Sequencing
- Liver/drug effects
- Liver/metabolism
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Male
- Oligonucleotide Array Sequence Analysis
- Precancerous Conditions/chemically induced
- Precancerous Conditions/metabolism
- Principal Component Analysis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Sequence Analysis, RNA
- Transcriptome
Collapse
Affiliation(s)
- B Alex Merrick
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America.
| | | | | | | | | | | | | |
Collapse
|
16
|
Kobayashi K, Kajiwara E, Ishikawa M, Mimura H, Oka H, Ejiri Y, Hosoda M, Chiba K. Cytotoxic Effects of Benzbromarone and Its 1′-Hydroxy Metabolite in Human Hepatocarcinoma FLC4 Cells Cultured on Micro-space Cell Culture Plates. Drug Metab Pharmacokinet 2013; 28:265-8. [DOI: 10.2133/dmpk.dmpk-12-nt-105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|