1
|
Di DYW, Li B, Jeon MK, Yan T. Comparing solid-based concentration methods for rapid and efficient recovery of SARS-CoV-2 for wastewater surveillance. J Virol Methods 2023; 320:114790. [PMID: 37558056 DOI: 10.1016/j.jviromet.2023.114790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
As wastewater-based surveillance of SARS-CoV-2 attracts interest globally, there is a need to evaluate and identify rapid and efficient methods for concentrating enveloped viruses in wastewater. When comparing five precipitation/flocculation-based concentration methods (including aluminum hydroxide adsorption-precipitation, AHAP; zinc acetate precipitation, ZAP; skimmed milk flocculation, SMF; FeCl3 precipitation, FCP; and direct centrifugation, DC), AHAP was found to be the most efficient method in terms of seeded BCoV recovery (50.2 %). Based on the BCoV recovery efficiency and turnaround time, the AHAP and DC methods were selected and tested on five additional wastewater samples containing both seeded BCoV and indigenous wastewater SARS-CoV-2 RNA. The BCoV recovery (DC: average=30.1 %, sx =14.7 %; AHAP: average=33.0 %, sx =14.2 %) and SARS-CoV-2 based on the N2 gene assay (DC: average=3.6 ×103 gene copies or GC/mL, sx =1.9 × 103 GC/mL; AHAP: average=3.0 ×103 GC/mL, sx =2.0 ×103 GC/mL) of both methods were not significantly different in solid fraction (p = 0.89). This study showed significant higher BCoV recovery and SARS-CoV-2 viral RNA in wastewater solid fraction (p = 0.006) than liquid fraction. Our result suggests that the solid fraction of wastewater samples is more suitable for recovering enveloped viruses from wastewater, and the DC and AHAP methods equally provide suitably rapid, cost-effective, and significantly higher recovery of SARS-CoV-2 viral RNA in wastewater samples.
Collapse
Affiliation(s)
- Doris Yoong Wen Di
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Bo Li
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Min Ki Jeon
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Tao Yan
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA; Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
2
|
Babler KM, Sharkey ME, Abelson S, Amirali A, Benitez A, Cosculluela GA, Grills GS, Kumar N, Laine J, Lamar W, Lamm ED, Lyu J, Mason CE, McCabe PM, Raghavender J, Reding BD, Roca MA, Schürer SC, Stevenson M, Szeto A, Tallon JJ, Vidović D, Zarnegarnia Y, Solo-Gabriele HM. Degradation rates influence the ability of composite samples to represent 24-hourly means of SARS-CoV-2 and other microbiological target measures in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161423. [PMID: 36623667 PMCID: PMC9817413 DOI: 10.1016/j.scitotenv.2023.161423] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The utility of using severe-acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA for assessing the prevalence of COVID-19 within communities begins with the design of the sample collection program. The objective of this study was to assess the utility of 24-hour composites as representative samples for measuring multiple microbiological targets in wastewater, and whether normalization of SARS-CoV-2 by endogenous targets can be used to decrease hour to hour variability at different watershed scales. Two sets of experiments were conducted, in tandem with the same wastewater, with samples collected at the building, cluster, and community sewershed scales. The first set of experiments focused on evaluating degradation of microbiological targets: SARS-CoV-2, Simian Immunodeficiency Virus (SIV) - a surrogate spiked into the wastewater, plus human waste indicators of Pepper Mild Mottle Virus (PMMoV), Beta-2 microglobulin (B2M), and fecal coliform bacteria (FC). The second focused on the variability of these targets from samples, collected each hour on the hour. Results show that SARS-CoV-2, PMMoV, and B2M were relatively stable, with minimal degradation over 24-h. SIV, which was spiked-in prior to analysis, degraded significantly and FC increased significantly over the course of 24 h, emphasizing the possibility for decay and growth within wastewater. Hour-to-hour variability of the source wastewater was large between each hour of sampling relative to the variability of the SARS-CoV-2 levels calculated between sewershed scales; thus, differences in SARS-CoV-2 hourly variability were not statistically significant between sewershed scales. Results further provided that the quantified representativeness of 24-h composite samples (i.e., statistical equivalency compared against hourly collected grabs) was dependent upon the molecular target measured. Overall, improvements made by normalization were minimal within this study. Degradation and multiplication for other targets should be evaluated when deciding upon whether to collect composite or grab samples in future studies.
Collapse
Affiliation(s)
- Kristina M Babler
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Mark E Sharkey
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Samantha Abelson
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ayaaz Amirali
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Aymara Benitez
- Miami-Dade Water and Sewer Department, Miami, FL 33149, USA
| | - Gabriella A Cosculluela
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - George S Grills
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Naresh Kumar
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jennifer Laine
- Environmental Health and Safety, University of Miami, Miami, FL 33136, USA
| | - Walter Lamar
- Division of Occupational Health, Safety & Compliance, University of Miami Health System, Miami, FL 33136, USA
| | - Erik D Lamm
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Jiangnan Lyu
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York City, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Philip M McCabe
- Department of Psychology, University of Miami, Coral Gables, FL 33146, USA; Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | | | - Brian D Reding
- Environmental Health and Safety, University of Miami, Miami, FL 33136, USA
| | - Matthew A Roca
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Stephan C Schürer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Institute for Data Science & Computing, University of Miami, Coral Gables, FL, USA
| | - Mario Stevenson
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Angela Szeto
- Department of Psychology, University of Miami, Coral Gables, FL 33146, USA
| | - John J Tallon
- Facilities and Operations, University of Miami, Coral Gables, FL 33146, USA
| | - Dusica Vidović
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yalda Zarnegarnia
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Helena M Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
3
|
Othman I, Helmi A, Slama I, Hamdi R, Mastouri M, Aouni M. Evaluation of three viral concentration methods for detection and quantification of SARS-CoV-2 in wastewater. JOURNAL OF WATER AND HEALTH 2023; 21:354-360. [PMID: 37338315 PMCID: wh_2023_264 DOI: 10.2166/wh.2023.264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Wastewater-based epidemiology (WBE) could be useful as an early warning system for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic spread. Viruses are highly diluted in wastewater. Therefore, a virus concentration step is needed for SARS-CoV-2 wastewater detection. We tested the efficiency of three wastewater viral concentration methods: ultrafiltration (UF), electronegative membrane filtration and aluminum hydroxide adsorption-elution. We spiked wastewater with inactivated SARS-CoV-2 and we collected 20 other wastewater samples from five sites in Tunisia. Samples were concentrated by the three methods and SARS-CoV-2 was quantified by reverse transcription digital PCR (RT-dPCR). The most efficient method was UF with a mean SARS-CoV-2 recovery of 54.03 ± 8.25. Moreover, this method provided significantly greater mean concentration and virus detection ability (95%) than the two other methods. The second-most efficient method used electronegative membrane filtration with a mean SARS-CoV-2 recovery of 25.59 ± 5.04% and the least efficient method was aluminum hydroxide adsorption-elution. This study suggests that the UF method provides rapid and straightforward recovery of SARS-CoV-2 in wastewater.
Collapse
Affiliation(s)
- Ines Othman
- University of Monastir, Faculty of Pharmacy, LR99-ES27, Monastir, Tunisia E-mail:
| | - Amna Helmi
- Directorate of Milieu Hygiene and Environmental Protection at the Health Ministry, Tunis, Tunisia
| | - Ichrak Slama
- University of Monastir, Faculty of Pharmacy, LR99-ES27, Monastir, Tunisia E-mail:
| | - Rawand Hamdi
- University of Monastir, Faculty of Pharmacy, LR99-ES27, Monastir, Tunisia E-mail:
| | - Maha Mastouri
- University of Monastir, Faculty of Pharmacy, LR99-ES27, Monastir, Tunisia E-mail: ; Fattouma Bourguiba University Hospital, Laboratory of Microbiology, Monastir, Tunisia
| | - Mahjoub Aouni
- University of Monastir, Faculty of Pharmacy, LR99-ES27, Monastir, Tunisia E-mail:
| |
Collapse
|
4
|
Babler KM, Amirali A, Sharkey ME, Williams SL, Boone MM, Cosculluela GA, Currall BB, Grills GS, Laine J, Mason CE, Reding BD, Schürer SC, Stevenson M, Vidovic D, Solo-Gabriele HM. Comparison of Electronegative Filtration to Magnetic Bead-Based Concentration and V2G-qPCR to RT-qPCR for Quantifying Viral SARS-CoV-2 RNA from Wastewater. ACS ES&T WATER 2022; 2:2004-2013. [PMID: 37601294 PMCID: PMC10438908 DOI: 10.1021/acsestwater.2c00047] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Methods of wastewater concentration (electronegative filtration (ENF) versus magnetic bead-based concentration (MBC)) were compared for the analysis of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), beta-2 microglobulin, and human-coronavirus OC43. Using ENF as the concentration method, two quantitative Polymerase Chain Reaction (qPCR) analytical methods were also compared: Volcano 2nd Generation (V2G)-qPCR and reverse transcriptase (RT)-qPCR measuring three different targets of the virus responsible for the COVID-19 illness (N1, modified N3, and ORF1ab). Correlations between concentration methods were strong and statistically significant for SARS-CoV-2 (r=0.77, p<0.001) and B2M (r=0.77, p<0.001). Comparison of qPCR analytical methods indicate that, on average, each method provided equivalent results with average ratios of 0.96, 0.96 and 1.02 for N3 to N1, N3 to ORF1ab, and N1 to ORF1ab and were supported by significant (p<0.001) correlation coefficients (r =0.67 for V2G (N3) to RT (N1), r =0.74 for V2G (N3) to RT (ORF1ab), r = 0.81 for RT (N1) to RT (ORF1ab)). Overall results suggest that the two concentration methods and qPCR methods provide equivalent results, although variability is observed for individual measurements. Given the equivalency of results, additional advantages and disadvantages, as described in the discussion, are to be considered when choosing an appropriate method.
Collapse
Affiliation(s)
- Kristina M. Babler
- Department of Chemical, Environmental and Materials Engineering, Coral Gables, FL USA
| | - Ayaaz Amirali
- Department of Chemical, Environmental and Materials Engineering, Coral Gables, FL USA
| | - Mark E. Sharkey
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL USA
| | - Sion L. Williams
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL USA
| | - Melinda M. Boone
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL USA
| | | | - Benjamin B. Currall
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL USA
| | - George S. Grills
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL USA
| | - Jennifer Laine
- Department of Physiology and Biophysics and the WorldQuant Initiative, Weill Cornell Medicine, New York City, NY USA
| | | | - Brian D. Reding
- Department of Physiology and Biophysics and the WorldQuant Initiative, Weill Cornell Medicine, New York City, NY USA
| | - Stephan C. Schürer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL USA
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicines, Miami, FL USA
- Institute for Data Science & Computing, University of Miami, Coral Gables, FL USA
| | - Mario Stevenson
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL USA
| | - Dusica Vidovic
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicines, Miami, FL USA
| | | |
Collapse
|
5
|
Jiang SC, Bischel HN, Goel R, Rosso D, Sherchan S, Whiteson KL, Yan T, Solo-Gabriele HM. Integrating Virus Monitoring Strategies for Safe Non-potable Water Reuse. WATER 2022; 14:1187. [PMID: 37622131 PMCID: PMC10448804 DOI: 10.3390/w14081187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wastewater reclamation and reuse have the potential to supplement water supplies, offering resiliency in times of drought and helping meet increased water demands associated with population growth. Non-potable water reuse represents the largest potential reuse market. Yet economic constraints for new water reuse infrastructure and safety concerns due to microbial water quality, and especially viral pathogen exposure, limit widespread implementation of water reuse. Cost-effective, real-time methods to measure or indicate viral quality of recycled water would do much to instill greater confidence in the practice. This manuscript discusses advancements in monitoring and modeling of viral health risks in the context of water reuse. First, we describe the current wastewater reclamation processes and treatment technologies with an emphasis on virus removal. Second, we review technologies for the measurement of viruses, both culture- and molecular-based, along with their advantages and disadvantages. We introduce promising viral surrogates and specific pathogenic viruses that can serve as indicators of viral risk for water reuse. We suggest metagenomic analyses for viral screening and flow cytometry for quantification of virus-like particles as new approaches to complement more traditional methods. Third, we describe modeling to assess health risks through quantitative microbial risk assessments (QMRAs), the most common strategy to couple data on virus concentrations with human exposure scenarios. We then explore the potential of artificial neural networks (ANNs) to incorporate suites of data from wastewater treatment processes, water quality parameters, and viral surrogates. We recommend ANNs as a means to utilize existing water quality data, alongside new complementary measures of viral quality, to achieve cost-effective strategies to assess risks associated with infectious human viruses in recycled water. Given the review, we conclude that technologies are ready for identifying and implementing viral surrogates for health risk reduction in the next decade. Incorporating modeling with monitoring data would likely result in more robust assessment of water reuse risk.
Collapse
Affiliation(s)
- Sunny C Jiang
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA
- Water-Energy Nexus Center, 844G Engineering Tower, University of California, Irvine, CA 92697-2175
| | - Heather N Bischel
- Department of Civil & Environmental Engineering, University of California, Davis CA 95616
| | - Ramesh Goel
- Department of Civil & Environmental Engineering, University of Utah, Salt Lake City, Utah 84112
| | - Diego Rosso
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA
- Water-Energy Nexus Center, 844G Engineering Tower, University of California, Irvine, CA 92697-2175
| | - Samendra Sherchan
- Department of Environmental Health sciences, Tulane university, New Orleans, LA 70112
| | - Katrine L Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Tao Yan
- Department of Civil and Environmental Engineering, and Water Resources Research Center, University of Hawaii at Manoa, HI 96822, USA
| | - Helena M Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, College of Engineering, University of Miami, Coral Gables, FL, 33146, USA
| |
Collapse
|
6
|
Nair A, Ghugare GS, Khairnar K. An Appraisal of Bacteriophage Isolation Techniques from Environment. MICROBIAL ECOLOGY 2022; 83:519-535. [PMID: 34136953 DOI: 10.1007/s00248-021-01782-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Researchers have recently renewed interest in bacteriophages. Being valuable models for the study of eukaryotic viruses, and more importantly, natural killers of bacteria, bacteriophages are being tapped for their potential role in multiple applications. Bacteriophages are also being increasingly sought for bacteriophage therapy due to rising antimicrobial resistance among pathogens. Reports show that there is an increasing trend in therapeutic application of natural bacteriophages, genetically engineered bacteriophages, and bacteriophage-encoded products as antimicrobial agents. In view of these applications, the isolation and characterization of bacteriophages from the environment has caught attention. In this review, various methods for isolation of bacteriophages from environmental sources like water, soil, and air are comprehensively described. The review also draws attention towards a handful on-field bacteriophage isolation techniques and the need for their further rapid development.
Collapse
Affiliation(s)
- Aparna Nair
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gaurav S Ghugare
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Krishna Khairnar
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Sharkey ME, Kumar N, Mantero AMA, Babler KM, Boone MM, Cardentey Y, Cortizas EM, Grills GS, Herrin J, Kemper JM, Kenney R, Kobetz E, Laine J, Lamar WE, Mader CC, Mason CE, Quintero AZ, Reding BD, Roca MA, Ryon K, Solle NS, Schürer SC, Shukla B, Stevenson M, Stone T, Tallon JJ, Venkatapuram SS, Vidovic D, Williams SL, Young B, Solo-Gabriele HM. Lessons learned from SARS-CoV-2 measurements in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149177. [PMID: 34375259 PMCID: PMC8294117 DOI: 10.1016/j.scitotenv.2021.149177] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 05/02/2023]
Abstract
Standardized protocols for wastewater-based surveillance (WBS) for the RNA of SARS-CoV-2, the virus responsible for the current COVID-19 pandemic, are being developed and refined worldwide for early detection of disease outbreaks. We report here on lessons learned from establishing a WBS program for SARS-CoV-2 integrated with a human surveillance program for COVID-19. We have established WBS at three campuses of a university, including student residential dormitories and a hospital that treats COVID-19 patients. Lessons learned from this WBS program address the variability of water quality, new detection technologies, the range of detectable viral loads in wastewater, and the predictive value of integrating environmental and human surveillance data. Data from our WBS program indicated that water quality was statistically different between sewer sampling sites, with more variability observed in wastewater coming from individual buildings compared to clusters of buildings. A new detection technology was developed based upon the use of a novel polymerase called V2G. Detectable levels of SARS-CoV-2 in wastewater varied from 102 to 106 genomic copies (gc) per liter of raw wastewater (L). Integration of environmental and human surveillance data indicate that WBS detection of 100 gc/L of SARS-CoV-2 RNA in wastewater was associated with a positivity rate of 4% as detected by human surveillance in the wastewater catchment area, though confidence intervals were wide (β ~ 8.99 ∗ ln(100); 95% CI = 0.90-17.08; p < 0.05). Our data also suggest that early detection of COVID-19 surges based on correlations between viral load in wastewater and human disease incidence could benefit by increasing the wastewater sample collection frequency from weekly to daily. Coupling simpler and faster detection technology with more frequent sampling has the potential to improve the predictive potential of using WBS of SARS-CoV-2 for early detection of the onset of COVID-19.
Collapse
Affiliation(s)
- Mark E Sharkey
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Naresh Kumar
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alejandro M A Mantero
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kristina M Babler
- Department of Marine Biology and Ecology, University of Miami, Key Biscayne, FL, USA
| | - Melinda M Boone
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yoslayma Cardentey
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Elena M Cortizas
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - George S Grills
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Jenny M Kemper
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Richard Kenney
- Housing Operations & Facilities, University of Miami, Coral Gables, FL, USA
| | - Erin Kobetz
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jennifer Laine
- Environmental Health and Safety, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Walter E Lamar
- Facilities Safety & Compliance, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christopher C Mader
- Institute for Data Science & Computing, University of Miami, Coral Gables, FL, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York City, NY, USA
| | | | - Brian D Reding
- Environmental Health and Safety, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matthew A Roca
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL, USA
| | - Krista Ryon
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York City, NY, USA
| | - Natasha Schaefer Solle
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephan C Schürer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Institute for Data Science & Computing, University of Miami, Coral Gables, FL, USA; Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicines, Miami, FL, USA
| | - Bhavarth Shukla
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mario Stevenson
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Thomas Stone
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - John J Tallon
- Facilities and Operations, University of Miami, Coral Gables, FL, USA
| | | | - Dusica Vidovic
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicines, Miami, FL, USA
| | - Sion L Williams
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Benjamin Young
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York City, NY, USA
| | - Helena M Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL, USA.
| |
Collapse
|
8
|
Kumblathan T, Liu Y, Uppal GK, Hrudey SE, Li XF. Wastewater-Based Epidemiology for Community Monitoring of SARS-CoV-2: Progress and Challenges. ACS ENVIRONMENTAL AU 2021; 1:18-31. [PMID: 37579255 PMCID: PMC8340581 DOI: 10.1021/acsenvironau.1c00015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Wastewater-based epidemiology (WBE) is useful for the surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in communities, complementing clinical diagnostic testing of individuals. In this Review, we summarize recent progress and highlight remaining challenges in monitoring SARS-CoV-2 RNA in wastewater systems for community and environmental surveillance. Very low concentrations of viral particles and RNA present in the complicated wastewater and sewage sample matrix require efficient sample processing and sensitive detection. We discuss advantages and limitations of available methods for wastewater sample processing, including collection, separation, enrichment, RNA extraction, and purification. Efficient extraction of the viral RNA and removal of interfering sample matrices are critical to the subsequent reverse transcription-quantitative polymerase chain reaction (RT-qPCR) for sensitive detection of SARS-CoV-2 in wastewater. We emphasize the importance of implementing appropriate controls and method validation, which include the use of surrogate viruses for assessing extraction efficiency and normalization against measurable chemical and biological components in wastewater. Critical analysis of the published studies reveals imperative research needs for the development, validation, and standardization of robust and sensitive methods for quantitative detection of viral RNA and proteins in wastewater for WBE.
Collapse
Affiliation(s)
| | | | - Gursharan K. Uppal
- Division of Analytical and
Environmental Toxicology, Department of Laboratory Medicine and Pathology,
Faculty of Medicine and Dentistry, University
of Alberta, Edmonton, AB, Canada T6G 2G3
| | - Steve E. Hrudey
- Division of Analytical and
Environmental Toxicology, Department of Laboratory Medicine and Pathology,
Faculty of Medicine and Dentistry, University
of Alberta, Edmonton, AB, Canada T6G 2G3
| | - Xing-Fang Li
- Division of Analytical and
Environmental Toxicology, Department of Laboratory Medicine and Pathology,
Faculty of Medicine and Dentistry, University
of Alberta, Edmonton, AB, Canada T6G 2G3
| |
Collapse
|
9
|
Patel M, Chaubey AK, Pittman CU, Mlsna T, Mohan D. Coronavirus (SARS-CoV-2) in the environment: Occurrence, persistence, analysis in aquatic systems and possible management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142698. [PMID: 33097261 PMCID: PMC7531938 DOI: 10.1016/j.scitotenv.2020.142698] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 04/14/2023]
Abstract
The year 2020 brought the news of the emergence of a new respiratory disease (COVID-19) from Wuhan, China. The disease is now a global pandemic and is caused by a virus named SARS-CoV-2 by international bodies. Important viral transmission sources include human contact, respiratory droplets and aerosols, and through contact with contaminated objects. However, viral shedding in feces and urine by COVID-19-afflicted patients raises concerns about SARS-CoV-2 entering aquatic systems. Recently, targeted SARS-CoV-2 genome fragments have been successfully detected in wastewater, sewage sludge and river waters around the world. Wastewater-based epidemiology (WBE) studies can provide early detection and assessment of COVID-19 transmission and the growth of active cases within given wastewater catchment areas. WBE surveillance's ability to detect the growth of cases was demonstrated. Was this science applied throughout the world as this pandemic spread throughout the globe? Wastewater treatment efficacy for SARS-CoV-2 removal and risk assessments associated with treated water are reported. Disinfection strategies using chemical disinfectants, heat and radiation for deactivating and destroying SARS-CoV-2 are explained. Analytical methods of SARS-CoV-2 detection are covered. This review provides a more complete overview of the present status of SARS-CoV-2 and its consequences in aquatic systems. So far, WBE programs have not yet served to provide the early alerts to authorities that they have the potential to achieve. This would be desirable in order to activate broad public health measures at earlier stages of local and regional stages of transmission.
Collapse
Affiliation(s)
- Manvendra Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Charles U Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Todd Mlsna
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
10
|
Ahmed W, Bertsch PM, Bivins A, Bibby K, Farkas K, Gathercole A, Haramoto E, Gyawali P, Korajkic A, McMinn BR, Mueller JF, Simpson SL, Smith WJM, Symonds EM, Thomas KV, Verhagen R, Kitajima M. Comparison of virus concentration methods for the RT-qPCR-based recovery of murine hepatitis virus, a surrogate for SARS-CoV-2 from untreated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139960. [PMID: 32758945 PMCID: PMC7273154 DOI: 10.1016/j.scitotenv.2020.139960] [Citation(s) in RCA: 379] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 04/13/2023]
Abstract
There is currently a clear benefit for many countries to utilize wastewater-based epidemiology (WBE) as part of ongoing measures to manage the coronavirus disease 2019 (COVID-19) global pandemic. Since most wastewater virus concentration methods were developed and validated for nonenveloped viruses, it is imperative to determine the efficiency of the most commonly used methods for the enveloped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Municipal wastewater seeded with a human coronavirus (CoV) surrogate, murine hepatitis virus (MHV), was used to test the efficiency of seven wastewater virus concentration methods: (A-C) adsorption-extraction with three different pre-treatment options, (D-E) centrifugal filter device methods with two different devices, (F) polyethylene glycol (PEG 8000) precipitation, and (G) ultracentrifugation. MHV was quantified by reverse-transcription quantitative polymerase chain reaction and the recovery efficiency was calculated for each method. The mean MHV recoveries ranged from 26.7 to 65.7%. The most efficient methods were adsorption-extraction methods with MgCl2 pre-treatment (Method C), and without pre-treatment (Method B). The third most efficient method used the Amicon® Ultra-15 centrifugal filter device (Method D) and its recovery efficiency was not statistically different from the most efficient methods. The methods with the worst recovery efficiency included the adsorption-extraction method with acidification (A), followed by PEG precipitation (F). Our results suggest that absorption-extraction methods with minimal or without pre-treatment can provide suitably rapid, cost-effective and relatively straightforward recovery of enveloped viruses in wastewater. The MHV is a promising process control for SARS-CoV-2 surveillance and can be used as a quality control measure to support community-level epidemic mitigation and risk assessment.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD, 4102, Australia.
| | - Paul M Bertsch
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD, 4102, Australia
| | - Aaron Bivins
- Environmental Change Initiative, University of Notre Dame, 721 Flanner Hall, Notre Dame, IN 46556, USA
| | - Kyle Bibby
- Environmental Change Initiative, University of Notre Dame, 721 Flanner Hall, Notre Dame, IN 46556, USA
| | - Kata Farkas
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Amy Gathercole
- ComPath, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4 - 3 -11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Pradip Gyawali
- Institute of Environmental Science and Research Ltd. (ESR), Porirua 5240, New Zealand
| | - Asja Korajkic
- United States Environmental Protection Agency, Office of Research and Development, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| | - Brian R McMinn
- United States Environmental Protection Agency, Office of Research and Development, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | | | - Wendy J M Smith
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - Erin M Symonds
- College of Marine Science, University of South Florida, 140 Seventh Avenue South, St. Petersburg, FL 33701, USA
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Rory Verhagen
- Queensland Alliance for Environmental Health Sciences (QAEHS), University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-0032, Japan
| |
Collapse
|
11
|
Recent Advances in Nanoparticle Concentration and Their Application in Viral Detection Using Integrated Sensors. SENSORS 2017; 17:s17102316. [PMID: 29019959 PMCID: PMC5677234 DOI: 10.3390/s17102316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 12/13/2022]
Abstract
Early disease diagnostics require rapid, sensitive, and selective detection methods for target analytes. Specifically, early viral detection in a point-of-care setting is critical in preventing epidemics and the spread of disease. However, conventional methods such as enzyme-linked immunosorbent assays or cell cultures are cumbersome and difficult for field use due to the requirements of extensive lab equipment and highly trained personnel, as well as limited sensitivity. Recent advances in nanoparticle concentration have given rise to many novel detection methodologies, which address the shortcomings in modern clinical assays. Here, we review the primary, well-characterized methods for nanoparticle concentration in the context of viral detection via diffusion, centrifugation and microfiltration, electric and magnetic fields, and nano-microfluidics. Details of the concentration mechanisms and examples of related applications provide valuable information to design portable, integrated sensors. This study reviews a wide range of concentration techniques and compares their advantages and disadvantages with respect to viral particle detection. We conclude by highlighting selected concentration methods and devices for next-generation biosensing systems.
Collapse
|
12
|
Bonilla JA, Bonilla TD, Abdelzaher AM, Scott TM, Lukasik J, Solo-Gabriele HM, Palmer CJ. Quantification of Protozoa and Viruses from Small Water Volumes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:7118-32. [PMID: 26114244 PMCID: PMC4515645 DOI: 10.3390/ijerph120707118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 11/16/2022]
Abstract
Large sample volumes are traditionally required for the analysis of waterborne pathogens. The need for large volumes greatly limits the number of samples that can be processed. The aims of this study were to compare extraction and detection procedures for quantifying protozoan parasites and viruses from small volumes of marine water. The intent was to evaluate a logistically simpler method of sample collection and processing that would facilitate direct pathogen measures as part of routine monitoring programs. Samples were collected simultaneously using a bilayer device with protozoa capture by size (top filter) and viruses capture by charge (bottom filter). Protozoan detection technologies utilized for recovery of Cryptosporidium spp. and Giardia spp. were qPCR and the more traditional immunomagnetic separation-IFA-microscopy, while virus (poliovirus) detection was based upon qPCR versus plaque assay. Filters were eluted using reagents consistent with the downstream detection technologies. Results showed higher mean recoveries using traditional detection methods over qPCR for Cryptosporidium (91% vs. 45%) and poliovirus (67% vs. 55%) whereas for Giardia the qPCR-based methods were characterized by higher mean recoveries (41% vs. 28%). Overall mean recoveries are considered high for all detection technologies. Results suggest that simultaneous filtration may be suitable for isolating different classes of pathogens from small marine water volumes. More research is needed to evaluate the suitability of this method for detecting pathogens at low ambient concentration levels.
Collapse
Affiliation(s)
- J Alfredo Bonilla
- Oceans and Human Health Center, University of Miami, Key Biscayne, FL 33149, USA.
- Department of Biology, University of Wisconsin-River Falls, River Fall, WI 54022, USA.
| | - Tonya D Bonilla
- Oceans and Human Health Center, University of Miami, Key Biscayne, FL 33149, USA.
- Corporate Research Materials Laboratory, St. Paul, MN 55144, USA.
| | - Amir M Abdelzaher
- Oceans and Human Health Center, University of Miami, Key Biscayne, FL 33149, USA.
- Department of Civil, Arch., and Environmental Engineering, University of Miami, Coral Gables, FL 33126, USA.
| | - Troy M Scott
- Oceans and Human Health Center, University of Miami, Key Biscayne, FL 33149, USA.
- Hydros Coastal Solutions, Inc.-Miami, FL 33126, USA.
| | | | - Helena M Solo-Gabriele
- Oceans and Human Health Center, University of Miami, Key Biscayne, FL 33149, USA.
- Department of Civil, Arch., and Environmental Engineering, University of Miami, Coral Gables, FL 33126, USA.
| | - Carol J Palmer
- Oceans and Human Health Center, University of Miami, Key Biscayne, FL 33149, USA.
- BioStar Consulting, Inc., Greenbrier, TN 37073, USA.
| |
Collapse
|
13
|
Suzuki Y, Suzuki T, Kono T, Mekata T, Sakai M, Itami T. The concentration of white spot disease virus for its detection in sea water using a combined ferric colloid adsorption- and foam separation-based method. J Virol Methods 2011; 173:227-32. [PMID: 21345353 DOI: 10.1016/j.jviromet.2011.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 02/11/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
|
14
|
Presence of pathogens and indicator microbes at a non-point source subtropical recreational marine beach. Appl Environ Microbiol 2009; 76:724-32. [PMID: 19966020 DOI: 10.1128/aem.02127-09] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Swimming in ocean water, including ocean water at beaches not impacted by known point sources of pollution, is an increasing health concern. This study was an initial evaluation of the presence of indicator microbes and pathogens and the association among the indicator microbes, pathogens, and environmental conditions at a subtropical, recreational marine beach in south Florida impacted by non-point sources of pollution. Twelve water and eight sand samples were collected during four sampling events at high or low tide under elevated or reduced solar insolation conditions. The analyses performed included analyses of fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli, enterococci, and Clostridium perfringens), human-associated microbial source tracking (MST) markers (human polyomaviruses [HPyVs] and Enterococcus faecium esp gene), and pathogens (Vibrio vulnificus, Staphylococcus aureus, enterovirus, norovirus, hepatitis A virus, Cryptosporidium spp., and Giardia spp.). The enterococcus concentrations in water and sand determined by quantitative PCR were greater than the concentrations determined by membrane filtration measurement. The FIB concentrations in water were below the recreational water quality standards for three of the four sampling events, when pathogens and MST markers were also generally undetectable. The FIB levels exceeded regulatory guidelines during one event, and this was accompanied by detection of HPyVs and pathogens, including detection of the autochthonous bacterium V. vulnificus in sand and water, detection of the allochthonous protozoans Giardia spp. in water, and detection of Cryptosporidium spp. in sand samples. The elevated microbial levels were detected at high tide and under low-solar-insolation conditions. Additional sampling should be conducted to further explore the relationships between tidal and solar insolation conditions and between indicator microbes and pathogens in subtropical recreational marine waters impacted by non-point source pollution.
Collapse
|
15
|
Abdelzaher AM, Solo-Gabriele HM, Palmer CJ, Scott TM. Simultaneous concentration of Enterococci and coliphage from marine waters using a dual layer filtration system. JOURNAL OF ENVIRONMENTAL QUALITY 2009; 38:2468-73. [PMID: 19875803 DOI: 10.2134/jeq2008.0488] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Concentrating diverse microbes in a time and cost effective manner is an essential component in water quality monitoring of recreational beaches. Historically, detection of bacteria and viruses requires two different capture methods to detect both types of organisms in a given water sample. The purpose of this present study was to evaluate a newly devised dual layered filtration system, which was developed to simultaneously concentrate both viruses and bacteria in one step from marine waters. An apparatus was designed to accommodate two 90-mm diam., 0.45 microm pore size membranes in series, one on top of the other. The top polyvinylidene fluoride (PVDF) membrane was used to filter bacteria by physical straining while the bottom HA membrane retained viruses through adsorption. Results indicated that the dual layer filtration system recovered 83+/-14% of the test bacteria (Enterococcus fecalis) and 81+/-28% of the test virus (MS2 coliphage) on the top and bottom membranes, respectively. This research demonstrates the potential of using a dual layered filtration system for the simultaneous concentration of both bacteria and viruses on separate filters from recreational beach waters. This system is relatively simple to use, inexpensive, and has the potential to be suitable for routine monitoring. This study serves as a proof of concept for the technique. Additional experiments are needed to evaluate the system on a variety of different bacteria and viruses as well as on water with different physical and chemical parameters.
Collapse
Affiliation(s)
- A M Abdelzaher
- University of Miami, Oceans and Human Health Center, Key Biscayne, FL 33149, USA
| | | | | | | |
Collapse
|