1
|
Garranzo‐Asensio M, Rodríguez‐Cobos J, San Millán C, Poves C, Fernández‐Aceñero MJ, Pastor‐Morate D, Viñal D, Montero‐Calle A, Solís‐Fernández G, Ceron M, Gámez‐Chiachio M, Rodríguez N, Guzmán‐Aránguez A, Barderas R, Domínguez G. In-depth proteomics characterization of ∆Np73 effectors identifies key proteins with diagnostic potential implicated in lymphangiogenesis, vasculogenesis and metastasis in colorectal cancer. Mol Oncol 2022; 16:2672-2692. [PMID: 35586989 PMCID: PMC9298678 DOI: 10.1002/1878-0261.13228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 03/17/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death worldwide. Alterations in proteins of the p53-family are a common event in CRC. ΔNp73, a p53-family member, shows oncogenic properties and its effectors are largely unknown. We performed an in-depth proteomics characterization of transcriptional control by ∆Np73 of the secretome of human colon cancer cells and validated its clinical potential. The secretome was analyzed using high-density antibody microarrays and stable isotopic metabolic labeling. Validation was performed by semiquantitative PCR, ELISA, dot-blot and western blot analysis. Evaluation of selected effectors was carried out using 60 plasma samples from CRC patients, individuals carrying premalignant colorectal lesions and colonoscopy-negative controls. In total, 51 dysregulated proteins were observed showing at least 1.5-foldchange in expression. We found an important association between the overexpression of ∆Np73 and effectors related to lymphangiogenesis, vasculogenesis and metastasis, such as brain-derived neurotrophic factor (BDNF) and the putative aminoacyl tRNA synthase complex-interacting multifunctional protein 1 (EMAP-II)-vascular endothelial growth factor C-vascular endothelial growth factor receptor 3 axis. We further demonstrated the usefulness of BDNF as a potential CRC biomarker able to discriminate between CRC patients and premalignant individuals from controls with high sensitivity and specificity.
Collapse
Affiliation(s)
| | - Javier Rodríguez‐Cobos
- Departamento de Bioquímica, Facultad de MedicinaInstituto de Investigaciones Biomédicas “Alberto Sols”, CSIC‐UAM, IdiPAZMadridSpain
| | - Coral San Millán
- Departamento de Bioquímica, Facultad de MedicinaInstituto de Investigaciones Biomédicas “Alberto Sols”, CSIC‐UAM, IdiPAZMadridSpain
| | - Carmen Poves
- Gastroenterology UnitHospital Universitario Clínico San CarlosMadridSpain
| | | | - Daniel Pastor‐Morate
- Departamento de Bioquímica, Facultad de MedicinaInstituto de Investigaciones Biomédicas “Alberto Sols”, CSIC‐UAM, IdiPAZMadridSpain
| | - David Viñal
- Medical Oncology DepartmentHospital Universitario La PazMadridSpain
| | - Ana Montero‐Calle
- Chronic Disease Programme (UFIEC)Instituto de Salud Carlos IIIMadridSpain
| | | | - María‐Ángeles Ceron
- Surgical Pathology DepartmentHospital Universitario Clínico San CarlosMadridSpain
| | - Manuel Gámez‐Chiachio
- Departamento de Bioquímica, Facultad de MedicinaInstituto de Investigaciones Biomédicas “Alberto Sols”, CSIC‐UAM, IdiPAZMadridSpain
| | - Nuria Rodríguez
- Medical Oncology DepartmentHospital Universitario La PazMadridSpain
| | - Ana Guzmán‐Aránguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Óptica y OptometríaUniversidad Complutense de MadridSpain
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC)Instituto de Salud Carlos IIIMadridSpain
| | - Gemma Domínguez
- Departamento de Bioquímica, Facultad de MedicinaInstituto de Investigaciones Biomédicas “Alberto Sols”, CSIC‐UAM, IdiPAZMadridSpain
| |
Collapse
|
2
|
McDonald AG, Tipton KF. Parameter Reliability and Understanding Enzyme Function. Molecules 2022; 27:263. [PMID: 35011495 PMCID: PMC8746786 DOI: 10.3390/molecules27010263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022] Open
Abstract
Knowledge of the Michaelis-Menten parameters and their meaning in different circumstances is an essential prerequisite to understanding enzyme function and behaviour. The published literature contains an abundance of values reported for many enzymes. The problem concerns assessing the appropriateness and validity of such material for the purpose to which it is to be applied. This review considers the evaluation of such data with particular emphasis on the assessment of its fitness for purpose.
Collapse
Affiliation(s)
- Andrew G. McDonald
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland;
| | | |
Collapse
|
3
|
Fomitcheva-Khartchenko A, Rapsomaniki MA, Sobottka B, Schraml P, Kaigala GV. Spatial protein heterogeneity analysis in frozen tissues to evaluate tumor heterogeneity. PLoS One 2021; 16:e0259332. [PMID: 34797831 PMCID: PMC8604290 DOI: 10.1371/journal.pone.0259332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022] Open
Abstract
A new workflow for protein-based tumor heterogeneity probing in tissues is here presented. Tumor heterogeneity is believed to be key for therapy failure and differences in prognosis in cancer patients. Comprehending tumor heterogeneity, especially at the protein level, is critical for tracking tumor evolution, and showing the presence of different phenotypical variants and their location with respect to tissue architecture. Although a variety of techniques is available for quantifying protein expression, the heterogeneity observed in the tissue is rarely addressed. The proposed method is validated in breast cancer fresh-frozen tissues derived from five patients. Protein expression is quantified on the tissue regions of interest (ROI) with a resolution of up to 100 μm in diameter. High heterogeneity values across the analyzed patients in proteins such as cytokeratin 7, β-actin and epidermal growth factor receptor (EGFR) using a Shannon entropy analysis are observed. Additionally, ROIs are clustered according to their expression levels, showing their location in the tissue section, and highlighting that similar phenotypical variants are not always located in neighboring regions. Interestingly, a patient with a phenotype related to increased aggressiveness of the tumor presents a unique protein expression pattern. In summary, a workflow for the localized extraction and protein analysis of regions of interest from frozen tissues, enabling the evaluation of tumor heterogeneity at the protein level is presented.
Collapse
Affiliation(s)
| | | | - Bettina Sobottka
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Peter Schraml
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | | |
Collapse
|
4
|
San Segundo-Acosta P, Montero-Calle A, Jernbom-Falk A, Alonso-Navarro M, Pin E, Andersson E, Hellström C, Sánchez-Martínez M, Rábano A, Solís-Fernández G, Peláez-García A, Martínez-Useros J, Fernández-Aceñero MJ, Månberg A, Nilsson P, Barderas R. Multiomics Profiling of Alzheimer's Disease Serum for the Identification of Autoantibody Biomarkers. J Proteome Res 2021; 20:5115-5130. [PMID: 34628858 DOI: 10.1021/acs.jproteome.1c00630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New biomarkers of Alzheimer's disease (AD) with a diagnostic value in preclinical and prodromal stages are urgently needed. AD-related serum autoantibodies are potential candidate biomarkers. Here, we aimed at identifying AD-related serum autoantibodies using protein microarrays and mass spectrometry-based methods. To this end, an untargeted complementary screening using high-density (42,100 antigens) and low-density (384 antigens) planar protein-epitope signature tag (PrEST) arrays and an immunoprecipitation protocol coupled to mass spectrometry analysis were used for serum autoantibody profiling. From the untargeted screening phase, 377 antigens corresponding to 338 proteins were selected for validation. Out of them, IVD, CYFIP1, and ADD2 seroreactivity was validated using 128 sera from AD patients and controls by PrEST-suspension bead arrays, and ELISA or luminescence Halotag-based bead immunoassay using full-length recombinant proteins. Importantly, IVD, CYFIP1, and ADD2 showed in combination a noticeable AD diagnostic ability. Moreover, IVD protein abundance in the prefrontal cortex was significantly two-fold higher in AD patients than in controls by western blot and immunohistochemistry, whereas CYFIP1 and ADD2 were significantly down-regulated in AD patients. The panel of AD-related autoantigens identified by a comprehensive multiomics approach may provide new insights of the disease and should help in the blood-based diagnosis of Alzheimer's disease. Mass spectrometry raw data are available in the ProteomeXchange database with the access number PXD028392.
Collapse
Affiliation(s)
- Pablo San Segundo-Acosta
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| | - August Jernbom-Falk
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Solna, Stockholm 171 65, Sweden
| | - Miren Alonso-Navarro
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| | - Elisa Pin
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Solna, Stockholm 171 65, Sweden
| | - Eni Andersson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Solna, Stockholm 171 65, Sweden
| | - Cecilia Hellström
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Solna, Stockholm 171 65, Sweden
| | | | - Alberto Rábano
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid 28031, Spain
| | | | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), Madrid 28046, Spain
| | - Javier Martínez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-Fundacion Jimenez Diaz University Hospital, Madrid 28040, Spain
| | - María Jesús Fernández-Aceñero
- Servicio de Anatomía Patológica Hospital Universitario Clínico San Carlos, Departamento de Anatomía Patológica, Facultad de Medicina, Complutense University of Madrid, Madrid 28040, Spain
| | - Anna Månberg
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Solna, Stockholm 171 65, Sweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Solna, Stockholm 171 65, Sweden
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| |
Collapse
|
5
|
Detection of Posttranslational Modification Autoantibodies Using Peptide Microarray. Methods Mol Biol 2021. [PMID: 34115354 DOI: 10.1007/978-1-0716-1562-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Autoantibodies are humoral antibodies against self-proteins and play vital roles in maintaining the homeostasis. Autoantibodies can also target posttranslational modifications (PTMs) of proteins and the identification of new PTM autoantibodies is important to identify biomarkers for the early diagnosis of cancer and autoimmune diseases. In this chapter, we describe a method to detect PTM autoantibodies using citrullinated peptide microarray as an example. This method can be used to screen serum autoantibodies for different human diseases.
Collapse
|
6
|
Cheng L, Li Y, Wu Z, Li L, Liu C, Liu J, Dai J, Zheng W, Zhang F, Tang L, Yu X, Li Y. Comprehensive analysis of immunoglobulin and clinical variables identifies functional linkages and diagnostic indicators associated with Behcet's disease patients receiving immunomodulatory treatment. BMC Immunol 2021; 22:16. [PMID: 33618671 PMCID: PMC7901184 DOI: 10.1186/s12865-021-00403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/29/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Behcet's disease (BD) is a relapsing systemic vascular autoimmune/inflammatory disease. Despite much effort to investigate BD, there are virtually no unique laboratory markers identified to help in the diagnosis of BD, and the pathogenesis is largely unknown. The aim of this work is to explore interactions between different clinical variables by correlation analysis to determine associations between the functional linkages of different paired variables and potential diagnostic biomarkers of BD. METHODS We measured the immunoglobulin proteome (IgG, IgG1-4, IgA, IgA1-2) and 29 clinical variables in 66 healthy controls and 63 patients with BD. We performed a comprehensive clinical variable linkage analysis and defined the physiological, pathological and pharmacological linkages based on the correlations of all variables in healthy controls and BD patients without and with immunomodulatory therapy. We further calculated relative changes between variables derived from comprehensive linkage analysis for better indications in the clinic. The potential indicators were validated in a validation set with 76 patients with BD, 30 healthy controls, 18 patients with Takayasu arteritis and 18 patients with ANCA-associated vasculitis. RESULTS In this study, the variables identified were found to act in synergy rather than alone in BD patients under physiological, pathological and pharmacological conditions. Immunity and inflammation can be suppressed by corticosteroids and immunosuppressants, and integrative analysis of granulocytes, platelets and related variables is likely to provide a more comprehensive understanding of disease activity, thrombotic potential and ultimately potential tissue damage. We determined that total protein/mean corpuscular hemoglobin and total protein/mean corpuscular hemoglobin levels, total protein/mean corpuscular volume, and plateletcrit/monocyte counts were significantly increased in BD compared with controls (P < 0.05, in both the discovery and validation sets), which helped in distinguishing BD patients from healthy and vasculitis controls. Chronic anemia in BD combined with increased total protein contributed to higher levels of these biomarkers, and the interactions between platelets and monocytes may be linked to vascular involvement. CONCLUSIONS All these results demonstrate the utility of our approach in elucidating the pathogenesis and in identifying novel biomarkers for autoimmune diseases in the future.
Collapse
Affiliation(s)
- Linlin Cheng
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Yang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, No. 38, Life Science Park Road Changping District, Beijing, 102206, China
| | - Ziyan Wu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Liubing Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Chenxi Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jiayu Dai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, No. 38, Life Science Park Road Changping District, Beijing, 102206, China
| | - Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Liujun Tang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, No. 38, Life Science Park Road Changping District, Beijing, 102206, China.
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, No. 38, Life Science Park Road Changping District, Beijing, 102206, China.
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
7
|
Solís-Fernández G, Montero-Calle A, Alonso-Navarro M, Fernandez-Torres MÁ, Lledó VE, Garranzo-Asensio M, Barderas R, Guzman-Aranguez A. Protein Microarrays for Ocular Diseases. Methods Mol Biol 2021; 2344:239-265. [PMID: 34115364 DOI: 10.1007/978-1-0716-1562-1_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The eye is a multifaceted organ organized in several compartments with particular properties that reflect their diverse functions. The prevalence of ocular diseases is increasing, mainly because of its relationship with aging and of generalized lifestyle changes. However, the pathogenic molecular mechanisms of many common eye pathologies remain poorly understood. Considering the unquestionable importance of proteins in cellular processes and disease progression, proteomic techniques, such as protein microarrays, represent a valuable approach to analyze pathophysiological protein changes in the ocular environment. This technology enables to perform multiplex high-throughput protein expression profiling with minimal sample volume requirements broadening our knowledge of ocular proteome network in eye diseases.In this review, we present a brief summary of the main types of protein microarrays (antibody microarrays, reverse-phase protein microarrays, and protein microarrays) and their application for protein change detection in chronic ocular diseases such as dry eye, age-related macular degeneration, diabetic retinopathy, and glaucoma. The validation of these specific protein changes in eye pathologies may lead to the identification of new biomarkers, depiction of ocular disease pathways, and assistance in the diagnosis, prognosis, and development of new therapeutic options for eye pathologies.
Collapse
Affiliation(s)
- Guillermo Solís-Fernández
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain.,Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Leuven, Belgium
| | - Ana Montero-Calle
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Miren Alonso-Navarro
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Miguel Ángel Fernandez-Torres
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Victoria Eugenia Lledó
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - María Garranzo-Asensio
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Rodrigo Barderas
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
8
|
Hou X, Zhang X, Wu X, Lu M, Wang D, Xu M, Wang H, Liang T, Dai J, Duan H, Xu Y, Yu X, Li Y. Serum Protein Profiling Reveals a Landscape of Inflammation and Immune Signaling in Early-stage COVID-19 Infection. Mol Cell Proteomics 2020; 19:1749-1759. [PMID: 32788344 PMCID: PMC7664125 DOI: 10.1074/mcp.rp120.002128] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious infection and threating the human lives in the world. The elevation of cytokines in blood is crucial to induce cytokine storm and immunosuppression in the transition of severity in COVID-19 patients. However, the comprehensive changes of serum proteins in COVID-19 patients throughout the SARS-CoV-2 infection is unknown. In this work, we developed a high-density antibody microarray and performed an in-depth proteomics analysis of serum samples collected from early COVID-19 (n = 15) and influenza (n = 13) patients. We identified a large set of differentially expressed proteins (n = 132) that participate in a landscape of inflammation and immune signaling related to the SARS-CoV-2 infection. Furthermore, the significant correlations of neutrophil and lymphocyte with the CCL2 and CXCL10 mediated cytokine signaling pathways was identified. These information are valuable for the understanding of COVID-19 pathogenesis, identification of biomarkers and development of the optimal anti-inflammation therapy.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Betacoronavirus/pathogenicity
- Blood Proteins/genetics
- Blood Proteins/immunology
- COVID-19
- Child
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Coronavirus Infections/physiopathology
- Coronavirus Infections/virology
- Cough/genetics
- Cough/immunology
- Cough/physiopathology
- Cough/virology
- Cytokine Release Syndrome/genetics
- Cytokine Release Syndrome/immunology
- Cytokine Release Syndrome/physiopathology
- Cytokine Release Syndrome/virology
- Cytokines/genetics
- Cytokines/immunology
- Female
- Fever/genetics
- Fever/immunology
- Fever/physiopathology
- Fever/virology
- Gene Expression Profiling
- Gene Expression Regulation
- Headache/genetics
- Headache/immunology
- Headache/physiopathology
- Headache/virology
- Humans
- Influenza, Human/genetics
- Influenza, Human/immunology
- Influenza, Human/physiopathology
- Influenza, Human/virology
- Male
- Middle Aged
- Myalgia/genetics
- Myalgia/immunology
- Myalgia/physiopathology
- Myalgia/virology
- Orthomyxoviridae/pathogenicity
- Pandemics
- Pneumonia, Viral/genetics
- Pneumonia, Viral/immunology
- Pneumonia, Viral/physiopathology
- Pneumonia, Viral/virology
- Protein Array Analysis
- Proteome/genetics
- Proteome/immunology
- Receptors, Cytokine/genetics
- Receptors, Cytokine/immunology
- SARS-CoV-2
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Xin Hou
- Department of Clinical Laboratory & Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xiaomei Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Xian Wu
- Department of Clinical Laboratory & Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Minya Lu
- Department of Clinical Laboratory & Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Dan Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Meng Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Hongye Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Te Liang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Jiayu Dai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Hu Duan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory & Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China.
| | - Yongzhe Li
- Department of Clinical Laboratory & Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Parolo C, Greenwood AS, Ogden NE, Kang D, Hawes C, Ortega G, Arroyo-Currás N, Plaxco KW. E-DNA scaffold sensors and the reagentless, single-step, measurement of HIV-diagnostic antibodies in human serum. MICROSYSTEMS & NANOENGINEERING 2020; 6:13. [PMID: 34567628 PMCID: PMC8433188 DOI: 10.1038/s41378-019-0119-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/28/2019] [Accepted: 11/07/2019] [Indexed: 05/05/2023]
Abstract
The multiplexed, point-of-care measurement of specific antibodies could improve the speed with which diseases are diagnosed and their treatment initiated. To this end, we are developing E-DNA scaffold sensors, which consist of a rigid, nucleic acid "scaffold" attached on one end to an electrode and presenting both a redox reporter and an epitope on the other. In the absence of antibody, the reporter efficiently transfers electrons when interrogated electrochemically. Binding-induced steric hindrance limits movement, reducing electron transfer in a manner that is both easily measured and quantitatively related to target concentration. Previously we have used monoclonal antibodies to explore the analytical performance of E-DNA sensors, showing that they support the rapid, single-step, quantitative detection of multiple antibodies in small volume samples. Here, in contrast, we employ authentic human samples to better explore the platform's clinical potential. Specifically, we developed E-DNA sensors targeting three HIV-specific antibodies and then compared the analytical and clinical performance of these against those of gold standard serological techniques. Doing so we find that, although the multistep amplification of an ELISA leads to a lower detection limits, the clinical sensitivity of ELISAs, E-DNA sensors and lateral-flow dipsticks are indistinguishable across our test set. It thus appears that, by merging the quantitation and multiplexing of ELISAs with the convenience and speed of dipsticks, E-DNA scaffold sensors could significantly improve on current serological practice.
Collapse
Affiliation(s)
- Claudio Parolo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA USA
| | - Ava S. Greenwood
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA USA
| | - Nathan E. Ogden
- Department of Materials, University of California, Santa Barbara, Santa Barbara, CA USA
| | - Di Kang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA USA
| | - Chase Hawes
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA USA
| | - Gabriel Ortega
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA USA
| | | | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA USA
- Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106 USA
| |
Collapse
|
10
|
Garranzo-Asensio M, Montero-Calle A, Solís-Fernández G, Barderas R, Guzman-Aranguez A. Protein Microarrays: Valuable Tools for Ocular Diseases Research. Curr Med Chem 2019; 27:4549-4566. [PMID: 31244416 DOI: 10.2174/0929867326666190627131300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/07/2019] [Accepted: 05/14/2019] [Indexed: 11/22/2022]
Abstract
The eye is a complex organ comprised of several compartments with exclusive and specialized properties that reflect their diverse functions. Although the prevalence of eye pathologies is increasing, mainly because of its correlation with aging and of generalized lifestyle changes, the pathogenic molecular mechanisms of many common ocular diseases remain poorly understood. Therefore, there is an unmet need to delve into the pathogenesis, diagnosis, and treatment of eye diseases to preserve ocular health and reduce the incidence of visual impairment or blindness. Proteomics analysis stands as a valuable tool for deciphering protein profiles related to specific ocular conditions. In turn, such profiles can lead to real breakthroughs in the fields of ocular science and ophthalmology. Among proteomics techniques, protein microarray technology stands out by providing expanded information using very small volumes of samples. In this review, we present a brief summary of the main types of protein microarrays and their application for the identification of protein changes in chronic ocular diseases such as dry eye, glaucoma, age-related macular degeneration, or diabetic retinopathy. The validation of these specific protein alterations could provide new biomarkers, disclose eye diseases pathways, and help in the diagnosis and development of novel therapies for eye pathologies.
Collapse
Affiliation(s)
- María Garranzo-Asensio
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, C/Arcos de Jalon 118, Madrid 28037, Spain
| | - Ana Montero-Calle
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Guillermo Solís-Fernández
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Rodrigo Barderas
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, C/Arcos de Jalon 118, Madrid 28037, Spain
| |
Collapse
|
11
|
San Segundo-Acosta P, Montero-Calle A, Fuentes M, Rábano A, Villalba M, Barderas R. Identification of Alzheimer's Disease Autoantibodies and Their Target Biomarkers by Phage Microarrays. J Proteome Res 2019; 18:2940-2953. [PMID: 31136180 DOI: 10.1021/acs.jproteome.9b00258] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The characterization of the humoral response in Alzheimer's disease (AD) patients might aid in detecting the disease at early stages. We have combined phage display and protein microarrays to identify AD autoantibodies and their target biomarkers. After enrichment of the T7 phage display libraries from AD and healthy brain tissue mRNA in AD-specific phages, 1536 monoclonal phages were printed on microarrays to probe them with 8 AD and 8 healthy control sera. A total of 57 phages showed higher seroreactivity in AD. In total, 13 out of the 44 unique sequences displayed on the phages were selected for validation using 68 AD and 52 healthy control sera. Peptides from Anthrax toxin receptor 1, Nuclear protein 1, Glycogen phosphorylase, and Olfactory receptor 8J1 expressed in bacteria as HaloTag fusion proteins showed a statistically significant ability to discriminate between AD patients and controls. The identified panel of AD autoantibodies might provide new insights into the blood-based diagnosis of the disease.
Collapse
Affiliation(s)
- Pablo San Segundo-Acosta
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , E-28040 Madrid , Spain.,Chronic Disease Programme (UFIEC) , Instituto de Salud Carlos III , Majadahonda, E-28220 , Madrid , Spain
| | - Ana Montero-Calle
- Chronic Disease Programme (UFIEC) , Instituto de Salud Carlos III , Majadahonda, E-28220 , Madrid , Spain
| | - Manuel Fuentes
- Proteomics Unit , Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL) , 37007 Salamanca , Spain.,Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400 , Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL) , 37007 Salamanca , Spain
| | - Alberto Rábano
- Alzheimer Disease Research Unit, CIEN Foundation , Queen Sofia Foundation Alzheimer Center , 28031 Madrid , Spain
| | - Mayte Villalba
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , E-28040 Madrid , Spain
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC) , Instituto de Salud Carlos III , Majadahonda, E-28220 , Madrid , Spain
| |
Collapse
|
12
|
Taghavian O, Jain A, Joyner CJ, Ketchum S, Nakajima R, Jasinskas A, Liang L, Fong R, King C, Greenhouse B, Murphy M, Bailey J, Galinski MR, Barnwell JW, Plowe CV, Davies DH, Felgner PL. Antibody Profiling by Proteome Microarray with Multiplex Isotype Detection Reveals Overlap between Human and Aotus nancymaae Controlled Malaria Infections. Proteomics 2019; 18. [PMID: 29266845 DOI: 10.1002/pmic.201700277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/21/2017] [Indexed: 12/13/2022]
Abstract
The development of vaccines against malaria and serodiagnostic tests for detecting recent exposure requires tools for antigen discovery and suitable animal models. The protein microarray is a high-throughput, sample sparing technique, with applications in infectious disease research, clinical diagnostics, epidemiology, and vaccine development. We recently demonstrated Qdot-based indirect immunofluorescence together with portable optical imager ArrayCAM using single isotype detection could replicate data using the conventional laser confocal scanner system. We developed a multiplexing protocol for simultaneous detection of IgG, IgA, and IgM and compared samples from a controlled human malaria infection model with those from controlled malaria infections of Aotus nancymaae, a widely used non-human primate model of human malaria. IgG profiles showed the highest concordance in number of reactive antigens; thus, of the 139 antigens recognized by human IgG antibody, 111 were also recognized by Aotus monkeys. Interestingly, IgA profiles were largely non-overlapping. Finally, on the path toward wider deployment of the portable platform, we show excellent correlations between array data obtained in five independent laboratories around the United States using the multiplexing protocol (R2 : 0.60-0.92). This study supports the use of this platform for wider deployment, particularly in endemic areas where such a tool will have the greatest impact on global human health.
Collapse
Affiliation(s)
- Omid Taghavian
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, CA, USA
| | - Aarti Jain
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, CA, USA
| | - Chester J Joyner
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | - Rie Nakajima
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, CA, USA
| | - Algis Jasinskas
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, CA, USA
| | - Li Liang
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, CA, USA
| | - Rich Fong
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Christopher King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Maxwell Murphy
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Jason Bailey
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Mary R Galinski
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - John W Barnwell
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christopher V Plowe
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - D Huw Davies
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, CA, USA
| | - Philip L Felgner
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
13
|
San Segundo-Acosta P, Garranzo-Asensio M, Oeo-Santos C, Montero-Calle A, Quiralte J, Cuesta-Herranz J, Villalba M, Barderas R. High-throughput screening of T7 phage display and protein microarrays as a methodological approach for the identification of IgE-reactive components. J Immunol Methods 2018; 456:44-53. [PMID: 29470975 DOI: 10.1016/j.jim.2018.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/10/2018] [Accepted: 02/16/2018] [Indexed: 01/02/2023]
Abstract
Olive pollen and yellow mustard seeds are major allergenic sources with high clinical relevance. To aid with the identification of IgE-reactive components, the development of sensitive methodological approaches is required. Here, we have combined T7 phage display and protein microarrays for the identification of allergenic peptides and mimotopes from olive pollen and mustard seeds. The identification of these allergenic sequences involved the construction and biopanning of T7 phage display libraries of mustard seeds and olive pollen using sera from allergic patients to both biological sources together with the construction of phage microarrays printed with 1536 monoclonal phages from the third/four rounds of biopanning. The screening of the phage microarrays with individual sera from allergic patients enabled the identification of 10 and 9 IgE-reactive unique amino acid sequences from olive pollen and mustard seeds, respectively. Five immunoreactive amino acid sequences displayed on phages were selected for their expression as His6-GST tag fusion proteins and validation. After immunological characterization, we assessed the IgE-reactivity of the constructs. Our results show that protein microarrays printed with T7 phages displaying peptides from allergenic sources might be used to identify allergenic components -peptides, proteins or mimotopes- through their screening with specific IgE antibodies from allergic patients.
Collapse
Affiliation(s)
- Pablo San Segundo-Acosta
- Biochemistry and Molecular Biology Department I, Chemistry Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - María Garranzo-Asensio
- Biochemistry and Molecular Biology Department I, Chemistry Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Carmen Oeo-Santos
- Biochemistry and Molecular Biology Department I, Chemistry Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Montero-Calle
- Biochemistry and Molecular Biology Department I, Chemistry Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Joaquín Quiralte
- Unidad de Alergia, Complejo Hospitalario de Jaén, 23007 Jaén, Spain
| | | | - Mayte Villalba
- Biochemistry and Molecular Biology Department I, Chemistry Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Rodrigo Barderas
- Biochemistry and Molecular Biology Department I, Chemistry Faculty, Complutense University of Madrid, 28040 Madrid, Spain; UFIEC-ISCIII, 28220 Majadahonda (Madrid), Spain.
| |
Collapse
|
14
|
Garranzo-Asensio M, San Segundo-Acosta P, Martínez-Useros J, Montero-Calle A, Fernández-Aceñero MJ, Häggmark-Månberg A, Pelaez-Garcia A, Villalba M, Rabano A, Nilsson P, Barderas R. Identification of prefrontal cortex protein alterations in Alzheimer's disease. Oncotarget 2018; 9:10847-10867. [PMID: 29541381 PMCID: PMC5834268 DOI: 10.18632/oncotarget.24303] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 01/13/2018] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in developed countries. A better understanding of the events taking place at the molecular level would help to identify novel protein alterations, which might be used in diagnosis or for treatment development. In this study, we have performed the high-throughput analysis of 706 molecules mostly implicated in cell-cell communication and cell signaling processes by using two antibody microarray platforms. We screened three AD pathological groups -each one containing four pooled samples- from Braak stages IV, V and VI, and three control groups from two healthy subjects, five frontotemporal and two vascular dementia patients onto Panorama and L-Series antibody microarrays to identify AD-specific alterations not common to other dementias. Forty altered proteins between control and AD groups were detected, and validated by i) meta-analysis of mRNA alterations, ii) WB, and iii) FISH and IHC using an AD-specific tissue microarray containing 44 samples from AD patients at different Braak stages, and frontotemporal and vascular dementia patients and healthy individuals as controls. We identified altered proteins in AD not common to other dementias like the E3 ubiquitin-protein ligase TOPORS, Layilin and MICB, and validated the association to AD of the previously controverted proteins DDIT3 and the E3 ubiquitin-protein ligase XIAP. These altered proteins constitute interesting targets for further immunological analyses using sera, plasma and CSF to identify AD blood- or cerebrospinal fluid-biomarkers and to perform functional analysis to determine their specific role in AD, and their usefulness as potential therapeutic targets of intervention.
Collapse
Affiliation(s)
- Maria Garranzo-Asensio
- Biochemistry and Molecular Biology Department I, Chemistry Faculty, Complutense University of Madrid, Madrid, Spain
| | - Pablo San Segundo-Acosta
- Biochemistry and Molecular Biology Department I, Chemistry Faculty, Complutense University of Madrid, Madrid, Spain
| | - Javier Martínez-Useros
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Madrid, Spain
| | - Ana Montero-Calle
- Biochemistry and Molecular Biology Department I, Chemistry Faculty, Complutense University of Madrid, Madrid, Spain
| | - María Jesús Fernández-Aceñero
- Servicio de Anatomía Patológica Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Departamento de Anatomía Patològica, Facultad de Medicina, Complutense University of Madrid, Madrid, Spain
| | - Anna Häggmark-Månberg
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH – Royal Institute of Technology, Stockholm, Sweden
| | | | - Mayte Villalba
- Biochemistry and Molecular Biology Department I, Chemistry Faculty, Complutense University of Madrid, Madrid, Spain
| | - Alberto Rabano
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Peter Nilsson
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Rodrigo Barderas
- Biochemistry and Molecular Biology Department I, Chemistry Faculty, Complutense University of Madrid, Madrid, Spain
- UFIEC, National Institute of Health Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
15
|
Abstract
INTRODUCTION Cell-free protein microarrays represent a special form of protein microarray which display proteins made fresh at the time of the experiment, avoiding storage and denaturation. They have been used increasingly in basic and translational research over the past decade to study protein-protein interactions, the pathogen-host relationship, post-translational modifications, and antibody biomarkers of different human diseases. Their role in the first blood-based diagnostic test for early stage breast cancer highlights their value in managing human health. Cell-free protein microarrays will continue to evolve to become widespread tools for research and clinical management. Areas covered: We review the advantages and disadvantages of different cell-free protein arrays, with an emphasis on the methods that have been studied in the last five years. We also discuss the applications of each microarray method. Expert commentary: Given the growing roles and impact of cell-free protein microarrays in research and medicine, we discuss: 1) the current technical and practical limitations of cell-free protein microarrays; 2) the biomarker discovery and verification pipeline using protein microarrays; and 3) how cell-free protein microarrays will advance over the next five years, both in their technology and applications.
Collapse
Affiliation(s)
- Xiaobo Yu
- a State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences , Beijing Institute of Lifeomics , Beijing , China
| | - Brianne Petritis
- b The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute , Arizona State University , Tempe , AZ , USA
| | - Hu Duan
- a State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences , Beijing Institute of Lifeomics , Beijing , China
| | - Danke Xu
- c State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , China
| | - Joshua LaBaer
- b The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute , Arizona State University , Tempe , AZ , USA
| |
Collapse
|
16
|
Hanson C, Israelsen ND, Sieverts M, Vargis E. Fabricating a UV-Vis and Raman Spectroscopy Immunoassay Platform. J Vis Exp 2016. [PMID: 27911413 DOI: 10.3791/54795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Immunoassays are used to detect proteins based on the presence of associated antibodies. Because of their extensive use in research and clinical settings, a large infrastructure of immunoassay instruments and materials can be found. For example, 96- and 384-well polystyrene plates are available commercially and have a standard design to accommodate ultraviolet-visible (UV-Vis) spectroscopy machines from various manufacturers. In addition, a wide variety of immunoglobulins, detection tags, and blocking agents for customized immunoassay designs such as enzyme-linked immunosorbent assays (ELISA) are available. Despite the existing infrastructure, standard ELISA kits do not meet all research needs, requiring individualized immunoassay development, which can be expensive and time-consuming. For example, ELISA kits have low multiplexing (detection of more than one analyte at a time) capabilities as they usually depend on fluorescence or colorimetric methods for detection. Colorimetric and fluorescent-based analyses have limited multiplexing capabilities due to broad spectral peaks. In contrast, Raman spectroscopy-based methods have a much greater capability for multiplexing due to narrow emission peaks. Another advantage of Raman spectroscopy is that Raman reporters experience significantly less photobleaching than fluorescent tags1. Despite the advantages that Raman reporters have over fluorescent and colorimetric tags, protocols to fabricate Raman-based immunoassays are limited. The purpose of this paper is to provide a protocol to prepare functionalized probes to use in conjunction with polystyrene plates for direct detection of analytes by UV-Vis analysis and Raman spectroscopy. This protocol will allow researchers to take a do-it-yourself approach for future multi-analyte detection while capitalizing on pre-established infrastructure.
Collapse
Affiliation(s)
- Cynthia Hanson
- Biological Engineering Department, Utah State University
| | | | | | | |
Collapse
|
17
|
Applications in high-content functional protein microarrays. Curr Opin Chem Biol 2016; 30:21-27. [DOI: 10.1016/j.cbpa.2015.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/11/2015] [Indexed: 12/19/2022]
|
18
|
Ylihärsilä M, Alaranta S, Lahdenperä S, Lahtinen S, Arku B, Hedman K, Soukka T, Waris M. Array-in-well serodiagnostic assay utilizing upconverting phosphor label technology. J Virol Methods 2015; 222:224-30. [DOI: 10.1016/j.jviromet.2015.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 05/24/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
|
19
|
Baker CA, Rubinelli PM, Park SH, Ricke SC. Immuno-based detection of Shiga toxin-producing pathogenic Escherichia coli in food – A review on current approaches and potential strategies for optimization. Crit Rev Microbiol 2015; 42:656-75. [DOI: 10.3109/1040841x.2015.1009824] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Christopher A. Baker
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| | - Peter M. Rubinelli
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| | - Si Hong Park
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| | - Steven C. Ricke
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
20
|
High-throughput identification of proteins with AMPylation using self-assembled human protein (NAPPA) microarrays. Nat Protoc 2015; 10:756-67. [PMID: 25881200 DOI: 10.1038/nprot.2015.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AMPylation (adenylylation) has been recognized as an important post-translational modification that is used by pathogens to regulate host cellular proteins and their associated signaling pathways. AMPylation has potential functions in various cellular processes, and it is widely conserved across both prokaryotes and eukaryotes. However, despite the identification of many AMPylators, relatively few candidate substrates of AMPylation are known. This is changing with the recent development of a robust and reliable method for identifying new substrates using protein microarrays, which can markedly expand the list of potential substrates. Here we describe procedures for detecting AMPylated and auto-AMPylated proteins in a sensitive, high-throughput and nonradioactive manner. The approach uses high-density protein microarrays fabricated using nucleic acid programmable protein array (NAPPA) technology, which enables the highly successful display of fresh recombinant human proteins in situ. The modification of target proteins is determined via copper-catalyzed azide-alkyne cycloaddition (CuAAC). The assay can be accomplished within 11 h.
Collapse
|
21
|
Yu X, Decker KB, Barker K, Neunuebel MR, Saul J, Graves M, Westcott N, Hang H, LaBaer J, Qiu J, Machner MP. Host-pathogen interaction profiling using self-assembling human protein arrays. J Proteome Res 2015; 14:1920-36. [PMID: 25739981 DOI: 10.1021/pr5013015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Host-pathogen protein interactions are fundamental to every microbial infection, yet their identification has remained challenging due to the lack of simple detection tools that avoid abundance biases while providing an open format for experimental modifications. Here, we applied the Nucleic Acid-Programmable Protein Array and a HaloTag-Halo ligand detection system to determine the interaction network of Legionella pneumophila effectors (SidM and LidA) with 10 000 unique human proteins. We identified known targets of these L. pneumophila proteins and potentially novel interaction candidates. In addition, we applied our Click chemistry-based NAPPA platform to identify the substrates for SidM, an effector with an adenylyl transferase domain that catalyzes AMPylation (adenylylation), the covalent addition of adenosine monophosphate (AMP). We confirmed a subset of the novel SidM and LidA targets in independent in vitro pull-down and in vivo cell-based assays, and provided further insight into how these effectors may discriminate between different host Rab GTPases. Our method circumvents the purification of thousands of human and pathogen proteins, and does not require antibodies against or prelabeling of query proteins. This system is amenable to high-throughput analysis of effectors from a wide variety of human pathogens that may bind to and/or post-translationally modify targets within the human proteome.
Collapse
Affiliation(s)
- Xiaobo Yu
- †Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Kimberly B Decker
- ‡Unit on Microbial Pathogenesis, Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kristi Barker
- †Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - M Ramona Neunuebel
- ‡Unit on Microbial Pathogenesis, Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Justin Saul
- †Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Morgan Graves
- †Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Nathan Westcott
- §The Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Howard Hang
- §The Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Joshua LaBaer
- †Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Ji Qiu
- †Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Matthias P Machner
- ‡Unit on Microbial Pathogenesis, Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
22
|
Spindel S, Sapsford KE. Evaluation of optical detection platforms for multiplexed detection of proteins and the need for point-of-care biosensors for clinical use. SENSORS (BASEL, SWITZERLAND) 2014; 14:22313-41. [PMID: 25429414 PMCID: PMC4299016 DOI: 10.3390/s141222313] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 11/16/2022]
Abstract
This review investigates optical sensor platforms for protein multiplexing, the ability to analyze multiple analytes simultaneously. Multiplexing is becoming increasingly important for clinical needs because disease and therapeutic response often involve the interplay between a variety of complex biological networks encompassing multiple, rather than single, proteins. Multiplexing is generally achieved through one of two routes, either through spatial separation on a surface (different wells or spots) or with the use of unique identifiers/labels (such as spectral separation-different colored dyes, or unique beads-size or color). The strengths and weaknesses of conventional platforms such as immunoassays and new platforms involving protein arrays and lab-on-a-chip technology, including commercially-available devices, are discussed. Three major public health concerns are identified whereby detecting medically-relevant markers using Point-of-Care (POC) multiplex assays could potentially allow for a more efficient diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Samantha Spindel
- Division of Biology, Chemistry, and Materials Science Office of Science and Engineering Laboratories; U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | - Kim E Sapsford
- Division of Biology, Chemistry, and Materials Science Office of Science and Engineering Laboratories; U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| |
Collapse
|
23
|
Kilb N, Burger J, Roth G. Protein microarray generation by in situ protein expression from template DNA. Eng Life Sci 2014. [DOI: 10.1002/elsc.201300052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Normann Kilb
- Laboratory for Microarray Copying, Centre for Biological Systems Analysis (ZBSA) University of Freiburg Freiburg Germany
| | - Jürgen Burger
- Laboratory for Microarray Copying, Centre for Biological Systems Analysis (ZBSA) University of Freiburg Freiburg Germany
- Laboratory for MEMS Applications, Department of Microsystems Engineering—IMTEK University of Freiburg Freiburg Germany
| | - Günter Roth
- Laboratory for Microarray Copying, Centre for Biological Systems Analysis (ZBSA) University of Freiburg Freiburg Germany
- BIOSS—Centre for Biological Signalling Studies University of Freiburg Freiburg Germany
| |
Collapse
|
24
|
Pratsch K, Wellhausen R, Seitz H. Advances in the quantification of protein microarrays. Curr Opin Chem Biol 2014; 18:16-20. [DOI: 10.1016/j.cbpa.2013.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
|