1
|
Cone AS, Zhou Y, McNamara RP, Eason AB, Arias GF, Landis JT, Shifflett KW, Chambers MG, Yuan R, Willcox S, Griffith JD, Dittmer DP. CD81 fusion alters SARS-CoV-2 Spike trafficking. mBio 2024; 15:e0192224. [PMID: 39140770 PMCID: PMC11389398 DOI: 10.1128/mbio.01922-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic caused the biggest public health crises in recent history. Many expect future coronavirus introductions into the human population. Hence, it is essential to understand the basic biology of these viruses. In natural infection, the SARS-CoV-2 Spike (S) glycoprotein is co-expressed with all other viral proteins, which modify cellular compartments to maximize virion assembly. By comparison, most of S is degraded when the protein is expressed in isolation, as in current molecular vaccines. To probe the maturation pathway of S, we redirected its maturation by fusing S to the tetraspanin protein CD81. CD81 is a defining constituent of extracellular vesicles (EVs) or exosomes. EVs are generated in large numbers by all cells, extruded into blood and lymph, and transfer cargo between cells and systemically (estimated 1012 EVs per mL plasma). EVs, like platelets, can be transfused between unrelated donors. When fusing the proline-stabilized form of strain Delta S into the flexible, large extracellular loop of CD81 rather than being degraded in the lysosome, S was extruded into EVs. CD81-S fusion containing EVs were produced in large numbers and could be isolated to high purity. Purified CD81::S EVs bound ACE2, and S displayed on individual EV was observed by cryogenic electron microscopy (EM). The CD81::S-fusion EVs were non-toxic and elicited an anti-S trimer and anti-RBD antibody response in mice. This report shows a design path to maximize viral glycoprotein assembly and release without relying on the co-expression of potentially pathogenic nonstructural viral proteins. IMPORTANCE The severe acute respiratory syndrome coronavirus 2 pandemic caused the biggest public health crises in recent history. To understand the maturation pathway of S, we fused S to the tetraspanin protein CD81. The resulting molecule is secreted in extracellular vesicles and induces antibodies in mice. This may be a general design path for viral glycoprotein vaccines.
Collapse
Affiliation(s)
- Allaura S. Cone
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yijun Zhou
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ryan P. McNamara
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Anthony. B. Eason
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gabriel F. Arias
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justin T. Landis
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kyle W. Shifflett
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Meredith G. Chambers
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Runjie Yuan
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jack D. Griffith
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dirk P. Dittmer
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Bernauer H, Schlör A, Maier J, Hanack K, Bannert N, Ivanusic D. Analysis of antibodies from whole-cell immunization by a tANCHOR cell-based ELISA. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001201. [PMID: 38698909 PMCID: PMC11063790 DOI: 10.17912/micropub.biology.001201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Monitoring specific antibodies derived from whole-cell immunization through cell-based ELISA methods poses challenges due to humoral responses against various cell proteins. In this report, we outline a technique involving pre-adsorption on cells to remove undesirable antibodies from immune serum. This step provides the subsequent monitoring of antibodies specific to the targeted antigen using a tANCHOR-based ELISA. Notably, this approach accelerates result acquisition, eliminating the necessity to purify the expressed antigen or obtain a customized peptide for coating assay plates.
Collapse
Affiliation(s)
- Hubert Bernauer
- ATG:biosynthetics GmbH, Weberstraße 40, 79249 Merzhausen, Germany
| | - Anja Schlör
- new/era/mabs GmbH, August-Bebel-Str. 89, 14482 Potsdam, Germany
- Institute for Biology and Biochemistry, University of Potsdam, Karl-Liebknechtstr. 24-25, 14476 Potsdam, Germany
| | - Josef Maier
- ATG:biosynthetics GmbH, Weberstraße 40, 79249 Merzhausen, Germany
- IStLS, Härlestr. 24/1, 78727 Oberndorf a.N., Germany
| | - Katja Hanack
- new/era/mabs GmbH, August-Bebel-Str. 89, 14482 Potsdam, Germany
- Institute for Biology and Biochemistry, University of Potsdam, Karl-Liebknechtstr. 24-25, 14476 Potsdam, Germany
| | - Norbert Bannert
- Sexually transmitted bacterial pathogens and HIV (FG18), Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | - Daniel Ivanusic
- Sexually transmitted bacterial pathogens and HIV (FG18), Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| |
Collapse
|
3
|
Ivanusic D, Maier J, Icli S, Falcone V, Bernauer H, Bannert N. tANCHOR-cell-based assay for monitoring of SARS-CoV-2 neutralizing antibodies rapidly adaptive to various receptor-binding domains. iScience 2024; 27:109123. [PMID: 38380248 PMCID: PMC10877956 DOI: 10.1016/j.isci.2024.109123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/24/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Conventional neutralizing enzyme-linked immunosorbent assay (ELISA) systems for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mimic the protein-protein interaction between angiotensin-converting enzyme 2 (ACE2) and the receptor-binding domain (RBD). However, an easy and rapidly adaptative ELISA-based system for testing neutralizing antibodies against upcoming SARS-CoV-2 variants is urgently needed. In this study, we closed this gap by developing a tANCHOR-cell-based RBD neutralization assay that avoids time-consuming protein expression and purification followed by coating on ELISA plates. This cell-based assay can be rapidly adopted to monitor neutralizing antibodies (NAbs) against upcoming SARS-CoV-2 variants. We show that the results obtained with the tANCHOR-cell-based assay system strongly correlate with commercially available surrogate assays for testing NAbs. Moreover, this technique can directly measure binding between cell-surface-exposed RBDs and soluble ACE2. With this technique, the degree of antibody escape elicited by emerging SARS-CoV-2 variants in current vaccination regimens can be determined rapidly and reliably.
Collapse
Affiliation(s)
- Daniel Ivanusic
- Sexually transmitted bacterial pathogens and HIV (FG18), Robert Koch-Institute, 13353 Berlin, Germany
| | - Josef Maier
- ATG:biosynthetics GmbH, 79249 Merzhausen, Germany
| | - Suheda Icli
- Sexually transmitted bacterial pathogens and HIV (FG18), Robert Koch-Institute, 13353 Berlin, Germany
| | - Valeria Falcone
- Freiburg University Medical Center, Faculty of Medicine, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany
| | | | - Norbert Bannert
- Sexually transmitted bacterial pathogens and HIV (FG18), Robert Koch-Institute, 13353 Berlin, Germany
| |
Collapse
|
4
|
Bernauer H, Maier J, Bannert N, Ivanusic D. tANCHOR cell-based ELISA approach as a surrogate for antigen-coated plates to monitor specific IgG directed to the SARS-CoV-2 receptor-binding domain. Biol Methods Protoc 2024; 9:bpae001. [PMID: 38332985 PMCID: PMC10850845 DOI: 10.1093/biomethods/bpae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
Enzyme-linked immunosorbent assay (ELISA) systems use plates coated with peptides or expressed and purified proteins to monitor immunoglobulins derived from patient serum. However, there is currently no easy, flexible, and fast adaptive ELISA-based system for testing antibodies directed against new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. In this study, we utilized the tANCHOR protein display system that provides a cell surface decorated with the receptor-binding domain (RBD) to monitor specific antibodies derived from SARS-CoV-2 convalescent and vaccinated individuals directed against it. To test sera from vaccinees or convalescent individuals, only the RBD coding sequence needs to be cloned in the tANCHOR vector system and transfected into HeLa cells. Time-consuming protein expression, isolation, and purification followed by coating assay plates are not necessary. With this technique, the immune evasion of new SARS-CoV-2 variants from current vaccination regimes can be examined quickly and reliably.
Collapse
Affiliation(s)
| | - Josef Maier
- ATG:biosynthetics GmbH, 79249 Merzhausen, Germany
| | - Norbert Bannert
- Sexually Transmitted Bacterial Pathogens and HIV (FG18), Robert Koch-Institute, 13353 Berlin, Germany
| | - Daniel Ivanusic
- Sexually Transmitted Bacterial Pathogens and HIV (FG18), Robert Koch-Institute, 13353 Berlin, Germany
| |
Collapse
|
5
|
Bernauer H, Schlör A, Maier J, Bannert N, Hanack K, Ivanusic D. tANCHOR fast and cost-effective cell-based immunization approach with focus on the receptor-binding domain of SARS-CoV-2. Biol Methods Protoc 2023; 8:bpad030. [PMID: 38090673 PMCID: PMC10713279 DOI: 10.1093/biomethods/bpad030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 06/29/2024] Open
Abstract
Successful induction of antibodies in model organisms like mice depends strongly on antigen design and delivery. New antigen designs for immunization are helpful for developing future therapeutic monoclonal antibodies (mAbs). One of the gold standards to induce antibodies in mice is to express and purify the antigen for vaccination. This is especially time-consuming when mAbs are needed rapidly. We closed this gap and used the display technology tetraspanin anchor to develop a reliable immunization technique without the need to purify the antigen. This technique is able to speed up the immunization step enormously and we have demonstrated that we were able to induce antibodies against different proteins with a focus on the receptor-binding domain of SARS-CoV-2 and the extracellular loop of canine cluster of differentiation 20 displayed on the surface of human cells.
Collapse
Affiliation(s)
| | - Anja Schlör
- new/era/mabs GmbH, Potsdam 14482, Germany
- Institute for Biology and Biochemistry, University of Potsdam, Potsdam 14476, Germany
| | - Josef Maier
- ATG:biosynthetics GmbH, Merzhausen 79249, Germany
| | | | - Katja Hanack
- new/era/mabs GmbH, Potsdam 14482, Germany
- Institute for Biology and Biochemistry, University of Potsdam, Potsdam 14476, Germany
| | | |
Collapse
|
6
|
Ivanusic D, Denner J. The large extracellular loop is important for recruiting CD63 to exosomes. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000842. [PMID: 37602284 PMCID: PMC10432940 DOI: 10.17912/micropub.biology.000842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
Exosomes are small extracellular vesicles that are secreted from cells. To characterize exosome fraction marker proteins of the tetraspanin family in particular, CD9, CD63, and CD81 are routinely used. CD63 expression constructs were employed to investigate the influence of the large extracellular loop (LEL) of CD63 on sorting into exosomes. When the LEL of CD63 fused with mCherry was deleted, the protein was no longer found in the purified exosome fraction. This finding demonstrates the importance of the LEL sequence for the recruitment of CD63 into exosomes.
Collapse
Affiliation(s)
- Daniel Ivanusic
- Sexually transmitted bacterial pathogens and HIV (FG18), Robert Koch Institute, 13353 Berlin, Germany
| | - Joachim Denner
- Institute of Virology, Department of Veterinary Medicine, Free University Berlin, 14163 Berlin, Germany
| |
Collapse
|
7
|
Ivanusic D, Madela K, Bannert N, Denner J. Time-lapse imaging of CD63 dynamics at the HIV-1 virological synapse by using agar pads. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000648. [PMID: 36281316 PMCID: PMC9587459 DOI: 10.17912/micropub.biology.000648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
Abstract
Time-lapse imaging provides an uninterrupted observation method that can lead to understanding protein dynamics. We previously developed a technique based on thin agar pads to keep the cells in focus during confocal laser scanning microscope imaging. Using this method, time-lapse imaging was employed to monitor CD63 fused to mCherry at the virological synapse (VS) during viral cluster transfer to acceptor cells of the human immunodeficiency virus 1 (HIV-1).
Collapse
Affiliation(s)
- Daniel Ivanusic
- Sexually transmitted bacterial pathogens and HIV (FG18), Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany.
,
Correspondence to: Daniel Ivanusic (
)
| | - Kazimierz Madela
- Special Light and Electron Microscopy (ZBS4), Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | - Norbert Bannert
- Sexually transmitted bacterial pathogens and HIV (FG18), Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | - Joachim Denner
- Institute of Virology, Department of Veterinary Medicine, Free University Berlin, 14163 Berlin, Germany
| |
Collapse
|
8
|
Wang PY, Yang X, Guo L, Wang YW, Zhang WL, Sun YX, Li J, Gan CY, Long SY, Liu JJ, Fan SY, Huang AL, Hu JL. Establishment of a human cell line with a surface display system for screening and optimizing Na+-taurocholate cotransporting polypeptide-binding peptides. Front Microbiol 2022; 13:920280. [PMID: 36060770 PMCID: PMC9428559 DOI: 10.3389/fmicb.2022.920280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
One of the most desirable targets for HBV medications is the sodium taurocholate cotransporting polypeptide (NTCP), an entry receptor for the hepatitis B virus (HBV). N-myristoylated preS1 2–48 (Myrcludex B or Hepcludex), an NTCP-binding peptide from the large surface protein of HBV, has been developed as the first-in-class entry inhibitor. However, its relatively large molecular weight contributes to increased immunogenicity and antibody production. As a result, it is preferable to look for an NTCP-binding peptide with a smaller size. To do this, we developed a human cell surface display strategy and screened peptides based on preS1-21. PreS1-21 (genotype D) was extended by 7 random amino acids and fused with mCherry and FasL transmembrane domain. The pooled constructs were transfected into HEK293 cells by using the transposon/transposase system to create a library displaying various peptides on the cell surface with red fluorescence. On the other hand, we expressed NTCP protein fused with EGFP on HEK293 and used the membrane lysate containing NTCP-GFP as the bait protein to select peptides with increased NTCP affinity. After 7 cycles of selection, the deep sequencing results revealed that some polypeptides were more than 1,000 times enriched. Further screening of the mostly enriched 10 peptides yields the peptide preS1-21-pep3. Replacing the preS1-21 sequence of preS1-21-pep3 with those from different genotypes demonstrated that the consensus sequence of genotype A–F had the best performance. The peptide (Myr-preS1-21-pep3) was synthesized and tested on the HepG2-NTCP cell model. The results showed that Myr-preS1-21-pep3 is approximately 10 times more potent than the initial peptide Myr-preS1-21 in preventing HBV infection. In conclusion, we developed a new strategy for screening peptides binding to membrane proteins and identified a new NTCP-binding peptide with a much smaller size than Hepcludex.
Collapse
Affiliation(s)
- Pei-yun Wang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xue Yang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Lin Guo
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yu-wei Wang
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
- Laboratory for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Wen-lu Zhang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yu-xue Sun
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jie Li
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Chun-yang Gan
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shao-yuan Long
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jia-jun Liu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shu-ying Fan
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ai-long Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- *Correspondence: Ai-long Huang,
| | - Jie-Li Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- Jie-Li Hu,
| |
Collapse
|
9
|
Zhang MQ, Wang ZG, Fu DD, Zhang JM, Liu HY, Liu SL, Pang DW. Quantum Dots Tracking Endocytosis and Transport of Proteins Displayed by Mammalian Cells. Anal Chem 2022; 94:7567-7575. [PMID: 35581735 DOI: 10.1021/acs.analchem.2c00411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mammalian cell display technology uses eukaryotic protein expression system to display proteins on cell surfaces and has become an important method in biological research. Although mammalian cell display technology has many advantages and development potential, certain attributes of the displayed protein remain uncharacterized, such as whether the displayed proteins re-enter the cell and how displayed proteins move into the cell. Here, we present the endocytosis mechanism, motility behavior, and transport kinetics of displayed proteins determined using HaloTag as the displayed protein and quantum dot-based single-particle tracking. The displayed protein enters the cell through clathrin-mediated endocytosis and is transported through the cell in three stages, which is dependent on microfilaments and microtubules. The dynamic information obtained in this study provides answers to questions about endocytosis and postendocytosis transport of displayed proteins and, therefore, is expected to facilitate the development of surface display technology.
Collapse
Affiliation(s)
- Meng-Qian Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Dan-Dan Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ju-Mei Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hao-Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.,State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|