1
|
Fiorenza MF, Bridi A, Dos Santos G, Rosa PM, Alves L, Ferst JG, Ferraz PA, Pugliesi G, Pohler K, Perecin F, Meirelles FV, da Silveira JC. Labeled extracellular vesicles can be found in the blood plasma shortly after intrauterine infusion in bovine. Anim Reprod 2024; 21:e20240064. [PMID: 39286366 PMCID: PMC11404864 DOI: 10.1590/1984-3143-ar2024-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/04/2024] [Indexed: 09/19/2024] Open
Abstract
This study explored the migration of follicular fluid (FF)-derived extracellular vesicles (EVs) of the uterine environment to the bloodstream and their interaction with neutrophils in vivo and in vitro. For the in vivo experiment, six Nellore heifers (Bos indicus) received an intrauterine infusion seven days after ovulation with 1X PBS only (sham group; n=1), 1X PBS stained with lipophilic dye PKH26 (control group; n=2), or FF-derived EVs stained with PKH26 (treated group; n=3). Plasma was collected at 0, 10, 30, 60-, 180-, 360-, 720-, and 1440-min post-infusion to obtained EVs for analysis by nano flow cytometry. Labeled EVs were present in the bloodstream at 30- and 60-min post-infusion in the treatment group. Additionally, plasma derived-EVs from all groups were positive for Calcein-AM, Alix, Syntenin, and Calnexin, which confirm the presence of EVs. The second experiment utilized the plasma-derived EVs from the heifers from 30 and 60 min timepoints to evaluate if neutrophils can uptake EVs in vitro. As results, it was possible to observe the presence of labeled EVs in neutrophils treated with plasma derived-EVs from the treatment group. In summary, our results suggest that labeled EVs can migrate from the uterine environment rapidly and interact with circulating immune cells in bovine.
Collapse
Affiliation(s)
- Mariani Farias Fiorenza
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Alessandra Bridi
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Gislaine Dos Santos
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Paola Maria Rosa
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Luana Alves
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Juliana Germano Ferst
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Priscila Assis Ferraz
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Guilherme Pugliesi
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Ky Pohler
- Department of Animal Science, Texas A&M University, College Station, Texas, United States
| | - Felipe Perecin
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Flávio Vieira Meirelles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Juliano Coelho da Silveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| |
Collapse
|
2
|
Miyashita N, Akagi S, Somfai T, Hirao Y. Serum-free spontaneously immortalized bovine oviduct epithelial cell conditioned medium promotes the early development of bovine in vitro fertilized embryos. J Reprod Dev 2024; 70:42-48. [PMID: 38246613 PMCID: PMC10902639 DOI: 10.1262/jrd.2023-031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Embryonic transfer of bovine blastocysts produced using in vitro fertilization (IVF) is widely used, although the challenge of compromised conception rates remains. Using bovine oviduct epithelial cells (BOEC) to improve embryo culture conditions has attracted attention, particularly since the recent discovery of extracellular vesicles from BOEC. The selection of embryos for transfer has also been the subject of various studies, and a set of evaluation criteria to predict pregnancy success has been suggested, in which the embryos are judged by their kinetics and morphology at the early stages. In the present study, we established a spontaneously immortalized BOEC line (SI-BOEC) and examined the effects of conditioned medium on IVF embryos, focusing on the results of the recommended criteria. A modified KSOM (mKSOM) was used to prepare conditioned media. Presumptive zygotes were cultured in mKSOM (control), SI-BOEC-conditioned medium, mKSOM supplemented with sediment (pellet) collected after the ultracentrifugation of the conditioned medium (mKSOM/sediment), and the supernatant. A significantly higher percentage of embryos satisfied the recommended criteria when grown in the conditioned medium than in the mKSOM. A higher proportion of embryos developed into blastocysts after achieving the four criteria. A similar tendency was observed when grown in mKSOM/sediment compared to mKSOM; however, this was not observed in the supernatant. Vesicles with a size similar to that of exosomes were observed in the sediment. In conclusion, the culture medium conditioned by SI-BOEC promoted the production of bovine blastocysts that satisfied the four evaluation criteria recommended for embryo selection.
Collapse
Affiliation(s)
- Norikazu Miyashita
- Division of Dairy Cattle Feeding and Breeding Research, Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan
| | - Satoshi Akagi
- Division of Dairy Cattle Feeding and Breeding Research, Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan
| | - Tamas Somfai
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, NARO, Ibaraki 305-8518, Japan
| | - Yuji Hirao
- Division of Dairy Cattle Feeding and Breeding Research, Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan
| |
Collapse
|
3
|
Nagashima JB, Songsasen N. Canid Reproductive Biology: Norm and Unique Aspects in Strategies and Mechanisms. Animals (Basel) 2021; 11:653. [PMID: 33804569 PMCID: PMC8001368 DOI: 10.3390/ani11030653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022] Open
Abstract
The reproductive physiology of canids is unique compared to other mammalian species. Specifically, the reproductive cycle of female canids is characterized by extended periods of proestrus and estrus followed by obligatory diestrus and protracted ovarian inactivity (anestrus). Although canid reproduction follows this general pattern, studies have shown variations in reproductive biology among species and geographic regions. Understanding of these differences is critical to the development of assisted reproductive technologies including estrus induction, gamete rescue, and embryo production techniques for canid conservation efforts. This review summarizes current knowledge of canid reproduction, including estrus cyclicity, seasonality, and seminal traits, with the emphasis on species diversity. The application of reproductive technologies in wild canid conservation will also be discussed.
Collapse
Affiliation(s)
- Jennifer B. Nagashima
- Center for Species Survival, Smithsonian Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA 22630, USA;
| | | |
Collapse
|
4
|
Esfandyari S, Elkafas H, Chugh RM, Park HS, Navarro A, Al-Hendy A. Exosomes as Biomarkers for Female Reproductive Diseases Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms22042165. [PMID: 33671587 PMCID: PMC7926632 DOI: 10.3390/ijms22042165] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Cell-cell communication is an essential mechanism for the maintenance and development of various organs, including the female reproductive system. Today, it is well-known that the function of the female reproductive system and successful pregnancy are related to appropriate follicular growth, oogenesis, implantation, embryo development, and proper fertilization, dependent on the main regulators of cellular crosstalk, exosomes. During exosome synthesis, selective packaging of different factors into these vesicles happens within the originating cells. Therefore, exosomes contain both genetic and proteomic data that could be applied as biomarkers or therapeutic targets in pregnancy-associated disorders or placental functions. In this context, the present review aims to compile information about the potential exosomes with key molecular cargos that are dysregulated in female reproductive diseases which lead to infertility, including polycystic ovary syndrome (PCOS), premature ovarian failure (POF), Asherman syndrome, endometriosis, endometrial cancer, cervical cancer, ovarian cancer, and preeclampsia, as well as signaling pathways related to the regulation of the reproductive system and pregnancy outcome during these pathological conditions. This review might help us realize the etiology of reproductive dysfunction and improve the early diagnosis and treatment of the related complications.
Collapse
Affiliation(s)
- Sahar Esfandyari
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hoda Elkafas
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Pharmacology and Toxicology, Egyptian Drug Authority (EDA) Formally, (NODCAR), Cairo 35521, Egypt
| | - Rishi Man Chugh
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hang-soo Park
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
| | - Antonia Navarro
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
- Correspondence: ; Tel.: +1-773-832-0742
| |
Collapse
|