1
|
Mutakin M, Pangestu L, Hidayat NN, Abdullah FF, Hadisaputri YE. Antiproliferative Activity and Apoptotic Mechanisms of β-Sitosterol and Its Derivatives as Anti-Breast Cancer Agents: In Silico and In Vitro. J Exp Pharmacol 2025; 17:107-121. [PMID: 39989471 PMCID: PMC11844196 DOI: 10.2147/jep.s496986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/10/2025] [Indexed: 02/25/2025] Open
Abstract
Introduction Breast cancer has become the most frequently diagnosed cancer worldwide. Beta-sitosterol and its derivatives have been explored for its anticancer properties. Therefore, this study aims to analyze the testing procedure carried out on MCF7 and MDA-MB-231 breast cancer cells, as well as MCF 10A non-cancerous breast epithelial cells. Methods The compounds tested included β-sitosterol and its derivatives: 3β-galactose sitosterol, sitostenone, 3β-glucose sitosterol, poriferasta-5, 22E, 25-trien-3β-ol, and 22-dehydrocholesterol. Cytotoxicity assay was conducted using the PrestoBlue™ Cell Viability Reagent on MCF-7, MDA-MB-231, and MCF 10A cells. The compounds with the highest and lowest cytotoxicity were further analyzed for their mechanisms of action through cell morphology assessments and molecular docking studies. mRNA expression levels were also evaluated to confirm the findings. Results The results showed that 3β-glucose sitosterol exhibited the most promising cytotoxic activity with IC50 values against MCF7, MDA-MB-231 breast cancer cells, and MCF 10A non-cancerous cells of 265 µg/mL, 393.862 µg/mL, and 806.833 µg/mL, respectively. Molecular docking simulations showed that the compound is bound to estrogen receptor beta and caspase-3, suggesting a potential mechanism of action as evidenced by the best binding energy of -6.94 kcal/mol and inhibition constant values of 8.16 μM. Furthermore, gene expression analysis confirmed the induction of apoptosis through the upregulation of caspase-9 and caspase-3 mRNA expression. Conclusion Based on the results, β-sitosterol and its derivatives, particularly 3β-glucose sitosterol, show as the most promising potential adjuvant therapy for hormone-positive breast cancer.
Collapse
Affiliation(s)
- Mutakin Mutakin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, West Java, Indonesia
| | - Lauren Pangestu
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, West Java, Indonesia
| | - Nafisa Nurfatia Hidayat
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, West Java, Indonesia
| | - Fajar Fauzi Abdullah
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Garut, West Java, Indonesia
| | - Yuni Elsa Hadisaputri
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, West Java, Indonesia
| |
Collapse
|
2
|
Egbuna C, Patrick-Iwuanyanwu KC, Onyeike EN, Khan J, AlDosari S, Jahan S, Adedokun KA, Imodoye SO, Bello IO, Uche CZ, Noreen S, Ifemeje JC. Anti-proliferative effects of a polyherbal formulation on HL-60, HCT-116, and HeLa cell lines: a docking simulation and response surface design-aided study. Front Chem 2025; 13:1487887. [PMID: 40017726 PMCID: PMC11865080 DOI: 10.3389/fchem.2025.1487887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/15/2025] [Indexed: 03/01/2025] Open
Abstract
Cancer is a complex global health challenge that requires novel and holistic approaches to treatment and prevention. Polyherbal medicines, composed of multiple plants with historical use in traditional medicine, have gained popularity due to their safety, cost-effectiveness, and accessibility. However, selecting the right plants and determining optimal combinations for enhanced biological effects remains challenging. To address this, a molecular docking study was conducted, targeting proteins implicated in cancer pathogenesis. The study identified bioactive compounds with strong binding energies, guiding the selection of polyherbal formulations for further experimentation. Using response surface methodology, various combinations of plant extracts were screened for their antioxidant properties and phytochemical content. Among the formulations tested, PHEE (Polyherbal Ethanolic Extract), comprising 70% soursop leaf, 5% jackfruit leaf, 5% orange peel, 15% citrus juice, and 5% apple fruit ethanolic extracts, exhibited the most potent biological activities, followed by SLEE (Soursop Leaf Ethanolic Extract), a 100% soursop leaf ethanolic extract. Design Expert Software predicted soursop leaf extract as a key contributor to desirable outcomes, attributed to its rich phytochemical composition. Cell-based assays revealed varying cytotoxic effects of the extracts on leukemia cells, with PHEE showing the highest potency (IC50 = 2.50 μg/mL), followed closely by SLEE (IC50 = 2.90 μg/mL). These effects are potentially due to the abundant acetogenins and flavonoids present in the extracts. However, caution is warranted regarding their cytotoxicity to normal cells. Apoptotic studies confirmed the ability of both PHEE and SLEE to induce programmed cell death, further supporting their potential as anticancer agents. This research underscores the importance of strategic plant combinations in polyherbal formulations and highlights PHEE as a promising candidate for further investigation in cancer treatment.
Collapse
Affiliation(s)
- Chukwuebuka Egbuna
- African Centre of Excellence in Public Health and Toxicological Research (ACE-PUTOR), University of Port-Harcourt, Port Harcourt, Rivers, Nigeria
| | - Kingsley C. Patrick-Iwuanyanwu
- African Centre of Excellence in Public Health and Toxicological Research (ACE-PUTOR), University of Port-Harcourt, Port Harcourt, Rivers, Nigeria
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Port Harcourt, Rivers, Nigeria
| | - Eugene N. Onyeike
- African Centre of Excellence in Public Health and Toxicological Research (ACE-PUTOR), University of Port-Harcourt, Port Harcourt, Rivers, Nigeria
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Port Harcourt, Rivers, Nigeria
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Majmaah, Saudi Arabia
| | - Sahar AlDosari
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Majmaah, Saudi Arabia
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Majmaah, Saudi Arabia
| | - Kamoru A. Adedokun
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Sikiru O. Imodoye
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Ibrahim O. Bello
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| | - Chukwuemelie Z. Uche
- Department of Medical Biochemistry and Molecular Biology, Faculty of Basic Medical Sciences, University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - Sana Noreen
- University Institute of Diet and Nutritional Sciences, The university of Lahore, Lahore, Pakistan
| | - Jonathan C. Ifemeje
- Department of Biochemistry, Faculty of Natural Sciences, Chukwuemeka Odumegwu Ojukwu University, Uli, Nigeria
| |
Collapse
|
3
|
Pathirana OC, Paranagama MP, Wijesundera KK, Mahakapuge TAN, Abeykoon AMAU, Rajapakse J. Elucidating the potential of Annona muricata L. grown in Sri Lanka to be used in developing an anticancer drug against colorectal and breast cancers. BMC Complement Med Ther 2024; 24:410. [PMID: 39609783 PMCID: PMC11603727 DOI: 10.1186/s12906-024-04712-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Since ancient times many traditional medicine systems around the world have been using different parts of Annona muricata L. (AM), to treat cancer. Indeed, numerous in vitro and in vivo studies also have shown anticancer properties of different solvent extracts of different parts of AM. Even the same part of the plant has shown different levels of anticancer properties based on geographical variations. Therefore, in the present study, the anticancer potential of the leaves, fruit pulp and the fruit peel of the AM that is grown in Sri Lanka was comparatively analyzed with the intention of identifying the most suitable part to be developed into a nutraceutical with anticancer effects. METHODS Freeze-dried aqueous extracts of immature leaves (ILAM), mature leaves (MLAM), pulp (PAM) and peel (PLAM) of AM were analyzed for their antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and 2,2-azinobis-3-ethylbenzothiozoline-6-sulfonic acid (ABTS) cation decolorization assays. Their cytotoxicity on breast cancer (MCF-7) cells, colorectal adenocarcinoma (DLD-1) cells and normal human gingival fibroblasts (HGF-1) were determined by the 3-(4,5- dimethylthiazole-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT) assay. Their effect on mRNA expression of proapoptotic (Bax and caspase-7) and cell cycle arresting (p21) genes was analyzed by RT- qPCR in the same cell lines. RESULTS ILAM demonstrated the highest antioxidant activity in both DPPH and ABTS assays followed by MLAM, PLAM and PAM. In the MTT assay, both ILAM and MLAM demonstrated strong cytotoxic activity against MCF-7 and DLD-1 cell lines while there were no cytotoxic effects on the normal human cell line HGF-1. Both ILAM and MLAM demonstrated concentration-dependent upregulation of mRNA expression of cell cycle arresting gene p21 and apoptosis inducing genes Bax and caspase-7 in MCF-7 and DLD-1 cells. CONCLUSION The AEAM leaves grown in Sri Lanka has significantly higher antioxidant activity as well as selective cytotoxic effects on MCF-7 and DLD-1 cancer cells compared to its PL and P counterparts. Further, the AEAM leaves induced mRNA expression of the anticancer genes p21, Bax and caspase-7, indicating its potential to be developed into an anticancer drug against breast and colorectal cancer.
Collapse
Affiliation(s)
- Onela Canith Pathirana
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| | - Madhavi Priyanka Paranagama
- Department of Basic Sciences, Faculty of Dental Sciences, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Kavindra Kumara Wijesundera
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | | | | | - Jayantha Rajapakse
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| |
Collapse
|
4
|
Sofi MA, Sofi MA, Nanda A, Thiruvengadam K, Nayak BK. Investigating the Medicinal Potential of Lavatera cashmeriana Leaf Extract: Phytochemical Profiling and In Vitro Evaluation of Antimicrobial, Antioxidant, and Anticancer Activities. Adv Pharmacol Pharm Sci 2024; 2024:5301687. [PMID: 39220824 PMCID: PMC11366056 DOI: 10.1155/2024/5301687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
This study investigated the medicinal potential of Lavatera cashmeriana, a plant traditionally known for its therapeutic properties. The aim was to identify the phytocompounds in L. cashmeriana leaf extract and evaluate its antibacterial, antioxidant, and anticancer effects. Gas chromatography-mass spectrometry analysis was employed to characterize the phytochemical composition of the ethanol extract derived from L. cashmeriana leaves. The antimicrobial potential was assessed through the well diffusion technique, targeting Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans. The 2,2-diphenyl-1-picrylhydrazyl assay was conducted to assess antioxidant capabilities, while cytotoxicity against the A549 cancer cell line was determined via the MTT assay. GC-MS analysis identified ten different compounds, with phytol, 1-Eicosanol, and 2,6,10-trimethyl,14-ethylene-14-pentadecne being the most prevalent. The extract exhibited notable antimicrobial efficacy against all bacteria with MIC values ranging from 62.5 to 250 µg/mL. However, C. albicans did not respond. The extract exhibited antioxidative properties with an IC50 value of 86 µg/mL and cytotoxicity with an IC50 value of 69.95 µg/mL against the A549 cancer cell line. The results derived from this study supported the historical use of L. cashmeriana as a medicinal plant and suggested that it can potentially treat a wide range of medical ailments. The identified phytocompounds and the demonstrated antibacterial, antioxidant, and anticancer effects provide scientific evidence for its medicinal properties. However, further investigations are needed to fully understand its safety profile, efficacy, and mechanism of action before recommending it for therapeutic purposes.
Collapse
Affiliation(s)
- Mohmmad Ashaq Sofi
- Department of Biomedical EngineeringSathyabama Institute of Science & Technology, Chennai 600119, Tamil Nadu, India
| | - Mohd Abass Sofi
- Department of ChemistrySathyabama Institute of Science & Technology, Chennai 600119, Tamil Nadu, India
| | - Anima Nanda
- Department of Biomedical EngineeringSathyabama Institute of Science & Technology, Chennai 600119, Tamil Nadu, India
| | - Kasi Thiruvengadam
- Biocontrol and Microbial Metabolites LabCentre for Advanced Studies in BotanyUniversity of MadrasGuindy Campus, Chennai, India
| | - B. K. Nayak
- Department of BotanyK. M. Govt. Institute for Postgraduate Studies and Research (Autonomous), Puducherry 605008, India
| |
Collapse
|
5
|
Septaningsih DA, Suparto IH, Achmadi SS, Heryanto R, Rafi M. Untargeted metabolomics using UHPLC-Q-Orbitrap HRMS for identifying cytotoxic compounds on MCF-7 breast cancer cells from Annona muricata Linn leaf extracts as potential anticancer agents. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1418-1427. [PMID: 38708435 DOI: 10.1002/pca.3373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION The leaves of Annona muricata L., known as "soursop" or "sirsak" in Indonesia, are used traditionally for cancer treatment. However, the bioactive components remain largely unidentified. OBJECTIVE This study used untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics to identify potential cytotoxic compounds in A. muricata leaf extracts on MCF-7 breast cancer cells in vitro. METHODS A. muricata leaves were macerated with water, 99% ethanol, and aqueous mixtures containing 30%, 50%, and 80% ethanol. Cytotoxic activity of the extracts against MCF-7 breast cancer cells was determined using the MTT assay. Ultra-high-performance liquid chromatography-Q-Orbitrap high-resolution mass spectroscopy (UHPLC-Q-Orbitrap-HRMS) was used to characterize the metabolite composition of each extract. The correlations between metabolite profile and cytotoxic activities were evaluated using orthogonal partial least square discriminant analysis (OPLS-DA). The binding of these bioactive compounds to the tumorigenic alpha-estrogen receptor (3ERT) was then evaluated by in silico docking simulations. RESULTS Ninety-nine percent ethanol extracts demonstrated the greatest potency for reducing MCF-7 cell viability (IC50 = 22 μg/ml). We detected 35 metabolites in ethanol extracts, including alkaloids, flavonoids, and acetogenins. OPLS-DA predicted that annoreticuin, squadiolin C, and xylopine, and six unknown acetogenin metabolites, might reduce MCF-7 cell viability. In silico analysis predicted that annoreticuin, squadiolin C, and xylopine bind to 3ERT with an affinity comparable to doxorubicin. CONCLUSION Untargeted metabolomics and in silico modeling identified cytotoxic compounds on MCF-7 cells and binding affinity to 3ERT in A. muricata leaf extracts. The findings need to be further verified to prove the screening results.
Collapse
Affiliation(s)
- Dewi Anggraini Septaningsih
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
- Advance Research Laboratory, IPB University, Bogor, Indonesia
- Department of Chemistry, Faculty of Military Mathematics and Natural Sciences, Indonesian Defense University, Bogor, Indonesia
| | - Irma Herawati Suparto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
- Tropical Biopharmaca Research Center, IPB University, Bogor, Indonesia
- Primate Research Center, IPB University, Bogor, Indonesia
| | - Suminar Setiati Achmadi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
- Tropical Biopharmaca Research Center, IPB University, Bogor, Indonesia
| | - Rudi Heryanto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
- Advance Research Laboratory, IPB University, Bogor, Indonesia
- Tropical Biopharmaca Research Center, IPB University, Bogor, Indonesia
| | - Mohamad Rafi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
- Advance Research Laboratory, IPB University, Bogor, Indonesia
- Tropical Biopharmaca Research Center, IPB University, Bogor, Indonesia
| |
Collapse
|
6
|
Das AK, Borah M, Kalita JJ, Bora U. Cytotoxic potential of Curcuma caesia rhizome extract and derived gold nanoparticles in targeting breast cancer cell lines. Sci Rep 2024; 14:17223. [PMID: 39060291 PMCID: PMC11282265 DOI: 10.1038/s41598-024-66175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Among all types of cancer, breast cancer is the most aggressive, as it is responsible for most of the cancer related death of women. Though several medical therapies are available, the scenario of curing such disease is not favorable. Therefore, there is an urgent need to find alternatives to deal with it. The knowledge of ethnopharmacy might give some better solution to mitigate such deadly diseases. Here, we are using the rhizome of Curcuma caesia Roxb. (Black turmeric), as well as gold nanoparticles (GNPs) synthesized with it to check their specific cytotoxic potentiality against breast cancer cell lines. In our study, ethanolic extract was used to evaluate the cytotoxic effect of the rhizome. GNPs were synthesized by using the same extract and characterized by UV-Vis spectroscopy (UV-Vis), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and Thermo gravimetric analysis (TGA). The TEM, XRD, FTIR and TGA results revealed the successful synthesis and capping of GNPs. The UV-Vis Spectrum showed a sharp and narrow absorption peak at 550 nm and HRTEM confirmed both the stability and successful synthesis of the nanoparticles. The MTT assay of the crude extract revealed strong cytotoxicity against breast cancer cell lines viz. MCF-7 (ER+) and MDA MB-231 (Triple Negative Breast Cancer, TNBC) by showing IC50 values as 15.70 ± 0.029 and 21.57 ± 0.031 μg/mL respectively. For extract mediated GNPs, the IC50 values were found to be 6.44 ± 0.045 and 5.87 ± 0.031μg/mL respectively in both breast cancer cell lines. As the IC50 value for GNPs was found to be much lower than that of crude extract, it indicates a higher efficiency of the GNP. However, both the rhizome extract and its mediated GNPs showed more toxicity towards MDA MB-231 (TNBC) cell lines. It was also observed that the GNPs showed more toxicity towards TNBC cell lines compared to the rhizome extract. No toxicity was found in case of other cell lines such as L 929 and HeLa for both crude extract as well as for GNPs. These observations suggests that both the crude rhizome extract and its derived GNPs exhibit selective cytotoxic potential against breast cancer cell lines, which might be exploited for target specific treatment. Moreover, with an understanding of the mechanism behind the GNPs therapeutic efficiency, it can be developed as a personalized therapy to treat such type of cancers.
Collapse
Affiliation(s)
- Ajoy Kumar Das
- Department of Botany, Arya Vidyapeeth College (Autonomous), Gopinath Nagar, Guwahati, Assam, 781 016, India.
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India.
| | - Maina Borah
- Department of Botany, Pandu College, Guwahati, Assam, 781 012, India
| | - Jon Jyoti Kalita
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
| | - Utpal Bora
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India.
| |
Collapse
|
7
|
Mary SJ, Veeravarmal V, Thankappan P, Arumugam P, Augustine PI, Franklin R. Anti-cancer effects of green synthesized gold nanoparticles using leaf extract of Annona muricata. L against squamous cell carcinoma cell line 15 through apoptotic pathway. Dent Res J (Isfahan) 2024; 21:14. [PMID: 38476717 PMCID: PMC10929727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 03/14/2024] Open
Abstract
Background Oral cancer remains one of the most dreadful diseases in developing nations. Currently, there has been a rise in the prevalence of tongue squamous cell carcinoma (SCC), with a poor prognosis. The use of standard treatment approaches against oral cancer patients brings about several side effects. In recent years, nanomedicine has provided a versatile platform for developing new targeted therapeutic modalities. However, safety remains a concern in the synthesis of nanoparticles (NPs). Therefore, the present study aims to synthesize safer phytoconstituent-mediated gold NPs (AuNPs) utilizing leaf extracts of Annona muricata, where the biochemical components of the plant leaf act as the reducing and capping agents in the synthesis of NPs, and to evaluate its anti-cancer activity against SCC. Materials and Methods In this in vitro experimental study, AuNPs were synthesized through an effective, simple, and ecologically sound green synthesis method. After characterization of these synthesized AuNPs, in vitro assays such as 3-(4, 5-dimethylthiazole2-yl)-2, 5-biphenyl tetrazolium bromide, wound healing, and clonogenic assays were carried out to investigate the anti-cancer potential of green synthesized AuNPs in the human tongue SCC cell line (SCC-15), and the possible mechanism of action was evaluated through gene and protein expression analysis of Bax, Bcl-2, and p53 genes. The results were expressed as mean ± standard deviation using Statistical Package for Social Sciences (SPSS) 20.0 software and Student's t-test was performed for experimental data. P ≤0.05 were considered statistically significant. Results The in vitro assays demonstrated that the synthesized AuNPs are exhibiting anti-cancer activity by apoptosis of SCC-15 cells in a dose-dependent manner. Further, it also revealed a highly significant decrease in anti-apoptotic Bcl-2 gene expression, whereas pro-apoptotic genes p53 and Bax revealed a highly significant increase, which is statistically significant compared to the control (P < 0.05). Conclusion Our findings demonstrated that the AuNPs synthesized from A. muricata leaf extract could act as a novel anticancer agent, particularly against SCC, after further scrutiny.
Collapse
Affiliation(s)
- S. Jeslin Mary
- Department of Oral and Maxillofacial Pathology, Sree Mookambika Institute of Dental Sciences, Kanyakumari, Tamil Nadu, India
| | - Veeran Veeravarmal
- Department of Oral and Maxillofacial Pathology, Government Dental College, Cuddalore, Tamil Nadu, India
| | - Prasanth Thankappan
- Department of Oral and Maxillofacial Pathology, Sree Mookambika Institute of Dental Sciences, Kanyakumari, Tamil Nadu, India
| | - Paramasivam Arumugam
- Center for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, India
| | - Percy Ida Augustine
- Consultant, Oral and Maxillofacial Pathologist, Joannas Dental Care, Tamil Nadu, India
| | - R. Franklin
- Department of Oral and Maxillofacial Pathology, Sree Mookambika Institute of Dental Sciences, Kanyakumari, Tamil Nadu, India
| |
Collapse
|
8
|
Chabattula SC, Patra B, Gupta PK, Govarthanan K, Rayala SK, Chakraborty D, Verma RS. Anti-cancer Application of Nat-ZnFe 2O 4 Nanoparticles on 2D Tumor Models. Appl Biochem Biotechnol 2024; 196:1058-1078. [PMID: 37318689 DOI: 10.1007/s12010-023-04582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/16/2023]
Abstract
Metal/Metal Oxide nanoparticles (M/MO NPs) exhibit potential biomedical applications due to their tunable physicochemical properties. Recently, the biogenic synthesis of M/MO NPs has gained massive attention due to their economical and eco-friendly nature. In the present study, Nyctanthes arbor-tristis (Nat) flower extract-derived Zinc Ferrite NPs (Nat-ZnFe2O4 NPs) were synthesized and physicochemically characterized by FTIR, XRD, FE-SEM, DLS, and other instruments to study their crystallinity, size, shape, net charge, presence of phytocompounds on NP's surface and several other features. The average particle size of Nat-ZnFe2O4 NPs was approx. 25.87 ± 5.67 nm. XRD results showed the crystalline nature of Nat-ZnFe2O4 NPs. The net surface charge on NPs was -13.28 ± 7.18 mV. When tested on mouse fibroblasts and human RBCs, these NPs were biocompatible and hemocompatible. Later, these Nat-ZnFe2O4 NPs exhibited potent anti-neoplastic activity against pancreatic, lung, and cervical cancer cells. In addition, NPs induced apoptosis in tested cancer cells through ROS generation. These in vitro studies confirmed that Nat-ZnFe2O4 NPs could be used for cancer therapy. Moreover, further studies are recommended on ex vivo platforms for future clinical applications.
Collapse
Affiliation(s)
- Siva Chander Chabattula
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | - Bamadeb Patra
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, 248002, Uttarakhand, India
- Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Malaysia
| | - Kavitha Govarthanan
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, Karnataka, 560065, India
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | - Debashis Chakraborty
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.
| | - Rama Shanker Verma
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.
| |
Collapse
|
9
|
Abdallah RH, Al-Saleem MSM, Abdel-Mageed WM, Al-Attar ASR, Shehata YM, Abdel-Fattah DM, Atta RM. LCMS/MS Phytochemical Profiling, Molecular, Pathological, and Immune-Histochemical Studies on the Anticancer Properties of Annona muricata. Molecules 2023; 28:5744. [PMID: 37570713 PMCID: PMC10421100 DOI: 10.3390/molecules28155744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023] Open
Abstract
Annona muricate is a tropical plant that is well-known for its edible fruit of therapeutic interest. LCMS/MS analyses were applied to identify phytoconstituents of the ethanolic extract of the whole fruits and the aqueous extract of the edible fruit part, in addition to the investigation of their anticancer properties against Ehrlich ascites carcinoma (EAC) in male albino mice. LCMS/MS analyses resulted in the identification of 388 components, representing a wide array of classes of compounds, including acetogenins as the major constituents, alkaloids, flavonoids, and phenolics. Among them, four compounds were tentatively characterized as new compounds (1-4), including an acid derivative, protocatechuic-coumaroyl-quinic acid (1), and three flavonoid derivatives, dihydromyricetin galloyl hexoside (2), apigenin gallate (3), and dihydromyricetin hexouronic acid hexoside (4). Induction with EAC cells resulted in abnormalities in the gene expression of pro-apoptotic genes (Bax and caspase-3) and anti-apoptotic gene (Bcl-2) in the tumor mass. Moreover, microscopic, histopathological, and immune-histochemical examinations of the tumor mass and liver tissues exhibited extensive growth of malignant Ehrlich carcinoma cells and marked hydropic degeneration of hepatocytes and infiltration by tumor cells to liver tissue with marked inflammatory reaction. These abnormalities were markedly ameliorated aftertreatment of EAC mice with A. muricata extracts.
Collapse
Affiliation(s)
- Rehab H. Abdallah
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Muneera S. M. Al-Saleem
- Department of Chemistry, Science College, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Wael M. Abdel-Mageed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Al-Sayed R. Al-Attar
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.-S.R.A.-A.); (D.M.A.-F.)
| | - Youssef M. Shehata
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (Y.M.S.); (R.M.A.)
| | - Doaa M. Abdel-Fattah
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.-S.R.A.-A.); (D.M.A.-F.)
| | - Rahnaa M. Atta
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (Y.M.S.); (R.M.A.)
| |
Collapse
|
10
|
Mary SJ, Veeravarmal V, Thankappan P, Angelin D, Franklin R, Girish KL. Evaluation of the cytotoxic, anti-proliferative, anti-metastatic and pro-apoptotic effect of aqueous leaf extract of Annona muricata on oral tongue squamous cell carcinoma cell line (SCC-15): An in vitro study. J Oral Maxillofac Pathol 2023; 27:469-475. [PMID: 38033979 PMCID: PMC10683899 DOI: 10.4103/jomfp.jomfp_299_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 12/02/2023] Open
Abstract
Background Oral cancer still represents the leading cause of mortality in India. Due to the drawbacks of current treatment options, a safe, low-cost therapy is the need of the hour. Recently, novel plant extracts with anti-cancer properties have gained greater attention. One among them is Annona muricata and its leaf extract, which has been studied for its anti-cancer effect against various cancers. However, studies on oral cancer cells are very much limited and hence the study. Aims To evaluate the cytotoxic, anti-proliferative, anti-metastatic and pro-apoptotic effect of aqueous leaf extract of Annona muricata (ALEAM) against SCC-15 cell lines through in vitro assays. Materials and Methods In vitro assays such as MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide], colony formation and wound healing assays were performed. Furthermore, to evaluate the underlying mechanism, gene and protein expression analysis of apoptotic/anti-apoptotic marker genes Bax, P53 and Bcl2, were done using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis. Student's t-test has been performed for analysis of experimental data. Results The results showed that ALEAM exhibited significant cytotoxic activity in a dose-dependent manner as well as inhibited colony formation and cell migration. The pro-apoptotic properties were affirmed by a highly significant drop in Bcl-2 gene expression and a highly significant rise in P53 and Bax genes in the study group compared to the control (P < 0.05). Conclusion The current study provides evidence that ALEAM has the potential to be developed as a novel anti-cancer drug for the treatment of SCC after further clinical studies.
Collapse
Affiliation(s)
- S. Jeslin Mary
- Department of Oral and Maxillofacial Pathology, Sree Mookambika Institute of Dental Sciences, Kulasekharam, Kanyakumari District, Tamil Nadu, India
| | - Veeran Veeravarmal
- Department of Oral and Maxillofacial Pathology, Government Dental College Cuddalore, Tamil Nadu, India
| | - Prasanth Thankappan
- Department of Oral and Maxillofacial Pathology, Sree Mookambika Institute of Dental Sciences, Kulasekharam, Kanyakumari District, Tamil Nadu, India
| | - D Angelin
- Department of Oral and Maxillofacial Pathology, Sree Mookambika Institute of Dental Sciences, Kulasekharam, Kanyakumari District, Tamil Nadu, India
| | - R Franklin
- Department of Oral and Maxillofacial Pathology, Sree Mookambika Institute of Dental Sciences, Kulasekharam, Kanyakumari District, Tamil Nadu, India
| | - KL Girish
- Department of Oral and Maxillofacial Pathology, Sree Mookambika Institute of Dental Sciences, Kulasekharam, Kanyakumari District, Tamil Nadu, India
| |
Collapse
|
11
|
Gaobotse G, Venkataraman S, Brown PD, Masisi K, Kwape TE, Nkwe DO, Rantong G, Makhzoum A. The use of African medicinal plants in cancer management. Front Pharmacol 2023; 14:1122388. [PMID: 36865913 PMCID: PMC9971233 DOI: 10.3389/fphar.2023.1122388] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Cancer is the third leading cause of premature death in sub-Saharan Africa. Cervical cancer has the highest number of incidences in sub-Saharan Africa due to high HIV prevalence (70% of global cases) in African countries which is linked to increasing the risk of developing cervical cancer, and the continuous high risk of being infected with Human papillomavirus In 2020, the risk of dying from cancer amongst women was higher in Eastern Africa (11%) than it was in Northern America (7.4%). Plants continue to provide unlimited pharmacological bioactive compounds that are used to manage various illnesses, including cancer. By reviewing the literature, we provide an inventory of African plants with reported anticancer activity and evidence supporting their use in cancer management. In this review, we report 23 plants that have been used for cancer management in Africa, where the anticancer extracts are usually prepared from barks, fruits, leaves, roots, and stems of these plants. Extensive information is reported about the bioactive compounds present in these plants as well as their potential activities against various forms of cancer. However, information on the anticancer properties of other African medicinal plants is insufficient. Therefore, there is a need to isolate and evaluate the anticancer potential of bioactive compounds from other African medicinal plants. Further studies on these plants will allow the elucidation of their anticancer mechanisms of action and allow the identification of phytochemicals that are responsible for their anticancer properties. Overall, this review provides consolidated and extensive information not only on diverse medicinal plants of Africa but on the different types of cancer that these plants are used to manage and the diverse mechanisms and pathways that are involved during cancer alleviation.
Collapse
Affiliation(s)
- Goabaone Gaobotse
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana,*Correspondence: Goabaone Gaobotse, ; Kabo Masisi, ; Abdullah Makhzoum,
| | - Srividhya Venkataraman
- Virology Laboratory, Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Phenyo D. Brown
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Kabo Masisi
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana,*Correspondence: Goabaone Gaobotse, ; Kabo Masisi, ; Abdullah Makhzoum,
| | - Tebogo E. Kwape
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - David O. Nkwe
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Gaolathe Rantong
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Abdullah Makhzoum
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana,*Correspondence: Goabaone Gaobotse, ; Kabo Masisi, ; Abdullah Makhzoum,
| |
Collapse
|
12
|
Bernitsa S, Dayan R, Stephanou A, Tzvetanova ID, Patrikios IS. Natural biomolecules and derivatives as anticancer immunomodulatory agents. Front Immunol 2023; 13:1070367. [PMID: 36700235 PMCID: PMC9868674 DOI: 10.3389/fimmu.2022.1070367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Despite advancements in chemotherapy, the issue of resistance and non-responsiveness to many chemotherapeutic drugs that are currently in clinical use still remains. Recently, cancer immunotherapy has gathered attention as a novel treatment against select cancers. Immunomodulation is also emerging as an effective strategy to improve efficacy. Natural phytochemicals, with known anticancer properties, been reported to mediate their effects by modulating both traditional cancer pathways and immunity. The mechanism of phytochemical mediated-immunomodulatory activity may be attributed to the remodeling of the tumor immunosuppressive microenvironment and the sensitization of the immune system. This allows for improved recognition and targeting of cancer cells by the immune system and synergy with chemotherapeutics. In this review, we will discuss several well-known plant-derived biomolecules and examine their potential as immunomodulators, and therefore, as novel immunotherapies for cancer treatment.
Collapse
Affiliation(s)
| | - Rotem Dayan
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | | | | | | |
Collapse
|
13
|
Fakudze NT, Aniogo EC, George BP, Abrahamse H. The Therapeutic Efficacy of Punica granatum and Its Bioactive Constituents with Special Reference to Photodynamic Therapy. PLANTS (BASEL, SWITZERLAND) 2022; 11:2820. [PMID: 36365273 PMCID: PMC9654801 DOI: 10.3390/plants11212820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Punica granatum (P. granatum) is a fruit-bearing tree from the Punicaceae family, indigenous to Iran. This plant has healing qualities that have drawn the interest of the medical community as an alternative treatment for malignancies and non-malignancies. Its healing quality is due to the phytochemicals present in the plant. These include ellagic acid, punicic acid, phenols, and flavonoids. In traditional medicine, P. granatum has been used in treating diseases such as dysentery, bleeding disorders, leprosy, and burns. This review explores the effects of the phytochemical constituents of P. granatum on photodynamic therapy for cancer, chronic inflammation, osteoarthritis, and viral infections. Its antioxidant and antitumor effects play a role in reduced free radical damage and cancer cell proliferation. It was concluded that P. granatum has been used for many disease conditions for a better therapeutic outcome. This paper will give visibility to more studies and expand the knowledge on the potential use of P. granatum in photodynamic cancer treatment.
Collapse
|
14
|
A Review on Annona muricata and Its Anticancer Activity. Cancers (Basel) 2022; 14:cancers14184539. [PMID: 36139697 PMCID: PMC9497149 DOI: 10.3390/cancers14184539] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer is becoming more prevalent, raising concerns regarding how well current treatments work. Cancer patients frequently seek alternative treatments to surgery, chemotherapy, and radiation therapy. The use of medicinal plants in both preventative and curative healthcare is widely acknowledged. The compounds of graviola have shown promise as possible cancer-fighting agents and could be used to treat cancer. This review discusses bioactive metabolites present in graviola and their role in affecting the growth and death of different cancer cell types and the molecular mechanism of how it works to downregulate anti-apoptotic genes and the genes involved in pro-cancer metabolic pathways. Also, it reviews how simultaneously increasing the expression of genes promotes apoptosis and causes cancer cells to die so that the active phytochemicals found in graviola could be used as a promising anti-cancer agent. Abstract The ongoing rise in the number of cancer cases raises concerns regarding the efficacy of the various treatment methods that are currently available. Consequently, patients are looking for alternatives to traditional cancer treatments such as surgery, chemotherapy, and radiotherapy as a replacement. Medicinal plants are universally acknowledged as the cornerstone of preventative medicine and therapeutic practices. Annona muricata is a member of the family Annonaceae and is familiar for its medicinal properties. A. muricata has been identified to have promising compounds that could potentially be utilized for the treatment of cancer. The most prevalent phytochemical components identified and isolated from this plant are alkaloids, phenols, and acetogenins. This review focuses on the role of A. muricata extract against various types of cancer, modulation of cellular proliferation and necrosis, and bioactive metabolites responsible for various pharmacological activities along with their ethnomedicinal uses. Additionally, this review highlights the molecular mechanism of the role of A. muricata extract in downregulating anti-apoptotic and several genes involved in the pro-cancer metabolic pathways and decreasing the expression of proteins involved in cell invasion and metastasis while upregulating proapoptotic genes and genes involved in the destruction of cancer cells. Therefore, the active phytochemicals identified in A. muricata have the potential to be employed as a promising anti-cancer agent.
Collapse
|
15
|
Nutritional and Therapeutic Potential of Soursop. J FOOD QUALITY 2022. [DOI: 10.1155/2022/8828358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Soursop (Annona muricata) has been one of the most studied fruits in recent years, owing to its potential medicinal benefits, as evidenced by many studies. Soursop is a tropical and subtropical fruit having great versatility and is quite sensitive to drastic temperature fluctuations. Since soursop contains various phytochemicals, it can be used medicinally to treat a wide range of conditions, including diabetes (by inhibiting the enzymes α-glucosidase and α-amylase), tumor, cancer, oxidative stress, blood pressure, the induction of apoptosis in tumor cells as well as hemorrhagic disease and cholesterol lowering. Due to its significant nutritional profile and therapeutic potential, it can be utilized in the development of nutraceuticals and medicines. Its pulp, seed, and leaf extract are used as functional ingredients in different foods as value-added foods. This review article is intended to characterize fruit development patterns and examines potential maturity indicators in soursop. In addition, it also elaborates on the potential nutritional and active phytochemicals present in this magnificent gift of nature and their possible uses in the food and pharmaceutical industries.
Collapse
|
16
|
Dalal MD, Medithi S. A Review on the Nutraceutical Anti-Metastatic Importance of Annona Muricata Crude Extract (AMCE) and its Coping Mechanism Against Breast Cancer. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220218110419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Annona Muricata is used as a folkloric herbal medicine as it has anticancer, antiproliferative and anti-tumorigenic properties. The extracts from various parts of the plant are considered therapeutic due to Annonaceous Acetogenin compounds which are an absolute boon to the versatility of the plant, paving the mechanistic pathways for its therapeutic potential.
Method:
Google Scholar and PubMed databases were reviewed with the main focus on availing information on Annona muricata and its anticancer effect on breast cancer.
Results and Discussion:
- An array of clinical investigations on the dosage of extracts on cell lines, animal models, and human trials provide confirmatory insights of A. muricata as a preventive and therapeutic measure for cancer. The extract when administered at different dosages shows a high cytotoxic effect on the cancer cells, mostly accounting for an IC50 of less than 1000µg/mL which is of significance.
Conclusion -:
Although high efficacy has been conclusive, assurance of the safety prior to commercialization is of significance. Investigations are required to define the origin and magnitude of side effects along with long-term safety for the enhancement of efficacy and optimum utilization of potential chemo-preventive properties of the plant for the curation of a nutraceutical intervention for cancer that surpasses the traditional medicine.
Collapse
Affiliation(s)
- Ms. Dimple Dalal
- Symbiosis Institute of Health Sciences (SIHS),
Symbiosis International (Deemed University),
Pune, Maharashtra, India
| | - Srujana Medithi
- Symbiosis Institute of Health Sciences (SIHS),
Symbiosis International (Deemed University),
Pune, Maharashtra, India
| |
Collapse
|
17
|
Mutakin M, Fauziati R, Fadhilah FN, Zuhrotun A, Amalia R, Hadisaputri YE. Pharmacological Activities of Soursop ( Annona muricata Lin.). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041201. [PMID: 35208993 PMCID: PMC8878098 DOI: 10.3390/molecules27041201] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/15/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022]
Abstract
Soursop (Annona muricata Lin.) is a plant belonging to the Annonaceae family that has been widely used globally as a traditional medicine for many diseases. In this review, we discuss the traditional use, chemical content, and pharmacological activities of A.muricata. From 49 research articles that were obtained from 1981 to 2021, A.muricata’s activities were shown to include anticancer (25%), antiulcer (17%), antidiabetic (14%), antiprotozoal (10%), antidiarrhea (8%), antibacterial (8%), antiviral (8%), antihypertensive (6%), and wound healing (4%). Several biological activities and the general mechanisms underlying the effects of A.muricata have been tested both in vitro and in vivo. A.muricata contains chemicals such as acetogenins (annomuricins and annonacin), alkaloids (coreximine and reticuline), flavonoids (quercetin), and vitamins, which are predicted to be responsible for the biological activity of A.muricata.
Collapse
Affiliation(s)
- Mutakin Mutakin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
- Correspondence: (M.M.); (Y.E.H.); Tel.: +62-22-84288888 (M.M. & Y.E.H.)
| | - Rizky Fauziati
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (R.F.); (F.N.F.); (A.Z.)
| | - Fahrina Nur Fadhilah
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (R.F.); (F.N.F.); (A.Z.)
| | - Ade Zuhrotun
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (R.F.); (F.N.F.); (A.Z.)
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia;
| | - Yuni Elsa Hadisaputri
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (R.F.); (F.N.F.); (A.Z.)
- Correspondence: (M.M.); (Y.E.H.); Tel.: +62-22-84288888 (M.M. & Y.E.H.)
| |
Collapse
|