1
|
Lane BN, Hamzavi IH, Lim HW, Rodrigues M, Elbuluk N, Mohammad TF. Concurrent management of vitiligo and acquired disorders of hyperpigmentation: a comprehensive literature review and current practice gaps. Int J Dermatol 2025; 64:485-489. [PMID: 39817312 DOI: 10.1111/ijd.17631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/12/2024] [Accepted: 12/11/2024] [Indexed: 01/18/2025]
Abstract
Few studies discuss the co-management of vitiligo and acquired hyperpigmentation disorders (AHD) such as melasma, erythema dyschromicum perstans, post-inflammatory hyperpigmentation, drug-induced hyperpigmentation, and lichen planus pigmentosus. This review discusses clinical studies examining co-management strategies and identifies current practice gaps. Dermatology Life Quality Index scores are higher in individuals with vitiligo or melasma. It is plausible that populations experiencing both conditions may exhibit worsened psychological outcomes because of stigmas and perceived social beauty standards. Standard treatments for vitiligo aim to increase pigmentation, while AHD treatments target decreasing pigmentation, causing potential worsening of contrast between multiple skin tones for patients experiencing both disorders. Tretinoin may prevent narrowband ultraviolet B (NBUVB)-induced hyperpigmentation in patients with vitiligo without altering treatment response and is also beneficial for managing AHD. In addition, the use of oral tranexamic acid to treat melasma does not diminish the response to NBUVB phototherapy. Platelet-rich plasma (PRP) injections and oral Polypodium leucotomos extract may also be beneficial for comanaging vitiligo and AHD. However, practice guidelines are needed to optimize care for this patient population.
Collapse
Affiliation(s)
| | - Iltefat H Hamzavi
- Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, MI, USA
| | - Henry W Lim
- Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, MI, USA
| | - Michelle Rodrigues
- Chroma Dermatology Pigment and Skin of Colour Centre, Melbourne, VIC, Australia
| | - Nada Elbuluk
- Department of Dermatology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Tasneem F Mohammad
- Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, MI, USA
| |
Collapse
|
2
|
Sahu N, Jain P, Sahu D, Kaur K, Nagori K, Ajazuddin. Recent trends in the treatment of vitiligo using novel drug delivery system. Int J Pharm 2025; 670:125106. [PMID: 39716607 DOI: 10.1016/j.ijpharm.2024.125106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Vitiligo is a complex dermatological disorder involving the loss of melanocytes, with resultant patches of depigmentation. It affects 1% of the world population, affecting patients' mental health and quality of life. With all the improvement seen, conventional treatment methods-steroids, phototherapy, and immunomodulators-come with the limitations of being less effective, having more side effects, and low compliance. Advances in novel drug delivery systems now provide promising alternatives for better therapy. The general view of the pathophysiology of vitiligo is provided in this manuscript, mainly on oxidative stress, autoimmune mechanisms, and melanocyte apoptosis as chief factors. New approaches towards treatment, especially drug delivery systems based on nanotechnology, such as liposomes, polymeric nanoparticles, and hydrogels are discussed. These systems can facilitate the improvement of stability, penetration, and targeted delivery of drugs, thus reducing systemic exposure to adverse effects. There is also a potential improvement in microneedles, transdermal patches, and gene therapy like CRISPR-Cas9 to correct pigmentation by correcting the underlying factors at the cellular and molecular level. Other novel therapies include Janus Kinase (JAK) inhibitors and cell-based approaches, among them melanocyte-keratinocyte transplantation, which may have the potential to give sustained repigmentation. The article also deals with the role of phytoconstituents, like curcumin, quercetin, and ginkgo biloba, with antioxidant, anti-inflammatory, and immunomodulatory properties, thus it can be a natural adjuvant to conventional treatment. The multidisciplinary approach may be necessary in the incorporation of pharmacological advances along with new delivery systems into an enhancement strategy of treatments of vitiligo. This approach corrects some of the traditional weaknesses and taps emerging technologies for an even better treatment approach, patient oriented. Follow-up studies should then be directed toward clinical trials for the substantiation of such observations and treatment regimens for more universal applications.
Collapse
Affiliation(s)
- Nandita Sahu
- Department of Pharmacology, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh 490024, India
| | - Parag Jain
- Department of Pharmacology, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh 490024, India.
| | - Deepika Sahu
- Department of Pharmacology, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh 490024, India
| | - Kulvinder Kaur
- Department of Pharmacology, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh 490024, India
| | - Kushagra Nagori
- Department of Pharmacology, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh 490024, India
| | - Ajazuddin
- Department of Pharmacology, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh 490024, India
| |
Collapse
|
3
|
Balkrishna A, Dabas A, Singh N, Katiyar P, Arya V, Sharma D. In-silico evaluation of phytochemicals for vitiligo: ADMET, molecular docking, and MD simulation approaches. Nat Prod Res 2024:1-13. [PMID: 39257321 DOI: 10.1080/14786419.2024.2400226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Vitiligo is a prevalent autoimmune disease affecting the quality of life and self-confidence. Total 25 phytochemicals from plants were screened by using four target proteins involved in the pathogenesis of vitiligo. The binding affinity of the ligands ranged between -10.3 and -4.5 kcal/mol. The top 10 phytochemicals i.e. rosmarinic acid, piperine, tamarixetin, desmethoxycurcumin, bisdemethoxycurcumin, isorhamnetin, quercetin, vicenin II, genkwanin, and aloe-emodin showed good inhibition with binding affinity ranged from -10.3 to 9.4 Kcal. The ADMET profiling revealed that these phytochemicals might be safe for the treatment of vitiligo. In MD simulation, rosmarinic acid, piperine, and tamarixetin with MAO-A formed stable complexes and the free binding energies of the complexes were -34.02 ± 6.94, -33.51 ± 2.65, and -27.17 ± 3.28. Furthermore, the ligands formed hydrogen bonds with targets, suggested that rosmarinic acid, piperine, and tamarixetin have potential to serve as lead compounds for developing novel therapeutics for vitiligo after in vitro and in vivo studies.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, Uttarakhand, India
- University of Patanjali, Haridwar, Uttarakhand, India
| | - Anurag Dabas
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Netrapal Singh
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Prashant Katiyar
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, Uttarakhand, India
- University of Patanjali, Haridwar, Uttarakhand, India
| | - Dushyant Sharma
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| |
Collapse
|
4
|
Bishnoi A, Parsad D. Phototherapy for vitiligo: A narrative review on the clinical and molecular aspects, and recent literature. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12968. [PMID: 38632705 DOI: 10.1111/phpp.12968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Vitiligo is characterized by depigmented patches resulting from loss of melanocytes. Phototherapy has emerged as a prominent treatment option for vitiligo, utilizing various light modalities to induce disease stability and repigmentation. AIMS AND METHODS This narrative review aims to explore the clinical applications and molecular mechanisms of phototherapy in vitiligo. RESULTS AND DISCUSSION The review evaluates existing literature on phototherapy for vitiligo, analyzing studies on hospital-based and home-based phototherapy, as well as outcomes related to stabilization and repigmentation. Narrowband ultra-violet B, that is, NBUVB remains the most commonly employed, studied and effective phototherapy modality for vitiligo. Special attention is given to assessing different types of lamps, dosimetry, published guidelines, and the utilization of targeted phototherapy modalities. Additionally, the integration of phototherapy with other treatment modalities, including its use as a depigmenting therapy in generalized/universal vitiligo, is discussed. Screening for anti-nuclear antibodies and tailoring approaches for non-photo-adapters are also examined. CONCLUSION In conclusion, this review provides a comprehensive overview of phototherapy for vitiligo treatment. It underscores the evolving landscape of phototherapy and offers insights into optimizing therapeutic outcomes and addressing the challenges ahead. By integrating clinical evidence with molecular understanding, phototherapy emerges as a valuable therapeutic option for managing vitiligo, with potential for further advancements in the field.
Collapse
Affiliation(s)
- Anuradha Bishnoi
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Davinder Parsad
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
5
|
Natarelli N, Gahoonia N, Aflatooni S, Bhatia S, Sivamani RK. Dermatologic Manifestations of Mitochondrial Dysfunction: A Review of the Literature. Int J Mol Sci 2024; 25:3303. [PMID: 38542277 PMCID: PMC10970650 DOI: 10.3390/ijms25063303] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
Mitochondria are eukaryotic cellular organelles that function in energy metabolism, ROS production, and programmed cell death. Cutaneous epithelial and hair follicle dermal papilla cells are energy-rich cells that thereby may be affected by mitochondrial dysfunction and DNA mutation accumulation. In this review, we aimed to summarize the medical literature assessing dermatologic conditions and outcomes associated with mitochondrial dysfunction. A search of PubMed and Embase was performed with subsequent handsearching to retrieve additional relevant articles. Mitochondrial DNA (mtDNA) deletions, mutation accumulation, and damage are associated with phenotypic signs of cutaneous aging, hair loss, and impaired wound healing. In addition, several dermatologic conditions are associated with aberrant mitochondrial activity, such as systemic lupus erythematosus, psoriasis, vitiligo, and atopic dermatitis. Mouse model studies have better established causality between mitochondrial damage and dermatologic outcomes, with some depicting reversibility upon restoration of mitochondrial function. Mitochondrial function mediates a variety of dermatologic conditions, and mitochondrial components may be a promising target for therapeutic strategies.
Collapse
Affiliation(s)
- Nicole Natarelli
- Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA; (N.N.); (S.A.)
| | - Nimrit Gahoonia
- College of Osteopathic Medicine, Touro University, 1310 Club Dr, Vallejo, CA 94592, USA;
| | - Shaliz Aflatooni
- Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA; (N.N.); (S.A.)
| | - Sahibjot Bhatia
- College of Medicine, California Northstate University, 9700 W Taron Dr, Elk Grove, CA 95757, USA;
| | - Raja K. Sivamani
- College of Medicine, California Northstate University, 9700 W Taron Dr, Elk Grove, CA 95757, USA;
- Integrative Skin Science and Research, 1495 River Park Drive, Sacramento, CA 95819, USA
- Pacific Skin Institute, 1495 River Park Dr Suite 200, Sacramento, CA 95815, USA
- Department of Dermatology, University of California-Davis, 3301 C St #1400, Sacramento, CA 95816, USA
| |
Collapse
|
6
|
Rodríguez-Luna A, Zamarrón A, Juarranz Á, González S. Clinical Applications of Polypodium leucotomos (Fernblock ®): An Update. Life (Basel) 2023; 13:1513. [PMID: 37511888 PMCID: PMC10381169 DOI: 10.3390/life13071513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Exposure to sun radiation leads to higher risk of sunburn, pigmentation, immunosuppression, photoaging and skin cancer. In addition to ultraviolet radiation (UVR), recent research indicates that infrared radiation (IR) and visible light (VIS) can play an important role in the pathogenesis of some of these processes. Detrimental effects associated with sun exposure are well known, but new studies have shown that DNA damage continues to occur long after exposure to solar radiation has ended. Regarding photoprotection strategies, natural substances are emerging for topical and oral photoprotection. In this sense, Fernblock®, a standardized aqueous extract of the fern Polypodium Leucotomos (PLE), has been widely administered both topically and orally with a strong safety profile. Thus, this extract has been used extensively in clinical practice, including as a complement to photodynamic therapy (PDT) for treating actinic keratoses (AKs) and field cancerization. It has also been used to treat skin diseases such as photodermatoses, photoaggravated inflammatory conditions and pigmentary disorders. This review examines the most recent developments in the clinical application of Fernblock® and assesses how newly investigated action mechanisms may influence its clinical use.
Collapse
Affiliation(s)
- Azahara Rodríguez-Luna
- Department of Basic Health Sciences, Faculty of Health Sciences, Universidad Rey Juan Carlos (URJC), 28933 Alcorcón, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Alicia Zamarrón
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid (UAM), 28049 Madrid, Spain
| | - Ángeles Juarranz
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid (UAM), 28049 Madrid, Spain
| | - Salvador González
- Department of Medicine and Medical Specialties, Alcalá de Henares University, 28805 Madrid, Spain
| |
Collapse
|
7
|
Kimura K, Kikegawa M, Kan Y, Uesawa Y. Identifying Crude Drugs in Kampo Medicines Associated with Drug-Induced Liver Injury Using the Japanese Adverse Drug Event Report Database: A Comprehensive Survey. Pharmaceuticals (Basel) 2023; 16:ph16050678. [PMID: 37242461 DOI: 10.3390/ph16050678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The current study aimed to identify the crude drugs associated with drug-induced liver injury (DILI) in 148 Kampo medicines prescribed throughout Japan using the Japanese Adverse Drug Event Report (JADER) database, a large-scale spontaneous reporting system in Japan. First, we tabulated the number of DILI reports from the report-based dataset and the background information from the patient-based dataset. Thereafter, we combined the 126 crude drugs into 104 crude drug groups to examine multicollinearity. Finally, the reporting odds ratios (RORs), 95% confidence intervals, p values for Fisher's exact test, and number of reports were calculated for each crude group to identify those associated with DILI. Notably, the number of adverse event reports for DILI (63,955) exceeded that for interstitial lung disease (51,347), the most common adverse event. In total, 78 crude drug groups (90 crude drugs) were reported to have an ROR > 1, a p < 0.05, and ≥10 reported cases. Our results highlight DILI as an essential issue, given that it was among the most frequently reported adverse drug reactions. We were able to clearly identify the crude drugs associated with DILI, which could help manage adverse drug reactions attributed to Kampo medicines and crude drugs.
Collapse
Affiliation(s)
- Kyosuke Kimura
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Kiyose 204-8588, Japan
- Datack, Inc., Tokyo 102-0072, Japan
| | - Mami Kikegawa
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Kiyose 204-8588, Japan
- Department of Kampo Medicine, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
| | - Yusuke Kan
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Kiyose 204-8588, Japan
- Nanohana Pharmacy, Tomakomai 053-0021, Japan
| | - Yoshihiro Uesawa
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Kiyose 204-8588, Japan
| |
Collapse
|
8
|
Castillo E, González-Rosende ME, Martínez-Solís I. The Use of Herbal Medicine in the Treatment of Vitiligo: An Updated Review. PLANTA MEDICA 2023; 89:468-483. [PMID: 36379447 DOI: 10.1055/a-1855-1839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Vitiligo is a chronic disease of unknown etiology that causes progressive cutaneous depigmentation. Current pharmacological treatments have limited success and present significant risks. Many efforts have been made in recent years to explore new anti-vitiligo therapeutic strategies, including herbal-based therapies. The objective of the present review is to provide an updated overview on the most frequently used medicinal plants in the treatment of vitiligo. A bibliographical search was carried out in scientific databases Pubmed, Scifinder, Scopus, Google Scholar, and Medline up to October 2021 using the descriptors vitiligo, herbal, medicinal plants, and alternative therapies. In our search, the highest number of published studies comprise plants commonly used in traditional herbal medicine, highlighting the usefulness of ethnopharmacology in the discovery of new therapeutic agents. The review outlines current understanding and provides an insight into the role of psoralens and khellin (photosensitizing agents obtained from plants such as Cullen corylifolium or Ammi visnaga). The paper also describes other traditional herbs such as Ginkgo biloba, Phlebodium aureum, Piper nigrum, Picrorhiza kurroa, and Baccharoides anthelmintica that can likewise act as potential therapeutical agents. Based on our findings, photosensitizing agents in combination with phototherapy, the association of oral Phebodium aureum with phototherapies as well as oral G. biloba in monotherapy showed greater scientific evidence as therapeutic options. The research results emphasize that further investigation in this area is merited. More long-term follow up clinical trials and higher quality randomized trials are needed.
Collapse
Affiliation(s)
- Encarna Castillo
- Department of Pharmacy, Faculty of Health Sciences, University CEU-Cardenal Herrera, CEU Universities, Alfara del Patriarca, Valencia (Spain)
| | - María Eugenia González-Rosende
- Department of Pharmacy, Faculty of Health Sciences, University CEU-Cardenal Herrera, CEU Universities, Alfara del Patriarca, Valencia (Spain)
| | - Isabel Martínez-Solís
- Department of Pharmacy, Faculty of Health Sciences, University CEU-Cardenal Herrera, CEU Universities, Alfara del Patriarca, Valencia (Spain)
| |
Collapse
|
9
|
Plants as Modulators of Melanogenesis: Role of Extracts, Pure Compounds and Patented Compositions in Therapy of Pigmentation Disorders. Int J Mol Sci 2022; 23:ijms232314787. [PMID: 36499134 PMCID: PMC9736547 DOI: 10.3390/ijms232314787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The kingdom of plants as a "green biofabric" of valuable bioactive molecules has long been used in many ailments. Currently, extracts and pure compounds of plant origin are used to aid in pigmentation skin problems by influencing the process of melanogenesis. Melanin is a very important pigment that protects human skin against ultraviolet radiation and oxidative stress. It is produced by a complex process called melanogenesis. However, disturbances in the melanogenesis mechanism may increase or decrease the level of melanin and generate essential skin problems, such as hyperpigmentation and hypopigmentation. Accordingly, inhibitors or activators of pigment formation are desirable for medical and cosmetic industry. Such properties may be exhibited by molecules of plant origin. Therefore, that literature review presents reports on plant extracts, pure compounds and compositions that may modulate melanin production in living organisms. The potential of plants in the therapy of pigmentation disorders has been highlighted.
Collapse
|