1
|
Zhu BJ, Yao LY, Qiu SL, Wu YD, Kang M, Zhao LY, Qiu SX. Stilbene-enriched extract from the leaves of Cajanus cajan attenuates psoriasis in imiquimod-induced psoriatic mice by targeting aryl hydrocarbon receptor and chemokines. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119109. [PMID: 39547364 DOI: 10.1016/j.jep.2024.119109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leaves of Cajanus cajan (L.) Millsp., an Asian traditional folkloric medicine, have been used to treat inflammatory conditions since ancient times. In Southern China, these leaves have been employed to alleviate the symptoms associated with various skin diseases. However, the therapeutic effects and the underlying mechanisms of Cajanus cajan leaves in the treatment of psoriasis remain poorly understood. AIM OF THE STUDY This study aims to investigate the efficacy of stilbene-enriched extract from C. cajan leaves (termed as "EXT") in treating imiquimod (IMQ)-induced psoriatic mice and to elucidate its possible underlying mechanism in psoriasis treatment. MATERIALS AND METHODS The coumpounds of EXT was analyzed through a UPLC-MS system, the MS survey scan was conducted across the mass range of m/z 100-1000 Da. The activation of aryl hydrocarbon receptor (AhR), a potential therapeutic target, by EXT in HaCaT cells was assessed using RT-qPCR and immunofluorescence. Subsequently, EXT was administrated to IMQ-induced psoriatic mice once daily for 10 days. The efficacy of EXT in treating psoriasis was evaluated through pathological analysis including change of weight, PASI score, Baker score, epidermal thickness, and H&E staining of lesion skin. Additionally, transcriptomic analysis of lesion skins was conducted to identify the potential therapeutic targets and possible mechanisms of EXT in psoriasis treatment. RESULTS It was identified that the primary stilbenes present in EXT were 3.10% pinosylvin monomethyl ether (PME), 12.32 % cajaninstilbene (CSA), 4.54 % ongistylin A (LGA) and 2.43 % longistylin C (LGC). In cellular tests, the addition of 2.5 μg/mL EXT to HaCaT cells enhanced the expression of AhR and its nuclear translocation. In vivo tests of EXT in IMQ-induced psoriasis mouse model, 50 mg 1.0 % EXT reduced PASI and Baker score of lesion skin to 2.67 and 4.5, respectively. In addition, the epidermis thickness of lesion skin induced by IMQ returned to normal following the application of 50 mg 1.0 % EXT in psoriatic mice. Transcriptomic profiling revealed significant downregulation of numerous chemokines (Ccl2, Ccl20, and Cxc5, etc.), pro-inflammatory cytokines (Il17a, Il19, Il22, and Il23, etc.), and genes associated with keratinocyte differentiation (Lce and Sprr family genes). Conversely, AhR and genes of the cytochrome P450 family were activated. CONCLUSIONS This study is the first to demonstrate that the ethyl acetate (EtOAc) extract enriched with stilbenes from Cajanus cajan leaves (EXT) effectively alleviates symptoms in IMQ-induced psoriatic mice. The mechanism involves the activation of the aryl hydrocarbon receptor (AhR) and a subsequent reduction in the production of various inflammatory chemokines and cytokines. These findings suggest that EXT holds significant potential as a plant-derived therapeutic agent for the treatment of psoriasis.
Collapse
Affiliation(s)
- Bao-Jun Zhu
- Program for Natural Product Chemical Biology, State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China; South China National Botanical Garden, Guangzhou, 510650, PR China
| | - Li-Yuan Yao
- Program for Natural Product Chemical Biology, State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China; South China National Botanical Garden, Guangzhou, 510650, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Si-Lin Qiu
- Program for Natural Product Chemical Biology, State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China; South China National Botanical Garden, Guangzhou, 510650, PR China
| | - Yao-Dan Wu
- Program for Natural Product Chemical Biology, State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China; South China National Botanical Garden, Guangzhou, 510650, PR China
| | - Ming Kang
- Program for Natural Product Chemical Biology, State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China; South China National Botanical Garden, Guangzhou, 510650, PR China
| | - Li-Yun Zhao
- Program for Natural Product Chemical Biology, State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China; South China National Botanical Garden, Guangzhou, 510650, PR China.
| | - Sheng-Xiang Qiu
- Program for Natural Product Chemical Biology, State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China; South China National Botanical Garden, Guangzhou, 510650, PR China.
| |
Collapse
|
2
|
Wubuli R, Niyazi M, Han L, Aierken M, Fan L. Transcription factor A, mitochondrial promotes lymph node metastasis and lymphangiogenesis in epithelial ovarian carcinoma. Open Med (Wars) 2025; 20:20241089. [PMID: 39927160 PMCID: PMC11806237 DOI: 10.1515/med-2024-1089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 02/11/2025] Open
Abstract
Background Mitochondria play a central, multifunctional role in cancer progression. However, the mechanism of mitochondrial genes in epithelial ovarian cancer (EOC) remains unclear. This study aimed to screen candidate mitochondrial genes in EOC and then to investigate their biological functions and potential mechanisms. Methods We downloaded Gene Expression Omnibus RNA-seq profiles and identified mitochondrial differentially expressed genes in EOC by bioinformatics analysis. Transcription factor A, mitochondrial (TFAM) expression in EOC tissues was determined by immunohistochemistry. In vitro assays were applied to clarify TFAM function in EOC. Results The bioinformatics analysis results showed that the mitochondrial genes TFAM, HSPE1, and CYC1 were significantly upregulated (P < 0.05) in EOC, and their upregulation was associated with a poor prognosis. TFAM was highly expressed in EOC tissues and significantly associated with clinical stage (P = 0.004), lymph node metastasis (P = 0.043), and overall survival (P < 0.05). Silencing TFAM in EOC cells significantly inhibited cell proliferation and migration and induced cell apoptosis (P < 0.05). Conclusion TFAM promotes EOC cell secretion of VEGF-A, VEGF-C, VEGF-D, lymphangiogenesis, and EOC lymph node metastasis. Our results may provide new insights into the biological functions and potential mechanisms of TFAM in EOC, which might provide new targets for EOC diagnosis and treatment.
Collapse
Affiliation(s)
| | - Mayinuer Niyazi
- Graduate School of Xinjiang Medical University, Urumqi, 830001, China
| | - Lili Han
- Department of Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region,
Urumqi, China
| | - Mayinuer Aierken
- Department of Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region,
Urumqi, China
| | - Lingling Fan
- Department of Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region,
Urumqi, China
| |
Collapse
|
3
|
Gohara Y, Kinoshita R, Tomonobu N, Jiang F, Matsunaga Y, Hashimoto Y, Honjo T, Yamamoto KI, Murata H, Ochi T, Komalasari NLGY, Yamauchi A, Kuribayashi F, Sakaguchi Y, Futami J, Inoue Y, Kondo E, Toyooka S, Morizane S, Ishiko A, Morita S, Sagayama K, Nakao K, Sakaguchi M. An S100A8/A9 Neutralizing Antibody Potently Ameliorates Contact Hypersensitivity and Atopic Dermatitis Symptoms. J Invest Dermatol 2025:S0022-202X(25)00029-6. [PMID: 39848567 DOI: 10.1016/j.jid.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 12/07/2024] [Accepted: 01/01/2025] [Indexed: 01/25/2025]
Abstract
Contact hypersensitivity and atopic dermatitis are pervasive inflammatory skin diseases with similar symptoms, and their global prevalence is steadily increasing. Many compounds and biotics have been developed to target molecules critical to the etiology or pathogenesis of contact hypersensitivity and atopic dermatitis. However, these molecules are sometimes ineffective or lose their potency during the therapeutic course. Therefore, innovative medicines are still needed for the treatment of intractable cases. We focused on S100A8/A9, a heterodimer complex of S100A8 and S100A9 that is abundant in the extracellular milieu of inflammatory skin lesions. Although S100A8/A9 is primarily recognized as a diagnostic marker protein, we have previously shown that it also plays a crucial role in contact hypersensitivity and atopic dermatitis progression. This insight inspired us to develop its inhibitory antibody, leading to the ground-breaking Ab45. In this study, we demonstrated that Ab45 effectively prevented disease symptoms in various models and that its disease-ameliorating activity likely involved the downregulation of several disease-relevant molecules, including Il-23a, Il-36g, S100a8, and S100a9. We also created a humanized version of Ab45, HuAb45, which exhibited similar effectiveness. These antibodies show great promise for the treatment of contact hypersensitivity and atopic dermatitis and possibly for other inflammatory skin diseases.
Collapse
Affiliation(s)
- Yuma Gohara
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Fan Jiang
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yukiko Matsunaga
- Department of Dermatology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Yuki Hashimoto
- Department of Dermatology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Tomoko Honjo
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Ken-Ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiki Ochi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Kurashiki, Japan
| | | | | | - Junichiro Futami
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Yusuke Inoue
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Japan
| | - Eisaku Kondo
- Division of Tumor Pathology, Near-Infrared Photo-Immunotherapy Research Institute, Kansai Medical University, Osaka, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akira Ishiko
- Department of Dermatology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Shigeru Morita
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Kazumi Sagayama
- Organization for Research and Innovation Strategy, Okayama University, Okayama, Japan
| | | | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
4
|
Morrison HA, Hoyt KJ, Mounzer C, Ivester HM, Barnes BH, Sauer B, McGowan EC, Allen IC. Expression profiling identifies key genes and biological functions associated with eosinophilic esophagitis in human patients. FRONTIERS IN ALLERGY 2023; 4:1239273. [PMID: 37692891 PMCID: PMC10484407 DOI: 10.3389/falgy.2023.1239273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Eosinophilic Esophagitis (EoE) is a chronic allergic disease characterized by progressive inflammation of the esophageal mucosa. This chronic inflammatory disorder affects up to 50 per 100,000 individuals in the United States and Europe yet is limited in treatment options. While the transcriptome of EoE has been reported, few studies have examined the genetics among a cohort including both adult and pediatric EoE populations. To identify potentially overlooked biomarkers in EoE esophageal biopsies that may be promising targets for diagnostic and therapeutic development. Methods We used microarray analysis to interrogate gene expression using esophageal biopsies from EoE and Control subjects with a wide age distribution. Analysis of differential gene expression (DEGs) and prediction of impaired pathways was compared using conventional transcriptome analysis (TAC) and artificial intelligence-based (ADVAITA) programs. Principal Components Analysis revealed samples cluster by disease status (EoE and Control) irrespective of clinical features like sex, age, and disease severity. Results Global transcriptomic analysis revealed differential expression of several genes previously reported in EoE (CCL26, CPA3, POSTN, CTSC, ANO1, CRISP3, SPINK7). In addition, we identified differential expression of several genes from the MUC and SPRR families, which have been limited in previous reports. Discussion Our findings suggest that there is epithelial dysregulation demonstrated by DEGs that may contribute to impaired barrier integrity and loss of epidermal cell differentiation in EoE patients. These findings present two new gene families, SPRR and MUC, that are differentially expressed in both adult and pediatric EoE patients, which presents an opportunity for a future therapeutic target that would be useful in a large demographic of patients.
Collapse
Affiliation(s)
- Holly A. Morrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Kacie J. Hoyt
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Christina Mounzer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Hannah M. Ivester
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Barrett H. Barnes
- Division of Pediatric Gastroenterology/Nutrition, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Bryan Sauer
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Emily C. McGowan
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
5
|
Jeong Y, Song J, Lee Y, Choi E, Won Y, Kim B, Jang W. A Transcriptome-Wide Analysis of Psoriasis: Identifying the Potential Causal Genes and Drug Candidates. Int J Mol Sci 2023; 24:11717. [PMID: 37511476 PMCID: PMC10380797 DOI: 10.3390/ijms241411717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by cutaneous eruptions and pruritus. Because the genetic backgrounds of psoriasis are only partially revealed, an integrative and rigorous study is necessary. We conducted a transcriptome-wide association study (TWAS) with the new Genotype-Tissue Expression version 8 reference panels, including some tissue and multi-tissue panels that were not used previously. We performed tissue-specific heritability analyses on genome-wide association study data to prioritize the tissue panels for TWAS analysis. TWAS and colocalization (COLOC) analyses were performed with eight tissues from the single-tissue panels and the multi-tissue panels of context-specific genetics (CONTENT) to increase tissue specificity and statistical power. From TWAS, we identified the significant associations of 101 genes in the single-tissue panels and 64 genes in the multi-tissue panels, of which 26 genes were replicated in the COLOC. Functional annotation and network analyses identified that the genes were associated with psoriasis and/or immune responses. We also suggested drug candidates that interact with jointly significant genes through a conditional and joint analysis. Together, our findings may contribute to revealing the underlying genetic mechanisms and provide new insights into treatments for psoriasis.
Collapse
Affiliation(s)
- Yeonbin Jeong
- Department of Life Sciences, Dongguk University, Seoul 04620, Republic of Korea
| | - Jaeseung Song
- Department of Life Sciences, Dongguk University, Seoul 04620, Republic of Korea
| | - Yubin Lee
- Department of Life Sciences, Dongguk University, Seoul 04620, Republic of Korea
| | - Eunyoung Choi
- Department of Life Sciences, Dongguk University, Seoul 04620, Republic of Korea
| | - Youngtae Won
- Department of Life Sciences, Dongguk University, Seoul 04620, Republic of Korea
| | - Byunghyuk Kim
- Department of Life Sciences, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Wonhee Jang
- Department of Life Sciences, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
6
|
Roy T, Banang-Mbeumi S, Boateng ST, Ruiz EM, Chamcheu RCN, Kang L, King JA, Walker AL, Nagalo BM, Kousoulas KG, Esnault S, Huang S, Chamcheu JC. Dual targeting of mTOR/IL-17A and autophagy by fisetin alleviates psoriasis-like skin inflammation. Front Immunol 2023; 13:1075804. [PMID: 36741386 PMCID: PMC9889994 DOI: 10.3389/fimmu.2022.1075804] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Psoriasis is a chronic autoimmune inflammatory skin disorder characterized by epidermal hyperplasia and aberrant immune response. In addition to aberrant cytokine production, psoriasis is associated with activation of the Akt/mTOR pathway. mTOR/S6K1 regulates T-lymphocyte activation and migration, keratinocytes proliferation and is upregulated in psoriatic lesions. Several drugs that target Th1/Th17 cytokines or their receptors have been approved for treating psoriasis in humans with variable results necessitating improved therapies. Fisetin, a natural dietary polyphenol with anti-oxidant and anti-proliferative properties, covalently binds mTOR/S6K1. The effects of fisetin on psoriasis and its underlying mechanisms have not been clearly defined. Here, we evaluated the immunomodulatory effects of fisetin on Th1/Th17-cytokine-activated adult human epidermal keratinocytes (HEKa) and anti-CD3/CD28-stimulated inflammatory CD4+ T cells and compared these activities with those of rapamycin (an mTOR inhibitor). Transcriptomic analysis of HEKa revealed 12,713 differentially expressed genes (DEGs) in the fisetin-treated group compared to 7,374 DEGs in the rapamycin-treated group, both individually compared to a cytokine treated group. Gene ontology analysis revealed enriched functional groups related to PI3K/Akt/mTOR signaling pathways, psoriasis, and epidermal development. Using in silico molecular modeling, we observed a high binding affinity of fisetin to IL-17A. In vitro, fisetin significantly inhibited mTOR activity, increased the expression of autophagy markers LC3A/B and Atg5 in HEKa cells and suppressed the secretion of IL-17A by activated CD4+ T lymphocytes or T lymphocytes co-cultured with HEKa. Topical administration of fisetin in an imiquimod (IMQ)-induced mouse psoriasis model exhibited a better effect than rapamycin in reducing psoriasis-like inflammation and Akt/mTOR phosphorylation and promoting keratinocyte differentiation and autophagy in mice skin lesions. Fisetin also significantly inhibited T-lymphocytes and F4/80+ macrophage infiltration into skin. We conclude that fisetin potently inhibits IL-17A and the Akt/mTOR pathway and promotes keratinocyte differentiation and autophagy to alleviate IMQ-induced psoriasis-like disease in mice. Altogether, our findings suggest fisetin as a potential treatment for psoriasis and possibly other inflammatory skin diseases.
Collapse
Affiliation(s)
- Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, United States
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, United States
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA, United States
| | - Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, United States
| | - Emmanuelle M. Ruiz
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Roxane-Cherille N. Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, United States
| | - Lin Kang
- Biomedical Research, Edward Via College of Osteopathic Medicine, Monroe, LA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Judy A. King
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Anthony L. Walker
- School of Clinical Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, United States
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, United States
| | - Konstantin G. Kousoulas
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Stephane Esnault
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, Madison, WI, United States
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, United States
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
7
|
Transcriptomic Analysis Reveals Genetic Cross-Talk between Periodontitis and Hypothyroidism. DISEASE MARKERS 2022; 2022:5736394. [PMID: 35450027 PMCID: PMC9017577 DOI: 10.1155/2022/5736394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/14/2022] [Indexed: 01/01/2023]
Abstract
Background. Aim of this bioinformatics study based on transcriptomic analysis was to reveal the cross-talk between periodontitis (PD) and hypothyroidism (HT). Methods. The gene expression datasets GSE18152 and GSE176153 of HT and GSE10334, GSE16134, and GSE173078 of PD were downloaded through the Gene Expression Omnibus (GEO) database. Differential Expression Genes (DEG) between cases and controls in each microarray were assessed by using the “limma” (linear models for microarray data) R package (|log2 fold change (FC)| >0 and
-value <0.05). To analyze the cross-talk effect between HT and PD, the intersection of DEG of HT and PD was selected. To investigate the biological function of cross-talk genes, the gene ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were applied. Protein-Protein Interaction (PPI) network was constructed using Cytoscape software. Top 10 cross-talk genes were screened, and the expression values of these 10 genes were extracted. ROC analysis was performed by using the pROC package and GGplot2 package of R language to predict the classification accuracy. Results. The overlapping DEG between HT and PD were 107 cross-talk genes. The results revealed that developmental process (
-value =1.06E-21) was the most significantly enriched biological process, followed by cell differentiation (
-value =8.49E-18) and immune system process (
-value =6.78E-11). KEGG analysis showed that Complement and coagulation cascades (
-value =2.29E-05), Hematopoietic cell lineage (
-value =2.66E-05), Phospholipase D signaling pathway (
-value =0.034367878) and Chemokine signaling pathway (
-value =0.04946333) were significantly enriched. The top 10 genes with most connections were LCE1B, LCE2B, LCE2A, LCE2C, LCE1C, LCE1F, ITGAM, C1QB, TREM2, and CD19. The AUC values of the two datasets of HT were both greater than 65% (GSE18152 = 81.42%, GSE176153 = 68.75%). AUC values of three datasets of PD were all greater than 60% (GSE10334 = 69.23%, GSE16134 = 73.72%, GSE173078 = 81.6%). Conclusions. A genetic cross-talk between HT and PD was detected, whereby LCE family genes appeared to play the most important role.
Collapse
|
8
|
Alam J, Yazdanpanah G, Ratnapriya R, Borcherding N, de Paiva CS, Li D, Guimaraes de Souza R, Yu Z, Pflugfelder SC. IL-17 Producing Lymphocytes Cause Dry Eye and Corneal Disease With Aging in RXRα Mutant Mouse. Front Med (Lausanne) 2022; 9:849990. [PMID: 35402439 PMCID: PMC8983848 DOI: 10.3389/fmed.2022.849990] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose To investigate IL-17 related mechanisms for developing dry eye disease in the Pinkie mouse strain with a loss of function RXRα mutation. Methods Measures of dry eye disease were assessed in the cornea and conjunctiva. Expression profiling was performed by single-cell RNA sequencing (scRNA-seq) to compare gene expression in conjunctival immune cells. Conjunctival immune cells were immunophenotyped by flow cytometry and confocal microscopy. The activity of RXRα ligand 9-cis retinoic acid (RA) was evaluated in cultured monocytes and γδ T cells. Results Compared to wild type (WT) C57BL/6, Pinkie has increased signs of dry eye disease, including decreased tear volume, corneal barrier disruption, corneal/conjunctival cornification and goblet cell loss, and corneal vascularization, opacification, and ulceration with aging. ScRNA-seq of conjunctival immune cells identified γδ T cells as the predominant IL-17 expressing population in both strains and there is a 4-fold increased percentage of γδ T cells in Pinkie. Compared to WT, IL-17a, and IL-17f significantly increased in Pinkie with conventional T cells and γδ T cells as the major producers. Flow cytometry revealed an increased number of IL-17+ γδ T cells in Pinkie. Tear concentration of the IL-17 inducer IL-23 is significantly higher in Pinkie. 9-cis RA treatment suppresses stimulated IL-17 production by γδ T and stimulatory activity of monocyte supernatant on γδ T cell IL-17 production. Compared to WT bone marrow chimeras, Pinkie chimeras have increased IL-17+ γδ T cells in the conjunctiva after desiccating stress and anti-IL-17 treatment suppresses dry eye induced corneal MMP-9 production/activity and conjunctival goblet cell loss. Conclusion These findings indicate that RXRα suppresses generation of dry eye disease-inducing IL-17 producing lymphocytes s in the conjunctiva and identifies RXRα as a potential therapeutic target in dry eye.
Collapse
Affiliation(s)
- Jehan Alam
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Houston, TX, United States
| | - Ghasem Yazdanpanah
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Houston, TX, United States
| | - Rinki Ratnapriya
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Nicholas Borcherding
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, United States
| | - Cintia S. de Paiva
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Houston, TX, United States
| | - DeQuan Li
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Houston, TX, United States
| | - Rodrigo Guimaraes de Souza
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Houston, TX, United States
- Department of Ophthalmology, University of São Paulo, São Paulo, Brazil
| | - Zhiyuan Yu
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Houston, TX, United States
| | - Stephen C. Pflugfelder
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Stephen C. Pflugfelder
| |
Collapse
|