1
|
Hasan N, Nadaf A, Imran M, Jiba U, Sheikh A, Almalki WH, Almujri SS, Mohammed YH, Kesharwani P, Ahmad FJ. Skin cancer: understanding the journey of transformation from conventional to advanced treatment approaches. Mol Cancer 2023; 22:168. [PMID: 37803407 PMCID: PMC10559482 DOI: 10.1186/s12943-023-01854-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/30/2023] [Indexed: 10/08/2023] Open
Abstract
Skin cancer is a global threat to the healthcare system and is estimated to incline tremendously in the next 20 years, if not diagnosed at an early stage. Even though it is curable at an early stage, novel drug identification, clinical success, and drug resistance is another major challenge. To bridge the gap and bring effective treatment, it is important to understand the etiology of skin carcinoma, the mechanism of cell proliferation, factors affecting cell growth, and the mechanism of drug resistance. The current article focusses on understanding the structural diversity of skin cancers, treatments available till date including phytocompounds, chemotherapy, radiotherapy, photothermal therapy, surgery, combination therapy, molecular targets associated with cancer growth and metastasis, and special emphasis on nanotechnology-based approaches for downregulating the deleterious disease. A detailed analysis with respect to types of nanoparticles and their scope in overcoming multidrug resistance as well as associated clinical trials has been discussed.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, 4102, Australia
| | - Umme Jiba
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, 24381, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Asir-Abha, Saudi Arabia
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kuthambakkam, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
2
|
Nikitkina AI, Bikmulina PY, Gafarova ER, Kosheleva NV, Efremov YM, Bezrukov EA, Butnaru DV, Dolganova IN, Chernomyrdin NV, Cherkasova OP, Gavdush AA, Timashev PS. Terahertz radiation and the skin: a review. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200356VSSR. [PMID: 33583155 PMCID: PMC7881098 DOI: 10.1117/1.jbo.26.4.043005] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/19/2021] [Indexed: 05/02/2023]
Abstract
SIGNIFICANCE Terahertz (THz) radiation has demonstrated a great potential in biomedical applications over the past three decades, mainly due to its non-invasive and label-free nature. Among all biological specimens, skin tissue is an optimal sample for the application of THz-based methods because it allows for overcoming some intrinsic limitations of the technique, such as a small penetration depth (0.1 to 0.3 mm for the skin, on average). AIM We summarize the modern research results achieved when THz technology was applied to the skin, considering applications in both imaging/detection and treatment/modulation of the skin constituents. APPROACH We perform a review of literature and analyze the recent research achievements in THz applications for skin diagnosis and investigation. RESULTS The reviewed results demonstrate the possibilities of THz spectroscopy and imaging, both pulsed and continuous, for diagnosis of skin melanoma and non-melanoma cancer, dysplasia, scars, and diabetic condition, mainly based on the analysis of THz optical properties. The possibility of modulating cell activity and treatment of various diseases by THz-wave exposure is shown as well. CONCLUSIONS The rapid development of THz technologies and the obtained research results for skin tissue highlight the potential of THz waves as a research and therapeutic instrument. The perspectives on the use of THz radiation are related to both non-invasive diagnostics and stimulation and control of different processes in a living skin tissue for regeneration and cancer treatment.
Collapse
Affiliation(s)
| | - Polina Y. Bikmulina
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Moscow, Russia
| | - Elvira R. Gafarova
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Moscow, Russia
| | - Nastasia V. Kosheleva
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Moscow, Russia
- Federal State Budgetary Scientific Institution “Institute of General Pathology and Pathophysiology,” Moscow, Russia
| | - Yuri M. Efremov
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Moscow, Russia
| | - Evgeny A. Bezrukov
- Sechenov University, Institute for Urology and Reproductive Health, Moscow, Russia
| | - Denis V. Butnaru
- Sechenov University, Institute for Urology and Reproductive Health, Moscow, Russia
| | - Irina N. Dolganova
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- Russian Academy of Sciences, Institute of Solid State Physics, Chernogolovka, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | - Nikita V. Chernomyrdin
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- Russian Academy of Sciences, Prokhorov General Physics Institute, Moscow, Russia
| | - Olga P. Cherkasova
- Russian Academy of Sciences, Institute of Laser Physics of the Siberian Branch, Novosibirsk, Russia
- Novosibirsk State Technical University, Novosibirsk, Russia
| | - Arsenii A. Gavdush
- Russian Academy of Sciences, Prokhorov General Physics Institute, Moscow, Russia
| | - Peter S. Timashev
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Moscow, Russia
- N. N. Semenov Institute of Chemical Physics, Department of Polymers and Composites, Moscow, Russia
- Lomonosov Moscow State University, Chemistry Department, Moscow, Russia
- Address all correspondence to Peter S. Timashev,
| |
Collapse
|
3
|
Naidoo C, Kruger CA, Abrahamse H. Simultaneous Photodiagnosis and Photodynamic Treatment of Metastatic Melanoma. Molecules 2019; 24:molecules24173153. [PMID: 31470637 PMCID: PMC6749501 DOI: 10.3390/molecules24173153] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 12/18/2022] Open
Abstract
Metastatic melanoma (MM) has a poor prognosis and is attributed to late diagnoses only when metastases has already occurred. Thus, early diagnosis is crucial to improve its overall treatment efficacy. The standard diagnostic tools for MM are incisional biopsies and/or fine needle aspiration biopsies, while standard treatments involve surgery, chemotherapy, or irradiation therapy. The combination of photodynamic diagnosis (PDD) and therapy (PDT) utilizes a photosensitizer (PS) that, when excited by light of a low wavelength, can be used for fluorescent non-destructive diagnosis. However, when the same PS is activated at a higher wavelength of light, it can be cytotoxic and induce tumor destruction. This paper focuses on PS drugs that have been used for PDD as well as PDT treatment of MM. Furthermore, it emphasizes the need for continued investigation into enhanced PS delivery via active biomarkers and passive nanoparticle systems. This should improve PS drug absorption in MM cells and increase effectiveness of combinative photodynamic methods for the enhanced diagnosis and treatment of MM can become a reality.
Collapse
Affiliation(s)
- Channay Naidoo
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa
| | - Cherie Ann Kruger
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
4
|
Padayachee ER, Adeola HA, Van Wyk JC, Nsole Biteghe FA, Chetty S, Khumalo NP, Barth S. Applications of SNAP-tag technology in skin cancer therapy. Health Sci Rep 2019; 2:e103. [PMID: 30809593 PMCID: PMC6375544 DOI: 10.1002/hsr2.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 10/11/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cancer treatment in the 21st century has seen immense advances in optical imaging and immunotherapy. Significant progress has been made in the bioengineering and production of immunoconjugates to achieve the goal of specifically targeting tumors. DISCUSSION In the 21st century, antibody drug conjugates (ADCs) have been the focus of immunotherapeutic strategies in cancer. ADCs combine the unique targeting of monoclonal antibodies (mAbs) with the cancer killing ability of cytotoxic drugs. However, due to random conjugation methods of drug to antibody, ADCs are associated with poor antigen specificity and low cytotoxicity, resulting in a drug to antibody ratio (DAR) >1. This means that the cytotoxic drugs in ADCs are conjugated randomly to antibodies, by cysteine or lysine residues. This generates heterogeneous ADC populations with 0 to 8 drugs per an antibody, each with distinct pharmacokinetic, efficacy, and toxicity properties. Additionally, heterogeneity is created not only by different antibody to ligand ratios but also by different sites of conjugation. Hence, much effort has been made to find and establish antibody conjugation strategies that enable us to better control stoichiometry and site-specificity. This includes utilizing protein self-labeling tags as fusion partners to the original protein. Site-specific conjugation is a significant characteristic of these engineered proteins. SNAP-tag is one such engineered self-labeling protein tag shown to have promising potential in cancer treatment. The SNAP-tag is fused to an antibody of choice and covalently reacts specifically in a 1:1 ratio with benzylguanine (BG) substrates, eg, fluorophores or photosensitizers, to target skin cancer. This makes SNAP-tag a versatile technique in optical imaging and photoimmunotherapy of skin cancer. CONCLUSION SNAP-tag technology has the potential to contribute greatly to a broad range of molecular oncological applications because it combines efficacious tumor targeting, minimized local and systemic toxicity, and noninvasive assessment of diagnostic/prognostic molecular biomarkers of cancer.
Collapse
Affiliation(s)
- Eden Rebecca Padayachee
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Henry Ademola Adeola
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health SciencesUniversity of Cape Town and Groote Schuur HospitalCape TownSouth Africa
| | - Jennifer Catherine Van Wyk
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health SciencesUniversity of Cape Town and Groote Schuur HospitalCape TownSouth Africa
| | - Fleury Augustine Nsole Biteghe
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Shivan Chetty
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Nonhlanhla Patience Khumalo
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health SciencesUniversity of Cape Town and Groote Schuur HospitalCape TownSouth Africa
| | - Stefan Barth
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
5
|
Wei W, Ehlerding EB, Lan X, Luo Q, Cai W. PET and SPECT imaging of melanoma: the state of the art. Eur J Nucl Med Mol Imaging 2018; 45:132-150. [PMID: 29085965 PMCID: PMC5700861 DOI: 10.1007/s00259-017-3839-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
Melanoma represents the most aggressive form of skin cancer, and its incidence continues to rise worldwide. 18F-FDG PET imaging has transformed diagnostic nuclear medicine and has become an essential component in the management of melanoma, but still has its drawbacks. With the rapid growth in the field of nuclear medicine and molecular imaging, a variety of promising probes that enable early diagnosis and detection of melanoma have been developed. The substantial preclinical success of melanin- and peptide-based probes has recently resulted in the translation of several radiotracers to clinical settings for noninvasive imaging and treatment of melanoma in humans. In this review, we focus on the latest developments in radiolabeled molecular imaging probes for melanoma in preclinical and clinical settings, and discuss the challenges and opportunities for future development.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Road, Shanghai, 200233, China
- Department of Radiology, University of Wisconsin-Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA
| | - Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China.
| | - Quanyong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Road, Shanghai, 200233, China.
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53705, USA.
| |
Collapse
|
6
|
The feasibility of using ultrasound during follow-up for superficial non-melanoma skin cancers after electronic brachytherapy. J Contemp Brachytherapy 2017; 9:535-539. [PMID: 29441097 PMCID: PMC5807995 DOI: 10.5114/jcb.2017.72358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/10/2017] [Indexed: 01/21/2023] Open
Abstract
Purpose Non-melanoma skin cancers (NMSCs) can be treated with a number of modalities including surgery, topical chemotherapy, or radiotherapy. Amongst the radiotherapeutic options, electronic brachytherapy (eBT) is an appealing treatment as it is usually given in a few fractions, it leads to good outcomes, and is increasingly being used. However, currently no follow-up imaging is routinely used or recommended to evaluate treatment response of NMSC. We aimed to use ultrasound (US) in follow-up after eBT for superficial NMSC to assess its feasibility in detecting possible tumor response. Material and methods Fourteen patients were treated between 2013-2015 for a NMSC using eBT. US guidance was used for treatment planning prior to eBT initiation. After completion of eBT, patients were seen in follow-up for both clinical exam and a repeat US at 1 month to evaluate if tumor response was detectable. Results Of the 14 patients, 6 were male and 8 were female. The mean age was 71 years. With a median follow-up of 20.5 months, all patients had a complete response based on physical exam. Eleven patients appeared to have a complete response based on US obtained > 1 month after completing eBT. To date, there have been no local recurrences or progression, and all patients are alive. Conclusions US is an objective imaging modality that may be able to assess NMSC response after eBT. Based on follow-up imaging, further treatment or observation may be recommended. Although this study is hypothesis generating, larger studies with pathologic confirmation of recurrences would be needed to validate US use for follow-up, avoiding possible painful and scarring biopsies in case of low suspicion of recurrence.
Collapse
|
7
|
ZHANG JENNIFER, WANG YAN, JIN JANEY, DEGAN SIMONE, HALL RUSSELLP, BOEHM RYAND, JAIPAN PANUPONG, NARAYAN ROGERJ. Use of Drawing Lithography-Fabricated Polyglycolic Acid Microneedles for Transdermal Delivery of Itraconazole to a Human Basal Cell Carcinoma Model Regenerated on Mice. JOM (WARRENDALE, PA. : 1989) 2016; 68:1128-1133. [PMID: 33597793 PMCID: PMC7886388 DOI: 10.1007/s11837-016-1841-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Itraconazole is a triazole agent that is routinely used for treatment of nail infections and other fungal infections. Recent studies indicate that itraconazole can also inhibit the growth of basal cell carcinoma (BCC) through suppression of the Sonic Hedgehog (SHH) signaling pathway. In this study, polyglycolic acid microneedle arrays and stainless steel microneedle arrays were used for transdermal delivery of itraconazole to a human BCC model which was regenerated on mice. One-by-four arrays of 642-μm-long polyglycolic acid microneedles with sharp tips were prepared using injection molding and drawing lithography. Arrays of 85 stainless steel 800-μm-tall microneedles attached to syringes were obtained for comparison purposes. Skin grafts containing devitalized split-thickness human dermis that had been seeded with human keratinocytes transduced to express human SHH protein were sutured to the skin of immunodeficient mice. Mice with this human BCC model were treated daily for 2 weeks with itraconazole dissolved in 60% dimethylsulfoxane and 40% polyethylene glycol-400 solution; transdermal administration of the itraconazole solution was facilitated by either four 1 × 4 polyglycolic acid microneedle arrays or stainless steel microneedle arrays. The epidermal tissues treated with polyglycolic acid microneedles or stainless steel microneedles were markedly thinner than that of the control (untreated) graft tissue. These preliminary results indicate that microneedles may be used to facilitate transdermal delivery of itraconazole for localized treatment of BCC.
Collapse
Affiliation(s)
- JENNIFER ZHANG
- Department of Dermatology, Duke University Medical Center, DUMC 3135, Durham, NC 27710, USA
| | - YAN WANG
- Department of Dermatology, Duke University Medical Center, DUMC 3135, Durham, NC 27710, USA
| | - JANE Y. JIN
- Department of Dermatology, Duke University Medical Center, DUMC 3135, Durham, NC 27710, USA
| | - SIMONE DEGAN
- Department of Dermatology, Duke University Medical Center, DUMC 3135, Durham, NC 27710, USA
- Department of Chemistry, Duke University, 124 Science Drive, Box 90354, Durham, NC 27708-0354, USA
| | - RUSSELL P. HALL
- Department of Dermatology, Duke University Medical Center, DUMC 3135, Durham, NC 27710, USA
| | - RYAN D. BOEHM
- UNC/NCSU Joint Department of Biomedical Engineering, Box 7115, Raleigh, NC 27695-7115, USA
| | - PANUPONG JAIPAN
- UNC/NCSU Joint Department of Biomedical Engineering, Box 7115, Raleigh, NC 27695-7115, USA
| | - ROGER J. NARAYAN
- UNC/NCSU Joint Department of Biomedical Engineering, Box 7115, Raleigh, NC 27695-7115, USA
| |
Collapse
|
8
|
Kirscher L, Deán-Ben XL, Scadeng M, Zaremba A, Zhang Q, Kober C, Fehm TF, Razansky D, Ntziachristos V, Stritzker J, Szalay AA. Doxycycline Inducible Melanogenic Vaccinia Virus as Theranostic Anti-Cancer Agent. Theranostics 2015; 5:1045-57. [PMID: 26199644 PMCID: PMC4508495 DOI: 10.7150/thno.12533] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/14/2015] [Indexed: 12/02/2022] Open
Abstract
We reported earlier the diagnostic potential of a melanogenic vaccinia virus based system in magnetic resonance (MRI) and optoacoustic deep tissue imaging (MSOT). Since melanin overproduction lead to attenuated virus replication, we constructed a novel recombinant vaccinia virus strain (rVACV), GLV-1h462, which expressed the key enzyme of melanogenesis (tyrosinase) under the control of an inducible promoter-system. In this study melanin production was detected after exogenous addition of doxycycline in two different tumor xenograft mouse models. Furthermore, it was confirmed that this novel vaccinia virus strain still facilitated signal enhancement as detected by MRI and optoacoustic tomography. At the same time we demonstrated an enhanced oncolytic potential compared to the constitutively melanin synthesizing rVACV system.
Collapse
Affiliation(s)
- Lorenz Kirscher
- 1. University of Würzburg, Department of Biochemistry, Am Hubland, 97074 Würzburg, Germany
| | - Xosé Luis Deán-Ben
- 4. Helmholtz Institute, IBMI, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany
| | - Miriam Scadeng
- 3. University of San Diego, Center of Functional MRI, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Angelika Zaremba
- 4. Helmholtz Institute, IBMI, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany
| | - Qian Zhang
- 2. Genelux Cooperation, San Diego Science Center, 3030 Bunker Hill St, San Diego, CA 92109, USA
| | - Christina Kober
- 1. University of Würzburg, Department of Biochemistry, Am Hubland, 97074 Würzburg, Germany
| | - Thomas Felix Fehm
- 4. Helmholtz Institute, IBMI, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany
| | - Daniel Razansky
- 4. Helmholtz Institute, IBMI, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany
| | - Vasilis Ntziachristos
- 4. Helmholtz Institute, IBMI, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany
| | - Jochen Stritzker
- 1. University of Würzburg, Department of Biochemistry, Am Hubland, 97074 Würzburg, Germany
- 2. Genelux Cooperation, San Diego Science Center, 3030 Bunker Hill St, San Diego, CA 92109, USA
| | - Aladar A. Szalay
- 1. University of Würzburg, Department of Biochemistry, Am Hubland, 97074 Würzburg, Germany
- 2. Genelux Cooperation, San Diego Science Center, 3030 Bunker Hill St, San Diego, CA 92109, USA
- 5. Department of Radiation Oncology, Moores Cancer Center, University of California, La Jolla, CA 92093, USA
| |
Collapse
|