1
|
Medoro A, Graziano F, Cardinale G, Voccola S, Zotti T, Intrieri M, Scapagnini G, Davinelli S. The influence of FADS1 and ELOVL2 genetic polymorphisms on polyunsaturated fatty acid composition in response to fish oil supplementation. Lipids Health Dis 2025; 24:102. [PMID: 40114193 PMCID: PMC11924656 DOI: 10.1186/s12944-025-02513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Unhealthy dietary habits have been recognized as key contributors to the increasing incidence of non-communicable diseases. Among the healthy nutrients studied, omega-3 fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have received considerable attention for their benefits in cardiovascular health and inflammation management. Their synthesis is regulated by enzymes encoded by FADS1 and ELOVL2 genes. Single nucleotide polymorphisms (SNPs) within these genes can modify the efficiency of fatty acid conversion, thereby influencing the Omega-3 Index, which reflects omega-3 status, particularly EPA and DHA. This study aimed to assess the impact of FADS1 (rs174537) and ELOVL2 (rs953413) polymorphisms on the effects on fatty acids profiles of fish oil supplementation in healthy individuals. METHODS Eighty-six healthy adults aged 20-70 participated in a quasi-experimental intervention involving a 4-week fish oil supplementation rich in EPA and DHA. Dried-blood spots (DBS) were collected before and after the intervention to evaluate lipid profiles. Genotyping for FADS1 and ELOVL2 SNPs was performed using high-resolution melting analysis. RESULTS Post-supplementation, the percentage of EPA and DHA increased significantly (p < 0.001), leading to an improved Omega-3 Index. Baseline omega-3 percentages did not differ significantly between FADS1 and ELOVL2 genotypes. However, individuals with the ELOVL2 minor allele (GA + AA) genotype benefited more from the fish oil supplementation with increased EPA and DBS Omega-3 Index, indicating a more favorable metabolic response. CONCLUSIONS Genetic variability may influence the metabolic response to fish oil supplementation. These findings underscore the importance of personalized nutrition strategies to optimize health outcomes and prevent non-communicable diseases.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c, Campobasso, 86100, Italy
| | - Francesca Graziano
- Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Bicocca Bioinformatics Biostatistics and Bioimaging Center B4, School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | | | | | - Tiziana Zotti
- Genus Biotech, University of Sannio, Benevento, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c, Campobasso, 86100, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c, Campobasso, 86100, Italy.
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c, Campobasso, 86100, Italy
| |
Collapse
|
2
|
Loukil I, Mutch DM, Plourde M. Genetic association between FADS and ELOVL polymorphisms and the circulating levels of EPA/DHA in humans: a scoping review. GENES & NUTRITION 2024; 19:11. [PMID: 38844860 PMCID: PMC11157910 DOI: 10.1186/s12263-024-00747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are two omega-3 fatty acids that can be synthesized out of their precursor alpha-linolenic acid (ALA). FADS and ELOVL genes encode the desaturase and elongase enzymes required for EPA and DHA synthesis from ALA; however, single nucleotide polymorphisms (SNPs) in FADS and ELOVL genes could modify the levels of EPA and DHA synthesized from ALA although there is no consensus in this area. This review aims to investigate EPA and DHA circulating levels in human blood and their association with FADS or ELOVL. METHODS PubMed, Cochrane, and Scopus databases were used to identify research articles. They were subsequently reviewed by two independent investigators. RESULTS Initially, 353 papers were identified. After removing duplicates and articles not meeting inclusion criteria, 98 full text papers were screened. Finally, this review included 40 studies investigating FADS and/or ELOVL polymorphisms. A total of 47 different SNPs in FADS genes were reported. FADS1 rs174537, rs174547, rs174556 and rs174561 were the most studied SNPs, with minor allele carriers having lower levels of EPA and DHA. SNPs in the FADS genes were in high linkage disequilibrium. SNPs in FADS were correlated with levels of EPA and DHA. No conclusion could be drawn with the ELOVL polymorphisms since the number of studies was too low. CONCLUSION Specific SNPs in FADS gene, such as rs174537, have strong associations with circulating levels of EPA and DHA. Continued investigation regarding the impact of genetic variants related to EPA and DHA synthesis is warranted.
Collapse
Affiliation(s)
- Insaf Loukil
- Research Center on Aging, Health, and Social Sciences Center, Department of Medicine, Sherbrooke University Geriatrics Institute, University of Sherbrooke, Sherbrooke, QC, J1G 1B1, Canada
- Department de Medicine, Faculty of Medicine and health sciences, University of Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, Guelph, ON, N1G 2W1, Canada
| | - Mélanie Plourde
- Research Center on Aging, Health, and Social Sciences Center, Department of Medicine, Sherbrooke University Geriatrics Institute, University of Sherbrooke, Sherbrooke, QC, J1G 1B1, Canada.
- Department de Medicine, Faculty of Medicine and health sciences, University of Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada.
| |
Collapse
|
3
|
Heravi G, Jang H, Wang X, Long Z, Peng Z, Kim S, Liu W. Fatty acid desaturase 1 (FADS1) is a cancer marker for patient survival and a potential novel target for precision cancer treatment. Front Oncol 2022; 12:942798. [PMID: 36046053 PMCID: PMC9423679 DOI: 10.3389/fonc.2022.942798] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022] Open
Abstract
Fatty Acid Desaturase-1 (FADS1) or delta 5 desaturase (D5D) is a rate-limiting enzyme involved in the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFAs), i.e., arachidonic acid (ARA) and eicosapentaenoic (EPA). These LC-PUFAs and their metabolites play essential and broad roles in cancer cell proliferation, metastasis, and tumor microenvironment. However, the role of FADS1 in cancers remains incompletely understood. Utilizing The Cancer Genome Atlas (TCGA) database, we explored the role of FADS1 across different cancer types using multiple bioinformatics and statistical tools. Moreover, we studied the impact of a FADS1 inhibitor (D5D-IN-326) on proliferation of multiple cancer cell lines. We identified that FADS1 gene is a predictor for cancer survival in multiple cancer types. Compared to normal tissue, the mRNA expression of FADS1 is significantly increased in primary tumors while even higher in metastatic and recurrent tumors. Mechanistically, pathway analysis demonstrated that FADS1 is associated with cholesterol biosynthesis and cell cycle control genes. Interestingly, FADS1 expression is higher when TP53 is mutated. Tumors with increased FADS1 expression also demonstrated an increased signatures of fibroblasts and macrophages infiltration among most cancer types. Our in vitro assays showed that D5D-IN-326 significantly inhibited cell proliferation of kidney, colon, breast, and lung cancer cell lines in a dose-dependent manner. Lastly, single nucleotide polymorphisms (SNPs) which are well-established expression quantitative trait loci (eQTLs) for FADS1 in normal human tissues are also significantly correlated with FADS1 expression in tumors of multiple tissue types, potentially serving as a marker to stratify cancer patients with high/low FADS1 expression in their tumor tissue. Our study suggests that FADS1 plays multiple roles in cancer biology and is potentially a novel target for precision cancer treatment.
Collapse
Affiliation(s)
- Gioia Heravi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | - Hyejeong Jang
- Biostatistics and Bioinformatics Core, Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Xiaokun Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | - Ze Long
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | - Zheyun Peng
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | - Seongho Kim
- Biostatistics and Bioinformatics Core, Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
4
|
Žák A, Jáchymová M, Burda M, Staňková B, Zeman M, Slabý A, Vecka M, Šeda O. FADS Polymorphisms Affect the Clinical and Biochemical Phenotypes of Metabolic Syndrome. Metabolites 2022; 12:metabo12060568. [PMID: 35736500 PMCID: PMC9228863 DOI: 10.3390/metabo12060568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/04/2022] Open
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFAs) play important roles in human health, from controlling inflammation to lipid and glucose homeostasis. In our previous study, which employed a cluster analysis of a plasma fatty acid (FA) pattern, we identified two clusters of metabolic syndrome (MetS) independent of clinical and biochemical parameters within the whole study group (controls together with metabolic syndrome (MetS) patients). FA desaturase (FADS) genes are the key regulators of LC-PUFA metabolism. The aim of this study was to analyze associations between FADS polymorphisms and clusters of MetS. The study group consisted of 188 controls and 166 patients with MetS. The first cluster contained 71 controls (CON1) and 109 MetS patients (MetS1). The second cluster consisted of 117 controls (CON2) and 57 MetS patients (MetS2). In comparison with MetS2, cluster MetS1 displayed a more adverse risk profile. Cluster CON1 had, in comparison with CON2, higher body weight and increased triacylglycerol levels (p < 0.05). We found that the FADS rs174537 (p < 0.001), rs174570 (p < 0.01), and rs174602 (p < 0.05) polymorphisms along with two inferred haplotypes had statistically significant genotype associations with the splitting of MetS into MetS1 and MetS2. Conversely, we observed no significant differences in the distribution of FADS polymorphisms between MetS and CON subjects, or between CON1 and CON2. These associations between FADS polymorphisms and two clusters of MetS (differing in waist circumference, HOMA-IR, lipolysis, and oxidative stress) implicate the important influence of genetic factors on the phenotypic manifestation of MetS.
Collapse
Affiliation(s)
- Aleš Žák
- 4th Department of Medicine, 1st Medical Faculty, Charles University and the General University Hospital in Prague, 128 08 Prague, Czech Republic; (A.Ž.); (B.S.); (M.Z.); (A.S.)
| | - Marie Jáchymová
- Institute of Clinical Chemistry and Laboratory Diagnostics, 1st Medical Faculty, Charles University and the General University Hospital in Prague, 128 08 Prague, Czech Republic;
| | - Michal Burda
- Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, 701 03 Ostrava, Czech Republic;
| | - Barbora Staňková
- 4th Department of Medicine, 1st Medical Faculty, Charles University and the General University Hospital in Prague, 128 08 Prague, Czech Republic; (A.Ž.); (B.S.); (M.Z.); (A.S.)
| | - Miroslav Zeman
- 4th Department of Medicine, 1st Medical Faculty, Charles University and the General University Hospital in Prague, 128 08 Prague, Czech Republic; (A.Ž.); (B.S.); (M.Z.); (A.S.)
| | - Adolf Slabý
- 4th Department of Medicine, 1st Medical Faculty, Charles University and the General University Hospital in Prague, 128 08 Prague, Czech Republic; (A.Ž.); (B.S.); (M.Z.); (A.S.)
| | - Marek Vecka
- 4th Department of Medicine, 1st Medical Faculty, Charles University and the General University Hospital in Prague, 128 08 Prague, Czech Republic; (A.Ž.); (B.S.); (M.Z.); (A.S.)
- Institute of Clinical Chemistry and Laboratory Diagnostics, 1st Medical Faculty, Charles University and the General University Hospital in Prague, 128 08 Prague, Czech Republic;
- Correspondence:
| | - Ondřej Šeda
- Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University and the General University Hospital in Prague, 128 00 Prague, Czech Republic;
| |
Collapse
|
5
|
Dosso B, Waits CMK, Simms KN, Sergeant S, Files DC, Howard TD, Langefeld CD, Chilton FH, Rahbar E. Impact of rs174537 on Critically Ill Patients with Acute Lung Injury: A Secondary Analysis of the OMEGA Randomized Clinical Trial. Curr Dev Nutr 2020; 4:nzaa147. [PMID: 33024925 PMCID: PMC7524639 DOI: 10.1093/cdn/nzaa147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Nutrition in the intensive care unit is vital for patient care; however, immunomodulatory diets rich in PUFAs like γ-linolenic acid (GLA), EPA, and DHA remain controversial for patients with acute respiratory distress syndrome. We postulate that genetic variants impacting PUFA metabolism contribute to mixed responses to PUFA-rich diets. OBJECTIVES In this study, we aimed to test the effects of single nucleotide polymorphism (SNP) rs174537 on differential responses to PUFA-rich diets. METHODS We performed a secondary analysis of the OMEGA trial (NCT00609180) where 129 subjects received placebo control diets and 143 received omega-oil. DNA was extracted from buffy coats and used to genotype rs174537; plasma was used to quantitate PUFAs. We tested for SNP-diet interactions on PUFA concentrations, inflammatory biomarkers, and patient outcomes. RESULTS We observed that all individuals receiving omega-oil displayed significantly higher concentrations of GLA, EPA, and DHA (all P < 0.0001), but they did not vary by genotype at rs174537. Statistically significant SNP-diet interactions were observed on circulating DHA concentrations in African Americans. Specifically, African American T-allele carriers on placebo illustrated elevated DHA concentrations. Additionally, all individuals receiving omega-oil had higher concentrations of EPA-derived urinary F3-isoprostane (Caucasians: P = 0.0011; African Americans: P = 0.0002). Despite these findings, we did not detect any significant SNP-diet interactions on pulmonary functional metrics, clinical outcomes, and mortality. CONCLUSIONS This study highlights the importance of genetic and racial contributions to PUFA metabolism and inflammation. In particular, rs174537 had a significant impact on circulating DHA and urinary isoprostane concentrations. Given our relatively small sample size, further investigations in larger multiethnic cohorts are needed to evaluate the impact of rs174537 on fatty acid metabolism and downstream inflammation.
Collapse
Affiliation(s)
- Beverly Dosso
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Charlotte Mae K Waits
- Department of Biomedical Engineering, Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, NC, USA
| | - Kelli N Simms
- Department of Biomedical Engineering, Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, NC, USA
| | - Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - D Clark Files
- Department of Internal Medicine, Sections in Pulmonary and Critical Care Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Timothy D Howard
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carl D Langefeld
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Floyd H Chilton
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Elaheh Rahbar
- Department of Biomedical Engineering, Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, NC, USA
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
6
|
The Effect of an Infant Formula Supplemented with AA and DHA on Fatty Acid Levels of Infants with Different FADS Genotypes: The COGNIS Study. Nutrients 2019; 11:nu11030602. [PMID: 30871048 PMCID: PMC6470942 DOI: 10.3390/nu11030602] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/05/2019] [Indexed: 01/01/2023] Open
Abstract
Polymorphisms in the fatty acid desaturase (FADS) genes influence the arachidonic (AA) and docosahexaenoic (DHA) acid concentrations (crucial in early life). Infants with specific genotypes may require different amounts of these fatty acids (FAs) to maintain an adequate status. The aim of this study was to determine the effect of an infant formula supplemented with AA and DHA on FAs of infants with different FADS genotypes. In total, 176 infants from the COGNIS study were randomly allocated to the Standard Formula (SF; n = 61) or the Experimental Formula (EF; n = 70) group, the latter supplemented with AA and DHA. Breastfed infants were added as a reference group (BF; n = 45). FAs and FADS polymorphisms were analyzed from cheek cells collected at 3 months of age. FADS minor allele carriership in formula fed infants, especially those supplemented, was associated with a declined desaturase activity and lower AA and DHA levels. Breastfed infants were not affected, possibly to the high content of AA and DHA in breast milk. The supplementation increased AA and DHA levels, but mostly in major allele carriers. In conclusion, infant FADS genotype could contribute to narrow the gap of AA and DHA concentrations between breastfed and formula fed infants.
Collapse
|
7
|
Lankinen M, Uusitupa M, Schwab U. Genes and Dietary Fatty Acids in Regulation of Fatty Acid Composition of Plasma and Erythrocyte Membranes. Nutrients 2018; 10:nu10111785. [PMID: 30453550 PMCID: PMC6265745 DOI: 10.3390/nu10111785] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/01/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
The fatty acid compositions of plasma lipids and cell membranes of certain tissues are modified by dietary fatty acid composition. Furthermore, many other factors (age, sex, ethnicity, health status, genes, and gene × diet interactions) affect the fatty acid composition of cell membranes or plasma lipid compartments. Therefore, it is of great importance to understand the complexity of mechanisms that may modify fatty acid compositions of plasma or tissues. We carried out an extensive literature survey of gene × diet interaction in the regulation of fatty acid compositions. Most of the related studies have been observational studies, but there are also a few intervention trials that tend to confirm that true interactions exist. Most of the studies deal with the desaturase enzyme cluster (FADS1, FADS2) in chromosome 11 and elongase enzymes. We expect that new genetic variants are being found that are linked with the genetic regulation of plasma or tissue fatty acid composition. This information is of great help to understanding the contribution of dietary fatty acids and their endogenic metabolism to the development of some chronic diseases.
Collapse
Affiliation(s)
- Maria Lankinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland.
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70210 Kuopio, Finland.
| |
Collapse
|
8
|
Lin YH, Hibbeln JR, Domenichiello AF, Ramsden CE, Salem NM, Chen CT, Jin H, Courville AB, Majchrzak-Hong SF, Rapoport SI, Bazinet RP, Miller BV. Quantitation of Human Whole-Body Synthesis-Secretion Rates of Docosahexaenoic Acid and Eicosapentaenoate Acid from Circulating Unesterified α-Linolenic Acid at Steady State. Lipids 2018; 53:547-558. [PMID: 30074625 PMCID: PMC6105524 DOI: 10.1002/lipd.12055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 12/27/2022]
Abstract
The rate at which dietary α-linolenic acid (ALA) is desaturated and elongated to its longer-chain n-3 polyunsaturated fatty acid (PUFA) in humans is not agreed upon. In this study, we applied a methodology developed using rodents to investigate the whole-body, presumably hepatic, synthesis-secretion rates of esterified n-3 PUFA from circulating unesterified ALA in 2 healthy overweight women after 10 weeks of low-linoleate diet exposure. During continuous iv infusion of d5-ALA, 17 arterial blood samples were collected from each subject at -10, 0, 10, 20, 40, 60, 80, 100, 120, 150, 180, and 210 min, and at 4, 5, 6, 7, and 8 h after beginning infusion. Plasma esterified d5-n-3 PUFA concentrations were plotted against the infusion time and fit to a sigmoidal curve using nonlinear regression. These curves were used to estimate kinetic parameters using a kinetic analysis developed using rodents. Calculated synthesis-secretion rates of esterified eicosapentaenoate, n-3 docosapentaenoate, docosahexaenoic acid, tetracosapentaenate, and tetracosahexaenoate from circulating unesterified ALA were 2.1 and 2.7; 1.7 and 5.3; 0.47 and 0.27; 0.30 and 0.30; and 0.32 and 0.27 mg/day for subjects S01 and S02, respectively. This study provides new estimates of whole-body synthesis-secretion rates of esterified longer-chain n-3 PUFA from circulating unesterified ALA in human subjects. This method now can be extended to study factors that regulate human whole-body PUFA synthesis-secretion in health and disease.
Collapse
Affiliation(s)
- Yu-Hong Lin
- Section of Nutritional Neuroscience, LMBB, DICBR, NIAAA, NIH, U.S.A
| | | | | | - Christopher E. Ramsden
- Lipid Mediator, Inflammation and Pain Unit, Laboratory of Clinical Investigation, NIA, NIH
- DICBR, NIAAA, NIH
- School of Agriculture, Food and Wine, University of Adelaide, Australia
| | | | - Chuck T Chen
- Section of Nutritional Neuroscience, LMBB, DICBR, NIAAA, NIH, U.S.A
| | - Haksong Jin
- Pharmacy Department, NIH Clinical Center, NIH
| | | | | | | | | | | |
Collapse
|
9
|
Reynolds LM, Howard TD, Ruczinski I, Kanchan K, Seeds MC, Mathias RA, Chilton FH. Tissue-specific impact of FADS cluster variants on FADS1 and FADS2 gene expression. PLoS One 2018; 13:e0194610. [PMID: 29590160 PMCID: PMC5874031 DOI: 10.1371/journal.pone.0194610] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/06/2018] [Indexed: 12/31/2022] Open
Abstract
Omega-6 (n-6) and omega-3 (n-3) long (≥ 20 carbon) chain polyunsaturated fatty acids (LC-PUFAs) play a critical role in human health and disease. Biosynthesis of LC-PUFAs from dietary 18 carbon PUFAs in tissues such as the liver is highly associated with genetic variation within the fatty acid desaturase (FADS) gene cluster, containing FADS1 and FADS2 that encode the rate-limiting desaturation enzymes in the LC-PUFA biosynthesis pathway. However, the molecular mechanisms by which FADS genetic variants affect LC-PUFA biosynthesis, and in which tissues, are unclear. The current study examined associations between common single nucleotide polymorphisms (SNPs) within the FADS gene cluster and FADS1 and FADS2 gene expression in 44 different human tissues (sample sizes ranging 70-361) from the Genotype-Tissue Expression (GTEx) Project. FADS1 and FADS2 expression were detected in all 44 tissues. Significant cis-eQTLs (within 1 megabase of each gene, False Discovery Rate, FDR<0.05, as defined by GTEx) were identified in 12 tissues for FADS1 gene expression and 23 tissues for FADS2 gene expression. Six tissues had significant (FDR< 0.05) eQTLs associated with both FADS1 and FADS2 (including artery, esophagus, heart, muscle, nerve, and thyroid). Interestingly, the identified eQTLs were consistently found to be associated in opposite directions for FADS1 and FADS2 expression. Taken together, findings from this study suggest common SNPs within the FADS gene cluster impact the transcription of FADS1 and FADS2 in numerous tissues and raise important questions about how the inverse expression of these two genes impact intermediate molecular (such a LC-PUFA and LC-PUFA-containing glycerolipid levels) and ultimately clinical phenotypes associated with inflammatory diseases and brain health.
Collapse
Affiliation(s)
- Lindsay M. Reynolds
- Department of Epidemiology & Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Timothy D. Howard
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Ingo Ruczinski
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kanika Kanchan
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Michael C. Seeds
- Department of Internal Medicine/Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Rasika A. Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Floyd H. Chilton
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
10
|
Chilton FH, Dutta R, Reynolds LM, Sergeant S, Mathias RA, Seeds MC. Precision Nutrition and Omega-3 Polyunsaturated Fatty Acids: A Case for Personalized Supplementation Approaches for the Prevention and Management of Human Diseases. Nutrients 2017; 9:E1165. [PMID: 29068398 PMCID: PMC5707637 DOI: 10.3390/nu9111165] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/07/2017] [Accepted: 10/19/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dietary essential omega-6 (n-6) and omega-3 (n-3) 18 carbon (18C-) polyunsaturated fatty acids (PUFA), linoleic acid (LA) and α-linolenic acid (ALA), can be converted (utilizing desaturase and elongase enzymes encoded by FADS and ELOVL genes) to biologically-active long chain (LC; >20)-PUFAs by numerous cells and tissues. These n-6 and n-3 LC-PUFAs and their metabolites (ex, eicosanoids and endocannabinoids) play critical signaling and structural roles in almost all physiologic and pathophysiologic processes. METHODS This review summarizes: (1) the biosynthesis, metabolism and roles of LC-PUFAs; (2) the potential impact of rapidly altering the intake of dietary LA and ALA; (3) the genetics and evolution of LC-PUFA biosynthesis; (4) Gene-diet interactions that may lead to excess levels of n-6 LC-PUFAs and deficiencies of n-3 LC-PUFAs; and (5) opportunities for precision nutrition approaches to personalize n-3 LC-PUFA supplementation for individuals and populations. CONCLUSIONS The rapid nature of transitions in 18C-PUFA exposure together with the genetic variation in the LC-PUFA biosynthetic pathway found in different populations make mal-adaptations a likely outcome of our current nutritional environment. Understanding this genetic variation in the context of 18C-PUFA dietary exposure should enable the development of individualized n-3 LC-PUFA supplementation regimens to prevent and manage human disease.
Collapse
Affiliation(s)
- Floyd H Chilton
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Rahul Dutta
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Lindsay M Reynolds
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Rasika A Mathias
- GeneSTAR Research Program, General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| | - Michael C Seeds
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
11
|
Rahbar E, Ainsworth HC, Howard TD, Hawkins GA, Ruczinski I, Mathias R, Seeds MC, Sergeant S, Hixson JE, Herrington DM, Langefeld CD, Chilton FH. Uncovering the DNA methylation landscape in key regulatory regions within the FADS cluster. PLoS One 2017; 12:e0180903. [PMID: 28957329 PMCID: PMC5619705 DOI: 10.1371/journal.pone.0180903] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/22/2017] [Indexed: 12/16/2022] Open
Abstract
Genetic variants near and within the fatty acid desaturase (FADS) cluster are associated with polyunsaturated fatty acid (PUFA) biosynthesis, levels of several disease biomarkers and risk of human disease. However, determining the functional mechanisms by which these genetic variants impact PUFA levels remains a challenge. Utilizing an Illumina 450K array, we previously reported strong allele-specific methylation (ASM) associations (p = 2.69×10−29) between a single nucleotide polymorphism (SNP) rs174537 and DNA methylation of CpG sites located in the putative enhancer region between FADS1 and FADS2, in human liver tissue. However, this array only featured 20 CpG sites within this 12kb region. To better understand the methylation landscape within this region, we conducted bisulfite sequencing of the region between FADS1 and FADS2. Liver tissues from 50 male subjects (27 European Americans, 23 African Americans) were obtained from the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study, and used to ascertain the genotype at rs174537 and methylation status across the region of interest. Associations between rs174537 genotype and methylation status of 136 CpG sites were determined. Age-adjusted linear regressions were used to assess ASM associations with rs174537 genotype. The majority of CpG sites (117 out of 136, 86%) exhibited high levels of methylation with the greatest variability observed at three key regulatory regions–the promoter regions for FADS1 and FADS2 and a putative enhancer site between the two genes. Eight CpG sites within the putative enhancer region displayed significant (FDR p <0.05) ASM associations with rs174537. These data support the concept that both genetic and epigenetic factors regulate PUFA biosynthesis, and raise fundamental questions as to how genetic variants such as rs174537 impact DNA methylation in distant regulatory regions, and ultimately the capacity of tissues to synthesize PUFAs.
Collapse
Affiliation(s)
- Elaheh Rahbar
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- * E-mail: (ER); (FHC)
| | - Hannah C. Ainsworth
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Timothy D. Howard
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Gregory A. Hawkins
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Rasika Mathias
- Division of Allergy and Clinical Immunology Department of Medicine, The Johns Hopkins University, Baltimore, MD, United States of America
| | - Michael C. Seeds
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - James E. Hixson
- Department of Epidemiology, Human Genetics and Environmental Sciences, Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - David M. Herrington
- Department of Internal Medicine, Division of Cardiology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Carl D. Langefeld
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Floyd H. Chilton
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- * E-mail: (ER); (FHC)
| |
Collapse
|
12
|
Lack of association of SNPs from the FADS1-FADS2 gene cluster with major depression or suicidal behavior. Psychiatr Genet 2016; 26:81-6. [PMID: 26513616 DOI: 10.1097/ypg.0000000000000111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Fatty acid desaturase genes (FADS1-FADS2) encode desaturases participating in the biosynthesis of long-chain polyunsaturated fatty acids. As long-chain polyunsaturated fatty acids are implicated in major depressive disorder (MDD) and suicide risk, and as both are partly heritable, we studied the association of FADS1-FADS2 polymorphisms with MDD (635 cases, 480 controls) and suicide attempt status (291 attempters, 344 MDD nonattempters). Eighteen FADS-related single-nucleotide polymorphisms were genotyped from Caucasians enrolled in Madrid (n=791) or New York City (n=324) and entered as predictors into logistic regression analyses with diagnostic group or suicide attempt history as outcomes and location and sex as covariates. No associations were observed between any single-nucleotide polymorphisms and diagnosis or attempt status. As statistical power was adequate, we conclude that FADS1-FADS2 genetic variants may not be a common determinant of MDD.
Collapse
|
13
|
Li SW, Wang J, Yang Y, Liu ZJ, Cheng L, Liu HY, Ma P, Luo W, Liu SM. Polymorphisms in FADS1 and FADS2 alter plasma fatty acids and desaturase levels in type 2 diabetic patients with coronary artery disease. J Transl Med 2016; 14:79. [PMID: 27004414 PMCID: PMC4802592 DOI: 10.1186/s12967-016-0834-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/15/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND To explore whether plasma fatty acids and SNPs in the fatty acid desaturase (FADS) gene associated with type 2 diabetes (T2D) and coronary artery disease (CAD). METHODS In this cross-sectional study, we utilized gas chromatography-mass spectrometric analysis and the high-resolution melting method to detect plasma fatty acids and SNPs respectively (rs174537G>T, rs174616C>T, rs174460T>C, and rs174450A>C) in 234 T2D, 200 CAD, 185 T2D&CAD patients, and 253 healthy controls. RESULTS We found that T2D&CAD patients had the highest plasma arachidonic acid, dihomo-gamma-linolenic acid and delta-6 desaturase, and the lowest stearic acid, linolenic acid, and saturated fatty acids; plasma eicosapentaenoic acid and docosahexaenoic acid elevated in T2D patients, but significantly reduced in CAD patients. Moreover, T2D patients with rs174537 GG genotype were at risk of developing T2D&CAD (odds ratio (OR) 1.763; 95 % CI 1.143-2.718; p = 0.010), with elevated plasma LDL-cholesterol, arachidonic acid, and delta-6 desaturase. CONCLUSIONS Our results show that SNPs in FADS gene (particularly rs174537) associate with plasma fatty acids and desaturase levels in patients with both T2D and CAD, which maybe increases the risk of CAD in diabetic patients.
Collapse
Affiliation(s)
- Si-Wei Li
- />Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan, 430071 People’s Republic of China
| | - Jin Wang
- />Scientific Research Center, Shanghai Public Health Clinical Center, 2901 Caolang Road, Jinshan District, Shanghai, 201508 People’s Republic of China
| | - Ying Yang
- />Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan, 430071 People’s Republic of China
| | - Zhi-Jie Liu
- />Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430072 People’s Republic of China
| | - Lin Cheng
- />Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430072 People’s Republic of China
| | - Huan-Yu Liu
- />Department of Clinical Medicine, Hubei University of Medicine, Hubei, 442000 China
| | - Pei Ma
- />Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan, 430071 People’s Republic of China
| | - Wan Luo
- />Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan, 430071 People’s Republic of China
| | - Song-Mei Liu
- />Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan, 430071 People’s Republic of China
| |
Collapse
|
14
|
Cancer Risk and Eicosanoid Production: Interaction between the Protective Effect of Long Chain Omega-3 Polyunsaturated Fatty Acid Intake and Genotype. J Clin Med 2016; 5:jcm5020025. [PMID: 26891335 PMCID: PMC4773781 DOI: 10.3390/jcm5020025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/15/2016] [Accepted: 02/02/2016] [Indexed: 01/11/2023] Open
Abstract
Dietary inclusion of fish and fish supplements as a means to improve cancer prognosis and prevent tumour growth is largely controversial. Long chain omega-3 polyunsaturated fatty acids (LCn-3 PUFA), eicosapentaenoic acid and docosahexaenoic acid, may modulate the production of inflammatory eicosanoids, thereby influencing local inflammatory status, which is important in cancer development. Although in vitro studies have demonstrated inhibition of tumour cell growth and proliferation by LCn-3 PUFA, results from human studies have been mainly inconsistent. Genes involved in the desaturation of fatty acids, as well as the genes encoding enzymes responsible for eicosanoid production, are known to be implicated in tumour development. This review discusses the current evidence for an interaction between genetic polymorphisms and dietary LCn-3 PUFA in the risk for breast, prostate and colorectal cancers, in regards to inflammation and eicosanoid synthesis.
Collapse
|
15
|
Beam J, Botta A, Ye J, Soliman H, Matier BJ, Forrest M, MacLeod KM, Ghosh S. Excess Linoleic Acid Increases Collagen I/III Ratio and "Stiffens" the Heart Muscle Following High Fat Diets. J Biol Chem 2015; 290:23371-84. [PMID: 26240151 DOI: 10.1074/jbc.m115.682195] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Indexed: 12/14/2022] Open
Abstract
Controversy exists on the benefits versus harms of n-6 polyunsaturated fatty acids (n-6 PUFA). Although n-6 PUFA demonstrates anti-atherosclerotic properties, survival following cardiac remodeling may be compromised. We hypothesized that n-6 PUFA like linoleic acid (LA) or other downstream PUFAs like γ-linolenic acid or arachidonic acid alter the transforming growth factor-β (TGFβ)-collagen axis in the heart. Excess dietary LA increased the collagen I/III ratio in the mouse myocardium, leading to cardiac "stiffening" characterized by impaired transmitral flow indicative of early diastolic dysfunction within 5 weeks. In vitro, LA under TGFβ1 stimulation increased collagen I and lysyl oxidase (LOX), the enzyme that cross-links soluble collagen resulting in deposited collagen. Overexpression of fatty acid desaturase 2 (fads2), which metabolizes LA to downstream PUFAs, reduced collagen deposits, LOX maturation, and activity with LA, whereas overexpressing fads1, unrelated to LA desaturation, did not. Furthermore, fads2 knockdown by RNAi elevated LOX activity and collagen deposits in fibroblasts with LA but not oleic acid, implying a buildup of LA for aggravating such pro-fibrotic effects. As direct incubation with γ-linolenic acid or arachidonic acid also attenuated collagen deposits and LOX activity, we concluded that LA itself, independent of other downstream PUFAs, promotes the pro-fibrotic effects of n-6 PUFA. Overall, these results attempt to reconcile opposing views of n-6 PUFA on the cardiovascular system and present evidence supporting a cardiac muscle-specific effect of n-6 PUFAs. Therefore, aggravation of the collagen I/III ratio and cardiac stiffening by excess n-6 PUFA represent a novel pathway of cardiac lipotoxicity caused by high n-6 PUFA diets.
Collapse
Affiliation(s)
- Julianne Beam
- From the Department of Biology, IK Barber School of Arts and Sciences, and
| | - Amy Botta
- From the Department of Biology, IK Barber School of Arts and Sciences, and
| | - Jiayu Ye
- From the Department of Biology, IK Barber School of Arts and Sciences, and
| | - Hesham Soliman
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, British Columbia-Okanagan, Kelowna, British Columbia BC V1V 1V7, Canada, and the Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Main Road, Minia 11432, Egypt
| | - Brieanne J Matier
- From the Department of Biology, IK Barber School of Arts and Sciences, and
| | - Mary Forrest
- From the Department of Biology, IK Barber School of Arts and Sciences, and
| | - Kathleen M MacLeod
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, British Columbia-Okanagan, Kelowna, British Columbia BC V1V 1V7, Canada, and
| | - Sanjoy Ghosh
- From the Department of Biology, IK Barber School of Arts and Sciences, and
| |
Collapse
|
16
|
Murff HJ, Edwards TL. Endogenous Production of Long-Chain Polyunsaturated Fatty Acids and Metabolic Disease Risk. CURRENT CARDIOVASCULAR RISK REPORTS 2014; 8. [PMID: 26392837 DOI: 10.1007/s12170-014-0418-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long chain polyunsaturated fatty acids (PUFAs) are important structural components of cellular membranes and are converted into eicosanoids which serve various biological roles. The most common dietary n-6 and n-3 PUFAs are linoleic acid and α-linoleic acid, respectively. These 18-carbon chain fatty acids undergo a series of desaturation and elongation steps to become the 20-carbon fatty acids arachidonic acid and eicosapentaenoic acid, respectively. Evidence from genome wide association studies has consistently demonstrated that plasma and tissue levels of the n-6 long-chain PUFA arachidonic acid and to a lesser extent the n-3 long-chain PUFA eicosapentaenoic acid, are strongly influenced by variation in fatty acid desaturase-1,-2, and elongation of very long chain fatty acid genes. Studies of functional variants in these genes, as well as studies in which desaturase activity has been indirectly estimated by fatty acid product-to -precursor ratios, have suggested that endogenous capacity to synthesize long-chain PUFAs may be associated with metabolic diseases such as diabetes mellitus. Interventional studies are starting to tease out the complicated relationship between dietary intakes of specific fatty acids, variation in desaturase and elongase genes and tissue levels of long chain PUFAs. Thus future studies of dietary PUFA interventions designed to reduce inflammatory and metabolic diseases will need to carefully consider how an individual's genetically-determined endogenous long-chain PUFA synthesis capacity might modify therapeutic response.
Collapse
Affiliation(s)
- Harvey J Murff
- Division of General Internal Medicine and Public Health, Vanderbilt University School of Medicine, Nashville TN ; GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville TN
| | - Todd L Edwards
- Division of Epidemiology, Vanderbilt University School of Medicine
| |
Collapse
|
17
|
Diet-gene interactions and PUFA metabolism: a potential contributor to health disparities and human diseases. Nutrients 2014; 6:1993-2022. [PMID: 24853887 PMCID: PMC4042578 DOI: 10.3390/nu6051993] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 01/01/2023] Open
Abstract
The “modern western” diet (MWD) has increased the onset and progression of chronic human diseases as qualitatively and quantitatively maladaptive dietary components give rise to obesity and destructive gene-diet interactions. There has been a three-fold increase in dietary levels of the omega-6 (n-6) 18 carbon (C18), polyunsaturated fatty acid (PUFA) linoleic acid (LA; 18:2n-6), with the addition of cooking oils and processed foods to the MWD. Intense debate has emerged regarding the impact of this increase on human health. Recent studies have uncovered population-related genetic variation in the LCPUFA biosynthetic pathway (especially within the fatty acid desaturase gene (FADS) cluster) that is associated with levels of circulating and tissue PUFAs and several biomarkers and clinical endpoints of cardiovascular disease (CVD). Importantly, populations of African descent have higher frequencies of variants associated with elevated levels of arachidonic acid (ARA), CVD biomarkers and disease endpoints. Additionally, nutrigenomic interactions between dietary n-6 PUFAs and variants in genes that encode for enzymes that mobilize and metabolize ARA to eicosanoids have been identified. These observations raise important questions of whether gene-PUFA interactions are differentially driving the risk of cardiovascular and other diseases in diverse populations, and contributing to health disparities, especially in African American populations.
Collapse
|
18
|
Mathias RA, Pani V, Chilton FH. Genetic Variants in the FADS Gene: Implications for Dietary Recommendations for Fatty Acid Intake. Curr Nutr Rep 2014; 3:139-148. [PMID: 24977108 DOI: 10.1007/s13668-014-0079-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Unequivocally, genetic variants within the fatty acid desaturase (FADS) cluster are determinants of long chain polyunsaturated fatty acid (LC-PUFA) levels in circulation, cells and tissues. A recent series of papers have addressed these associations in the context of ancestry; evidence clearly supports that the associations are robust to ethnicity. However ∼80% of African Americans carry two copies of the alleles associated with increased levels of arachidonic acid, compared to only ∼45% of European Americans raising important questions of whether gene-PUFA interactions induced by a modern western diet are differentially driving the risk of diseases of inflammation in diverse populations, and are these interactions leading to health disparities. We highlight an important aspect thus far missing in the debate regarding dietary recommendations; we content that current evidence from genetics strongly suggest that an individual's, or at the very least the population from which an individual is sampled, genetic architecture must be factored into dietary recommendations currently in place.
Collapse
Affiliation(s)
- Rasika A Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University, Baltimore, MD 21224, USA
| | - Vrindarani Pani
- Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University, Baltimore, MD 21224, USA
| | - Floyd H Chilton
- The Center for Botanical Lipids and Inflammatory Disease Prevention, Wake Forest School of Medicine, Winston-Salem NC, 27157, USA ; Department of Physiology/Pharmacology, Wake Forest School of Medicine, Winston-Salem NC 27157, USA ; Molecular Medicine and Translational Sciences, Wake Forest School of Medicine, Winston-Salem NC 27157, USA
| |
Collapse
|