1
|
Li Q, Zhang B, Lu J, Li A, Wa Q. LncRNA SNHG1/miR-320b/CTNNB1 axis regulating the collective migration of fibroblasts in the formation of keloid. Cutan Ocul Toxicol 2025:1-8. [PMID: 40314441 DOI: 10.1080/15569527.2025.2496634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND To explore the regulatory molecular mechanism of long non-coding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) expression on keloid formation. METHODS The expression differences of SNHG1, miR-320b, and Catenin Beta 1 (CTNNB1) in keloid tissue and normal skin tissue of patients with keloid were detected. Normal cultured human fibroblasts were used as the Blank group (Blank) and then transfected with si-SNHG1 to silence SNHG1 expression. MTT assay, Transwell chamber assay, RT-qPCR, and Western blot (WB) were used. SNHG1 and miR-320b, as well as miR-320b and CTNNB1, were found to be targeted using the dual luciferase reporter gene (DLRG) strategy. RESULTS As against normal skin tissue, SNHG1 and CTNNB1 were increased, while miR-320b was decreased in keloid tissue (P < 0.05). As against the Blank, there was a drop in the number of transferring and attacking cells, a decrease in the proliferative activity, an increase in the expression of miR-320b, a decrease in CTNNB1, and the relative expression (RE) of Pro-Collagen I, Cyclin D1, VEGF, α-smooth muscle actin (α-SMA), matrix metallopeptidase-2 (MMP-2), and MMP-9 was decreased in the si-SNHG1 group (AG) (P < 0.05). CONCLUSION SNHG1 could target and regulate miR-320b, and miR-320b could target and regulate CTNNB1. Fibroblast transfer, attack, and multiplication may all be prevented by reducing SNHG1 expression.
Collapse
Affiliation(s)
- Qiaoling Li
- Center of Medical Cosmetology, Chengdu Second People's Hospital, Chengdu, Sichuan Province, China
| | - Bowei Zhang
- Department of Vascular and Thyroid Surgery, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan Province, China
| | - Jie Lu
- Center of Medical Cosmetology, Chengdu Second People's Hospital, Chengdu, Sichuan Province, China
| | - Anqi Li
- Center of Medical Cosmetology, Chengdu Second People's Hospital, Chengdu, Sichuan Province, China
| | - Qingbiao Wa
- Center of Medical Cosmetology, Chengdu Second People's Hospital, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Saadh MJ, Hamid JA, Malathi H, Kazmi SW, Omar TM, Sharma A, Kumar MR, Aggarwal T, Sead FF. SNHG family lncRNAs: Key players in the breast cancer progression and immune cell's modulation. Exp Cell Res 2025; 447:114531. [PMID: 40118265 DOI: 10.1016/j.yexcr.2025.114531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/23/2025]
Abstract
Breast cancer, a highly prevalent form of cancer worldwide, has observed a steady increase in its prevalence over the past few decades. This rise can be attributed to the complex nature of the disease, characterized by its heterogeneity, ability to metastasize, and resistance to various treatment. In the field of cancer research, long non-coding RNAs (lncRNAs) are of special interest, which play an important role in the development and progression of various tumors, including breast cancer. LncRNAs affect the tumor microenvironment by attracting diverse immunosuppressive factors and controlling the differentiation of immune cells, often referred to as myeloid and lymphoid cells, which contributes to immune escape of tumor cells. Among the lncRNA families, the small nucleolar RNA host gene (SNHG) family has been found to be dysregulated in breast cancer. These SNHGs have been implicated in crucial cellular processes such as cell proliferation, invasion, migration, resistance to therapies, apoptosis, as well as immune cell regulation and differentiation. Consequently, they have great potential as diagnostic and prognostic biomarkers as well as potential therapeutic targets for breast cancer. In this comprehensive review, we aim to summarize the recent advances in the study of SNHGs in breast cancer pathogenesis and their role in regulating the activity of immune cells in the tumor microenvironment through affecting SNHGs/miRNA/mRNA pathways, with the aim of providing new insights into the treatment of breast cancer.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Syeda Wajida Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Nineveh, Iraq
| | - Ashish Sharma
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Tushar Aggarwal
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Fadhil Feez Sead
- Department of Dentistry, College of Dentistry, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
3
|
Hussen BM, Othman DI, Abdullah SR, Khudhur ZO, Samsami M, Taheri M. New insights of LncRNAs fingerprints in breast cancer progression: Tumorigenesis, drug resistance, and therapeutic opportunities. Int J Biol Macromol 2025; 287:138589. [PMID: 39662549 DOI: 10.1016/j.ijbiomac.2024.138589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Breast cancer (BC) is one of the common female cancers and it is characterized by considerable problems regarding its development and therapy. Long non-coding RNAs (lncRNAs) have been identified as significant modulators in BC development, especially, in tumorigenicity and chemoresistance. We therefore endeavor to present an up-to-date understanding of lncRNAs and their impact on BC progression and treatment, concerning molecular processes, treatment options, and use as a therapeutic opportunity. LncRNAs are novel regulators of genes that cause therapeutic resistance and directly impact the functioning of both coding and non-coding genes in BC patients, but little is known about their mechanisms of actions. Thus, additional study is required to have a deeper understanding of their modes of action and possible roles in BC disease. This study aims to investigate the functions of lncRNAs in the development of BC, with particular attention to their role in tumorigenesis, drug resistance mechanisms, and therapeutic targets. This will help to identify novel therapeutic targets and improve the effectiveness of BC treatment.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq; Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Diyar Idris Othman
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Zhikal Omar Khudhur
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Samsami Y, Akhlaghipour I, Taghehchian N, Palizkaran Yazdi M, Farrokhi S, Rahimi HR, Moghbeli M. MicroRNA-382 as a tumor suppressor during tumor progression. Bioorg Med Chem Lett 2024; 113:129967. [PMID: 39293533 DOI: 10.1016/j.bmcl.2024.129967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Despite the recent progresses in therapeutic and diagnostic methods, there is still a significantly high rate of mortality among cancer patients. One of the main reasons for the high mortality rate in cancer patients is late diagnosis, which leads to the failure of therapeutic strategies. Therefore, investigation of cancer biology can lead to the introduction of early diagnostic markers in these patients. MicroRNAs (miRNAs) play an important role in regulation of cellular processes associated with tumor progression. Due to the high stability of miRNAs in body fluids, these factors can be considered as the non-invasive tumor markers. Deregulation of miR-382 has been widely reported in different cancers. Therefore, in this review, we investigated the role of miR-382 during tumor development. It has shown that miR-382 has mainly a tumor suppressive, which inhibits the growth of tumor cells through the regulation of signaling pathways, RNA-binding proteins, and transcription factors. Therefore, miR-382 can be suggested as a diagnostic and therapeutic marker in cancer patients.
Collapse
Affiliation(s)
- Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Saba Farrokhi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
CAO X, CHEN L. [Research Progress of LncRNA SNHGs in Regulating the Biological Behavior
of Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:851-862. [PMID: 38061887 PMCID: PMC10714051 DOI: 10.3779/j.issn.1009-3419.2023.102.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Indexed: 12/18/2023]
Abstract
Lung cancer is one of the malignant tumors with the highest incidence and mortality rate in China, and its occurrence and development mechanism and treatment methods are the current research focuses. In recent years, the emergence of drugs targeting various tumor driver genes has significantly improved patients' survival and quality of life, setting off a wave of research on new therapeutic targets. Among them, long non-coding RNA (lncRNA) plays a crucial role in the malignant behavior of tumors, which has attracted widespread attention. Shown by a large number of studies, partial members of lncRNA small nucleolar RNA host gene (SNHG) family are aberrantly expressed in many maliglant tumors including non-small cell lung cancer (NSCLC) and participate in cell proliferation, invasion and migration, which may act as a new diagnostic and prognostic biomarker and can be a therapeutic target of NSCLC. In this review, we comprehensively summarize and explore the recent investigation of SNHGs in NSCLC in order to provide new ideas for the diagnosis and treatment of NSCLC.
.
Collapse
|
6
|
Fattahi M, Shahrabi S, Saadatpour F, Rezaee D, Beyglu Z, Delavari S, Amrolahi A, Ahmadi S, Bagheri-Mohammadi S, Noori E, Majidpoor J, Nouri S, Aghaei-Zarch SM, Falahi S, Najafi S, Le BN. microRNA-382 as a tumor suppressor? Roles in tumorigenesis and clinical significance. Int J Biol Macromol 2023; 250:125863. [PMID: 37467828 DOI: 10.1016/j.ijbiomac.2023.125863] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
MicroRNAs (miRNAs) are small single-stranded RNAs belonging to a class of non-coding RNAs with an average length of 18-22 nucleotides. Although not able to encode any protein, miRNAs are vastly studied and found to play role in various human physiologic as well as pathological conditions. A huge number of miRNAs have been identified in human cells whose expression is straightly regulated with crucial biological functions, while this number is constantly increasing. miRNAs are particularly studied in cancers, where they either can act with oncogenic function (oncomiRs) or tumor-suppressors role (referred as tumor-suppressor/oncorepressor miRNAs). miR-382 is a well-studied miRNA, which is revealed to play regulatory roles in physiological processes like osteogenic differentiation, hematopoietic stem cell differentiation and normal hematopoiesis, and liver progenitor cell differentiation. Notably, miR-382 deregulation is reported in pathologic conditions, such as renal fibrosis, muscular dystrophies, Rett syndrome, epidural fibrosis, atrial fibrillation, amelogenesis imperfecta, oxidative stress, human immunodeficiency virus (HIV) replication, and various types of cancers. The majority of oncogenesis studies have claimed miR-382 downregulation in cancers and suppressor impact on malignant phenotype of cancer cells in vitro and in vivo, while a few studies suggest opposite findings. Given the putative role of this miRNA in regulation of oncogenesis, assessment of miR-382 expression is suggested in a several clinical investigations as a prognostic/diagnostic biomarker for cancer patients. In this review, we have an overview to recent studies evaluated the role of miR-382 in oncogenesis as well as its clinical potential.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Saadatpour
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Zahra Beyglu
- Department of Genetics, Qom Branch, Islamic Azad University, Qom, Iran
| | - Sana Delavari
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Anita Amrolahi
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Effat Noori
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Shadi Nouri
- Department of Radiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Binh Nguyen Le
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
7
|
Zeng H, Zhou S, Cai W, Kang M, Zhang P. LncRNA SNHG1: role in tumorigenesis of multiple human cancers. Cancer Cell Int 2023; 23:198. [PMID: 37684619 PMCID: PMC10492323 DOI: 10.1186/s12935-023-03018-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/06/2023] [Indexed: 09/10/2023] Open
Abstract
Small nucleolar RNA host gene 1 (SNHG1) is an important member of the SNHG family. This family is composed of a group of host genes that can be processed into small nucleolar RNAs and play important biological functions. In an oncogenic role, the SNHG1 expression is increased in various cancers, which has immense application prospects in the diagnosis, treatment, and prognosis of malignant tumors. In this review, we have summarized the role and molecular mechanism of SNHG1 in the development of various cancers. In addition, we have emphasized the clinical significance of SNHG1 in cancers in our article. This molecule is expected to be a new marker for potential usage in the diagnosis, prognosis, and treatment of cancer.
Collapse
Affiliation(s)
- Huang Zeng
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Shouang Zhou
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Weiqiang Cai
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Gulou, Fuzhou, 350001, China.
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Gulou, Fuzhou, 350001, China.
| |
Collapse
|
8
|
Bhardwaj A, Liyanage SI, Weaver DF. Cancer and Alzheimer's Inverse Correlation: an Immunogenetic Analysis. Mol Neurobiol 2023; 60:3086-3099. [PMID: 36797545 DOI: 10.1007/s12035-023-03260-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/05/2023] [Indexed: 02/18/2023]
Abstract
Numerous studies have demonstrated an inverse link between cancer and Alzheimer's disease (AD), with data suggesting that people with Alzheimer's have a decreased risk of cancer and vice versa. Although other studies have investigated mechanisms to explain this relationship, the connection between these two diseases remains largely unexplained. Processes seen in cancer, such as decreased apoptosis and increased cell proliferation, seem to be reversed in AD. Given the need for effective therapeutic strategies for AD, comparisons with cancer could yield valuable insights into the disease process and perhaps result in new treatments. Here, through a review of existing literature, we compared the expressions of genes involved in cell proliferation and apoptosis to establish a genetic basis for the reciprocal association between AD and cancer. We discuss an array of genes involved in the aforementioned processes, their relevance to both diseases, and how changes in those genes produce varying effects in either disease.
Collapse
Affiliation(s)
- Aditya Bhardwaj
- Krembil Discovery Tower, Krembil Brain Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - S Imindu Liyanage
- Krembil Discovery Tower, Krembil Brain Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - Donald F Weaver
- Krembil Discovery Tower, Krembil Brain Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada.
- Departments of Medicine and Chemistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
9
|
LincRNAs and snoRNAs in Breast Cancer Cell Metastasis: The Unknown Players. Cancers (Basel) 2022; 14:cancers14184528. [PMID: 36139687 PMCID: PMC9496948 DOI: 10.3390/cancers14184528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Recent advances in research have led to earlier diagnosis and targeted therapies against breast cancer, which has resulted in reduced breast cancer-related mortality. However, the majority of breast cancer-related deaths are due to metastasis of cancer cells to other organs, a process that has not been fully elucidated. Among the factors and genes implicated in the metastatic process regulation, non-coding RNAs have emerged as crucial players. This review focuses on the role of long intergenic noncoding RNAs (lincRNAs) and small nucleolar RNAs (snoRNAs) in breast cancer cell metastasis. LincRNAs are transcribed between two protein-coding genes and are longer than 200 nucleotides, they do not code for a specific protein but function as regulatory molecules in processes such as cell proliferation, apoptosis, epithelial-to-mesenchymal transition, migration, and invasion while most of them are highly elevated in breast cancer tissues and seem to function as competing endogenous RNAs (ceRNAs) inhibiting relevant miRNAs that specifically target vital metastasis-related genes. Similarly, snoRNAs are 60-300 nucleotides long and are found in the nucleolus being responsible for the post-transcriptional modification of ribosomal and spliceosomal RNAs. Most snoRNAs are hosted inside intron sequences of protein-coding and non-protein-coding genes, and they also regulate metastasis-related genes affecting related cellular properties.
Collapse
|
10
|
Chen Z, Feng R, Kahlert UD, Chen Z, Torres-dela Roche LA, Soliman A, Miao C, De Wilde RL, Shi W. Construction of ceRNA Networks Associated With CD8 T Cells in Breast Cancer. Front Oncol 2022; 12:883197. [PMID: 35756601 PMCID: PMC9219915 DOI: 10.3389/fonc.2022.883197] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The infiltration of CD8 T cells is usually linked to a favorable prognosis and may predict the therapeutic response of breast cancer patients to immunotherapy. The purpose of this research is to investigate the competing endogenous RNA (ceRNA) network correlated with the infiltration of CD8 T cells. METHODS Based on expression profiles, CD8 T cell abundances for each breast cancer (BC) patient were inferred using the bioinformatic method by immune markers and expression profiles. We were able to extract the differentially expressed RNAs (DEmRNAs, DEmiRNAs, and DElncRNAs) between low and high CD8 T-cell samples. The ceRNA network was constructed using Cytoscape. Machine learning models were built by lncRNAs to predict CD8 T-cell abundances. The lncRNAs were used to develop a prognostic model that could predict the survival rates of BC patients. The expression of selected lncRNA (XIST) was validated by quantitative real-time PCR (qRT-PCR). RESULTS A total of 1,599 DElncRNAs, 89 DEmiRNAs, and 1,794 DEmRNAs between high and low CD8 T-cell groups were obtained. Two ceRNA networks that have positive or negative correlations with CD8 T cells were built. Among the two ceRNA networks, nine lncRNAs (MIR29B2CHG, NEAT1, MALAT1, LINC00943, LINC01146, AC092718.4, AC005332.4, NORAD, and XIST) were selected for model construction. Among six prevalent machine learning models, artificial neural networks performed best, with an area under the curve (AUC) of 0.855. Patients from the high-risk category with BC had a lower survival rate compared to those from the low-risk group. The qRT-PCR results revealed significantly reduced XIST expression in normal breast samples, which was consistent with our integrated analysis. CONCLUSION These results potentially provide insights into the ceRNA networks linked with T-cell infiltration and provide accurate models for T-cell prediction.
Collapse
Affiliation(s)
- Zhilin Chen
- Department of Breast and Thoracic Oncological Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- University Hospital for Gynecology, Pius-Hospital, University Medicine Oldenburg, Oldenburg, Germany
| | - Ruifa Feng
- Breast Center of The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Ulf Dietrich Kahlert
- Molecular and Experimental Surgery, University Clinic for General-, Visceral- and Vascular Surgery, University Medicine Magdeburg and Otto-von Guericke University, Magdeburg, Germany
| | - Zhitong Chen
- University Hospital for Gynecology, Pius-Hospital, University Medicine Oldenburg, Oldenburg, Germany
| | | | - Amr Soliman
- University Hospital for Gynecology, Pius-Hospital, University Medicine Oldenburg, Oldenburg, Germany
| | - Chen Miao
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rudy Leon De Wilde
- University Hospital for Gynecology, Pius-Hospital, University Medicine Oldenburg, Oldenburg, Germany
| | - Wenjie Shi
- University Hospital for Gynecology, Pius-Hospital, University Medicine Oldenburg, Oldenburg, Germany
- Molecular and Experimental Surgery, University Clinic for General-, Visceral- and Vascular Surgery, University Medicine Magdeburg and Otto-von Guericke University, Magdeburg, Germany
| |
Collapse
|
11
|
Chen S, Guo W, Meng M, Wu D, Zhou T, Wang L, Xu J. LncRNA SNHG1 Promotes the Progression of Pancreatic Cancer by Regulating FGFR1 Expression via Competitively Binding to miR-497. Front Oncol 2022; 12:813850. [PMID: 35141164 PMCID: PMC8818711 DOI: 10.3389/fonc.2022.813850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundLong noncoding RNA small nucleolar RNA host gene 1 (SNHG1) is dysregulated in a variety of tumors. However, little is known of its role in pancreatic cancer (PC).MethodsThe role of SNHG1 on PC cell proliferation, migration, invasion, apoptosis, and the epithelial-mesenchymal transition (EMT) were assessed in vitro using MTT, EDU, wound healing, and Transwell assays, as well as flow cytometry and western blotting. Luciferase reporter assay, western blotting, and qRT-PCR were used to examine SNHG1 regulation. Tumor growth in mice was also investigated.ResultsDownregulation of SNHG1 blocked cell proliferation, migration and invasion, and induced apoptosis in vitro, while also inhibiting the EMT, shown by changes in the biomarkers E-cadherin, N-cadherin, and Vimentin. The opposite results were observed on upregulation of SNHG1. In vivo experiments showed that downregulation of SNHG1 inhibited tumor development in nude mice. Furthermore, experiments investigating the regulatory mechanism of SNHG1 indicated that SNHG1 acted as a competitive endogenous RNA, positively regulating the expression of fibroblast growth factor receptor 1 (FGFR1) through sponging miR-497. Rescue experiments demonstrated that the effects of SNHG1 downregulation on PC cells were attenuated when simultaneously inhibiting the levels of miR-497.ConclusionsSNHG1 upregulates FGFR1 expression by sponging miR-497, which promotes the progression of PC. SNHG1 may thus be a novel target for treating PC.
Collapse
Affiliation(s)
- Shihong Chen
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Wenyi Guo
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Mingyang Meng
- Department of General Medicine, Xiangyang NO.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Dong Wu
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Tao Zhou
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Lei Wang
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China
- *Correspondence: Lei Wang, ; Jianwei Xu,
| | - Jianwei Xu
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China
- *Correspondence: Lei Wang, ; Jianwei Xu,
| |
Collapse
|
12
|
Dai G, Yang Y, Liu S, Liu H. Hypoxic Breast Cancer Cell-Derived Exosomal SNHG1 Promotes Breast Cancer Growth and Angiogenesis via Regulating miR-216b-5p/JAK2 Axis. Cancer Manag Res 2022; 14:123-133. [PMID: 35027847 PMCID: PMC8751978 DOI: 10.2147/cmar.s327621] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/21/2021] [Indexed: 12/26/2022] Open
Abstract
Background Hypoxia is an important process that involved in the tumor microenvironment. In addition, hypoxic tumor cell-derived exosomes could promote tumor growth and angiogenesis. Thus, we aimed to investigate whether exosomes could regulate tumor development and progression under hypoxia in breast cancer. Methods The level of SNHG1 in hypoxic breast cancer cells and exosomes derived from hypoxic breast cancer cells was determined by real-time qPCR assay. Bioinformatics prediction and dual-luciferase reporter assays were used to determine the interaction between SNHG1, miR-216b-5p and JAK2. Results We found that comparing with exosomes derived from normoxia breast cancer cells, exosomes derived from hypoxic breast cancer cells could promote the proliferation, migration and angiogenesis of human umbilical vein endothelial cells (HUVECs). In addition, SNHG1 level was significantly upregulated in exosomes derived from hypoxic breast cancer cells. Moreover, exosome-mediated delivery of SNHG1 siRNA3 markedly reversed the effects of exosome-mediated delivery of SNHG1 on HUVECs. Mechanically, SNHG1 could increase the level of JAK2 by competitively binding to miR-216b-5p. Additionally, exosome-mediated delivery of SNHG1 was found to promote breast cancer growth in vivo. Conclusion Collectively, our study revealed that exosomal SNHG1 from hypoxic breast cancer cells could promote tumor angiogenesis and growth via regulating miR-216b-5p/JAK2 axis, suggesting that SNHG1 may serve as a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Gaosai Dai
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Yupeng Yang
- Department of Thyroid and Breast Surgery, Jinan Zhangqiu District Hospital of TCM, Jinan, Shandong, 250200, People’s Republic of China
| | - Shuhao Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Huantao Liu
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Correspondence: Huantao Liu Department of Breast Surgery, Qilu Hospital of Shandong University, Wenhuaxi Road 107, Jinan, Shandong, 250012, People’s Republic of China Email
| |
Collapse
|
13
|
Lou X, Wang D, Gu Z, Li T, Ren L. Mechanism of microRNA regulating the progress of atherosclerosis in apoE-deficient mice. Bioengineered 2021; 12:10994-11006. [PMID: 34775883 PMCID: PMC8809940 DOI: 10.1080/21655979.2021.2004979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs play important roles in atherosclerogenesis and are important novel pharmaceutic targets in atherosclerosis management. The whole spectrum of miRNAs dysregulation is still under intense investigation. This study intends to identify more novel dysregulated microRNAs in atherosclerotic mice. Half of eight-week-old male ApoE-/- mice were fed with high-fat-diet for 12 weeks as a model mice, and the remaining half of ApoE-/- mice were fed with a normal-diet as a control. A serum lipid profile was performed with ELISA kits, and atherosclerotic lesions were assessed. Aortic tissues were dissected for gene expression profiling using a Multispecies miRNA 4.0 Array, and significant differentially expressed miRNAs were identified with fold change ≥ 2 and p < 0.05. Real-time quantitative PCR was used to validate microarray gene expression data on selected genes. Predicted target genes were extracted and subjected to bioinformatic analysis for molecular function and pathway enrichment analysis. Model mice showed a 15.32% atherosclerotic lesion compared to 1.52% in the control group. A total of 25 significant differentially expressed microRNAs were identified, with most of them (24/25) downregulated. Real-time quantitative PCR confirmed the GeneChip data. Bioinformatic analysis of predicted target genes identified high involvement of the PI3K/Akt/mTOR signaling pathway. Microarray profiling of miRNAs in high-fat-fed Model mice identified 25 differentially expressed miRNAs, including some novel miRNAs, and the PI3K/Akt/mTOR signaling pathway is highly enriched in the predicted target genes. The novel identified dysregulated miRNAs suggest a broader spectrum of miRNA dysregulation in the progression of atherosclerosis and provide more research and therapeutic targets for atherosclerosis.
Collapse
Affiliation(s)
- Xiaoqian Lou
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin, China
- Department of Endocrinology, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Dawei Wang
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Zehui Gu
- Department of Pathology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Tengteng Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin, China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin, China
| |
Collapse
|
14
|
Zhang M, Yang L, Hou L, Tang X. LncRNA SNHG1 promotes tumor progression and cisplatin resistance through epigenetically silencing miR-381 in breast cancer. Bioengineered 2021; 12:9239-9250. [PMID: 34806925 PMCID: PMC8809974 DOI: 10.1080/21655979.2021.1996305] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The long-non-coding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) is a known cause of tumorigenesis. Nevertheless, it’s yet unclear how lncRNA SNHG1 influences breast cancer. Herein, we explored the mechanisms through which SNHG1 modulates breast cancer tumor progression. Our findings demonstrated that SNHG1 is significantly upregulated in breast cancer tissues and cells. High SNHG1 levels were closely linked to reduced survival rates in breast cancer patients. SNHG1 silencing has been shown to inhibit the proliferative, migratory, and invasive activity of breast cancer cells. Moreover, SNHG1 silencing enhanced cisplatin (DDP) sensitivity of these cells through improving DDP-induced cell apoptosis. Mechanistically, SNHG1 was found to interact with enhancer of zeste homolog 2 (EZH2), recruiting EZH2 to trigger trimethylation of histone H3 lysine 27 (H3K27me3), thus epigenetically inhibiting miR-381 transcription in these cells. Overexpression of miR-381 inhibited tumor progression and sensitized cells to the chemotherapeutic reagent DDP. More importantly, rescue experiments demonstrated that miR-381 inhibition could inverse the tumor-suppressive effect of SNHG1 silencing in breast cancer. In summary, SNHG1 silencing suppressed tumor progression and overcame breast cancer cell DDP resistance via the epigenetic suppression of miR-381 expression. Our study revealed that SNHG1 served as a novel therapeutic target for breast cancer chemoresistance.
Collapse
Affiliation(s)
- Mingkun Zhang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Liu Yang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Lan Hou
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Xueyuan Tang
- Department of Reproductive Endocrinology, Xi'an International Medical Center Hospital, Xi'an, China
| |
Collapse
|
15
|
Jiang X, Yuan Y, Tang L, Wang J, Liu Q, Zou X, Duan L. Comprehensive Pan-Cancer Analysis of the Prognostic and Immunological Roles of the METTL3/lncRNA-SNHG1/miRNA-140-3p/UBE2C Axis. Front Cell Dev Biol 2021; 9:765772. [PMID: 34858987 PMCID: PMC8631498 DOI: 10.3389/fcell.2021.765772] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/15/2021] [Indexed: 01/01/2023] Open
Abstract
Growing evidence has demonstrated that UBE2C plays a critical role in cancer progression, but there is no study focusing on the prognosis, upstream regulation mechanism, and immunological roles of UBE2C across diverse tumor types. In this study, we found that UBE2C was elevated in this human pan-cancer analysis, and high expression of UBE2C was correlated with poor prognosis. In addition, UBE2C expression was markedly associated with tumor mutation burden (TMB), microsatellite instability (MSI), immune cell infiltration, and diverse drug sensitivities. Finally, we showed that the METTL3/SNHG1/miRNA-140-3p axis could potentially regulate UBE2C expression. N(6)-Methyladenosine (m6A) modifications improved the stability of methylated SNHG1 transcripts by decreasing the rate of RNA degradation, which lead to upregulation of SNHG1 in non-small cell lung cancer (NSCLC). In vitro functional experiments showed that SNHG1, as a competing endogenous RNA, sponges miR-140-3p to increase UBE2C expression in NSCLC cell lines. Our study elucidates the clinical importance and regulatory mechanism of the METTL3/SNHG1/miRNA-140-3p/UBE2C axis in NSCLC and provides a prognostic indicator, as well as a promising therapeutic target for patients with NSCLC.
Collapse
Affiliation(s)
- Xiulin Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Yixiao Yuan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lin Tang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juan Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qianqian Liu
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaolan Zou
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lincan Duan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
16
|
Zhao X, Wang J, Zhu R, Zhang J, Zhang Y. DLX6-AS1 activated by H3K4me1 enhanced secondary cisplatin resistance of lung squamous cell carcinoma through modulating miR-181a-5p/miR-382-5p/CELF1 axis. Sci Rep 2021; 11:21014. [PMID: 34697393 PMCID: PMC8546124 DOI: 10.1038/s41598-021-99555-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Cisplatin (CDDP) based chemotherapy is widely used as the first-line strategy in treating non-small cell lung cancer (NSCLC), especially lung squamous cell carcinoma (LUSC). However, secondary cisplatin resistance majorly undermines the cisplatin efficacy leading to a worse prognosis. In this respect, we have identified the role of the DLX6-AS1/miR-181a-5p/miR-382-5p/CELF1 axis in regulating cisplatin resistance of LUSC. qRT-PCR and Western blot analysis were applied to detect gene expression. Transwell assay was used to evaluate the migration and invasion ability of LUSC cells. CCK-8 assay was used to investigate the IC50 of LUSC cells. Flow cytometry was used to test cell apoptosis rate. RNA pull-down and Dual luciferase reporter gene assay were performed to evaluate the crosstalk. DLX6-AS1 was aberrantly high expressed in LUSC tissues and cell lines, and negatively correlated with miR-181a-5p and miR-382-5p expression. DLX6-AS1 expression was enhanced by H3K4me1 in cisplatin resistant LUSC cells. Besides, DLX6-AS1 knockdown led to impaired IC50 of cisplatin resistant LUSC cells. Furthermore, DLX6-AS1 interacted with miR-181a-5p and miR-382-5p to regulate CELF1 expression and thereby mediated the cisplatin sensitivity of cisplatin resistant LUSC cells. DLX6-AS1 induced by H3K4me1 played an important role in promoting secondary cisplatin resistance of LUSC through regulating the miR-181a-5p/miR-382-5p/CELF1 axis. Therefore, targeting DLX6-AS1 might be a novel way of reversing secondary cisplatin resistance in LUSC.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jizhao Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Rui Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jing Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yunfeng Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
17
|
Gao Y, Zhang N, Lv C, Li N, Li X, Li W. lncRNA SNHG1 Knockdown Alleviates Amyloid-β-Induced Neuronal Injury by Regulating ZNF217 via Sponging miR-361-3p in Alzheimer's Disease. J Alzheimers Dis 2021; 77:85-98. [PMID: 32741808 DOI: 10.3233/jad-191303] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Long noncoding RNAs have been proven to play an important role in the progression of Alzheimer's disease (AD). However, the function of small nucleolar RNA host gene 1 (SNHG1) in AD progression remains to be studied. OBJECTIVE To explore the role of SNHG1 in AD progression and clarify its potential mechanism. METHODS Amyloid β-protein (Aβ) was used to construct an AD cell model in vitro. The expression levels of SNHG1 and miR-361-3p were determined by quantitative real-time polymerase chain reaction. Cell viability and apoptosis were measured by cell counting kit 8 assay and flow cytometry. The levels of apoptosis-related proteins and zinc finger gene 217 (ZNF217) protein were evaluated by western blot analysis. Additionally, the contents of inflammatory cytokines and oxidative stress markers were tested by enzyme-linked immunosorbent assay. Furthermore, dual-luciferase reporter and RNA immunoprecipitation assays were used to verify the interaction between miR-361-3p and SNHG1 or ZNF217. RESULTS Aβ could induce cell injury, while resveratrol could reverse this effect. SNHG1 expression was positively regulated by Aβ and negatively regulated by resveratrol. SNHG1 knockdown could reverse the promotion effect of Aβ on cell injury. Moreover, SNHG1 sponged miR-361-3p, and miR-361-3p targeted ZNF217. Additionally, miR-361-3p overexpression reversed the promotion effect of SNHG1 overexpression on cell injury, and ZNF217 silencing also reversed the promotion effect of miR-361-3p inhibitor on cell injury. CONCLUSION SNHG1 promoted cell injury by regulating the miR-361-3p/ZNF217 axis, which might provide a theoretical basis for molecular therapy of AD.
Collapse
Affiliation(s)
- Yiwen Gao
- Department of Pharmacy, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Nan Zhang
- Department of Geriatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Chunmei Lv
- Department of Pharmacy, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Na Li
- Department of Rehabilitation, The People's Hospital of Qingdao Shinan District, Qingdao, Shandong, China
| | - Xueqin Li
- Department of Pharmacy, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Weiwei Li
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
18
|
Kang Y, Wan L, Wang Q, Yin Y, Liu J, Liu L, Wu H, Zhang L, Zhang X, Xu S, Pang D. Long noncoding RNA SNHG1 promotes TERT expression by sponging miR-18b-5p in breast cancer. Cell Biosci 2021; 11:169. [PMID: 34465388 PMCID: PMC8407068 DOI: 10.1186/s13578-021-00675-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Long noncoding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) plays a positive role in the progression of human malignant tumors. However, the molecular mechanism of SNHG1 remains elusive in breast cancer. RESULTS LncRNA SNHG1 was upregulated and had a positive relationship with poor prognosis according to bioinformatics analysis in pan-cancer including breast cancer. Silencing SNHG1 inhibited tumorigenesis in breast cancer both in vitro and in vivo. Mechanistically, SNHG1 functioned as a competing endogenous RNA (ceRNA) to promote TERT expression by sponging miR-18b-5p in breast cancer. miR-18b-5p acted as a tumor repressor in breast cancer. Moreover, the combination of SNHG1 knockdown and TERT inhibitor administration showed a synergistic inhibitory effect on breast cancer growth in vivo. Finally, E2F1 as a transcription factor, binding to SNHG1 promoter and enhanced SNHG1 transcription in breast cancer. CONCLUSIONS Our results provide a comprehensive understanding of the oncogenic mechanism of lncRNA SNHG1 in breast cancer. Importantly, we identified a novel E2F1-SNHG1-miR-18b-5p-TERT axis, which may be a potential therapeutic target for breast cancer. Our results also provided a potential treatment for breast cancer when knockdown SNHG1 and TERT inhibitor administration simultaneously.
Collapse
Affiliation(s)
- Yujuan Kang
- grid.412651.50000 0004 1808 3502Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040 China
| | - Lin Wan
- grid.412651.50000 0004 1808 3502Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040 China
| | - Qin Wang
- grid.412651.50000 0004 1808 3502Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040 China
| | - Yanling Yin
- grid.412651.50000 0004 1808 3502Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040 China
| | - Jiena Liu
- grid.412651.50000 0004 1808 3502Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040 China
| | - Lei Liu
- grid.412651.50000 0004 1808 3502Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040 China
| | - Hao Wu
- grid.412651.50000 0004 1808 3502Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040 China
| | - Lei Zhang
- grid.412651.50000 0004 1808 3502Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040 China
| | - Xin Zhang
- grid.412651.50000 0004 1808 3502Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040 China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China.
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China. .,Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
19
|
Zhang Y, Zhang D, Meng Q, Liu Z, Xie H, Liu L, Xu F, Chen X. Precision treatment exploration of breast cancer based on heterogeneity analysis of lncRNAs at the single-cell level. BMC Cancer 2021; 21:918. [PMID: 34388989 PMCID: PMC8361656 DOI: 10.1186/s12885-021-08617-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is a complex disease with high heterogeneity, which often leads to great differences in treatment results. Current common molecular typing method is PAM50, which shows positive results for precision medicine; however, room for improvement still remains because of the different prognoses of subtypes. Therefore, in this article, we used lncRNAs, which are more tissue-specific and developmental stage-specific than other RNAs, as typing markers and combined single-cell expression profiles to retype BC, to provide a new method for BC classification and explore new precise therapeutic strategies based on this method. METHODS Based on lncRNA expression profiles of 317 single cells from 11 BC patients, SC3 was used to retype BC, and differential expression analysis and enrichment analysis were performed to identify biological characteristics of new subtypes. The results were validated for survival analysis using data from TCGA. Then, the downstream regulatory genes of lncRNA markers of each subtype were searched by expression correlation analysis, and these genes were used as targets to screen therapeutic drugs, thus proposing new precision treatment strategies according to the different subtype compositions of patients. RESULTS Seven lncRNA subtypes and their specific biological characteristics are obtained. Then, 57 targets and 210 drugs of 7 subtypes were acquired. New precision medicine strategies were proposed according to the different compositions of patient subtypes. CONCLUSIONS For patients with different subtype compositions, we propose a strategy to select different drugs for different patients, which means using drugs targeting multi subtype or combinations of drugs targeting a single subtype to simultaneously kill different cancer cells by personalized treatment, thus reducing the possibility of drug resistance and even recurrence.
Collapse
Affiliation(s)
- Yan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, P. R. China
| | - Denan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, P. R. China
| | - Qingkang Meng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, P. R. China
| | - Ziqi Liu
- Department of Pharmacy, The First Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang Province, P. R. China
| | - Hongbo Xie
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, P. R. China
| | - Lei Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, P. R. China
| | - Fei Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, P. R. China
| | - Xiujie Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, P. R. China.
| |
Collapse
|
20
|
Muluhngwi P, Klinge CM. Identification and Roles of miR-29b-1-3p and miR29a-3p-Regulated and Non-Regulated lncRNAs in Endocrine-Sensitive and Resistant Breast Cancer Cells. Cancers (Basel) 2021; 13:3530. [PMID: 34298743 PMCID: PMC8307416 DOI: 10.3390/cancers13143530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 01/05/2023] Open
Abstract
Despite improvements in the treatment of endocrine-resistant metastatic disease using combination therapies in patients with estrogen receptor α (ERα) primary tumors, the mechanisms underlying endocrine resistance remain to be elucidated. Non-coding RNAs (ncRNAs), including microRNAs (miRNA) and long non-coding RNAs (lncRNA), are targets and regulators of cell signaling pathways and their exosomal transport may contribute to metastasis. Previous studies have shown that a low expression of miR-29a-3p and miR-29b-3p is associated with lower overall breast cancer survival before 150 mos. Transient, modest overexpression of miR-29b1-3p or miR-29a-3p inhibited MCF-7 tamoxifen-sensitive and LCC9 tamoxifen-resistant cell proliferation. Here, we identify miR-29b-1/a-regulated and non-regulated differentially expressed lncRNAs in MCF-7 and LCC9 cells using next-generation RNA seq. More lncRNAs were miR-29b-1/a-regulated in LCC9 cells than in MCF-7 cells, including DANCR, GAS5, DSCAM-AS1, SNHG5, and CRND. We examined the roles of miR-29-regulated and differentially expressed lncRNAs in endocrine-resistant breast cancer, including putative and proven targets and expression patterns in survival analysis using the KM Plotter and TCGA databases. This study provides new insights into lncRNAs in endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
21
|
Sun D, Li YC, Zhang XY. Lidocaine Promoted Ferroptosis by Targeting miR-382-5p /SLC7A11 Axis in Ovarian and Breast Cancer. Front Pharmacol 2021; 12:681223. [PMID: 34122108 PMCID: PMC8188239 DOI: 10.3389/fphar.2021.681223] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022] Open
Abstract
Ovarian and breast cancer are prevalent female malignancies with increasing occurrence incidence and metastasis, significantly affecting the health and life quality of women globally. Anesthetic lidocaine has presented anti-tumor activities in the experimental conditions. However, the effect of lidocaine on ovarian and breast cancer remains elusive. We identified the important function of lidocaine in enhancing ferroptosis and repressing progression of ovarian and breast cancer. Our data showed that lidocaine further repressed erastin-inhibited ovarian and breast cancer cell viabilities. The treatment of lidocaine induced accumulation of Fe2+, iron and lipid reactive oxygen species (ROS) in ovarian and breast cancer cells. The ovarian and breast cancer cell proliferation was suppressed while cell apoptosis was induced by lidocaine in vitro. Lidocaine attenuated invasion and migration of ovarian and breast cancer cells as well. Regarding the mechanism, we found that lidocaine downregulated solute carrier family 7 member 11 (SLC7A11) expression by enhancing microRNA-382-5p (miR-382-5p) in the cells. The inhibition of miR-382-5p blocked lidocaine-induced ferroptosis of ovarian and breast cancer cells. MiR-382-5p/SLC7A11 axis was involved in lidocaine-mediated inhibition of ovarian and breast cancer cell proliferation in vitro. The miR-382-5p expression was down-regulated but SLC7A11 expression was up-regulated in clinical ovarian and breast cancer samples. Furthermore, the treatment of lidocaine repressed tumor growth of ovarian cancer cells in vivo, in which the miR-382-5p expression was increased while SLC7A11 expression was decreased. Consequently, we concluded that the lidocaine promoted ferroptosis by miR-382-5p/SLC7A11 axis in ovarian and breast cancer cells. The clinical value of lidocaine in the treatment of ovarian and breast cancer deserves to be proved in detail.
Collapse
Affiliation(s)
- Dan Sun
- Second Gynecology Department, Cangzhou Central Hospital, Cangzhou, China
| | - Ying-Chun Li
- Second Gynecology Department, Cangzhou Central Hospital, Cangzhou, China
| | - Xiao-Yu Zhang
- Department of Thyroid and Breast Ⅲ, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
22
|
Biagioni A, Tavakol S, Ahmadirad N, Zahmatkeshan M, Magnelli L, Mandegary A, Samareh Fekri H, Asadi MH, Mohammadinejad R, Ahn KS. Small nucleolar RNA host genes promoting epithelial-mesenchymal transition lead cancer progression and metastasis. IUBMB Life 2021; 73:825-842. [PMID: 33938625 DOI: 10.1002/iub.2501] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Abstract
The small nucleolar RNA host genes (SNHGs) belong to the long non-coding RNAs and are reported to be able to influence all three levels of cellular information-bearing molecules, that is, DNA, RNA, and proteins, resulting in the generation of complex phenomena. As the host genes of the small nucleolar RNAs (snoRNAs), they are commonly localized in the nucleolus, where they exert multiple regulatory functions orchestrating cellular homeostasis and differentiation as well as metastasis and chemoresistance. Indeed, worldwide literature has reported their involvement in the epithelial-mesenchymal transition (EMT) of different histotypes of cancer, being able to exploit peculiar features, for example, the possibility to act both in the nucleus and the cytoplasm. Moreover, SNHGs regulation is a fundamental topic to better understand their role in tumor progression albeit such mechanism is still debated. Here, we reviewed the biological functions of SNHGs in particular in the EMT process and discussed the perspectives for new cancer therapies.
Collapse
Affiliation(s)
- Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, Florence, Italy
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nooshin Ahmadirad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Zahmatkeshan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, Florence, Italy
| | - Ali Mandegary
- Department of Pharmacology & Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hojjat Samareh Fekri
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.,Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Malek Hossein Asadi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Reza Mohammadinejad
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Zuo Y, Qu C, Tian Y, Wen Y, Xia S, Ma M. The HIF-1/SNHG1/miR-199a-3p/TFAM axis explains tumor angiogenesis and metastasis under hypoxic conditions in breast cancer. Biofactors 2021; 47:444-460. [PMID: 34003544 DOI: 10.1002/biof.1702] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/14/2020] [Indexed: 12/15/2022]
Abstract
Activation of hypoxia-inducible factors (HIFs) as a result of intratumoral hypoxia modulates a cascade of molecular pathways thus leading to angiogenesis and metastasis in many solid tumors, including breast cancer (BC). In our paper, we report a regulatory axis of HIF-1, SNHG1, miR-199a-3p, and mitochondrial transcription factor A (TFAM) involved in tumor angiogenesis and metastasis under hypoxic conditions in BC. The expression of SNHG1 was determined in human BC cells cultured in hypoxia (1% O2 , 24 h) and normoxia (20% O2 , 24 h). Cultured MDA-MB-231 cells were assayed for the proliferation, migration, invasion, angiogenesis in vitro by using EdU staining, transwell chamber assays, Matrigel-based angiogenesis assays, tumorigenesis, and lung metastasis in vivo by using an orthotopic-transplant model of human BC. Dual-luciferase reporter assay, chromatin immunoprecipitation quantitative polymerase chain reaction assay, fluorescence in situ hybridization assay, RNA-binding protein immunoprecipitation assay, and RNA pull-down were performed to test interaction between HIF-1 and SNHG1, SNHG1 and miR-199a-3p, miR-199a-3p and TFAM. SNHG1 was increased under hypoxic conditions at a HIF-1-dependent manner. SNHG1 knockdown tempered MDA-MB-231 cell proliferation, migration, invasion, angiogenesis, in vitro, tumorigenesis, and lung metastasis in vitro. SNHG1 was co-expressed with miR-199a-3p and regulated the TFAM, a target gene of miR-199a-3p. SNHG1 increased the TFAM by binding with miR-199a-3p, thus promoting BC development and metastasis. These results support a regulatory axis consisting of HIF-1, SNHG1, miR-199a-3p, and TFAM during BC development and metastasis under hypoxic conditions, providing an opportunity to develop targeted therapeutics for BC.
Collapse
Affiliation(s)
- Yonggang Zuo
- Department of Breast and Thyroid Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Changping Qu
- Department of Gynaecology and Obstetrics, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yanyan Tian
- Department of Breast and Thyroid Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yuqing Wen
- Department of Breast and Thyroid Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Shuguan Xia
- Department of Breast and Thyroid Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Mingde Ma
- Department of Breast and Thyroid Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
24
|
Meng F, Liu J, Lu T, Zang L, Wang J, He Q, Zhou A. SNHG1 knockdown upregulates miR-376a and downregulates FOXK1/Snail axis to prevent tumor growth and metastasis in HCC. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:264-277. [PMID: 34095464 PMCID: PMC8143978 DOI: 10.1016/j.omto.2021.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/01/2021] [Indexed: 12/24/2022]
Abstract
Long non-coding RNAs (lncRNAs), microRNAs (miRNAs or miRs), and genes are emerging players in cancer progression. In the present study, we explored the roles and interactions of oncogenic lncRNA small nucleolar RNA host gene 1 (SNHG1), miR-376, forkhead box protein K1 (FOXK1), and Snail in hepatocellular carcinoma (HCC). Expression of SNHG1, miR-376, and FOXK1 in HCC was characterized in clinical HCC tissues of 75 patients with HCC. The interactions between SNHG1 and miR-376 and between miR-376 and FOXK1 were predicted and confirmed by dual-luciferase reporter gene and RNA immunoprecipitation assays. Overexpression and knockdown experiments were performed in HCC cells to examine the effects of the SNHG1/miR-376/FOXK1/Snail axis on viability, apoptosis, invasiveness, and migrating abilities. Their effects on tumor growth and metastasis were validated in nude mouse models. SNHG1 and FOXK1 were upregulated, and miR-376a was downregulated in HCC. SNHG1 knockdown contributed to suppression of HCC cell viability, invasion, and migration properties and promotion of apoptosis. SNHG1 could competitively bind to miR-376a to upregulate its target gene FOXK1, which upregulated Snail. SNHG1 knockdown delayed cancer progression both in vitro and in vivo by upregulating miR-376a and downregulating FOXK1 and Snail. SNHG1 knockdown exerts anti-tumor activity in HCC, suggesting a therapeutic target.
Collapse
Affiliation(s)
- Fanzhi Meng
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi 276000, P.R. China.,Prof. Dr. Cai's Laboratory, Linyi People's Hospital, Linyi 276000, P.R. China
| | - Jinghua Liu
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi 276000, P.R. China.,Prof. Dr. Cai's Laboratory, Linyi People's Hospital, Linyi 276000, P.R. China
| | - Tao Lu
- Shandong Coal Linyi Hot Spring Sanatorium, Linyi 276000, P.R. China
| | - Lanlan Zang
- Central Laboratory, Linyi People's Hospital, Linyi 276000, P.R. China
| | - Jing Wang
- Department of Radiology, Linyi People's Hospital, Linyi 276000, P.R. China
| | - Qiang He
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi 276000, P.R. China.,Prof. Dr. Cai's Laboratory, Linyi People's Hospital, Linyi 276000, P.R. China
| | - Aijin Zhou
- Department of Emergency, Linyi People's Hospital, Linyi 276000, P.R. China
| |
Collapse
|
25
|
Yu X, Xia J, Cao Y, Tang L, Tang X, Li Z. SNHG1 represses the anti-cancer roles of baicalein in cervical cancer through regulating miR-3127-5p/FZD4/Wnt/β-catenin signaling. Exp Biol Med (Maywood) 2021; 246:20-30. [PMID: 32883110 PMCID: PMC7798002 DOI: 10.1177/1535370220955139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
IMPACT STATEMENT Baicalein exhibits anti-cancer roles in several cancers. However, the factors influencing the antitumorigenic efficiencies of baicalein in CC remain largely unclear. Here, we provide convincing evidences that lncRNA SNHG1 attenuates the tumor-suppressive roles of baicalein in CC cell viability, apoptosis, migration, and CC tumor growth. This study further demonstrates that the influences of SNHG1 in the antitumorigenic process of baicalein are achieved through modulating the miR-3127-5p/FZD4Wnt/β-catenin axis. SNHG1 attenuates the repressive role of baicalein on Wnt/β-catenin. Therefore, SNHG1 is a novel modulator of the tumor-suppressive roles of baicalein and SNHG1 represents a therapeutic intervention target to reinforce the tumor-suppressive roles of baicalein in CC.
Collapse
Affiliation(s)
- Xiaolan Yu
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Sichuan 610041, China
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Sichuan 610041, China
| | - Jiyi Xia
- School of Medical Information and Engineering, Southwest Medical University, Luzhou 646000, China
| | - Yong Cao
- Medicine Experimental Center, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Li Tang
- Medicine Experimental Center, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaoping Tang
- Medicine Experimental Center, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhengyu Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Sichuan 610041, China
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Sichuan 610041, China
| |
Collapse
|
26
|
Dsouza VL, Adiga D, Sriharikrishnaa S, Suresh PS, Chatterjee A, Kabekkodu SP. Small nucleolar RNA and its potential role in breast cancer - A comprehensive review. Biochim Biophys Acta Rev Cancer 2021; 1875:188501. [PMID: 33400969 DOI: 10.1016/j.bbcan.2020.188501] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Small Nucleolar RNAs (snoRNAs) are known for their canonical functions, including ribosome biogenesis and RNA modification. snoRNAs act as endogenous sponges that regulate miRNA expression. Thus, precise snoRNA expression is critical for fine-tuning miRNA expression. snoRNAs processed into miRNA-like sequences play a crucial role in regulating the expression of protein-coding genes similar to that of miRNAs. Recent studies have linked snoRNA deregulation to breast cancer (BC). Inappropriate snoRNA expression contributes to BC pathology by facilitating breast cells to acquire cancer hallmarks. Since snoRNAs show significant differential expression in normal and cancer conditions, measuring snoRNA levels could be useful for BC prognosis and diagnosis. The present article provides a comprehensive overview of the role of snoRNAs in breast cancer pathology. More specifically, we have discussed the regulation, biological function, signaling pathways, and clinical utility of abnormally expressed snoRNAs in BC. Besides, we have also discussed the role of snoRNA host genes in breast tumorigenesis and emerging and future research directions in the field of snoRNA and cancer.
Collapse
Affiliation(s)
- Venzil Lavie Dsouza
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - S Sriharikrishnaa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Padmanaban S Suresh
- School of Biotechnology, National Institute of Technology, Calicut, Kerala 673601, India
| | - Aniruddha Chatterjee
- Department of Pathology, Otago Medical School, Dunedin Campus, University of Otago, Dunedin, New Zealand
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
27
|
Hu C, Wang S, Liu L. Long non-coding RNA small nucleolar RNA host gene 1 alleviates the progression of epilepsy by regulating the miR-181a/BCL-2 axis in vitro. Life Sci 2020; 267:118935. [PMID: 33359246 DOI: 10.1016/j.lfs.2020.118935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Long non-coding RNAs (lncRNAs) have been reported to be involved in regulating epilepsy. The purpose of this study is to investigate the possibly regulatory mechanism of small nucleolar RNA host gene 1 (SNHG1) on epilepsy. METHODS Quantitative real-time PCR was utilized to detect the expression of SNHG1, microRNA (miR)-181a, and B-cell lymphoma-2 (BCL-2). Through an enzyme-linked immunosorbent assay, the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and cyclooxygenase-2 (COX-2) were determined. The viability and apoptosis of CTX-TNA2 cells were measured using MTT assay and flow cytometry analysis, respectively. Western blot assay was performed to analyze the protein levels of Bcl-2, BCL2-associated X, and Caspase-3. The relationships between miR-181a and SNHG1/BCL-2 were confirmed by the dual-luciferase reporter assay. RESULTS SNHG1 expression was down-regulated in EP tissues and kainic acid (KA)-induced CTX-TNA2 cells. The apoptosis and release of inflammatory factors (TNF-α, IL-1β, IL-6, and COX-2) in KA-induced CTX-TNA2 cells were suppressed by SNHG1 overexpression and promoted by miR-181a up-regulation. In addition, we confirmed that SNHG1 targeted miR-181a, whereas BCL-2 was a target gene of miR-181a. Negative correlations between SNHG1 and miR-181a, as well as miR-181a and BCL-2 were exhibited. Both the up-regulation of miR-181a and down-regulation of BCL-2 reversed the inhibiting effects of SNHG1 on apoptosis and inflammatory response of KA-induced CTX-TNA2 cells, and the promoting effect upon cell viability. CONCLUSIONS SNHG1 alleviated the progression of EP by modulating the miR-181a/BCL-2 axis in vitro, thus SNHG1 could act as a possible therapeutic target for treating EP.
Collapse
Affiliation(s)
- Chongling Hu
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu City, Sichuan Province 610041, China; Department of Neural Tumor, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, No. 181, Hanyu Road, Chongqing City 400030, China
| | - Shiqiang Wang
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu City, Sichuan Province 610041, China
| | - Ling Liu
- Department of Neural Tumor, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, No. 181, Hanyu Road, Chongqing City 400030, China.
| |
Collapse
|
28
|
Qin Y, Sun W, Wang Z, Dong W, He L, Zhang T, Zhang H. Long Non-Coding Small Nucleolar RNA Host Genes (SNHGs) in Endocrine-Related Cancers. Onco Targets Ther 2020; 13:7699-7717. [PMID: 32848414 PMCID: PMC7417930 DOI: 10.2147/ott.s267140] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging regulators of a diverse range of biological processes through various mechanisms. Genome-wide association studies of tumor samples have identified several lncRNAs, which act as either oncogenes or tumor suppressors in various types of cancers. Small nucleolar RNAs (snoRNAs) are predominantly found in the nucleolus and function as guide RNAs for the processing of transcription. As the host genes of snoRNAs, lncRNA small nucleolar RNA host genes (SNHGs) have been shown to be abnormally expressed in multiple cancers and can participate in cell proliferation, tumor progression, metastasis, and chemoresistance. Here, we review the biological functions and emerging mechanisms of SNHGs involved in the development and progression of endocrine-related cancers including thyroid cancer, breast cancer, pancreatic cancer, ovarian cancer and prostate cancer.
Collapse
Affiliation(s)
- Yuan Qin
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Zhihong Wang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Wenwu Dong
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Liang He
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Ting Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, People's Republic of China
| |
Collapse
|
29
|
Integrative Analysis of Three Novel Competing Endogenous RNA Biomarkers with a Prognostic Value in Lung Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2837906. [PMID: 32802839 PMCID: PMC7424383 DOI: 10.1155/2020/2837906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022]
Abstract
Increasing evidence has shown competitive endogenous RNAs (ceRNAs) play key roles in numerous cancers. Nevertheless, the ceRNA network that can predict the prognosis of lung adenocarcinoma (LUAD) is still lacking. The aim of the present study was to identify the prognostic value of key ceRNAs in lung tumorigenesis. Differentially expressed (DE) RNAs were identified between LUAD and adjacent normal samples by limma package in R using The Cancer Genome Atlas database (TCGA). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway function enrichment analysis was performed using the clusterProfiler package in R. Subsequently, the LUAD ceRNA network was established in three steps based on ceRNA hypothesis. Hub RNAs were identified using degree analysis methods based on Cytoscape plugin cytoHubba. Multivariate Cox regression analysis was implemented to calculate the risk score using the candidate ceRNAs and overall survival information. The survival differences between the high-risk and low-risk ceRNA groups were determined by the Kaplan-Meier and log-rank test using survival and survminer package in R. A total of 2,989 mRNAs, 185 lncRNAs, and 153 miRNAs were identified. GO and KEGG pathway function enrichment analysis showed that DE mRNAs were mainly associated with “sister chromatid segregation,” “regulation of angiogenesis,” “cell adhesion molecules (CAMs),” “cell cycle,” and “ECM-receptor interaction.” LUAD-related ceRNA network was constructed, which comprised of 54 nodes and 78 edges. Top ten hub RNAs (hsa-miR-374a-5p, hsa-miR-374b-5p, hsa-miR-340-5p, hsa-miR-377-3p, hsa-miR-21-5p, hsa-miR-326, SNHG1, RALGPS2, and PITX2) were identified according to their degree. Kaplan-Meier survival analyses demonstrated that hsa-miR-21-5p and RALGPS2 had a significant prognostic value. Finally, we found that a high risk of three novel ceRNA interactions (SNHG1-hsa-miR-21-5p-RALGPS2, SNHG1-hsa-miR-326-RALGPS2, and SNHG1-hsa-miR-377-3p-RALGPS2) was positively associated with worse prognosis. Three novel ceRNAs (SNHG1-hsa-miR-21-5p-RALGPS2, SNHG1-hsa-miR-326-RALGPS2, and SNHG1-hsa-miR-377-3p-RALGPS2) might be potential biomarkers for the prognosis and treatment of LUAD.
Collapse
|
30
|
Vafadar A, Shabaninejad Z, Movahedpour A, Mohammadi S, Fathullahzadeh S, Mirzaei HR, Namdar A, Savardashtaki A, Mirzaei H. Long Non-Coding RNAs As Epigenetic Regulators in Cancer. Curr Pharm Des 2020; 25:3563-3577. [PMID: 31470781 DOI: 10.2174/1381612825666190830161528] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/21/2019] [Indexed: 02/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) constitute large portions of the mammalian transcriptome which appeared as a fundamental player, regulating various cellular mechanisms. LncRNAs do not encode proteins, have mRNA-like transcripts and frequently processed similar to the mRNAs. Many investigations have determined that lncRNAs interact with DNA, RNA molecules or proteins and play a significant regulatory function in several biological processes, such as genomic imprinting, epigenetic regulation, cell cycle regulation, apoptosis, and differentiation. LncRNAs can modulate gene expression on three levels: chromatin remodeling, transcription, and post-transcriptional processing. The majority of the identified lncRNAs seem to be transcribed by the RNA polymerase II. Recent evidence has illustrated that dysregulation of lncRNAs can lead to many human diseases, in particular, cancer. The aberrant expression of lncRNAs in malignancies contributes to the dysregulation of proliferation and differentiation process. Consequently, lncRNAs can be useful to the diagnosis, treatment, and prognosis, and have been characterized as potential cancer markers as well. In this review, we highlighted the role and molecular mechanisms of lncRNAs and their correlation with some of the cancers.
Collapse
Affiliation(s)
- Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Nanotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sima Fathullahzadeh
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Hamid R Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Namdar
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
31
|
Li J, Zeng T, Li W, Wu H, Sun C, Yang F, Yang M, Fu Z, Yin Y. Long non-coding RNA SNHG1 activates HOXA1 expression via sponging miR-193a-5p in breast cancer progression. Aging (Albany NY) 2020; 12:10223-10234. [PMID: 32497022 PMCID: PMC7346023 DOI: 10.18632/aging.103123] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/24/2020] [Indexed: 01/04/2023]
Abstract
Breast cancer is the leading cause of cancer death in women worldwide. Long non-coding RNA small nucleolar RNA host gene 1 (SNHG1) has been reported to be involved in human diseases, including cancer. Here, we found that SNHG1 expression was significantly upregulated in human breast cancer tissues and cell lines. We explored the function of SNHG1 in breast cancer cells using in vitro and in vivo experiments and found that SNHG1 promotes breast cancer metastasis and proliferation. The potential molecular mechanism of SNHG1 in breast cancer cells may involve SNHG1 acting as a sponge of miR-193a-5p to activate the expression of the oncogene HOXA1. In summary, our study reveals a novel SNHG1/miR-193a-5p/HOXA1 competing endogenous RNA regulatory pathway in breast cancer progression and may provide new strategies for breast cancer therapy.
Collapse
Affiliation(s)
- Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tianyu Zeng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chunxiao Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Fan Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Mengzhu Yang
- Department of Geriatric Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Care Hospital, Gynecology and Obstetrics Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
32
|
Dacheng W, Songhe L, Weidong J, Shutao Z, Jingjing L, Jiaming Z. RETRACTED: LncRNA SNHG3 promotes the growth and metastasis of colorectal cancer by regulating miR-539/RUNX2 axis. Biomed Pharmacother 2020; 125:110039. [PMID: 32187965 DOI: 10.1016/j.biopha.2020.110039] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Authors and Editor-in-Chief. The corresponding author notified the journal that “LncRNA SNHG3 did not affect colorectal cancer cell invasion, which was inconsistent with our published results”. As the results were unreliable the authors requested its retraction. The journal was also alerted to suspected image similarities within Figure 2D, that appear to be present in another publication, as detailed here: https://pubpeer.com/publications/7855CA1A494A20F55AAE1463D1B648. The journal requested the authors provide an explanation and source data relating to the affected figure. The Authors did not provide an explanation in response to these concerns. The Editor-in-Chief assessed this case and decided to retract the article.
Collapse
Affiliation(s)
- Wen Dacheng
- Department of Gastrointestinal Nutrition and Hernia Surgery, the Second Hospital of Jilin University, Nanguan District, Changchun, 130041, China
| | - Li Songhe
- Department of Ophthalmology, the First Hospital of Jilin University, Chaoyang District, Changchun, 130021, China.
| | - Jiang Weidong
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Nanguan District, Changchun, 130041, China
| | - Zhao Shutao
- Department of Gastrointestinal Nutrition and Hernia Surgery, the Second Hospital of Jilin University, Nanguan District, Changchun, 130041, China
| | - Liu Jingjing
- Department of Gastrointestinal Nutrition and Hernia Surgery, the Second Hospital of Jilin University, Nanguan District, Changchun, 130041, China
| | - Zhu Jiaming
- Department of Gastrointestinal Nutrition and Hernia Surgery, the Second Hospital of Jilin University, Nanguan District, Changchun, 130041, China
| |
Collapse
|
33
|
Hu Y, Gu X, Duan Y, Shen Y, Xie X. Bioinformatics analysis of prognosis-related long non-coding RNAs in invasive breast carcinoma. Oncol Lett 2020; 20:113-122. [PMID: 32565939 PMCID: PMC7285808 DOI: 10.3892/ol.2020.11558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/07/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the most common types of cancer among women worldwide and needs more sensitive prognostic biomarkers to improve its treatment. In the present study, differentially expressed long non-coding RNAs (lncRNAs) in invasive breast carcinoma from The Cancer Genome Atlas and cBioPortal database were investigated, identifying 292 differentially expressed lncRNAs in 1,100 cases. By analyzing the overall survival rate, 10 lncRNAs were significantly correlated with poor prognosis. To explore the underlying molecular mechanisms of the 10 prognosis-related lncRNAs, bioinformatic methods were used to predict the potential target miRNAs, mRNAs and proteins, and to construct a lncRNA-miRNA-mRNA regulatory network and lncRNA-protein interaction network. Finally, the functions of the target genes and proteins were insvestigated using Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses. The results showed that these 10 lncRNAs could be novel prognostic markers for invasive breast carcinoma and the present study aimed to provide novel insight into the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Xidong Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Yin Duan
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Yong Shen
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaohong Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
34
|
Xiong X, Feng Y, Li L, Yao J, Zhou M, Zhao P, Huang F, Zeng L, Yuan L. Long non‑coding RNA SNHG1 promotes breast cancer progression by regulation of LMO4. Oncol Rep 2020; 43:1503-1515. [PMID: 32323846 PMCID: PMC7107776 DOI: 10.3892/or.2020.7530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) was reported to be a critical regulator of tumorigenesis and is frequently deregulated in several cancer types. However, the exact mechanism by which SNHG1 contributes to breast cancer progression has not been fully elucidated. The identification of the molecular mechanism of SNHG1 is important for understanding the development of breast cancer and for improving the prognosis of the patients with this disease. In the present study, increased expression levels of SNHG1 were noted in breast cancer tumors following analysis of differentially expressed lncRNAs between 1,063 tumor and 102 normal tissues derived from The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) dataset. This finding was further validated using 50 pairs of normal and tumor tissues that were collected from patients with breast cancer. Notably, SNHG1 expression was significantly correlated with estrogen receptor (ER)/progesterone receptor (PR) negative status (ER−/PR−) and advanced clinical stage in breast cancer tissues. Knockdown of SNHG1 led to cell growth arrest, cell cycle redistribution and cell migration inhibition of breast cancer cells. The miRDB database predicted that miR-573 interacts with SNHG1. RT-PCR confirmed the negative regulation of miR-573 levels by SNHG1 in breast cancer cells and the Dual-luciferase reporter assay confirmed their complementary binding. The repression of miR-573 by SNGH1 decreased LIM domain only 4 (LMO4) mRNA and protein expression levels in the breast cancer cell lines tested and induced the expression of cyclin D1 and cyclin E. In vitro experiments indicated that LMO4 overexpression could reverse siSNHG1-induced cell growth arrest, cell cycle redistribution and inhibition of cell migration in breast cancer cells. Moreover, the tumor xenograft model indicated that SNHG1 knockdown inhibited MDA-MB-231 growth in vivo and LMO4 overexpression reversed the tumor growth inhibition induced by SNHG1 knockdown. The present study demonstrated that SNHG1 acts as a novel oncogene in breast cancer via the SNHG/miR-573/LMO4 axis and that it could be a promising therapeutic target for patients with breast cancer.
Collapse
Affiliation(s)
- Xiang Xiong
- Department of Burn and Plastic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yeqian Feng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Lun Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jia Yao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Meirong Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Piao Zhao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Feilong Huang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Liyun Zeng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Liqin Yuan
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
35
|
Wu Z, Wang W, Wang Y, Wang X, Sun S, Yao Y, Zhang Y, Ren Z. Long noncoding RNA LINC00963 promotes breast cancer progression by functioning as a molecular sponge for microRNA-625 and thereby upregulating HMGA1. Cell Cycle 2020; 19:610-624. [PMID: 32052688 PMCID: PMC7100992 DOI: 10.1080/15384101.2020.1728024] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/28/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Extensive research has shown that LINC00963 is aberrantly expressed in human cancers, and that dysregulation of LINC00963 is implicated in the initiation and progression of human cancers. The expression and functions of LINC00963 in breast cancer are still unclear. Our aims were to measure the expression of LINC00963 in breast cancer, determine its effects on malignant behaviors of tumor cells, and uncover the molecular events underlying the actions of LINC00963 in breast cancer. Herein, LINC00963 was found to be overexpressed in breast cancer samples, and its overexpression was correlated with lymph node metastasis, TNM stage and differentiation grade. Patients with breast cancer harboring higher LINC00963 expression showed shorter overall survival than did the patients with lower LINC00963 expression. Functional experiments revealed that depletion of LINC00963 inhibited breast cancer cell proliferation, migration, and invasion and facilitated apoptosis in vitro and impaired tumor growth in vivo. Mechanism investigation revealed that LINC00963 can interact with microRNA-625 (miR-625). LINC00963 worked as a competitive endogenous RNA for miR-625 to weaken the suppressive effect of miR-625 on high mobility group AT-hook 1 (HMGA1) in breast cancer cells. Furthermore, miR-625 inhibition and HMGA1 restoration both abrogated the effects of LINC00963 silencing on breast cancer cells. Our findings indicate that the LINC00963-miR-625-HMGA1 pathway plays an important role in the malignancy of breast cancer in vitro and in vivo. Hence, targeting this pathway may be a novel strategy against breast cancer.
Collapse
Affiliation(s)
- Zhen Wu
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Wei Wang
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Yongkun Wang
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Xin Wang
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Shanping Sun
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Yumin Yao
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Yang Zhang
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| | - Zhongxi Ren
- Department of Breast and Thyroid Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, P.R. China
| |
Collapse
|
36
|
Yuan X, Xu Y, Wei Z, Ding Q. CircAP2A2 acts as a ceRNA to participate in infantile hemangiomas progression by sponging miR-382-5p via regulating the expression of VEGFA. J Clin Lab Anal 2020; 34:e23258. [PMID: 32091151 PMCID: PMC7370729 DOI: 10.1002/jcla.23258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background Increasing evidences reveal that circular RNAs (circRNAs) play crucial functions in cancer development. However, the expression pattern and roles of circRNAs in infantile hemangiomas (IH) remain unclear. Methods In this study, qRT‐PCR was performed to determine the expression of circAP2A2, miR‐382‐5p, and VEGFA in IH tissues and cell lines. Moreover, MTT assay, colony formation, transwell assay, and Western blot analysis were conducted to assess the function of circAP2A2 or miR‐382‐5p on cell proliferation, and migration in vitro, respectively. Also, dual luciferase assay was used to confirm the interactions among circAP2A2, miR‐382‐5p, and VEGFA. Results CircAP2A2 was confirmed to be highly expressed in IH. CircAP2A2 knockdown or miR‐382‐5p overexpression decreased the proliferation, colony formation, migration, and invasion of HemECs and HUVEC cells. Conclusion CircAP2A2 could promote proliferation and invasion of IH by regulating miR‐382‐5p/VEGFA axis.
Collapse
Affiliation(s)
- Xiaoqi Yuan
- The Ningbo Women and Children's Hospital, Ningbo, China
| | - Yanan Xu
- The Ningbo Women and Children's Hospital, Ningbo, China
| | - Zhiqiang Wei
- The Ningbo Women and Children's Hospital, Ningbo, China
| | - Qi Ding
- Department of Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, China
| |
Collapse
|
37
|
Ding W, Zhao S, Shi Y, Chen S. Positive feedback loop SP1/SNHG1/miR-199a-5p promotes the malignant properties of thyroid cancer. Biochem Biophys Res Commun 2020; 522:724-730. [PMID: 31791587 DOI: 10.1016/j.bbrc.2019.11.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/12/2019] [Indexed: 11/19/2022]
Abstract
Abundant evidences have demonstrated the essential roles of long noncoding RNA (lncRNA) in the papillary thyroid cancer (PTC). Here, we aim to explore the biological roles of lncRNA SNHG1 in the PTC tumorigenesis. Firstly, we discovered the ectopically expressed ncRNAs using lncRNA microarray profiling. Among these candidate lncRNAs, SNHG1 was identified to be up-regulated in both PTC tissue and cells. Functionally, knockdown of SNHG1 repressed the proliferation, invasion and tumor growth in vitro and in vivo. Mechanistically, SNHG1 sponged miR-199a-5p by complementary binding with specificity protein 1 (SP1) 3'-UTR. Interestingly, transcription factor SP1 targeted the promoter region of SNHG1 to promote its transcriptional level. The interaction within lncRNA, miRNA and target mRNA constructed the feedback loop of SP1/SNHG1/miR-199a-5p/SP1 in PTC. Collectively, these findings unveil the potential regulation of SNHG1 on the PTC tumorigenesis via feedback loop, providing a novel insight for PTC.
Collapse
Affiliation(s)
- Wei Ding
- Department of Thyroid, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Shutao Zhao
- Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Ying Shi
- Department of Thyroid, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Shu Chen
- Thoracic Surgery, the Second Hospital of Jilin University, Changchun, Jilin, 130041, China.
| |
Collapse
|
38
|
Zhu HL, Zou J. Upregulation of long noncoding RNA SNHG1 indicates a poor prognosis in patients with gastric cancer. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220946141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is indicated that the dysregulation of long noncoding RNAs (lncRNAs) is implicated in cancer progression. However, the clinical significance of lncRNA small nucleolar RNA host gene 1 (SNHG1) in gastric cancer remains elusive. The expression levels of SNHGs and the association of SNHG1/10/11 with the clinical characteristics in patients with gastric cancer were analyzed by The Cancer Genome Atlas RNA-seq data. A Cox proportional hazard regression model was used to evaluate the association of SNHG1/10/11 expression with the clinical outcomes in patients with gastric cancer. It was demonstrated that SNHG1/10/11 expression levels were dramatically elevated in gastric cancer tissue samples as compared with the adjacent normal tissues. Increased expression of SNHG1 had no correlation with the clinicopathological parameters, but acted as an independent prognostic factor of poor survival (hazard ration (HR) = 0.590, 95% confidence interval (CI) = 0.399–0.872, P = 0.008) and tumor recurrence (HR = 2.457, 95% CI = 1.442–4.186, P = 0.001) in patients with gastric cancer. In addition, knockdown of SNHG1 in vitro inhibited the proliferation and invasion of gastric cancer cells. Our findings showed that the upregulation of lncRNA SNHG1 indicated a poor prognosis in patients with gastric cancer and might offer a promising therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Hua-Li Zhu
- Department of Gastroenterology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jing Zou
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
39
|
Ashrafizadeh M, Ahmadi Z, Mohamadi N, Zarrabi A, Abasi S, Dehghannoudeh G, Tamaddondoust RN, Khanbabaei H, Mohammadinejad R, Thakur VK. Chitosan-based advanced materials for docetaxel and paclitaxel delivery: Recent advances and future directions in cancer theranostics. Int J Biol Macromol 2019; 145:282-300. [PMID: 31870872 DOI: 10.1016/j.ijbiomac.2019.12.145] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/06/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022]
Abstract
Paclitaxel (PTX) and docetaxel (DTX) are key members of taxanes with high anti-tumor activity against various cancer cells. These chemotherapeutic agents suffer from a number of drawbacks and it seems that low solubility in water is the most important one. Although much effort has been made in improving the bioavailability of PTX and DTX, the low bioavailability and minimal accumulation at tumor sites are still the challenges faced in PTX and DTX therapy. As a consequence, bio-based nanoparticles (NPs) have attracted much attention due to unique properties. Among them, chitosan (CS) is of interest due to its great biocompatibility. CS is a positively charged polysaccharide with the capability of interaction with negatively charged biomolecules. Besides, it can be processed into the sheet, micro/nano-particles, scaffold, and is dissolvable in mildly acidic pH similar to the pH of the tumor microenvironment. Keeping in mind the different applications of CS in the preparation of nanocarriers for delivery of PTX and DTX, in the present review, we demonstrate that how CS functionalized-nanocarriers and CS modification can be beneficial in enhancing the bioavailability of PTX and DTX, targeted delivery at tumor site, image-guided delivery and co-delivery with other anti-tumor drugs or genes.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, Shushtar, Khuzestan, Iran
| | - Neda Mohamadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Zarrabi
- SUNUM, Nanotechnology Research and Application Center, Sabanci University, Istanbul, Turkey
| | - Sara Abasi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Gholamreza Dehghannoudeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Vijay Kumar Thakur
- Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India.
| |
Collapse
|
40
|
Li X, Zheng H. LncRNA SNHG1 influences cell proliferation, migration, invasion, and apoptosis of non-small cell lung cancer cells via the miR-361-3p/FRAT1 axis. Thorac Cancer 2019; 11:295-304. [PMID: 31788970 PMCID: PMC6997013 DOI: 10.1111/1759-7714.13256] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022] Open
Abstract
Background Non‐small‐cell lung cancer (NSCLC) is the most lethal type of cancer. Long non‐coding RNAs (lncRNAs) and microRNAs (miRNAs) have been identified as crucial regulators in the development of NSCLC. The aim of our study was to explore the molecular mechanism of SNHG1 to enable better treatment for NSCLC patients. Methods Quantitative real‐time polymerase chain reaction (qRT‐PCR) was performed to detect the expression of Small nucleolar RNA host gene 1 (SNHG1), miR‐361‐3p and frequently rearranged in advanced T‐cell lymphomas 1 (FRAT1). The protein level of FRAT1 was measured by western blot assay. Cell proliferation was evaluated by methyl thiazolyl tetrazolium (MTT) assay. Cell apoptosis was assessed by flow cytometry assay. The number of migrated and invaded cells were counted by transwell assay. The relationship between miR‐361‐3p and SNHG1 or FRAT1 was confirmed by dual‐luciferase reporter assay. Results Our results indicated that SNHG1 and FRAT1 were highly expressed in NSCLC tissues and cells. SNHG1 silencing inhibited proliferation, induced apoptosis and blocked migration and invasion of NSCLC cells. Also, FRAT1 downregulation suppressed proliferation, promoted apoptosis and hindered migration and invasion of NSCLC cells. Further, FRAT1 could recover the effects of SNHG1 silencing on proliferation, apoptosis, migration and invasion of NSCLC cells. SNHG1 sponged miR‐361‐3p and negatively regulated miR‐361‐3p expression. Meanwhile, miR‐361‐3p targeted FRAT1 and inversely modulated FRAT1 expression. In addition, miR‐361‐3p inhibition abated the effect of SNHG1 knockdown on FRAT1 expression. Conclusion In conclusion, LncRNA SNHG1 promoted the proliferation, repressed apoptosis and enhanced migration and invasion of NSCLC cells by regulating FRAT1 expression via sponging miR‐361‐3p.
Collapse
Affiliation(s)
- Xiaomei Li
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Lianyungang, (Xuhzou Medical University Affiliated Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University) Lianyungang, Jiangsu, China
| | - Hong Zheng
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Lianyungang, (Xuhzou Medical University Affiliated Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University) Lianyungang, Jiangsu, China
| |
Collapse
|