1
|
Li Q, Li Y, Zhou T, Zhang Y, Li H, Yuan F, Bi Y. FBXW7 metabolic reprogramming inhibits the development of colon cancer by down-regulating the activity of arginine/mToR pathways. PLoS One 2025; 20:e0317294. [PMID: 39823500 PMCID: PMC11741656 DOI: 10.1371/journal.pone.0317294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025] Open
Abstract
FBXW7 is a tumor suppressor gene that regulates metabolism and is associated with the onset and progression of colorectal cancer (CRC)), however, the precise mechanism whereby FBXW7 participates in the metabolic reprogramming of CRC remains unclear. Here, the research aims to reveal the association between the expression of FBXW7 and clinical variables and to investigate the molecular mechanism by which FBXW7 plays a critical role in the development of CRC. The clinical importance of FBXW7 in CRC was determined by immunohistochemistry. Non-targeted metabolomics was utilized to explore the role of FBXW7 in the metabolic regulation of CRC. Low expression of FBXW7 was associated with poor prognosis in individuals with CRC, both at the mRNA and protein levels. FBXW7 over-expression inhibited CRC cell growth, colony formation, migration, and invasion. Non-targeted metabolomics unveiled that FBXW7 over-expression directly caused the deprivation of arginine which led to downmodulation of mTOR signaling pathway; meanwhile, FBXW7-related metabolites were primarily concentrated in the mTOR signaling pathway. In summary, the research identified a novel mechanism of action of FBXW7 in CRC. The research findings provide a theoretical foundation for the prognostic prediction and therapeutic planning of CRC based on metabolic reprogramming.
Collapse
Affiliation(s)
- Qing Li
- Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, P. R. China
| | - Yan Li
- Department of Epidemiology, Academy of Medical Sciences, School of Public Health, Shanxi Medical University, Taiyuan, P. R. China
| | - Tong Zhou
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yong Zhang
- Endoscopic Center of Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, P. R. China
| | - Huiyu Li
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Fajia Yuan
- Shanxi Jinzhong Health School, Jinzhong, P. R. China
| | - Yanghui Bi
- Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, P. R. China
| |
Collapse
|
2
|
Wang W, Liu X, Zhao L, Jiang K, Yu Z, Yang R, Zhou W, Cui J, Liang T. FBXW7 in gastrointestinal cancers: from molecular mechanisms to therapeutic prospects. Front Pharmacol 2024; 15:1505027. [PMID: 39749199 PMCID: PMC11694028 DOI: 10.3389/fphar.2024.1505027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025] Open
Abstract
F-box and WD repeat domain-containing 7 (FBXW7), formerly known as hCdc4, hAGO Fbw7, or SEL10, plays a specific recognition function in SCF-type E3 ubiquitin ligases. FBXW7 is a well-established cancer suppressor gene that specifically controls proteasomal degradation and destruction of many key oncogenic substrates. The FBXW7 gene is frequently abnormal in human malignancies especially in gastrointestinal cancers. Accumulating evidence reveals that mutations and deletions of FBXW7 are participating in the occurrence, progression and treatment resistance of human gastrointestinal cancers. Considering the current therapeutic challenges faced by gastrointestinal cancers, elucidating the biological function and molecular mechanism of FBXW7 can provide new perspectives and references for future personalized treatment strategies. In this review, we elucidate the key molecular mechanisms by which FBXW7 and its substrates are involved in gastrointestinal cancers. Furthermore, we discuss the consequences of FBXW7 loss or dysfunction in tumor progression and underscore its potential as a prognostic and therapeutic biomarker. Lastly, we propose potential therapeutic strategies targeting FBXW7 to guide the precision treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tingting Liang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Sun Y, He X, Han J, Yin W, Wang H, Li J, Liu W, Kuai X, Lv J, Ji J. Activated hepatic stellate cell-derived small extracellular vesicles facilitate M2 macrophage polarization and hepatoma progression via miR-27a-3p. Front Immunol 2024; 15:1489679. [PMID: 39742261 PMCID: PMC11685157 DOI: 10.3389/fimmu.2024.1489679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025] Open
Abstract
The progression of hepatoma is heavily influenced by the microenvironment. Tumor-associated macrophages (TAMs) are considered to play a critical role in the tumor microenvironment (TME) and increase the aggressiveness of hepatoma. The activation of hepatic stellate cells (HSCs) is involved in hepatoma progression, and accumulating evidence demonstrates a change in microRNA (miRNA) expression during HSC activation. Therefore, the potential roles of HSCs-related miRNAs in macrophage differentiation and hepatoma progression deserve to be explored. The present study aimed to investigate the effects of miRNAs carried by small extracellular vesicles (sEVs) released by activated HSCs on hepatoma progression. The results indicated that miR-27a-3p was significantly upregulated in cells and corresponding sEVs during the activation of primary rat HSCs and human HSC line-LX2 cells. Furthermore, miR-27a-3p contributed to the proliferation and migration of hepatoma cells and promoted M2 polarization of macrophage. HSC-sEVs overexpressing miR-27a-3p can directly facilitate tumor progression and modulate macrophage polarization, indirectly contributing to hepatoma progression. Finally, Sprouty2 (SPRY2) was verified to be the target gene of miR-27a-3p. In conclusion, activated HSC-derived sEVs with high levels of miR-27a-3p might induce M2 macrophage polarization and promote hepatoma progression, providing new insights into the mechanism of hepatoma progression.
Collapse
Affiliation(s)
- Yufeng Sun
- Department of Pathology, Medical School of Nantong University, Nantong, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Nantong, China
| | - Xiaoqian He
- Department of Pathology, Medical School of Nantong University, Nantong, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Nantong, China
| | - Jiayi Han
- Department of Pathology, Medical School of Nantong University, Nantong, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Nantong, China
| | - Wenxuan Yin
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Haichen Wang
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Jing Li
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Weiqi Liu
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Xingwang Kuai
- Department of Pathology, Medical School of Nantong University, Nantong, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Nantong, China
| | - Jiaying Lv
- Department of Pathology, Medical School of Nantong University, Nantong, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Nantong, China
| | - Juling Ji
- Department of Pathology, Medical School of Nantong University, Nantong, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Nantong, China
| |
Collapse
|
4
|
Figueroa-Angulo EE, Puente-Rivera J, Perez-Navarro YF, Condado EM, Álvarez-Sánchez ME. Epigenetic alteration in cervical cancer induced by human papillomavirus. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 390:25-66. [PMID: 39864896 DOI: 10.1016/bs.ircmb.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The critical role of a subset of Human Papillomavirus in cervical cancer has been widely acknowledged and studied. Despite progress in our understanding of the viral molecular mechanisms of pathogenesis, knowledge of how infection with HPV oncogenic variants progresses from latent infection to incurable cancer has not been completely elucidated. In this paper we reviewed the relationship between HPV infection and epigenetic mechanisms such as histone acetylation and deacetylation, DNA methylation and non-coding RNAs associated with this infection and the carcinogenic process.
Collapse
Affiliation(s)
- Elisa-Elvira Figueroa-Angulo
- Licenciatura en Ciencias Genómicas, Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de la México, Ciudad de México, México
| | - Jonathan Puente-Rivera
- División de Investigación, Hospital Juárez De México, Ciudad de México, México; Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Yussel Fernando Perez-Navarro
- Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Edgar Mendieta Condado
- Laboratorio Estatal de Salud Pública, Secretaría de Salud de Jalisco, Guadalajara, Jalisco, México
| | - María-Elizbeth Álvarez-Sánchez
- Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México.
| |
Collapse
|
5
|
Khokhar M, Kartha P, Hassan S, Pandey RK. Decoding dysregulated genes, molecular pathways and microRNAs involved in cervical cancer. J Gene Med 2024; 26:e3713. [PMID: 38949075 DOI: 10.1002/jgm.3713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/30/2024] [Accepted: 06/02/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND The present study aimed to identify dysregulated genes, molecular pathways, and regulatory mechanisms in human papillomavirus (HPV)-associated cervical cancers. We have investigated the disease-associated genes along with the Gene Ontology, survival prognosis, transcription factors and the microRNA (miRNA) that are involved in cervical carcinogenesis, enabling a deeper comprehension of cervical cancer linked to HPV. METHODS We used 10 publicly accessible Gene Expression Omnibus (GEO) datasets to examine the patterns of gene expression in cervical cancer. Differentially expressed genes (DEGs), which showed a clear distinction between cervical cancer and healthy tissue samples, were analyzed using the GEO2R tool. Additional bioinformatic techniques were used to carry out pathway analysis and functional enrichment, as well as to analyze the connection between altered gene expression and HPV infection. RESULTS In total, 48 DEGs were identified to be differentially expressed in cervical cancer tissues in comparison to healthy tissues. Among DEGs, CCND1, CCNA2 and SPP1 were the key dysregulated genes involved in HPV-associated cervical cancer. The five common miRNAs that were identified against these genes are miR-7-5p, miR-16-5p, miR-124-3p, miR-10b-5p and miR-27a-3p. The hub-DEGs targeted by miRNA hsa-miR-27a-3p are controlled by the common transcription factor SP1. CONCLUSIONS The present study has identified DEGs involved in HPV-associated cervical cancer progression and the various molecular pathways and transcription factors regulating them. These findings have led to a better understanding of cervical cancer resulting in the development and identification of possible therapeutic and intervention targets, respectively.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, Jodhpur, Rajasthan, India
| | - Purnima Kartha
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Sana Hassan
- Department of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
6
|
Sriharikrishnaa S, John FE, Bairy M, Shetty S, Suresh PS, Kabekkodu SP. A comprehensive review on the functional role of miRNA clusters in cervical cancer. Epigenomics 2024; 16:493-511. [PMID: 38511231 DOI: 10.2217/epi-2023-0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Cervical cancer (CC) poses a significant health threat in women globally. MicroRNA clusters (MCs), comprising multiple miRNA-encoding genes, are pivotal in gene regulation. Various factors, including circular RNA and DNA methylation, govern MC expression. Dysregulated MC expression correlates strongly with CC development via promoting the acquisition of cancer hallmarks. Certain MCs show promise for diagnosis, prognosis and therapy selection due to their distinct expression patterns in normal, premalignant and tumor tissues. This review explains the regulation and biological functions of MCs and highlights the clinical relevance of abnormal MC expression in CC.
Collapse
Affiliation(s)
- Srinath Sriharikrishnaa
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Femi E John
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Medha Bairy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sachin Shetty
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padmanaban S Suresh
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Kerala, India
| | - Shama P Kabekkodu
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
7
|
Zhang S, Chen R. LINC00891 Attenuates the Proliferation and Metastasis of Osteosarcoma Cells via miR-27a-3p/TET1 Axis. Genet Test Mol Biomarkers 2023; 27:248-257. [PMID: 37643326 DOI: 10.1089/gtmb.2023.0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
Objective: There is currently no adequate treatment for osteosarcoma, a bone malignancy that poses a serious threat to adolescents and children. The dysregulation of long noncoding RNAs is associated with many cancers, including osteosarcoma. LINC00891 expression is aberrant in endometrial cancer, lung cancer, and thyroid cancer, and likely regulate the malignant behavior of cancer. However, the potential function and mechanisms of LINC00891 in osteosarcoma progression remain unclear. Materials and Methods: LINC00891, miR-27a-3p, and TET1 mRNA expression in osteosarcoma cells were analyzed using quantitative reverse transcription-polymerase chain reaction. CCK-8 and Transwell experiments were performed on osteosarcoma cells to investigate proliferation, migration, and invasion, respectively. Ten-eleven translocation 1 (TET1) protein was analyzed using western blotting. Luciferase experiment was performed to investigate the interactions between LINC00891 with miR-27a-3p, and miR-27a-3p with TET1. Results: LINC00891 expression was dramatically decreased in the five osteosarcoma cell lines examined, particularly in 143B and SaoS-2 cells. LINC00891 overexpression due to plasmid transfection sharply blocked the proliferation, migration, and invasion of osteosarcoma cells. Dual-luciferase reporter experiments found that LINC00891 sponges miR-27a-3p, and LINC00891 overexpression sharply decreases miR-27a-3p expression. Transfection with miR-27a-3p mimic accelerated the malignant behaviors in LINC00891 overexpressed-osteosarcoma cells. Moreover, TET1 was a novel targeted-gene of miR-27a-3p. TET1 protein was significantly impeded, whereas LINC00891 overexpression elevated TET1 mRNA and protein in osteosarcoma cells. MiR-27a-3p overexpression inhibited TET1 mRNA and protein in osteosarcoma cells. Conclusions: Our study verified that LINC00891 attenuates the proliferation and metastasis of osteosarcoma cells via the miR-27a-3p/TET1 axis. This study clarifies a new mechanism and therapeutic target for the development of osteosarcoma.
Collapse
Affiliation(s)
- Shufang Zhang
- The Spinal Surgery Department, Ganzhou People's Hospital, Ganzhou City, China
| | - Rongchun Chen
- The Spinal Surgery Department, Ganzhou People's Hospital, Ganzhou City, China
| |
Collapse
|
8
|
Li M, Gao Z, Wang S, Zhao Y, Xie H. miR‑27a‑3p upregulation by p65 facilitates cervical tumorigenesis by increasing TAB3 expression and is involved in the positive feedback loop of NF‑κB signaling. Oncol Rep 2023; 50:132. [PMID: 37203408 PMCID: PMC10236263 DOI: 10.3892/or.2023.8569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/04/2023] [Indexed: 05/20/2023] Open
Abstract
An altered microRNA (miRNA/miR)‑27a‑3p expression has been identified in cervical cancer, while the exact regulatory mechanisms responsible for the dysregulation of miR‑27a‑3p remain to be fully elucidated. In the present study, a NF‑κB/p65 binding site was identified upstream of the miR‑23a/27a/24‑2 cluster and p65 binding enhanced the transcription of pri‑miR‑23a/27a/24‑2, as well as the expression levels of mature miRNAs, including miR‑27a‑3p in HeLa cells. Mechanistically, using bioinformatics analyses and experimental validation, TGF‑β activated kinase 1 binding protein 3 (TAB3) was identified as a direct target of miR‑27a‑3p. By binding to the 3'UTR of TAB3, miR‑27a‑3p significantly enhanced TAB3 expression. Functionally, it was found that the overexpression of miR‑27a‑3p and TAB3 promoted the malignant potential of cervical cancer cells, as evaluated using cell growth, migration and invasion assays, and specific cell marker determinations in the epithelial mesenchymal transition progression, and vice versa. Further rescue experiments revealed that the enhanced malignant effects induced by miR‑27a‑3p were mediated via its upregulation of TAB3 expression. Moreover, miR‑27a‑3p and TAB3 also activated the NF‑κB signaling pathway and formed a positive feedback regulatory loop composing of p65/miR‑27a‑3p/TAB3/NF‑κB. On the whole, the findings presented herein may provide novel insight into the underlying cervical tumorigenesis and novel biomarker identification for clinical applications.
Collapse
Affiliation(s)
- Min Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Zixuan Gao
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Shuo Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sports, Tianjin 301617, P.R. China
| | - Yungang Zhao
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sports, Tianjin 301617, P.R. China
| | - Hong Xie
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P.R. China
| |
Collapse
|
9
|
Di Fiore R, Suleiman S, Drago-Ferrante R, Subbannayya Y, Suleiman S, Vasileva-Slaveva M, Yordanov A, Pentimalli F, Giordano A, Calleja-Agius J. The Role of FBXW7 in Gynecologic Malignancies. Cells 2023; 12:1415. [PMID: 37408248 DOI: 10.3390/cells12101415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
The F-Box and WD Repeat Domain Containing 7 (FBXW7) protein has been shown to regulate cellular growth and act as a tumor suppressor. This protein, also known as FBW7, hCDC4, SEL10 or hAGO, is encoded by the gene FBXW7. It is a crucial component of the Skp1-Cullin1-F-box (SCF) complex, which is a ubiquitin ligase. This complex aids in the degradation of many oncoproteins, such as cyclin E, c-JUN, c-MYC, NOTCH, and MCL1, via the ubiquitin-proteasome system (UPS). The FBXW7 gene is commonly mutated or deleted in numerous types of cancer, including gynecologic cancers (GCs). Such FBXW7 mutations are linked to a poor prognosis due to increased treatment resistance. Hence, detection of the FBXW7 mutation may possibly be an appropriate diagnostic and prognostic biomarker that plays a central role in determining suitable individualized management. Recent studies also suggest that, under specific circumstances, FBXW7 may act as an oncogene. There is mounting evidence indicating that the aberrant expression of FBXW7 is involved in the development of GCs. The aim of this review is to give an update on the role of FBXW7 as a potential biomarker and also as a therapeutic target for novel treatments, particularly in the management of GCs.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
| | | | - Yashwanth Subbannayya
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Sarah Suleiman
- Whipps Cross Hospital, Barts Health NHS Trust, Leytonstone, London E11 1NR, UK
| | - Mariela Vasileva-Slaveva
- Department of Breast Surgery, "Dr. Shterev" Hospital, 1330 Sofia, Bulgaria
- Research Institute, Medical University Pleven, 5800 Pleven, Bulgaria
- Bulgarian Breast and Gynecological Cancer Association, 1784 Sofia, Bulgaria
| | - Angel Yordanov
- Department of Gynecological Oncology, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University "Giuseppe DeGennaro", 70010 Casamassima, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
| |
Collapse
|
10
|
The miR-27a-3p/FTO axis modifies hypoxia-induced malignant behaviors of glioma cells. Acta Biochim Biophys Sin (Shanghai) 2023; 55:103-116. [PMID: 36718644 PMCID: PMC10157519 DOI: 10.3724/abbs.2023002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
<p indent="0mm">Glioblastoma multiforme (GBM) is one of the most malignant types of central nervous system (CNS) tumors. N6-methyladenine (m6A) RNA modification is a main type of RNA modification in eukaryotic cells. In this study, we find that the m6A RNA methylation eraser FTO is dramatically downregulated in glioma samples and cell lines, particularly in intermediate and core regions and hypoxia-challenged glioma cells. <italic>In vitro</italic>, FTO overexpression inhibits the hypoxia-induced capacities of glioma cells to proliferate, migrate and invade, and decreases the percentage of cells with m6A RNA methylation. <italic>In vivo</italic>, FTO overexpression inhibits tumor growth in the xenograft model and decreases the protein levels of migration markers, including Vimentin and Twist. miR-27a-3p is upregulated within glioma intermediate and core regions and hypoxia-challenged glioma cells. miR-27a-3p inhibits the expression of FTO via direct binding to FTO. miR-27a-3p overexpression promotes hypoxia-challenged glioma cell aggressiveness, whereas FTO overexpression partially diminishes the oncogenic effects of miR-27a-3p overexpression. FTO overexpression promotes the nuclear translocation of FOXO3a and upregulates the expression levels of the <sc>FOXO3a</sc> downstream targets BIM, BNIP3, BCL-6, and PUMA, possibly by interacting with FOXO3a. Conclusively, FTO serves as a tumor suppressor in glioma by suppressing hypoxia-induced malignant behaviors of glioma cells, possibly by promoting the nuclear translocation of FOXO3a and upregulating FOXO3a downstream targets. miR-27a-3p is a major contributor to FTO downregulation in glioma under hypoxia. </p>.
Collapse
|
11
|
Cai Y, Gao Q, Meng JH, Chen L. Puerarin Suppresses Glycolysis and Increases Cisplatin Chemosensitivity in Oral Squamous Cell Carcinoma via FBXW7/mTOR Signaling. Nutr Cancer 2023; 75:1028-1037. [PMID: 36718661 DOI: 10.1080/01635581.2023.2168023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study aimed to observe the effects of puerarin on glycolysis and cisplatin sensitivity in oral squamous cell carcinoma (oSCC) cells and to explore the underlying mechanisms. CAL27 cells over- or under-expressing FBXW7 were treated with cisplatin or puerarin, and the levels of proteins involved in glycolysis as well as the activity of the respective enzymes were assessed. Glucose uptake and lactate production were also evaluated, and the IC50 value of cisplatin in CAL27 cells was determined. FBXW7 overexpression significantly downregulated HK2, PKM2, and LDH; suppressed the activity of the corresponding enzymes hexokinase, pyruvate kinase, and lactate dehydrogenase; as well as reduced glucose uptake and lactate production. FBXW7 overexpression was also associated with decreased mTOR phosphorylation and increased cisplatin sensitivity. These effects were partially antagonized by lactate or the mTOR agonist MHY1485. Puerarin suppressed glycolysis by reducing glucose uptake and lactate production, while it promoted cisplatin sensitivity and activated the FBXW7/mTOR signal pathway in a concentration-dependent manner. These effects were antagonized by FBXW7 downregulation or treatment with MHY1485. Our results suggest that FBXW7 improves cisplatin chemosensitivity and suppresses glycolysis in oSCC cells, indicating its promising potential as a target for puerarin to regulate the cisplatin sensitivity of oSCC cells.
Collapse
Affiliation(s)
- Yu Cai
- Department of Pharmacy, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei, China
| | - Qiang Gao
- Department of Pharmacy, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei, China
| | - Jun-Hua Meng
- Department of Pharmacy, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei, China
| | - Ling Chen
- Department of Pharmacy, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei, China
| |
Collapse
|
12
|
Xing L, Xu L, Zhang Y, Che Y, Wang M, Shao Y, Qiu D, Yu H, Zhao F, Zhang J. Recent Insight on Regulations of FBXW7 and Its Role in Immunotherapy. Front Oncol 2022; 12:925041. [PMID: 35814468 PMCID: PMC9263569 DOI: 10.3389/fonc.2022.925041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022] Open
Abstract
SCFFBXW7 E3 ubiquitin ligase complex is a crucial enzyme of the ubiquitin proteasome system that participates in variant activities of cell process, and its component FBXW7 (F-box and WD repeat domain–containing 7) is responsible for recognizing and binding to substrates. The expression of FBXW7 is controlled by multiple pathways at different levels. FBXW7 facilitates the maturity and function maintenance of immune cells via functioning as a mediator of ubiquitination-dependent degradation of substrate proteins. FBXW7 deficiency or mutation results in the growth disturbance and dysfunction of immune cell, leads to the resistance against immunotherapy, and participates in multiple illnesses. It is likely that FBXW7 coordinating with its regulators and substrates could offer potential targets to improve the sensitivity and effects of immunotherapy. Here, we review the mechanisms of the regulation on FBXW7 and its tumor suppression role in immune filed among various diseases (mostly cancers) to explore novel immune targets and treatments.
Collapse
Affiliation(s)
- Liangliang Xing
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Leidi Xu
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yong Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yinggang Che
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Min Wang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yongxiang Shao
- Department of Anus and Intestine Surgery, The 942th Hospital of Joint Logistics Support Force, Yinchuan, China
| | - Dan Qiu
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Honglian Yu
- Department of Hemato-Oncology, The 942th Hospital of Joint Logistics Support Force, Yinchuan, China
| | - Feng Zhao
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Jian Zhang, ; Feng Zhao,
| | - Jian Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Jian Zhang, ; Feng Zhao,
| |
Collapse
|
13
|
Yuan C, Zhou J, Zhou L, Wang L, Pan Y. Role of MiR-27a-3p in Intervertebral Disc Degeneration through Targeting RASSF5 via MST1/LATS1 and RAS/RAC1 Signaling Pathway. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:4457673. [PMID: 35295173 PMCID: PMC8920666 DOI: 10.1155/2022/4457673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/10/2022] [Indexed: 11/18/2022]
Abstract
Background The apoptosis of nucleus pulposus (NP) cells reduces the number of nucleus pulposus cells in intervertebral disc tissue, resulting in intervertebral disc degeneration (IDD). MicroRNAs (miRNAs) play an important regulatory role in abnormal cell proliferation and apoptosis. Methods The miR-27a-3p expressions in degenerative NP tissue and cells were measured via qPCR. The impacts of miR-27a-3p on the proliferation and apoptosis of human NP cells were evaluated by flow cytometry assays, MTT assays, and western blot analyses. In addition, target scan and luciferase reporter assay were applied to confirm that RASSF5 was directly binding to miR-27a-3p. Western blot was applied to assess the relationship between miR-27a-3p, RASSF5 and MST1/LATS1, and RAS/RAC1 signaling pathway. Results MiR-27a-3p was downregulated in degenerative NP tissues and cells by comparison with the control group. MiR-27a-3p overexpression enhanced cell proliferation and suppressed apoptosis of NP cells, while the above factors showed an opposite tendency after in the miR-27a-3p inhibitor group. The western blot experiment similarly suggested mir-27a-3p apparently downregulated apoptosis-related proteins (Bax and caspase-3) and upregulated antiapoptotic proteins (Bcl-2). In addition, RASSF5 was confirmed to be directly regulated by miR-27a-3p using the luciferase reporter assay. Overexpressed RASSF5 could reverse the effects caused by miR-27a-3p mimic. Finally, miR-27a-3p could downregulate RASSF5 and affected the MST1/LATS1 and RAS/RAC1 pathway. Conclusion MiR-27a-3p may target RASSF5 and enhance cell proliferation and imped cell apoptosis of the nucleus pulposus cells via the MST1/LATS1 and RAS/RAC1 pathway, lessening the degeneration of intervertebral discs.
Collapse
Affiliation(s)
- Chao Yuan
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jing Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Lei Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Liran Wang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yong Pan
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
14
|
Extracellular vesicles carry miR-27a-3p to promote drug resistance of glioblastoma to temozolomide by targeting BTG2. Cancer Chemother Pharmacol 2022; 89:217-229. [PMID: 35039898 DOI: 10.1007/s00280-021-04392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/21/2021] [Indexed: 11/02/2022]
Abstract
OBJECTIVE Glioblastoma (GBM) is the most common central nervous system tumor. Temozolomide (TMZ) is a commonly used drug for GBM management. This study explored the mechanism of extracellular vesicles (EVs) regulating TMZ-resistance in GBM. METHODS LN229 cells were inducted into TMZ-resistant LN229r strain by stepwise induction. After the intervention of miR-27a-3p expression, cell viability of GBM cells treated with different concentrations of TMZ was detected by MTT and IC50 value was calculated. Cell proliferation and apoptosis were detected by colony formation and flow cytometry. EVs extracted from LN18 cells were identified and the internalization of EVs by LN229r cells was evaluated. The 100 μmol/L TMZ-treated LN229r cells were treated with EVs or EVs with downregulated miR-27a-3p to verify the effect of EVs-carried miR-27a-3p on TMZ resistance. The binding relation between BTG2 and miR-27a-3p was verified. miR-27a-3p and BTG2 expressions in GBM cells and EVs were detected by RT-qPCR. The BTG2 effect on TMZ-resistance in GBM was verified. The xenograft tumor nude mouse model was established by injecting LN229r cells and treated with EVs and 100 μmol/L TMZ. RESULTS miR-27a-3p was highly expressed in LN229r cells. IC50 value and proliferation of LN229r cells with silenced miR-27a-3p were decreased and apoptosis was increased, indicating that miR-27a-3p silencing reduced the drug-resistant cell LN229r resistance to TMZ. LN18-derived EVs could be internalized by LN229r cells, and release its encapsulated miR-27a-3p into LN229r cells and increase miR-27a-3p expression. EV treatment increased LN229r cell proliferation and reduced apoptosis, while EVs with silenced miR-27a-3p showed the opposite trend. miR-27a-3p targeted BTG2. BTG2 overexpression reduced LN229r cell resistance to TMZ. In vivo, after EVs treatment, tumor volume and weight, Ki67-positive rate, and miR-27a-3p were increased, while BTG2 expression was decreased. CONCLUSION GBM-derived EVs were internalized by GBM cells, released miR-27a-3p into GBM cells, upregulated miR-27a-3p expression, and targeted BTG2, thus promoting TMZ resistance.
Collapse
|
15
|
HPV16 E6 enhances the radiosensitivity in HPV-positive human head and neck squamous cell carcinoma by regulating the miR-27a-3p/SMG1 axis. Infect Agent Cancer 2021; 16:56. [PMID: 34389030 PMCID: PMC8361787 DOI: 10.1186/s13027-021-00397-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/29/2021] [Indexed: 01/13/2023] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is the 6th most common malignant cancer type worldwide. Radiosensitivity has been shown to be significantly increased in patients with human papillomavirus (HPV)-positive HNSCC compared with HPV-negative patients. However, the clinical significance of HPV and its regulatory mechanisms in HNSCC are largely unknown. The aim of our study was to explore the regulatory mechanism of miR-27a-3p in the radiosensitivity of HPV-positive HNSCC cells. Methods E6-overexpressing and E6-knockdown HNSCC cell lines were generated and the transfection efficiencies were evaluated by quantitative real-time PCR (RT-qPCR) and western blotting. The expression of miR-27a-3p and DiGeorge syndrome critical region 8 (DGCR8) was examined by RT-qPCR after transfection with E6 overexpressing plasmid or E6 siRNA. The effects of miR-27a-3p on the radiosensitivity of HNSCC cells were explored by a colony formation and TUNEL staining assays. Bioinformatic tools and luciferase reporter assays were used to identify that SMG1 is the direct target of miR-27a-3p. Furthermore, the effect of E6 overexpression on the regulation of the miR-27a-3p/SMG1 axis was investigated. Results In our study, we found overexpression of HPV E6 upregulated the expression of DGCR8 and miR-27a-3p in HNSCC cells. We next confirmed that DGCR8 positively regulated the expression of miR-27a-3p in HNSCC cells. The luciferase reporter gene results verified that miR-27a-3p targeted the 3’UTR of SMG1 mRNA. MiR-27a-3p mimics transfection resulted in a decrease in SMG1 expression and miR-27a-3p inhibitor transfection increased SMG1 expression. Apoptotic activity of HNSCC cells was significantly increased in miR-27a-3p mimics HNSCC cells compared with control HNSCC cells. After treatment with 4 Gy irradiation, UM-SCC47 cells transfected with miR-27a-3p inhibitor or SMG1 overexpressing plasmid formed more colonies than the corresponding control cells. Furthermore, the rescue experiments demonstrated that HPV16 E6 improved the radiosensitivity of HNSCC cells by targeting miR-27a-3p/SMG1. Conclusion Our study demonstrated that HPV16 E6 activated the DGCR8/miR-27a-3p/SMG1 axis to enhance the radiosensitivity. Our findings might provide a novel therapeutic target to improve the response of HNSCC to radiotherapy.
Collapse
|
16
|
Raga-Cervera J, Bolarin JM, Millan JM, Garcia-Medina JJ, Pedrola L, Abellán-Abenza J, Valero-Vello M, Sanz-González SM, O’Connor JE, Galarreta-Mira D, Bendala-Tufanisco E, Mayordomo-Febrer A, Pinazo-Durán MD, Zanón-Moreno V. miRNAs and Genes Involved in the Interplay between Ocular Hypertension and Primary Open-Angle Glaucoma. Oxidative Stress, Inflammation, and Apoptosis Networks. J Clin Med 2021; 10:jcm10112227. [PMID: 34063878 PMCID: PMC8196557 DOI: 10.3390/jcm10112227] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Glaucoma has no cure and is a sight-threatening neurodegenerative disease affecting more than 100 million people worldwide, with primary open angle glaucoma (POAG) being the most globally prevalent glaucoma clinical type. Regulation of gene expression and gene networks, and its multifactorial pathways involved in glaucoma disease are landmarks for ophthalmic research. MicroRNAs (miRNAs/miRs) are small endogenous non-coding, single-stranded RNA molecules (18–22 nucleotides) that regulate gene expression. An analytical, observational, case-control study was performed in 42 patients of both sexes, aged 50 to 80 years, which were classified according to: (1) suffering from ocular hypertension (OHT) but no glaucomatous neurodegeneration (ND) such as the OHT group, or (2) have been diagnosed of POAG such as the POAG group. Participants were interviewed for obtaining sociodemographic and personal/familial records, clinically examined, and their tear samples were collected and frozen at 80 °C until processing for molecular-genetic assays. Tear RNA extraction, libraries construction, and next generation sequencing were performed. Here, we demonstrated, for the first time, the differential expression profiling of eight miRNAs when comparing tears from the OHT versus the POAG groups: the miR-26b-5p, miR-152-3p, miR-30e-5p, miR-125b-2-5p, miR-224-5p, miR-151a-3p, miR-1307-3p, and the miR-27a-3p. Gene information was set up from the DIANA-TarBase v7, DIANA-microT-CDS, and TargetScan v7.1 databases. To build a network of metabolic pathways, only genes appearing in at least four of the following databases: DisGeNet, GeneDistiller, MalaCards, OMIM PCAN, UniProt, and GO were considered. We propose miRNAs and their target genes/signaling pathways as candidates for a better understanding of the molecular-genetic bases of glaucoma and, in this way, to gain knowledge to achieve optimal diagnosis strategies for properly identifying HTO at higher risk of glaucoma ND. Further research is needed to validate these miRNAs to discern the potential role as biomarkers involved in oxidative stress, immune response, and apoptosis for the diagnosis and/or prognosis of OHT and the prevention of glaucoma ND.
Collapse
Affiliation(s)
| | - Jose M. Bolarin
- Technological Centre of Information and Communication Technologies (CENTIC), 30100 Murcia, Spain; (J.M.B.); (J.A.-A.)
| | - Jose M. Millan
- Sequencing Service at the University and Polytechnic Hospital La Fe, 46026 Valencia, Spain; (J.M.M.); (L.P.)
| | - Jose J. Garcia-Medina
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (J.J.G.-M.); (M.V.-V.); (M.D.P.-D.); (V.Z.-M.)
- Department of Ophthalmology, General University Hospital “Morales Meseguer”, 30007 Murcia, Spain
- Department of Ophthalmology and Optometry, University of Murcia, 30120 Murcia, Spain
- Spanish Net of Ophthalmic Research OFTARED RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (E.B.-T.); (A.M.-F.)
| | - Laia Pedrola
- Sequencing Service at the University and Polytechnic Hospital La Fe, 46026 Valencia, Spain; (J.M.M.); (L.P.)
| | - Javier Abellán-Abenza
- Technological Centre of Information and Communication Technologies (CENTIC), 30100 Murcia, Spain; (J.M.B.); (J.A.-A.)
| | - Mar Valero-Vello
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (J.J.G.-M.); (M.V.-V.); (M.D.P.-D.); (V.Z.-M.)
| | - Silvia M. Sanz-González
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (J.J.G.-M.); (M.V.-V.); (M.D.P.-D.); (V.Z.-M.)
- Spanish Net of Ophthalmic Research OFTARED RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (E.B.-T.); (A.M.-F.)
- Cellular and Molecular Ophthalmobiology Group, Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Correspondence:
| | - José E. O’Connor
- Laboratory of Cytomics, Joint Research Unit Principe Felipe Research Center and University of Valencia, 46010 Valencia, Spain;
| | | | - Elena Bendala-Tufanisco
- Spanish Net of Ophthalmic Research OFTARED RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (E.B.-T.); (A.M.-F.)
- Mixed Research Unit for Visual Health and Veterinary Ophthalmology CEU/FISABIO, 46020 Valencia, Spain
- Physiology Department, Faculty of Health Sciences, CEU University, Alfara del Patriarca, 46115 Valencia, Spain
| | - Aloma Mayordomo-Febrer
- Spanish Net of Ophthalmic Research OFTARED RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (E.B.-T.); (A.M.-F.)
- Mixed Research Unit for Visual Health and Veterinary Ophthalmology CEU/FISABIO, 46020 Valencia, Spain
- Animal Medicine and Surgery Department, Veterinary Medicine Faculty, CEU University, Alfara del Patriarca, 46115 Valencia, Spain
| | - Maria D. Pinazo-Durán
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (J.J.G.-M.); (M.V.-V.); (M.D.P.-D.); (V.Z.-M.)
- Spanish Net of Ophthalmic Research OFTARED RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (E.B.-T.); (A.M.-F.)
- Cellular and Molecular Ophthalmobiology Group, Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Vicente Zanón-Moreno
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (J.J.G.-M.); (M.V.-V.); (M.D.P.-D.); (V.Z.-M.)
- Spanish Net of Ophthalmic Research OFTARED RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (E.B.-T.); (A.M.-F.)
- Faculty of Health Sciences, Valencian International University, 46002 Valencia, Spain
| |
Collapse
|
17
|
Li J, Peng L, Bai W, Peng P, Chen W, Yang W, Shao J. Biliverdin Protects Against Cerebral Ischemia/Reperfusion Injury by Regulating the miR-27a-3p/Rgs1 Axis. Neuropsychiatr Dis Treat 2021; 17:1165-1181. [PMID: 33911865 PMCID: PMC8075361 DOI: 10.2147/ndt.s300773] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND We have previously demonstrated that biliverdin has neuroprotective effects that ameliorate cerebral ischemia/reperfusion (I/R) injury in rats. However, the underlying mechanism is unknown. This study aimed at elucidating on the modulatory role of miR-27a-3p on Rgs1 as a mechanism by which biliverdin affects cerebral I/R injury. METHODS Middle cerebral artery occlusion/reperfusion (MCAO/R) was used to establish I/R rat models while oxygen glucose deprivation/reoxygenation (OGD/R) was used to induce hippocampal neurons to establish I/R models in vitro. Infarct volume was assessed by TTC staining. Apoptotic analyses of ischemic cortical neurons and cells were performed by TUNEL staining and flow cytometry, respectively. Cell viability was assessed by the CCK-8 assay while the target of miR-27a-3p was determined by double luciferase reporter assay. Relative expression levels of miR-27a-3p and Rgs1 (in vivo and in vitro) as well as markers of inflammation and apoptosis (in vitro) were detected by RT-qPCR. Then, Elisa and western blot were used to assess protein expression levels of inflammatory and apoptotic markers in vitro. RESULTS Biliverdin suppressed inflammation and apoptosis in hippocampal neurons upon OGD/R, and reduced cerebral infarction volume as well as apoptosis in the MCAO/R rat model. Furthermore, biliverdin upregulated miR-27a-3p and downregulated hippocampal neuron Rgs1 after OGD/R as well as in rat brain tissues after cerebral I/R. Bioinformatic analysis revealed an miR-27a-3p docking site in the 3'-UTR region of Rgs1. Luciferase reporter assays showed that Rgs1 is an miR-27a-3p target. Moreover, miR-27a-3p upregulation inhibited OGD/R-triggered inflammation and suppressed neuronal apoptosis. Rgs1 knockdown suppressed OGD/R-triggered inflammation and decreased neuronal apoptosis while miR-27a-3p downregulation reversed the protective effect of Rgs1 knockdown. Moreover, miR-27a-3p overexpression and Rgs1 silencing suppressed NF-κB (p65) expression. CONCLUSION Biliverdin protects against cerebral I/R injury by regulating the miR-27a-3p/Rgs1 axis, thereby inhibiting inflammation and apoptosis.
Collapse
Affiliation(s)
- Junjie Li
- Department of Anesthesiology, First Affiliated Hospital, Kunming Medical University, Kunming City, 650032, People's Republic of China
| | - Lijia Peng
- Department of Anesthesiology, First Affiliated Hospital, Kunming Medical University, Kunming City, 650032, People's Republic of China
| | - Wenya Bai
- Department of Anesthesiology, First Affiliated Hospital, Kunming Medical University, Kunming City, 650032, People's Republic of China
| | - Peihua Peng
- Department of Anesthesiology, First Affiliated Hospital, Kunming Medical University, Kunming City, 650032, People's Republic of China
| | - Wendong Chen
- Department of Anesthesiology, First Affiliated Hospital, Kunming Medical University, Kunming City, 650032, People's Republic of China
| | - Wei Yang
- Department of Anesthesiology, First Affiliated Hospital, Kunming Medical University, Kunming City, 650032, People's Republic of China
| | - Jianlin Shao
- Department of Anesthesiology, First Affiliated Hospital, Kunming Medical University, Kunming City, 650032, People's Republic of China
| |
Collapse
|