1
|
Zhang W, Zong Y, Huang X, Liu K, Luo Z, Shan J, Di L. Cordyceps militaris alleviates COPD by regulating amino acid metabolism, gut microbiota and short chain fatty acids. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119701. [PMID: 40147677 DOI: 10.1016/j.jep.2025.119701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic obstructive pulmonary disease (COPD) is a global health challenge with the high morbidity and mortality. Cordyceps militaris (CM) is a medicinal fungus that has been widely used in Asia for centuries. It has the effects of tonifying the lung and kidney, replenishing essence, resolving phlegm, and stopping bleeding. CM has been used clinically for alleviating COPD in China. However, the potential mechanism of CM in treating COPD remains indistinct. PURPOSE This article aimed to evaluate the efficacy and investigate the underlying mechanism of CM in treatment of COPD. METHODS The ingredients in CM were identified by LC Q/TOF-MS. The effect of CM in COPD was evaluated. Untargeted metabolomics assay and 16S rDNA sequencing were employed to examine the changes in metabolites and gut microbiota in COPD mice. Gut microbiota ablation experiment and quantification of short chain fatty acids (SCFAs) were integrated to elucidate the systematic mechanism of CM in treatment of COPD. RESULTS A total of 22 ingredients were identified in CM. CM alleviated COPD significantly by improving lung function and inhibiting pulmonary inflammation. Subsequently, 11 differential metabolites regulated by CM were mainly associated with amino acid metabolism. CM ameliorated the dysbiosis of intestinal microbiota in COPD mice, which contributed to the treatment of COPD. Moreover, CM increased the contents of SCFAs, including acetate, propionate, butyrate and isobutyrate. Spearman correlation indicated a close relationship among pulmonary function, differential metabolites, and gut microbiota. CONCLUSIONS This study revealed that CM alleviated COPD by regulating amino acid metabolism, ameliorating the imbalance of gut microbiota and increasing the SCFAs. These findings not only establish a foundation for the research of CM but also provide a basis for new treatment strategies of COPD.
Collapse
Affiliation(s)
- Wen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Yuqi Zong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Xiao Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Kai Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Zichen Luo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| |
Collapse
|
2
|
Catana OM, Nemes AF, Cioboata R, Toma CL, Mitroi DM, Calarasu C, Streba CT. Leptin and Insulin in COPD: Unveiling the Metabolic-Inflammatory Axis-A Narrative Review. J Clin Med 2025; 14:2611. [PMID: 40283443 PMCID: PMC12027990 DOI: 10.3390/jcm14082611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive and debilitating condition characterized by airflow limitations and systemic inflammation. The interaction between the metabolic and inflammatory pathways plays a key role in disease progression, with leptin and insulin emerging as pivotal metabolic regulators. Leptin, an adipokine that regulates energy homeostasis, and insulin, the primary regulator of glucose metabolism, are both altered in COPD patients. This narrative review provides an in-depth examination of the roles of leptin and insulin in COPD pathogenesis, focusing on the molecular mechanisms through which these metabolic regulators interact with inflammatory pathways and how their dysregulation contributes to a spectrum of extrapulmonary manifestations. These disturbances not only exacerbate COPD symptoms but also increase the risk of comorbidities such as metabolic syndrome, diabetes, cardiovascular disease, or muscle wasting. By exploring the underlying mechanisms of leptin and insulin dysregulation in COPD, this review underscores the significance of the metabolic-inflammatory axis, suggesting that restoring metabolic balance through leptin and insulin modulation could offer novel therapeutic strategies for improving clinical outcomes.
Collapse
Affiliation(s)
- Oana Maria Catana
- Doctoral School, University of Medicine and Pharmacy, 200349 Craiova, Romania; (O.M.C.); (D.M.M.)
| | | | - Ramona Cioboata
- Pneumology Department, University of Medicine and Pharmacy, 200349 Craiova, Romania; (C.C.); (C.T.S.)
| | - Claudia Lucia Toma
- Pneumology Department, University of Medicine Carol Davila, 020021 Bucharest, Romania
| | - Denisa Maria Mitroi
- Doctoral School, University of Medicine and Pharmacy, 200349 Craiova, Romania; (O.M.C.); (D.M.M.)
| | - Cristina Calarasu
- Pneumology Department, University of Medicine and Pharmacy, 200349 Craiova, Romania; (C.C.); (C.T.S.)
| | - Costin Teodor Streba
- Pneumology Department, University of Medicine and Pharmacy, 200349 Craiova, Romania; (C.C.); (C.T.S.)
| |
Collapse
|
3
|
Qu J, Jiang H, Shi H, Huang N, Su J, Zhang Y, Chen L, Zhao Y. Novel predictive biomarkers for atonic postpartum hemorrhage as explored by proteomics and metabolomics. BMC Pregnancy Childbirth 2025; 25:96. [PMID: 39885444 PMCID: PMC11781051 DOI: 10.1186/s12884-025-07224-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/23/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Postpartum hemorrhage (PPH) is the leading cause of maternal mortality worldwide, with uterine atony accounting for approximately 70% of PPH cases. However, there is currently no effective prediction method to promote early management of PPH. In this study, we aimed to screen for potential predictive biomarkers for atonic PPH using combined omics approaches. METHODS Collection of cervicovaginal fluid (CVF) samples from 27 women with atonic PPH and 32 women with normal delivery was performed for metabolomic (LC-MS/MS) and proteomic (LC-MS/MS) detection and subsequent confirmation experiments in this nested case-control study. Mass spectrum and enzyme-linked immunosorbent assays (ELISA) were used to validate significantly different metabolites and proteins for screening potential biomarkers of atonic PPH. Furthermore, multivariate logistic regressions were performed for the prediction of PPH using the identified biomarkers mentioned above, and the area under the curve (AUC) was computed. RESULTS We identified 216 and 311 metabolites under positive and negative ion modes, respectively, as well as 1974 proteins. The PPH group had significant differences in metabolites and proteins belonging to the β-alanine metabolic pathway. Specifically, the PPH group had downregulation of critical metabolites, including histidine and protein dihydropyrimidine dehydrogenase (DPYD). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) functional enrichment analysis of significantly differentially expressed proteins revealed that atonic PPH was associated with T cell- and macrophage-related immune inflammatory responses. Furthermore, we verified that concentrations of histidine (350.85 ± 207.87 vs. 648.33 ± 400.87) and DPYD (4.01 ± 2.56 vs. 10.96 ± 10.71), and immune cell-related proteins such as CD163 (0.29 ± 0.19 vs. 1.51 ± 0.83) and FGL2 (5.98 ± 4.23 vs. 11.37 ± 9.42) were significantly lower in the PPH group. Finally, the AUC for independent prediction of PPH using CD163, histidine, DPYD, and FGL2 are 0.969 (0.897-1), 0.722 (0.536-0.874), 0.719 (0.528-0.864), and 0.697 (0.492-0.844), respectively. A relatively high predictive efficiency was obtained when using joint histidine, DPYD, CD163, and FGL2, with AUC = 0. 964 (0.822-1). CONCLUSIONS This study suggested that immune inflammation may play a role in the occurrence of PPH. The metabolite histidine and proteins of DPYD, CD163, and FGL2 in CVF were associated with uterine atony and could be used as predictive biomarkers for atonic PPH.
Collapse
Affiliation(s)
- Jiangxue Qu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Peking University Third Hospital), National Center for Healthcare Quality Management in Obstetrics, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Hai Jiang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Peking University Third Hospital), National Center for Healthcare Quality Management in Obstetrics, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Huifeng Shi
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Peking University Third Hospital), National Center for Healthcare Quality Management in Obstetrics, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Nana Huang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Peking University Third Hospital), National Center for Healthcare Quality Management in Obstetrics, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Jiawen Su
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Peking University Third Hospital), National Center for Healthcare Quality Management in Obstetrics, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Peking University Third Hospital), National Center for Healthcare Quality Management in Obstetrics, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Lian Chen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Peking University Third Hospital), National Center for Healthcare Quality Management in Obstetrics, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Center for Healthcare Quality Management in Obstetrics, Beijing, China.
| | - Yangyu Zhao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Peking University Third Hospital), National Center for Healthcare Quality Management in Obstetrics, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Center for Healthcare Quality Management in Obstetrics, Beijing, China.
| |
Collapse
|
4
|
Prince N, Kelly RS. Body mass index trajectories may represent modifiable targets in the promotion of respiratory health. Eur Respir J 2025; 65:2402061. [PMID: 39746768 PMCID: PMC12019397 DOI: 10.1183/13993003.02061-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 01/04/2025]
Affiliation(s)
- Nicole Prince
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Liao S, Chen Y. The Role of Bioactive Small Molecules in COPD Pathogenesis. COPD 2024; 21:2307618. [PMID: 38329475 DOI: 10.1080/15412555.2024.2307618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is recognized as a predominant contributor to mortality worldwide, which causes significant burdens to both society and individuals. Given the limited treatment options for COPD, there lies a critical realization: the imperative for expeditious development of novel therapeutic modalities that can effectively alleviate disease progression and enhance the quality of life experienced by COPD patients. Within the intricate field of COPD pathogenesis, an assortment of biologically active small molecules, encompassing small protein molecules and their derivatives, assumes crucial roles through diverse mechanisms. These mechanisms relate to the regulation of redox balance, the inhibition of the release of inflammatory mediators, and the modulation of cellular functions. Therefore, the present article aims to explore and elucidate the distinct roles played by different categories of biologically active small molecules in contributing to the pathogenesis of COPD.
Collapse
Affiliation(s)
- Sha Liao
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
6
|
Du Y, Wang S, Zhou T, Zhao Z. Causal Effects of Gut Microbiota and Metabolites on Chronic Obstructive Pulmonary Disease: A Bidirectional Two Sample Mendelian Randomization Study. Int J Chron Obstruct Pulmon Dis 2024; 19:2153-2167. [PMID: 39360021 PMCID: PMC11446199 DOI: 10.2147/copd.s472218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Background Recent evidence suggests that the gut microbiome and metabolites are intricately involved in Chronic Obstructive Pulmonary Disease (COPD) pathogenesis, yet the precise causal relationships remain unclear due to confounding factors and reverse causation. This study employs bidirectional two-sample Mendelian Randomization (MR) to clarify these connections. Methods Summary data from publicly available Genome-Wide Association Studies (GWAS) concerning the gut microbiome, metabolites, and COPD were compiled. The selection of genetic instrumental variables (Single Nucleotide Polymorphisms, or SNPs) for MR analysis was conducted meticulously, primarily utilizing the Inverse Variance Weighting (IVW) method, supplemented by MR-Egger regression and the Weighted Median (WM) approach. The evaluation of heterogeneity and horizontal pleiotropy was performed using Cochran's Q test, the MR-Egger intercept test, and the MR-PRESSO global test. Sensitivity analyses, including leave-one-out tests, were conducted to verify the robustness of our results. And the mediation effect of gut microbiota-mediated changes in metabolites on the causal relationship with COPD was analyzed. Results Our study identified nine significant gut microbiota taxa and thirteen known metabolites implicated in COPD pathogenesis. Moreover, associations between the onset of COPD and the abundance of five bacterial taxa, as well as the concentration of three known metabolites, were established. These findings consistently withstood sensitivity analyses, reinforcing their credibility. Additionally, our results revealed that gut microbiota contribute to the development of COPD by mediating changes in metabolites. Conclusion Our bidirectional Two-Sample Mendelian Randomization analysis has revealed reciprocal causal relationships between the abundance of gut microbiota and metabolite concentrations in the context of COPD. This research holds promise for identifying biomarkers for early COPD diagnosis and monitoring disease progression, thereby opening new pathways for prevention and treatment. Further investigation into the underlying mechanisms is essential to improve our understanding of COPD onset.
Collapse
Affiliation(s)
- Yongkun Du
- Department of Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People's Republic of China
| | - Shuai Wang
- Department of Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People's Republic of China
| | - Ting Zhou
- Department of Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People's Republic of China
| | - Zhongyan Zhao
- Department of Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People's Republic of China
| |
Collapse
|
7
|
Warmbrunn MV, Attaye I, Aron-Wisnewsky J, Rampanelli E, van der Vossen EW, Hao Y, Koopen A, Bergh PO, Stols-Gonçalves D, Mohamed N, Kemper M, Verdoes X, Wortelboer K, Davids M, Belda E, André S, Hazen S, Clement K, Groen B, van Raalte DH, Herrema H, Backhed F, Nieuwdorp M. Oral histidine affects gut microbiota and MAIT cells improving glycemic control in type 2 diabetes patients. Gut Microbes 2024; 16:2370616. [PMID: 38961712 PMCID: PMC11225920 DOI: 10.1080/19490976.2024.2370616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
Amino acids, metabolized by host cells as well as commensal gut bacteria, have signaling effects on host metabolism. Oral supplementation of the essential amino acid histidine has been shown to exert metabolic benefits. To investigate whether dietary histidine aids glycemic control, we performed a case-controlled parallel clinical intervention study in participants with type 2 diabetes (T2D) and healthy controls. Participants received oral histidine for seven weeks. After 2 weeks of histidine supplementation, the microbiome was depleted by antibiotics to determine the microbial contribution to histidine metabolism. We assessed glycemic control, immunophenotyping of peripheral blood mononucelar cells (PBMC), DNA methylation of PBMCs and fecal gut microbiota composition. Histidine improves several markers of glycemic control, including postprandial glucose levels with a concordant increase in the proportion of MAIT cells after two weeks of histidine supplementation. The increase in MAIT cells was associated with changes in gut microbial pathways such as riboflavin biosynthesis and epigenetic changes in the amino acid transporter SLC7A5. Associations between the microbiome and MAIT cells were replicated in the MetaCardis cohort. We propose a conceptual framework for how oral histidine may affect MAIT cells via altered gut microbiota composition and SLC7A5 expression in MAIT cells directly and thereby influencing glycemic control. Future studies should focus on the role of flavin biosynthesis intermediates and SLC7A5 modulation in MAIT cells to modulate glycemic control.
Collapse
Affiliation(s)
- Moritz V. Warmbrunn
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Science research institute, Amsterdam, The Netherlands
| | - Ilias Attaye
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Science research institute, Amsterdam, The Netherlands
| | - Judith Aron-Wisnewsky
- Assistante Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, CRNH Ile de France, Paris, France
- INSERM, Nutrition and Obesities, Systemic Approaches (NutriOmics), Sorbonne Université, Paris, France
| | - Elena Rampanelli
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Science research institute, Amsterdam, The Netherlands
- Amsterdam Amsterdam institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| | - Eduard W.J. van der Vossen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Youling Hao
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam, The Netherlands
- Amsterdam Amsterdam institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| | - Annefleur Koopen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Per-Olof Bergh
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska, Gothenburg, Sweden
| | - Daniela Stols-Gonçalves
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Nadia Mohamed
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Marleen Kemper
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Xanthe Verdoes
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Koen Wortelboer
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Science research institute, Amsterdam, The Netherlands
- Amsterdam Amsterdam institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| | - Mark Davids
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Eugeni Belda
- Assistante Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, CRNH Ile de France, Paris, France
- INSERM, Nutrition and Obesities, Systemic Approaches (NutriOmics), Sorbonne Université, Paris, France
| | - Sébastien André
- Assistante Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, CRNH Ile de France, Paris, France
- INSERM, Nutrition and Obesities, Systemic Approaches (NutriOmics), Sorbonne Université, Paris, France
| | - Stanley Hazen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Karine Clement
- Assistante Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, CRNH Ile de France, Paris, France
- INSERM, Nutrition and Obesities, Systemic Approaches (NutriOmics), Sorbonne Université, Paris, France
| | - Bert Groen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Daniel H. van Raalte
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Hilde Herrema
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Fredrik Backhed
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Gea J, Enríquez-Rodríguez CJ, Agranovich B, Pascual-Guardia S. Update on metabolomic findings in COPD patients. ERJ Open Res 2023; 9:00180-2023. [PMID: 37908399 PMCID: PMC10613990 DOI: 10.1183/23120541.00180-2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/15/2023] [Indexed: 11/02/2023] Open
Abstract
COPD is a heterogeneous disorder that shows diverse clinical presentations (phenotypes and "treatable traits") and biological mechanisms (endotypes). This heterogeneity implies that to carry out a more personalised clinical management, it is necessary to classify each patient accurately. With this objective, and in addition to clinical features, it would be very useful to have well-defined biological markers. The search for these markers may either be done through more conventional laboratory and hypothesis-driven techniques or relatively blind high-throughput methods, with the omics approaches being suitable for the latter. Metabolomics is the science that studies biological processes through their metabolites, using various techniques such as gas and liquid chromatography, mass spectrometry and nuclear magnetic resonance. The most relevant metabolomics studies carried out in COPD highlight the importance of metabolites involved in pathways directly related to proteins (peptides and amino acids), nucleic acids (nitrogenous bases and nucleosides), and lipids and their derivatives (especially fatty acids, phospholipids, ceramides and eicosanoids). These findings indicate the relevance of inflammatory-immune processes, oxidative stress, increased catabolism and alterations in the energy production. However, some specific findings have also been reported for different COPD phenotypes, demographic characteristics of the patients, disease progression profiles, exacerbations, systemic manifestations and even diverse treatments. Unfortunately, the studies carried out to date have some limitations and shortcomings and there is still a need to define clear metabolomic profiles with clinical utility for the management of COPD and its implicit heterogeneity.
Collapse
Affiliation(s)
- Joaquim Gea
- Respiratory Medicine Department, Hospital del Mar – IMIM, Barcelona, Spain
- MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
- CIBERES, ISCIII, Barcelona, Spain
| | - César J. Enríquez-Rodríguez
- Respiratory Medicine Department, Hospital del Mar – IMIM, Barcelona, Spain
- MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Bella Agranovich
- Rappaport Institute for Research in the Medical Sciences, Technion University, Haifa, Israel
| | - Sergi Pascual-Guardia
- Respiratory Medicine Department, Hospital del Mar – IMIM, Barcelona, Spain
- MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
- CIBERES, ISCIII, Barcelona, Spain
| |
Collapse
|
9
|
Dasgupta S, Ghosh N, Bhattacharyya P, Roy Chowdhury S, Chaudhury K. Metabolomics of asthma, COPD, and asthma-COPD overlap: an overview. Crit Rev Clin Lab Sci 2023; 60:153-170. [PMID: 36420874 DOI: 10.1080/10408363.2022.2140329] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The two common progressive lung diseases, asthma and chronic obstructive pulmonary disease (COPD), are the leading causes of morbidity and mortality worldwide. Asthma-COPD overlap, referred to as ACO, is another complex pulmonary disease that manifests itself with features of both asthma and COPD. The disease has no clear diagnostic or therapeutic guidelines, thereby making both diagnosis and treatment challenging. Though a number of studies on ACO have been documented, gaps in knowledge regarding the pathophysiologic mechanism of this disorder exist. Addressing this issue is an urgent need for improved diagnostic and therapeutic management of the disease. Metabolomics, an increasingly popular technique, reveals the pathogenesis of complex diseases and holds promise in biomarker discovery. This comprehensive narrative review, comprising 99 original research articles in the last five years (2017-2022), summarizes the scientific advances in terms of metabolic alterations in patients with asthma, COPD, and ACO. The analytical tools, nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS), commonly used to study the expression of the metabolome, are discussed. Challenges frequently encountered during metabolite identification and quality assessment are highlighted. Bridging the gap between phenotype and metabotype is envisioned in the future.
Collapse
Affiliation(s)
- Sanjukta Dasgupta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Nilanjana Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | | | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
10
|
Gea J, Enríquez-Rodríguez CJ, Pascual-Guardia S. Metabolomics in COPD. Arch Bronconeumol 2023; 59:311-321. [PMID: 36717301 DOI: 10.1016/j.arbres.2022.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 01/20/2023]
Abstract
The clinical presentation of chronic obstructive pulmonary disease (COPD) is highly heterogeneous. Attempts have been made to define subpopulations of patients who share clinical characteristics (phenotypes and treatable traits) and/or biological characteristics (endotypes), in order to offer more personalized care. Assigning a patient to any of these groups requires the identification of both clinical and biological markers. Ideally, biological markers should be easily obtained from blood or urine, but these may lack specificity. Biomarkers can be identified initially using conventional or more sophisticated techniques. However, the more sophisticated techniques should be simplified in the future if they are to have clinical utility. The -omics approach offers a methodology that can assist in the investigation and identification of useful markers in both targeted and blind searches. Specifically, metabolomics is the science that studies biological processes involving metabolites, which can be intermediate or final products. The metabolites associated with COPD and their specific phenotypic and endotypic features have been studied using various techniques. Several compounds of particular interest have emerged, namely, several types of lipids and derivatives (mainly phospholipids, but also ceramides, fatty acids and eicosanoids), amino acids, coagulation factors, and nucleic acid components, likely to be involved in their function, protein catabolism, energy production, oxidative stress, immune-inflammatory response and coagulation disorders. However, clear metabolomic profiles of the disease and its various manifestations that may already be applicable in clinical practice still need to be defined.
Collapse
Affiliation(s)
- Joaquim Gea
- Servicio de Neumología, Hospital del Mar - IMIM, Barcelona, Spain; Dpt. MELIS, Universitat Pompeu Fabra, Barcelona, Spain; CIBERES, ISCIII, Barcelona, Spain.
| | - César J Enríquez-Rodríguez
- Servicio de Neumología, Hospital del Mar - IMIM, Barcelona, Spain; Dpt. MELIS, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sergi Pascual-Guardia
- Servicio de Neumología, Hospital del Mar - IMIM, Barcelona, Spain; Dpt. MELIS, Universitat Pompeu Fabra, Barcelona, Spain; CIBERES, ISCIII, Barcelona, Spain
| |
Collapse
|
11
|
Abstract
Metabolomics is an expanding field of systems biology that is gaining significant attention in respiratory research. As a unique approach to understanding and diagnosing diseases, metabolomics provides a snapshot of all metabolites present in biological samples such as exhaled breath condensate, bronchoalveolar lavage, plasma, serum, urine, and other specimens that may be obtained from patients with respiratory diseases. In this article, we review the rapidly expanding field of metabolomics in its application to respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), pneumonia, and acute lung injury, along with its more severe form, adult respiratory disease syndrome. We also discuss the potential applications of metabolomics for monitoring exposure to aerosolized occupational and environmental materials. With the latest advances in our understanding of the microbiome, we discuss microbiome-derived metabolites that arise from the gut and lung in asthma and COPD that have mechanistic implications for these diseases. Recent literature has suggested that metabolomics analysis using nuclear magnetic resonance (NMR) and mass spectrometry (MS) approaches may provide clinicians with the opportunity to identify new biomarkers that may predict progression to more severe diseases which may be fatal for many patients each year.
Collapse
Affiliation(s)
- Subhabrata Moitra
- Department of Medicine, Alberta Respiratory Centre (ARC), University of Alberta, Edmonton, AB, Canada
| | - Arghya Bandyopadhyay
- Department of Medicine, Alberta Respiratory Centre (ARC), University of Alberta, Edmonton, AB, Canada
| | - Paige Lacy
- Department of Medicine, Alberta Respiratory Centre (ARC), University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
12
|
Systematic Review of NMR-Based Metabolomics Practices in Human Disease Research. Metabolites 2022; 12:metabo12100963. [PMID: 36295865 PMCID: PMC9609461 DOI: 10.3390/metabo12100963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is one of the principal analytical techniques for metabolomics. It has the advantages of minimal sample preparation and high reproducibility, making it an ideal technique for generating large amounts of metabolomics data for biobanks and large-scale studies. Metabolomics is a popular “omics” technology and has established itself as a comprehensive exploratory biomarker tool; however, it has yet to reach its collaborative potential in data collation due to the lack of standardisation of the metabolomics workflow seen across small-scale studies. This systematic review compiles the different NMR metabolomics methods used for serum, plasma, and urine studies, from sample collection to data analysis, that were most popularly employed over a two-year period in 2019 and 2020. It also outlines how these methods influence the raw data and the downstream interpretations, and the importance of reporting for reproducibility and result validation. This review can act as a valuable summary of NMR metabolomic workflows that are actively used in human biofluid research and will help guide the workflow choice for future research.
Collapse
|
13
|
Godbole S, Bowler RP. Metabolome Features of COPD: A Scoping Review. Metabolites 2022; 12:621. [PMID: 35888745 PMCID: PMC9324381 DOI: 10.3390/metabo12070621] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/03/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex heterogeneous disease state with multiple phenotypic presentations that include chronic bronchitis and emphysema. Although COPD is a lung disease, it has systemic manifestations that are associated with a dysregulated metabolome in extrapulmonary compartments (e.g., blood and urine). In this scoping review of the COPD metabolomics literature, we identified 37 publications with a primary metabolomics investigation of COPD phenotypes in human subjects through Google Scholar, PubMed, and Web of Science databases. These studies consistently identified a dysregulation of the TCA cycle, carnitines, sphingolipids, and branched-chain amino acids. Many of the COPD metabolome pathways are confounded by age and sex. The effects of COPD in young versus old and male versus female need further focused investigations. There are also few studies of the metabolome's association with COPD progression, and it is unclear whether the markers of disease and disease severity are also important predictors of disease progression.
Collapse
Affiliation(s)
- Suneeta Godbole
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Russell P. Bowler
- Division of Medicine, National Jewish Health, Denver, CO 80206, USA;
| |
Collapse
|
14
|
The therapeutic effect of Xuanbai Chengqi Decoction on chronic obstructive pulmonary disease with excessive heat in the lung and fu-organs based on gut and lung microbiota as well as metabolic profiles. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1198:123250. [DOI: 10.1016/j.jchromb.2022.123250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/03/2022] [Accepted: 04/07/2022] [Indexed: 12/29/2022]
|
15
|
Paris D, Palomba L, Tramice A, Motta L, Fuschillo S, Maniscalco M, Motta A. Identification of biomarkers in COPD by metabolomics of exhaled breath condensate and serum/plasma. Minerva Med 2022; 113:424-435. [PMID: 35191295 DOI: 10.23736/s0026-4806.22.07957-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third cause of death worldwide, presenting poor long-term outcomes and chronic disability. COPD is a condition with a wide spectrum of clinical presentations because its pathophysiological determinants relate to tobacco smoke, genetic factors, alteration of several metabolic pathways, and oxidative stress. As a consequence, patients present different phenotypes even with comparable degrees of airflow limitation. Because of the increasing social and economic costs of COPD, a growing attention is currently payed to "omics" techniques for more personalized treatments and patient-tailored rehabilitation programs. In this regard, the systematic investigation of the metabolome (i.e., the whole set of endogenous molecules) in biomatrices, namely metabolomics, has become indispensable for phenotyping respiratory diseases. The metabolomic profiling of biological samples contains the small molecules produced during biological processes and their identification and quantification help in the diagnosis, comprehension of disease outcome and treatment response. Exhaled breath condensate (EBC), plasma and serum are biofluids readily available, with negligible invasiveness, and, therefore, suitable for metabolomics investigations. In this paper, we describe the latest advances on metabolomic profiling of EBC, plasma and serum in COPD patients.
Collapse
Affiliation(s)
- Debora Paris
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Napoli, Italy
| | - Letizia Palomba
- Department of Biomolecular Sciences, University Carlo Bo, Urbino, Italy
| | - Annabella Tramice
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Napoli, Italy
| | - Lorenzo Motta
- Section of Radiology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Salvatore Fuschillo
- Pulmonary Rehabilitation Division of the Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, Telese Terme, Benevento, Italy
| | - Mauro Maniscalco
- Pulmonary Rehabilitation Division of the Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, Telese Terme, Benevento, Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Napoli, Italy -
| |
Collapse
|
16
|
Hu Y, Cheng X, Qiu Z, Chen X. Identification of Metabolism-Associated Molecular Subtypes of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2021; 16:2351-2362. [PMID: 34429593 PMCID: PMC8374844 DOI: 10.2147/copd.s316304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose This study aimed to identify the COPD molecular subtypes reflecting pulmonary function damage on the basis of metabolism-related gene expression, which provided the opportunity to study the metabolic heterogeneity and the association of metabolic pathways with pulmonary function damage. Methods Univariate linear regression and the Boruta algorithm were used to select metabolism-related genes associated with forced expiratory volume in the first second (FEV1) and FEV1/forced vital capacity (FVC) in the Evaluation of COPD to Longitudinally Identify Predictive Surrogate Endpoints (ECLIPSE) cohort. COPD subtypes were further identified by consensus clustering with best-fit. Then, we analyzed the differences in the clinical characteristics, metabolic pathways, immune cell characteristics, and transcription features among the subtypes. Results This study identified two subtypes (C1 and C2). C1 exhibited higher levels of lower pulmonary function and innate immunity than C2. Ten metabolic pathways were confirmed as key metabolic pathways. The pathways related to N-glycan, hexosamine, purine, alanine, aspartate and glutamate tended to be positively associated with the abundance of adaptive immune cells and negatively associated with the abundance of innate immune cells. In addition, other pathways had opposite trends. All results were verified in Genetic Epidemiology of COPD (COPDGene) datasets. Conclusion The two subtypes reflect the pulmonary function damage and help to further understand the metabolic mechanism of pulmonary function in COPD. Further studies are needed to prove the prognostic and therapeutic value of the subtypes.
Collapse
Affiliation(s)
- Yuanlong Hu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Xiaomeng Cheng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Zhanjun Qiu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Xianhai Chen
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| |
Collapse
|
17
|
Fuschillo S, Paris D, Tramice A, Ambrosino P, Palomba L, Maniscalco M, Motta A. Metabolomic profiling of exhaled breath condensate and plasma/serum in chronic obstructive pulmonary disease. Curr Med Chem 2021; 29:2385-2398. [PMID: 34375174 DOI: 10.2174/0929867328666210810122350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is an increasing cause of global morbidity and mortality, with poor long-term outcomes and chronic disability. COPD is a condition with a wide spectrum of clinical presentations, with different phenotypes being identified even among patients with comparable degrees of airflow limitation. Considering the burden of COPD in terms of social and economic costs, in recent years a growing attention has been given to the need of more personalized approaches and patient-tailored rehabilitation programs. In this regard, the systematic analysis of metabolites in biological matrices, namely metabolomics, may become an essential tool in phenotyping diseases. Through the identification and quantification of the small molecules produced during biological processes, metabolomic profiling of biological samples has thus been proposed as an opportunity to identify novel biomarkers of disease outcome and treatment response. Exhaled breath condensate (EBC) and plasma/serum are fluid pools, which can be easily extracted and analyzed. In this review, we discuss the potential clinical applications of the metabolomic profiling of EBC and plasma/serum in COPD.
Collapse
Affiliation(s)
- Salvatore Fuschillo
- Institute Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Division of the Telese Terme Institute, 82037 Telese Terme (BN), Italy
| | - Debora Paris
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli (NA), Italy
| | - Annabella Tramice
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli (NA), Italy
| | - Pasquale Ambrosino
- Institute Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Division of the Telese Terme Institute, 82037 Telese Terme (BN), Italy
| | - Letizia Palomba
- Department of Biomolecular Sciences, University "Carlo Bo", 61029 Urbino, Italy
| | - Mauro Maniscalco
- Institute Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Division of the Telese Terme Institute, 82037 Telese Terme (BN), Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli (NA), Italy
| |
Collapse
|
18
|
Tian Q, Xu M, He B. Histidine ameliorates elastase- and lipopolysaccharide-induced lung inflammation by inhibiting the activation of the NLRP3 inflammasome. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1055-1064. [PMID: 34125142 DOI: 10.1093/abbs/gmab072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Indexed: 01/23/2023] Open
Abstract
Histidine treatment has anti-inflammatory effects on several diseases such as colitis and obesity. We revealed that histidine levels were decreased in the serum of patients with chronic obstructive pulmonary disease (COPD) in our previous study. However, whether histidine confers protection against COPD is unclear. In the present study, we evaluated the protective effects of histidine in a porcine pancreatic elastase- and lipopolysaccharide-induced COPD mouse model. We found that the serum histidine concentration was decreased in COPD mice. Histidine supplementation improved the COPD mouse lung function and reduced the inflammatory cell counts and production of cytokines in bronchoalveolar lavage fluid. In addition, histidine treatment ameliorated lung inflammation by inhibiting the nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain-containing 3 inflammasome activation both in vivo and in vitro. Furthermore, we found that the potential anti-inflammatory mechanism involved the upregulation of silent information regulator factor 2-related enzyme 1. These results suggest that histidine may be a valuable therapeutic target for COPD.
Collapse
Affiliation(s)
- Qiaoshan Tian
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Ming Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Bei He
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
19
|
Tang Y, Chen Z, Fang Z, Zhao J, Zhou Y, Tang C. Multi-Omics study on biomarker and pathway discovery of chronic obstructive pulmonary disease. J Breath Res 2021; 15. [PMID: 34280912 DOI: 10.1088/1752-7163/ac15ea] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/19/2021] [Indexed: 11/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common heterogeneous respiratory disease characterized by persistent and incompletely reversible airflow limitation. Due to the heterogeneity and phenotypes complexity of COPD, traditionally diagnostic methods can only give limited information on predicted results and treatment, which are not sufficient for accurate diagnosis and evaluation. With the development of omics technologies in recent years, genomics, proteomics, and metabolomics are widely used in the study of COPD, providing good tools for discovering biomarkers to diagnose and elucidate the complex mechanism of COPD. In this review, we summarized the biomarkers of COPD based on metabolomic, proteomic and transcriptomic studies that have been reported in recent years. Furthermore, protein-protein interactions and multi-omics integrated analysis were carried out to explore the important metabolites and proteins that involved in significant pathways in the progression of COPD for explanation the pathogenesis of COPD. Finally, the prospective and challenges in the study of COPD were proposed. It is expected that this review will provide some references for the development of diagnostic methods and elucidation of the pathogenesis of COPD.
Collapse
Affiliation(s)
- Yuqing Tang
- Ningbo University Medical School, The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China, Ningbo, Zhejiang, 315020, CHINA
| | - Zhengjun Chen
- Ningbo University Medical School, The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China, Ningbo, Zhejiang, 315020, CHINA
| | - Zhiling Fang
- Ningbo University Medical School, Ningbo University School of Medicine, Ningbo 315211, China, Ningbo, Zhejiang, 315211, CHINA
| | - Jinshun Zhao
- Ningbo University Medical School, Ningbo University School of Medicine, Ningbo 315211, China, Ningbo, Zhejiang, 315211, CHINA
| | - Yuping Zhou
- Ningbo University Medical School, The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China, Ningbo, Zhejiang, 315020, CHINA
| | - Chunlan Tang
- Ningbo University Medical School, The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China, Ningbo, Zhejiang, 315020, CHINA
| |
Collapse
|
20
|
Aguilar MA, McGuigan J. Semi-automated NMR Pipeline for Environmental Exposures: New Insights on the Metabolomics of Smokers versus Non-smokers. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2021; 26:316-327. [PMID: 33691028 PMCID: PMC8900656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Environmental exposure pathophysiology related to smoking can yield metabolic changes that are difficult to describe in a biologically informative fashion with manual proprietary software. Nuclear magnetic resonance (NMR) spectroscopy detects compounds found in biofluids yielding a metabolic snapshot. We applied our semi-automated NMR pipeline for a secondary analysis of a smoking study (MTBLS374 from the MetaboLights repository) (n = 112). This involved quality control (in the form of data preprocessing), automated metabolite quantification, and analysis. With our approach we putatively identified 79 metabolites that were previously unreported in the dataset. Quantified metabolites were used for metabolic pathway enrichment analysis that replicated 1 enriched pathway with the original study as well as 3 previously unreported pathways. Our pipeline generated a new random forest (RF) classifier between smoking classes that revealed several combinations of compounds. This study broadens our metabolomic understanding of smoking exposure by 1) notably increasing the number of quantified metabolites with our analytic pipeline, 2) suggesting smoking exposure may lead to heterogenous metabolic responses according to random forest modeling, and 3) modeling how newly quantified individual metabolites can determine smoking status. Our approach can be applied to other NMR studies to characterize environmental risk factors, allowing for the discovery of new biomarkers of disease and exposure status.
Collapse
|
21
|
Thalacker-Mercer AE, Gheller ME. Benefits and Adverse Effects of Histidine Supplementation. J Nutr 2020; 150:2588S-2592S. [PMID: 33000165 DOI: 10.1093/jn/nxaa229] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/02/2020] [Accepted: 07/09/2020] [Indexed: 01/05/2023] Open
Abstract
Histidine is a nutritionally essential amino acid with many recognized benefits to human health, while circulating concentrations of histidine decline in pathologic conditions [e.g., chronic obstructive pulmonary disease (COPD) and chronic kidney disease (CKD)]. The purpose of this review is to examine the existing literature regarding the benefits of histidine intake, the adverse effects of excess histidine, and the upper tolerance level for histidine. Supplementation with doses of 4.0-4.5 g histidine/d and increased dietary histidine intake are associated with decreased BMI, adiposity, markers of glucose homeostasis (e.g., HOMA-IR, fasting blood glucose, 2-h postprandial blood glucose), proinflammatory cytokines, and oxidative stress. It is unclear from the limited number of studies in humans whether the improvements in glucoregulatory markers, inflammation, and oxidative stress are due to reduced BMI and adiposity, increased carnosine (a metabolic product of histidine with antioxidant effects), or both. Histidine intake also improves cognitive function (e.g., reduces appetite, anxiety, and stress responses and improves sleep) potentially through the metabolism of histidine to histamine; however, this relation is ambiguous in humans. At high intakes of histidine (>24 g/d), studies report adverse effects of histidine such as decreased serum zinc and cognitive impairment. There is limited research on the effects of histidine intake at doses between 4.5 and 24 g/d, and thus, a tolerable upper level has not been established. Determining tolerance to histidine supplementation has been limited by small sample sizes and, more important, a lack of a clear biomarker for histidine supplementation. The U-shaped curve of circulating zinc concentrations with histidine supplementation could be exploited as a relevant biomarker for supplemental histidine tolerance. Histidine is an important amino acid and may be necessary as a supplement in some populations; however, gaps in knowledge, which this review highlights, need to be addressed scientifically.
Collapse
Affiliation(s)
- Anna E Thalacker-Mercer
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.,Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary E Gheller
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.,Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
22
|
Wang C, Zhao P, Sun S, Teckman J, Balch WE. Leveraging Population Genomics for Individualized Correction of the Hallmarks of Alpha-1 Antitrypsin Deficiency. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2020; 7:224-246. [PMID: 32726074 DOI: 10.15326/jcopdf.7.3.2019.0167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Deep medicine is rapidly moving towards a high-definition approach for therapeutic management of the patient as an individual given the rapid progress of genome sequencing technologies and machine learning algorithms. While considered a monogenic disease, alpha-1 antitrypsin (AAT) deficiency (AATD) patients present with complex and variable phenotypes we refer to as the "hallmarks of AATD" that involve distinct molecular mechanisms in the liver, plasma and lung tissues, likely due to both coding and non-coding variation as well as genetic and environmental modifiers in different individuals. Herein, we briefly review the current therapeutic strategies for the management of AATD. To embrace genetic diversity in the management of AATD, we provide an overview of the disease phenotypes of AATD patients harboring different AAT variants. Linking genotypic diversity to phenotypic diversity illustrates the potential for sequence-specific regions of AAT protein fold design to play very different roles during nascent synthesis in the liver and/or function in post-liver plasma and lung environments. We illustrate how to manage diversity with recently developed machine learning (ML) approaches that bridge sequence-to-function-to-structure knowledge gaps based on the principle of spatial covariance (SCV). SCV relationships provide a deep understanding of the genotype to phenotype transformation initiated by AAT variation in the population to address the role of genetic and environmental modifiers in the individual. Embracing the complexity of AATD in the population is critical for risk management and therapeutic intervention to generate a high definition medicine approach for the patient.
Collapse
Affiliation(s)
- Chao Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, California
| | - Pei Zhao
- Department of Molecular Medicine, Scripps Research, La Jolla, California
| | - Shuhong Sun
- Department of Molecular Medicine, Scripps Research, La Jolla, California
| | - Jeffrey Teckman
- Pediatrics and Biochemistry, Saint Louis University, and Cardinal Glennon Children's Medical Center, St. Louis, Missouri
| | - William E Balch
- Department of Molecular Medicine, Scripps Research, La Jolla, California
| |
Collapse
|