1
|
Li ZD, Kang S, Li H, Yu P, Xie R, Li C, Jing Q, Gong Z, Li L, Li Z, Geng M, Zhang Z, Li Y, Chang YZ. Absence of astrocytic ceruloplasmin reverses the senescence process with aging of learning and memory abilities. Redox Biol 2025; 82:103611. [PMID: 40184642 PMCID: PMC12002888 DOI: 10.1016/j.redox.2025.103611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/21/2025] [Accepted: 03/23/2025] [Indexed: 04/07/2025] Open
Abstract
Ceruloplasmin (CP) is a multi-copper ferroxidase mainly synthesized by liver, secreted into the peripheral blood, playing a critical role in regulating the iron homeostasis. In the central nervous system (CNS), the CP expressed by astrocytes plays an important role in the transportation of iron from the blood across the blood-brain barrier (BBB) into the brain. Our previous study showed that conditional knockout of astrocytic CP with Cre-LoxP system (CpGfapcKO) not only improved the learning and memory abilities of elderly mice, but also impaired the learning and memory abilities of young mice. In order to further investigate the effects of CP on learning and memory with aging, we constructed mice model with tamoxifen-induced astrocyte specific knockout of CP, induced CP knockout at 12 months old, and observed the effects on mouse learning and memory at 18 months old. We were delighted to found that ablation of astrocytic CP by tamoxifen at 12 months old could similarly enhance the learning, memory and recognition abilities in 18-month-old mice. Iron deposition in the hippocampus associated with aging was mitigated, leading to a reduction in oxidative stress. The MAPK/JNK pathway exhibited attenuation, while the PI3K/Akt/GSK3 pathway showed enhancement. This combination is expected to result in the reduction of the phosphorylation level of MYC and the elevation of the nuclear translocation of MYC, which might then contribute to reduced cellular senescence. Additionally, the ROS/MAPK/Erk and ROS/MAPK/p38 pathways-dependent cell apoptosis in hippocampus was diminished. The hallmarks of Alzheimer's Disease (AD) were all significantly reduced. Ultimately, the alleviated cellular senescence along with the reduction in AD-related markers, coincided with an improvement in learning, memory, and recognition abilities. These findings further elucidated the role of CP in brain iron metabolism, offering a novel target and strategy for the prevention and treatment of neurodegenerative diseases, such as AD associated with aging.
Collapse
Affiliation(s)
- Zhong-Da Li
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China; Laboratory of Inflammation and Vaccines, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong Province, China; Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong Province, China
| | - Shaomeng Kang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China
| | - Haiyan Li
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China; Department of Human Anatomy, Chengde Medical University, Chengde, 067000, Hebei Province, China
| | - Peng Yu
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China
| | - Ruikun Xie
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China
| | - Chenchen Li
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China
| | - Qi Jing
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China
| | - Zhengzheng Gong
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China
| | - Li Li
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China
| | - Zhengning Li
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China
| | - Mengyu Geng
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China
| | - Zihan Zhang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China
| | - Yang Li
- Laboratory of Inflammation and Vaccines, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong Province, China; Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong Province, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China.
| |
Collapse
|
2
|
Li P, Xu TY, Yu AX, Liang JL, Zhou YS, Sun HZ, Dai YL, Liu J, Yu P. The Role of Ferroptosis in Osteoporosis and Advances in Chinese Herbal Interventions. BIOLOGY 2025; 14:367. [PMID: 40282232 PMCID: PMC12025301 DOI: 10.3390/biology14040367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
OP, a systemic bone disorder marked by reduced bone mass and heightened fracture risk, poses a significant global health burden, particularly among aging populations. Current treatments, including bisphosphonates and calcium supplementation, are limited by adverse effects and incomplete efficacy. Emerging research highlights ferroptosis-an iron-dependent cell death driven by lipid peroxidation-as a critical contributor to OP pathogenesis, characterized by dysregulated iron metabolism, oxidative stress, and lipid peroxide accumulation, which disrupt bone remodeling by impairing osteoblast function and enhancing osteoclast activity. This review elucidates the mechanistic interplay between ferroptosis and OP subtypes (diabetic osteoporosis (DOP), glucocorticoid-induced (GIOP), and postmenopausal osteoporosis (PMOP)) and evaluates the efficacy of Chinese herbal interventions in mitigating ferroptosis-driven bone loss. Key findings reveal that excess iron exacerbates lipid peroxidation via the Fenton reaction, while glutathione peroxidase 4 (GPX4) inactivation and system Xc- inhibition amplify oxidative damage. In DIOP, hyperglycemia-induced ROS and advanced glycation end products suppress osteogenesis, countered by melatonin and naringenin via nuclear factor -related factor 2 (Nrf2)/GPX4 activation. GIOP involves dexamethasone-mediated GPX4 downregulation, mitigated by exosomes and melatonin through phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling. PMOP driven by estrogen deficiency-induced iron overload is alleviated by aconitine and icariin (ICA) via nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription 3 (STAT3) pathways. Chinese herbs, including active compounds (quercetin, gastrodin, ICA, etc.) and formulations (Bugu Shengsui Capsule, Erxian Decoction (EXD), etc.), regulate iron metabolism, enhance antioxidant defenses (Nrf2/heme oxygenase 1(HO-1)), and inhibit lipid peroxidation, effectively restoring bone homeostasis. These findings underscore ferroptosis as a pivotal mechanism in OP progression and highlight the therapeutic promise of Chinese herbs in bridging traditional medicine with modern mechanistic insights. Future research should prioritize elucidating precise molecular targets, optimizing formulations, and validating clinical efficacy to address current therapeutic gaps.
Collapse
Affiliation(s)
- Pan Li
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin 130117, China; (P.L.); (A.-X.Y.); (J.-L.L.); (H.-Z.S.)
| | - Tian-Yang Xu
- Innovation Practice Center, Changchun University of Chinese Medicine, Jilin 130117, China;
| | - Ao-Xue Yu
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin 130117, China; (P.L.); (A.-X.Y.); (J.-L.L.); (H.-Z.S.)
| | - Jing-Ling Liang
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin 130117, China; (P.L.); (A.-X.Y.); (J.-L.L.); (H.-Z.S.)
| | - Ya-Shuang Zhou
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin 130117, China; (P.L.); (A.-X.Y.); (J.-L.L.); (H.-Z.S.)
| | - Huai-Zhu Sun
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin 130117, China; (P.L.); (A.-X.Y.); (J.-L.L.); (H.-Z.S.)
| | - Yu-Lin Dai
- Ginseng Scientific Research Institute, Jilin 130117, China;
| | - Jia Liu
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin 130117, China; (P.L.); (A.-X.Y.); (J.-L.L.); (H.-Z.S.)
| | - Peng Yu
- Innovation and Entrepreneurship College, Changchun University of Chinese Medicine, Jilin 130117, China
| |
Collapse
|
3
|
Honari N, Sayadi M, Sajjadi SM, Solhjoo S, Sarab GA. Deferasirox improved iron homeostasis and hematopoiesis in ovariectomized rats with iron accumulation. Sci Rep 2025; 15:2449. [PMID: 39828810 PMCID: PMC11743768 DOI: 10.1038/s41598-025-86333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Menopause is a natural biological aging process characterized by the loss of ovarian follicular function and decrease estrogen levels. These hormonal fluctuations are associated with increased iron levels, which ultimately lead to iron accumulation. This study aims to investigate the effects of Deferasirox on iron homeostasis and hematopoiesis in ovariectomized rats with iron accumulation. Sixty-four female Wistar rats were divided into eight groups and underwent ovariectomy surgery to simulate menopause. Iron accumulation was induced through the injection of ammonium ferric citrate. Deferasirox was administered at doses of 50 mg/kg and 100 mg/kg. Hematological parameters, iron profile, antioxidant markers, oxidative stress indicators, histopathological evaluation of uterine, bone, bone marrow, liver, and spleen tissues, flow cytometric analysis of hematopoietic CD markers, and relative expression of Hamp, Pu.1, Gata1, and Gdf11 genes were analyzed. Deferasirox treatment improved histopathological changes in the uterine tissue of ovariectomized rats with iron accumulation, increased the number of white blood cells, and reduced serum iron levels, TIBC, ferritin, and transferrin saturation percentage. It also increased serum antioxidant capacity and reduced oxidative stress markers. Deferasirox had a positive effect on femur bone, hematopoietic cell count, volume of hematopoietic and adipose tissues in bone marrow, extramedullary hematopoiesis in the liver and spleen, and influenced the relative expression of Hamp, Pu.1, Gata1, and Gdf11 genes related to hematopoiesis and iron metabolism. In conclusion, Deferasirox effectively manages iron homeostasis and hematopoiesis in ovariectomized rats with iron accumulation and suppresses oxidative stress.
Collapse
Affiliation(s)
- Niloofar Honari
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahtab Sayadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Mehdi Sajjadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Gholamreza Anani Sarab
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
- Department of Hematology and Blood Bank, Birjand University of Medical Sciences, Birjand, Iran.
- Cellular and Molecular Research Center, Department of Hematology and Blood Bank, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
4
|
Wang J, Chen T, Gao F. Mechanism and application prospect of ferroptosis inhibitors in improving osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1492610. [PMID: 39735645 PMCID: PMC11671246 DOI: 10.3389/fendo.2024.1492610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/26/2024] [Indexed: 12/31/2024] Open
Abstract
Osteoporosis, a prevalent bone metabolic disorder, has emerged as a pressing global public health concern. Recent studies have illuminated a crucial link between ferroptosis and the pathogenesis of osteoporosis. Nevertheless, the intricate mechanisms underlying the role of ferroptosis in this condition remain largely unexplored. Therefore, this article comprehensively reviews the regulatory mechanisms of ferroptosis and the modulating effects on the development and progression of osteoporosis, as reported in recent years. Furthermore, this review summarizes the current state of the interventional strategies employed by both Western medicines and traditional Chinese medicines (TCMs) in addressing osteoporosis. This review aims to uncover potential novel avenues for the prevention and control of osteoporosis by synthesizing the modes of action and clinical efficacy of these therapeutic modalities.
Collapse
Affiliation(s)
| | | | - Fei Gao
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
5
|
Hamdan II, Tarawneh RT, Awwadi F, Al-Qattan D, Hamdan AI, Afifi F. Deferasirox and Ciprofloxacin: Potential Ternary Complex Formation With Ferric Iron, Pharmacodynamic, and Pharmacokinetic Interactions. ScientificWorldJournal 2024; 2024:9309491. [PMID: 39649814 PMCID: PMC11623990 DOI: 10.1155/tswj/9309491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/12/2024] [Accepted: 11/07/2024] [Indexed: 12/11/2024] Open
Abstract
The main aim of this work was to assess the potential formation of ternary chelate complexes, involving deferasirox (DFX), ciprofloxacin (CP), and ferric iron. The coadministration of CP along with DFX might modulate its efficacy, so it is important that it be investigated. A ternary complex involving DFX, CP, and iron (DFX-CP-Fe) was prepared and characterized. Theoretical chemistry calculations were performed to measure the equilibrium constants of complexes. Two groups of rats were exposed to DFX or DFX with CP. The level of DFX in plasma was measured, and histological assessments of relevant organs were made. Levels of iron in selected tissues were measured. The formation of ternary complexes was confirmed. Two ternary complexes are thermodynamically favored. The first one of ratio (DFX:CP:Fe) was shown to be favorable with an equilibrium constant of 2 × 107. The second one with ratio (DFX:CP:2Fe) is more thermodynamically favored with an equilibrium constant of 2.0 × 1060. Rats treated with a combination of DFX and CP exhibited lower levels of iron in dried red blood cells in comparison to those treated with DFX alone (p value = 0.012). They also exhibited lower levels of DFX in plasma. Histological assessments of the relevant tissues showed a clear difference in the level of deposited iron in the spleen. In conclusion, ternary complexes are formed, and some with exceptionally high constants. The obtained data indicate a potentially favorable role of CP because while it resulted in a decrease in the level of DFX, it pharmacodynamically produced more effect.
Collapse
Affiliation(s)
- Imad I. Hamdan
- Department of Pharmaceutical Sciences, The University of Jordan, Amman, Jordan
| | - Ruba T. Tarawneh
- Department of Pharmaceutical Sciences, The University of Jordan, Amman, Jordan
| | - Firas Awwadi
- Department of Chemistry, The University of Jordan, Amman, Jordan
| | - Duaa Al-Qattan
- School of Medicine, The University of Jordan, Amman, Jordan
| | | | - Fatma Afifi
- Department of Pharmaceutical Sciences, The University of Jordan, Amman, Jordan
| |
Collapse
|
6
|
Sankar D, Oviya IR. Multidisciplinary approaches to study anaemia with special mention on aplastic anaemia (Review). Int J Mol Med 2024; 54:95. [PMID: 39219286 PMCID: PMC11410310 DOI: 10.3892/ijmm.2024.5419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Anaemia is a common health problem worldwide that disproportionately affects vulnerable groups, such as children and expectant mothers. It has a variety of underlying causes, some of which are genetic. A comprehensive strategy combining physical examination, laboratory testing (for example, a complete blood count), and molecular tools for accurate identification is required for diagnosis. With nearly 400 varieties of anaemia, accurate diagnosis remains a challenging task. Red blood cell abnormalities are largely caused by genetic factors, which means that a thorough understanding requires interpretation at the molecular level. As a result, precision medicine has become a key paradigm, utilising artificial intelligence (AI) techniques, such as deep learning and machine learning, to improve prognostic evaluation, treatment prediction, and diagnostic accuracy. Furthermore, exploring the immunomodulatory role of vitamin D along with biomarker‑based molecular techniques offers promising avenues for insight into anaemia's pathophysiology. The intricacy of aplastic anaemia makes it particularly noteworthy as a topic deserving of concentrated molecular research. Given the complexity of anaemia, an integrated strategy integrating clinical, laboratory, molecular, and AI techniques shows a great deal of promise. Such an approach holds promise for enhancing global anaemia management options in addition to advancing our understanding of the illness.
Collapse
Affiliation(s)
- Divya Sankar
- Department of Sciences, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Chennai, Tamil Nadu 601103, India
| | - Iyyappan Ramalakshmi Oviya
- Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Chennai, Tamil Nadu 601103, India
| |
Collapse
|
7
|
Liu W, Tan Z, Zhao Y, Zhao Y, Yu X, Wang B, Shen F, Mi A, Lan J, Gao R. Panaxadiol saponin ameliorates ferroptosis in iron-overload aplastic anemia mice and Meg-01 cells by activating Nrf2/HO-1 and PI3K/AKT/mTOR signaling pathway. Int Immunopharmacol 2023; 118:110131. [PMID: 37023700 DOI: 10.1016/j.intimp.2023.110131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Panaxadiol saponin (PND) is a latent targeted drug for the treatment of aplastic anemia (AA). In this study, we examined the effects of PND on ferroptosis in iron-overload AA and Meg-01 cells. We utilized RNA-seq to analyze differentially expressed genes in iron-induced Meg-01 cells treated with PND. The effects of PND or combined with deferasirox (DFS) on iron deposition, labile iron pool (LIP), several ferroptosis events, apoptosis, mitochondrial structure, as well as ferroptosis-, Nrf2/HO-1-, and PI3K/AKT/mTOR pathway-related markers in iron-induced Meg-01 cells were examined by Prussian-blue staining, flow cytometer, ELISA, Hoechst 33342 staining, transmission electron microscope, and Western blot assays, respectively. Additionally, an AA mice model with iron overload was established. Then, the blood routine was assessed, and the number of bone marrow-derived mononuclear cells (BMMNCs) in mice was counted. Also, serum iron, ferroptosis events, apoptosis, histology, T lymphocyte percentage, ferroptosis-, Nrf2/HO-1-, and PI3K/AKT/mTOR signaling-related targets in primary megakaryocytes of AA mice with iron overload were assessed by commercial kits, TUNEL staining, hematoxylin and eosin (H&E) staining, Prussian blue staining, flow cytometer, and qRT-PCR analysis, respectively. PND suppressed iron-triggered iron overload, and apoptosis, and ameliorated mitochondrial morphology in Meg-01 cells. Importantly, PND ameliorated ferroptosis-, Nrf2/HO-1-, and PI3K/AKT/mTOR signaling-related marker expressions in iron-induced Meg-01 cells or primary megakaryocytes of AA mice with iron overload. Moreover, PND ameliorated body weight, peripheral blood cell counts, the number of BMMNCs, and histological injury in the iron-overload AA mice. Also, PND improved the percentage of T lymphocytes in the iron-overload AA mice. PND attenuates ferroptosis against iron-overload AA mice and Meg-01 cells via activating Nrf2/HO-1 and PI3K/AKT/mTOR pathway and is a promising novel therapeutic candidate for AA.
Collapse
Affiliation(s)
- WenBin Liu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - ZhengWei Tan
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - YueChao Zhao
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - YanNa Zhao
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - XiaoLing Yu
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - BoLin Wang
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - FengLin Shen
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ai Mi
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - JinJian Lan
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - RuiLan Gao
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
8
|
Qadah T. Deferasirox versus deferoxamine in managing iron overload in patients with Sickle Cell Anaemia: a systematic review and meta-analysis. J Int Med Res 2022; 50:3000605221143290. [PMID: 36562113 PMCID: PMC9793042 DOI: 10.1177/03000605221143290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES To examine the efficacy of deferasirox (DFX) by comparison with deferoxamine (DFO) in managing iron overload in patients with sickle cell anaemia (SCA). METHODS Online databases were systematically searched for studies published from January 2007 to July 2022 that had investigated the efficacy of DFX compared with DFO in managing iron overload in patients with SCA. RESULTS Of the 316 articles identified, three randomized clinical trials met the inclusion criteria. Meta-analysis of liver tissue iron concentration (LIC) showed that iron overload was not significantly higher in the DFX group compared with DFO group (WMD, -1.61 mg Fe/g dw (95% CI -4.42 to 1.21). However, iron overload as measured by serum ferritin was significantly lower in DFO compared with DFX group (WMD, 278.13 µg/l (95% CI 36.69 to 519.57). Although meta-analysis was not performed on myocardial iron concentration due to incomplete data, the original report found no significant difference between DFX and DFO. CONCLUSION While limited by the number of studies included in this meta-analysis, overall, the results tend to show that DFX was as effective as DFO in managing iron overload in patients with SCA.
Collapse
Affiliation(s)
- Talal Qadah
- Department of Medical Laboratory Sciences, Faculty of Applied
Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia,Haematology Research Unit, King Fahad Medical Research Centre,
King Abdulaziz University, Jeddah, Saudi Arabia,Talal Qadah, Department of Medical
Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz
University, P.O. Box: 80324. Postcode: 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
9
|
Ferroptosis - A new target of osteoporosis. Exp Gerontol 2022; 165:111836. [DOI: 10.1016/j.exger.2022.111836] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/04/2022] [Accepted: 05/15/2022] [Indexed: 11/21/2022]
|
10
|
Hu H, Chen T, Liu W, Shen Y, Li Q, Zhou Y, Ye B, Wu D. Differentiation of Yin, Yang and Stasis Syndromes in Severe Aplastic Anemia Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation and Their Correlation with Iron Metabolism, cAMP/cGMP, 17-OH-CS and Thyroxine. J Blood Med 2021; 12:975-989. [PMID: 34803418 PMCID: PMC8598128 DOI: 10.2147/jbm.s332171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
Objective To better understanding and differentiation of traditional Chinese medicine (TCM) syndromes in severe aplastic anemia (SAA) patients undergoing hematopoietic stem cell transplantation (Allo-HSCT) and their correlation with iron metabolism, cAMP/cGMP, 17-OH-CS and thyroxine. Methods Eighteen patients with SAA who underwent HSCT were enrolled. The syndrome was evaluated before conditioning and days after stem cell reinfusion (−10d, −1d, +7d, +30d, +60d, and +90d). The correlation of TCM syndrome (Yin, Yang, and stasis) to cyclic nucleotides, 17-OH-CS, thyroxine, and iron metabolism were analyzed and compared to data from normal subjects. Results More “Yin deficiency” (n=11, 11/18) syndrome was observed before HSCT, and nearly 61% was complicated with “blood stasis”. After conditioning, the proportion of “kidney Yin and Yang deficiency” increased to 61.6%. Fourteen days after HSCT, the syndrome developed into “Spleen-Kidney Yang Deficiency,” and the stasis score decreased. On +90day, majority patients were diagnosed with “Kidney Yang Deficiency” (35.7%) or “Spleen-Kidney Yang Deficiency” (28.6%), and 88.9% were diagnosed without stasis. The correlation analysis showed that cGMP might represent “Deficient Yang” as well as low total triiodothyronine (T3) and free T3 (FT3). There was also a positive relation between labile plasma iron (LPI), hepcidin, soluble transferrin receptor (sTfR), and “Yin deficiency”, and the last two factors, along with marrow nitric oxide synthase were also positively related to “Stasis” syndrome. Conclusion During HSCT, the syndrome evolved from “kidney Yin and Yang deficiency” to “kidney Yang deficiency” or “spleen–kidney Yang deficiency”, and the “stasis” along with “Yin deficiency” syndromes were quickly relieved within 90 days. The changes of cyclic nucleotides, 17-OH-CS, thyroxine, and iron metabolism indexes can be applied for better differentiation of TCM syndrome.
Collapse
Affiliation(s)
- Huijin Hu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Tao Chen
- Department of Hematology, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Wenbin Liu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yiping Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Qiushuang Li
- Center of Clinical Evaluation and Analysis, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yuhong Zhou
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Baodong Ye
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Dijiong Wu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
11
|
Che J, Yang J, Zhao B, Zhang G, Wang L, Peng S, Shang P. The Effect of Abnormal Iron Metabolism on Osteoporosis. Biol Trace Elem Res 2020; 195:353-365. [PMID: 31473898 DOI: 10.1007/s12011-019-01867-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022]
Abstract
Iron is one of the important trace elements in life activities. Abnormal iron metabolism increases the incidence of many skeletal diseases, especially for osteoporosis. Iron metabolism plays a key role in the bone homeostasis. Disturbance of iron metabolism not only promotes osteoclast differentiation and apoptosis of osteoblasts but also inhibits proliferation and differentiation of osteoblasts, which eventually destroys the balance of bone remodeling. The strength and density of bone can be weakened by the disordered iron metabolism, which increases the incidence of osteoporosis. Clinically, compounds or drugs that regulate iron metabolism are used for the treatment of osteoporosis. The goal of this review summarizes the new progress on the effect of iron overload or deficiency on osteoporosis and the mechanism of disordered iron metabolism on osteoporosis. Explaining the relationship of iron metabolism with osteoporosis may provide ideas for clinical treatment and development of new drugs.
Collapse
Affiliation(s)
- Jingmin Che
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, Guangdong, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Bin Zhao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Luyao Wang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Songlin Peng
- Department of Spine Surgery, Shenzhen People's Hospital, Shenzhen, 518000, Guangdong, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, Guangdong, China.
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
| |
Collapse
|
12
|
Sobhani S, Rahmani F, Rahmani M, Askari M, Kompani F. Serum ferritin levels and irregular use of iron chelators predict liver iron load in patients with major beta thalassemia: a cross-sectional study. Croat Med J 2020. [PMID: 31686454 PMCID: PMC6852133 DOI: 10.3325/cmj.2019.60.405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aim To determine whether serum ferritin, liver transaminases, and regularity and type of iron chelation protocol can be used to predict liver iron load as assessed by T2* magnetic resonance imaging (MRI) in patients with beta thalassemia major (TM). Methods This cross-sectional study, conducted from March 1, 2014 to March 1, 2015, involved 90 patients with beta TM on regular packed red blood cell transfusion. Liver and cardiac iron load were evaluated with T2* MRI. Compliance with iron-chelating agents, deferoxamine or deferasirox, and regularity of their use, as well as serum ferritin and liver transaminase levels were assessed. Results Patients with high serum ferritin were 2.068 times (95% confidence interval 1.26-3.37) more likely to have higher liver or cardiac iron load. High serum aspartate aminotransferases and irregular use of iron chelating agents, but not their type, predicted higher cardiac iron load. In a multiple regression model, serum ferritin level was the only significant predictor of liver and myocardial iron load. Conclusions Higher serum ferritin strongly predicted the severity of cardiac and liver iron load. Irregular use of chelator drugs was associated with a higher risk of cardiac and liver iron load, regardless of the type of chelating agent.
Collapse
Affiliation(s)
| | | | | | | | - Farzad Kompani
- Farzad Kompani, Department of Pediatrics, Tehran University of Medical Sciences, Children's Medical Center, Keshavarz Blvd, Tehran 14194, Iran,
| |
Collapse
|
13
|
Huang L, Fu R. [Research progress of characteristics and mechanisms of iron overload affecting bone marrow hematopoiesis]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:709-712. [PMID: 31495147 PMCID: PMC7342874 DOI: 10.3760/cma.j.issn.0253-2727.2019.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- L Huang
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | | |
Collapse
|
14
|
Yang J, Zhang G, Dong D, Shang P. Effects of Iron Overload and Oxidative Damage on the Musculoskeletal System in the Space Environment: Data from Spaceflights and Ground-Based Simulation Models. Int J Mol Sci 2018; 19:E2608. [PMID: 30177626 PMCID: PMC6163331 DOI: 10.3390/ijms19092608] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 12/15/2022] Open
Abstract
The space environment chiefly includes microgravity and radiation, which seriously threatens the health of astronauts. Bone loss and muscle atrophy are the two most significant changes in mammals after long-term residency in space. In this review, we summarized current understanding of the effects of microgravity and radiation on the musculoskeletal system and discussed the corresponding mechanisms that are related to iron overload and oxidative damage. Furthermore, we enumerated some countermeasures that have a therapeutic potential for bone loss and muscle atrophy through using iron chelators and antioxidants. Future studies for better understanding the mechanism of iron and redox homeostasis imbalance induced by the space environment and developing the countermeasures against iron overload and oxidative damage consequently may facilitate human to travel more safely in space.
Collapse
Affiliation(s)
- Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Gejing Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Dandan Dong
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Peng Shang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen 518057, China.
| |
Collapse
|