1
|
Chen N, Danalache M, Liang C, Alexander D, Umrath F. Mechanosignaling in Osteoporosis: When Cells Feel the Force. Int J Mol Sci 2025; 26:4007. [PMID: 40362247 PMCID: PMC12071322 DOI: 10.3390/ijms26094007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/15/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Bone is a highly mechanosensitive tissue, where mechanical signaling plays a central role in maintaining skeletal homeostasis. Mechanotransduction regulates the balance between bone formation and resorption through coordinated interactions among bone cells. Key mechanosensing structures-including the extracellular/pericellular matrix (ECM/PCM), integrins, ion channels, connexins, and primary cilia, translate mechanical cues into biochemical signals that drive bone adaptation. Disruptions in mechanotransduction are increasingly recognized as an important factor in osteoporosis. Under pathological conditions, impaired mechanical signaling reduces bone formation and accelerates bone resorption, leading to skeletal fragility. Defects in mechanotransduction disrupt key pathways involved in bone metabolism, further exacerbating bone loss. Therefore, targeting mechanotransduction presents a promising pharmacological strategy for osteoporosis treatment. Recent advances have focused on developing drugs that enhance bone mechanosensitivity by modulating key mechanotransduction pathways, including integrins, ion channels, connexins, and Wnt signaling. A deeper understanding of mechanosignaling mechanisms may pave the way for novel therapeutic approaches aimed at restoring bone mass, mechanical integrity, and mechanosensitive bone adaptation.
Collapse
Affiliation(s)
- Nuo Chen
- Department of Orthopedic Surgery, University Hospital Tübingen, 72072 Tübingen, Germany; (N.C.)
| | - Marina Danalache
- Department of Orthopedic Surgery, University Hospital Tübingen, 72072 Tübingen, Germany; (N.C.)
| | - Chen Liang
- Department of Orthopedic Surgery, University Hospital Tübingen, 72072 Tübingen, Germany; (N.C.)
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany;
| | - Felix Umrath
- Department of Orthopedic Surgery, University Hospital Tübingen, 72072 Tübingen, Germany; (N.C.)
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany;
| |
Collapse
|
2
|
Zhang H, Qiao W, Liu Y, Yao X, Zhai Y, Du L. Addressing the challenges of infectious bone defects: a review of recent advances in bifunctional biomaterials. J Nanobiotechnology 2025; 23:257. [PMID: 40158189 PMCID: PMC11954225 DOI: 10.1186/s12951-025-03295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025] Open
Abstract
Infectious bone defects present a substantial clinical challenge due to the complex interplay between infection control and bone regeneration. These defects often result from trauma, autoimmune diseases, infections, or tumors, requiring a nuanced approach that simultaneously addresses infection and promotes tissue repair. Recent advances in tissue engineering and materials science, particularly in nanomaterials and nano-drug formulations, have led to the development of bifunctional biomaterials with combined osteogenic and antibacterial properties. These materials offer an alternative to traditional bone grafts, minimizing complications such as multiple surgeries, high antibiotic dosages, and lengthy recovery periods. This review examines the repair mechanisms in the infectious microenvironment and highlights various bifunctional biomaterials that foster both anti-infective and osteogenic processes. Emerging design strategies are also discussed to provide a forward-looking perspective on treating infectious bone defects with clinically significant outcomes.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Wenyu Qiao
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yu Liu
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, 201508, China
| | - Xizhou Yao
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yonghua Zhai
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| | - Longhai Du
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
3
|
Aol L, Zhou X, Hao H, Nie J, Zhang W, Yao D, Su L, Xue W. LncRNAs modulating tooth development and alveolar resorption: Systematic review. Heliyon 2024; 10:e39895. [PMID: 39524731 PMCID: PMC11550122 DOI: 10.1016/j.heliyon.2024.e39895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/30/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Tooth development is an intricate process that encompasses cellular activities, molecular signaling pathways, and gene expression patterns. Disruptions in any of the processes can lead to structural anomalies, impairments in function, and increased vulnerability to oral disorders. Alveolar resorption, which refers to the pathological loss of alveolar bone around teeth, poses a substantial clinical problem in periodontal disorders such as periodontitis. Long non-coding RNAs (LncRNAs) have been implicated in the regulation of these physiological and pathological processes, and they exert their impact on gene expression through both transcriptional and post-transcriptional mechanisms. However, they also interact with certain microRNAs (mi-RNAs), thereby modulating the expression of downstream genes that are involved in tooth development. An exemplar is lncRNA ZFAS1, which has been demonstrated to regulate gene expression and impact these physiological and pathological processes. As a result, lncRNAs contribute to these processes by interacting with chromatin regulators, RNA enhancers, mi-RNAs, and their modulating signaling pathways involved in tooth development and alveolar resorption. Taken together, this review explores and gives a systematic account of the recent research findings that enhance our understanding of the molecular mechanisms that drive these processes and their potential consequences for the remodeling of teeth and bones in the oral cavity.
Collapse
Affiliation(s)
- Lilliane Aol
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xinhong Zhou
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hong Hao
- Affiliated Hospital of Huazhong University of Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiaqi Nie
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wanjun Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dunjie Yao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Li Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wanlin Xue
- Affiliated Hospital of Huazhong University of Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
4
|
Saygın Öğüt T, Erbasan F, Şahiner MF, Nokay M, Yörük Öğüt A, Dilbil M, Terzioğlu ME, Yazısız V. Difficult-to-treat axial spondyloarthritis patients. Arch Rheumatol 2024; 39:419-428. [PMID: 39507846 PMCID: PMC11537689 DOI: 10.46497/archrheumatol.2024.10567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/26/2024] [Indexed: 11/08/2024] Open
Abstract
Objectives This study aimed to formulate D2T (difficult to treat) criteria for axial spondyloarthritis (AxSpA) patients and identify the prevalence of D2T patients and their characteristics. Patients and methods The cross-sectional study was conducted with 166 AxSpA patients (93 males, 73 females; mean age: 47.1±12.9 years; range, 19 to 78 years) between February 2023 and March 2023. The criteria were based on patients treated according to the European Alliance of Associations for Rheumatology (EULAR) recommendations for AxSpA. Entry criteria were treatment failure to ≥2 biological/targeted synthetic disease-modifying antirheumatic drugs with two different mechanisms of action or ≥3 biological/targeted synthetic disease-modifying antirheumatic drugs. Potential preliminary factors for D2T criteria were analyzed, and the characteristics of the subjects matching D2T criteria were compared with those of others. Results One hundred forty-two ankylosing spondylitis patients and 24 nonradiographic AxSpA patients were included in the study. The rate of fulfilling the D2T criteria was 22.9% (n=38) among AxsPA patients treated with biological agents. The potential D2T criteria were met by 23.2% of ankylosing spondylitis and 20.8% of nonradiographic AxSpA patients. Baseline characteristics, such as sex, age, diagnosis age, occupation, and education, of D2T patients were not statistically different from other patients. The prevalence of fibromyalgia was higher in D2T patients (p<0.001). Disease activity indices and acute phase response indicators were higher and quality of life was worse in D2T patients. Conclusion There was a considerable amount of AxSpA patients fulfilling the D2T criteria despite new and effective treatment agents.
Collapse
Affiliation(s)
- Tahir Saygın Öğüt
- Department of Internal Medicine, Division of Rheumatology, Akdeniz University Faculty of Medicine, Antalya, Türkiye
| | - Funda Erbasan
- Department of Internal Medicine, Division of Rheumatology, Akdeniz University Faculty of Medicine, Antalya, Türkiye
| | - Mehmet Fatih Şahiner
- Department of Internal Medicine, Akdeniz University Faculty of Medicine, Antalya, Türkiye
| | - Mine Nokay
- Department of Internal Medicine, Division of Rheumatology, Akdeniz University Faculty of Medicine, Antalya, Türkiye
| | - Ayşe Yörük Öğüt
- Department of Internal Medicine, Antalya Training and Research Hospital, Antalya, Türkiye
| | - Melis Dilbil
- Department of Internal Medicine, Division of Rheumatology, Akdeniz University Faculty of Medicine, Antalya, Türkiye
| | - Mustafa Ender Terzioğlu
- Department of Internal Medicine, Division of Rheumatology, Akdeniz University Faculty of Medicine, Antalya, Türkiye
| | - Veli Yazısız
- Department of Internal Medicine, Division of Rheumatology, Akdeniz University Faculty of Medicine, Antalya, Türkiye
| |
Collapse
|
5
|
Cao N, Wan Z, Chen D, Tang L. Deciphering peri-implantitis: Unraveling signature genes and immune cell associations through bioinformatics and machine learning. Medicine (Baltimore) 2024; 103:e37862. [PMID: 38640305 PMCID: PMC11030017 DOI: 10.1097/md.0000000000037862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/21/2024] Open
Abstract
Early diagnosis of peri-implantitis (PI) is crucial to understand its pathological progression and prevention. This study is committed to investigating the signature genes, relevant signaling pathways and their associations with immune cells in PI. We analyzed differentially expressed genes (DEGs) from a PI dataset in the gene expression omnibus database. Functional enrichment analysis was conducted for these DEGs. Weighted Gene Co-expression Network Analysis was used to identify specific modules. Least absolute shrinkage and selection operator and support vector machine recursive feature elimination were ultimately applied to identify the signature genes. These genes were subsequently validated in an external dataset. And the immune cells infiltration was classified using CIBERSORT. A total of 180 DEGs were screened from GSE33774. Weighted Gene Co-expression Network Analysis revealed a significant association between the MEturquoise module and PI (cor = 0.6, P < .0001). Least absolute shrinkage and selection operator and support vector machine recursive feature elimination algorithms were applied to select the signature genes, containing myeloid-epithelial-reproductive tyrosine kinase, microfibrillar-associated protein 5, membrane-spanning 4A 4A, tribbles homolog 1. In the validation on the external dataset GSE106090, all these genes achieved area under curve values exceeding 0.95. GSEA analysis showed that these genes were correlated with the NOD-like receptor signaling pathway, metabolism of xenobiotics by cytochrome P450, and arachidonic acid metabolism. CIBERSORT revealed elevated levels of macrophage M2 and activated mast cells in PI. This study provides novel insights into understanding the molecular mechanisms of PI and contributes to advancements in its early diagnosis and prevention.
Collapse
Affiliation(s)
- Ning Cao
- Department of Implant Dentistry, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, China
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Ziwei Wan
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, China
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Donghui Chen
- Department of Implant Dentistry, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, China
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Li Tang
- Department of Implant Dentistry, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, China
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| |
Collapse
|
6
|
Lu Y, Lu D, Zhang H, Li H, Yu B, Zhang Y, Hu H, Sheng H. Causality between Ankylosing Spondylitis and osteoarthritis in European ancestry: a bidirectional Mendelian randomization study. Front Immunol 2024; 15:1297454. [PMID: 38380324 PMCID: PMC10876785 DOI: 10.3389/fimmu.2024.1297454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Objective To explore the bidirectional causal relationship between Ankylosing Spondylitis (AS) and Osteoarthritis (OA) at the genetic level within the European ancestry. Methods We implemented a series of quality control steps to select instrumental variables (IVs) related to the exposure. We conducted two-sample Mendelian randomization (MR) using the inverse-variance weighted method as the primary approach. We adjusted significance levels using Bonferroni correction, assessed heterogeneity using Cochrane's Q test. Sensitivity analysis was conducted through leave-one-out method. Additionally, external datasets and relaxed IV selection criteria were employed, and multivariate MR analyses were performed for validation purposes. Finally, Bayesian colocalization (COLOC) analysis identified common genes, validating the MR results. Results The investigation focused on the correlation between OA and AS in knee, hip, and hand joints. MR results revealed that individuals with AS exhibit a decreased risk of knee OA (OR = 0.9882, 95% CI: 0.9804-0.9962) but no significant increase in the risk of hip OA (OR = 0.9901, 95% CI: 0.9786-1.0018). Conversely, AS emerged as a risk factor for hand OA (OR = 1.0026, 95% CI: 1.0015-1.0036). In reverse-direction MR analysis, OA did not significantly influence the occurrence of AS. Importantly, minimal heterogeneity was observed in our MR analysis results (p > 0.05), and the robustness of these findings was confirmed through sensitivity analysis and multivariate MR analysis. COLOC analysis identified four colocalized variants for AS and hand OA (rs74707996, rs75240935, rs181468789, and rs748670681). Conclusion In European population, individuals with AS have a relatively lower risk of knee OA, whereas AS serves as a risk factor for hand OA. However, no significant causal relationship was found between AS and hip OA. Additionally, it offers novel insights into genetic research on AS and OA.
Collapse
Affiliation(s)
- Yangguang Lu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Di Lu
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Hongzhi Zhang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Haoyang Li
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Bohuai Yu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yige Zhang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Hantao Hu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Hongfeng Sheng
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
7
|
Al Saedi A, Yacoub AS, Awad K, Karasik D, Brotto M, Duque G. The Interplay of Lipid Signaling in Musculoskeletal Cross Talk: Implications for Health and Disease. Methods Mol Biol 2024; 2816:1-11. [PMID: 38977583 DOI: 10.1007/978-1-0716-3902-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The intricate interplay between the muscle and bone tissues is a fundamental aspect of musculoskeletal physiology. Over the past decades, emerging research has highlighted the pivotal role of lipid signaling in mediating communication between these tissues. This chapter delves into the multifaceted mechanisms through which lipids, particularly phospholipids, sphingolipids, and eicosanoids, participate in orchestrating cellular responses and metabolic pathways in both muscle and bone. Additionally, we examine the clinical implications of disrupted lipid signaling in musculoskeletal disorders, offering insights into potential therapeutic avenues. This chapter aims to shed light on the complex lipid-driven interactions between the muscle and bone tissues, paving the way for a deeper understanding of musculoskeletal health and disease.
Collapse
Affiliation(s)
- Ahmed Al Saedi
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Ahmed S Yacoub
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - Kamal Awad
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - Gustavo Duque
- Research Institute of McGill University Health Center, Department of Medicine, McGill University, Québec, Canada
| |
Collapse
|
8
|
Wu Y, Wu J, Huang X, Zhu X, Zhi W, Wang J, Sun D, Chen X, Zhu X, Zhang X. Accelerated osteogenesis of bone graft by optimizing the bone microenvironment formed by electrical signals dependent on driving micro vibration stimulation. Mater Today Bio 2023; 23:100891. [PMID: 38149016 PMCID: PMC10750112 DOI: 10.1016/j.mtbio.2023.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023] Open
Abstract
The strategy of coupling the micro-vibration mechanical field with Ca/P ceramics to optimize the osteogenic microenvironment and enhance the functional activity of the cells can significantly improve the bone regeneration of the graft. However, the regulation mode and mechanism of this coupling strategy are not fully understood at present. This study investigated the influence of different waveforms of the electrical signals driving Microvibration Stimulation (MVS) on this coupling effect. The results showed that there were notable variances in calcium phosphate dissolution and redeposition, protein adsorption, phosphorylation of ERK1/2 and FAK signal pathways and activation of calcium channels such as TRPV1/Piezo1/Piezo2 in osteogenic microenvironment under the coupling action of hydroxyapatite (HA) ceramics and MVS driven by different electrical signal waveforms. Ultimately, these differences affected the osteogenic differentiation process of cells by a way of time-sequential regulation. Square wave-MVS coupled with HA ceramic can significantly delay the high expression time of characteristic genes (such as Runx2, Col-I and OCN) in MC3T3-E1 cells during in vitro the early, middle and late stage of differentiation, while maintain the high proliferative activity of MC3T3-E1 cells. Triangle wave signal-MVS coupled with HA ceramic promoted the osteogenic differentiation of cells in the early and late stages. Sine wave-MVS shows the effect on the process of osteogenic differentiation in the middle stage (such as the up-regulation of ALP synthesis and Col-I gene expression in the early stage of stimulation). In addition, Square wave-MVS showed the best coupling effect. The bone graft constructed under square wave-MVS formed new bone tissue and mature blood vessels only 2 weeks after subcutaneous implantation in nude mice. Our study provides a new non-invasive regulation model for precisely optimizing the osteogenic microenvironment, which can accelerate bone regeneration in bone grafts more safely, accurately and reliably.
Collapse
Affiliation(s)
- Yuehao Wu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jinjie Wu
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Xu Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiupeng Zhu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wei Zhi
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianxin Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Dong Sun
- Department of Orthopaedics, First Affiliated Hospital, Third Military Medical University (Army Medical University), Gaotanyan No.30, 400038, Chongqing, China
| | - Xuening Chen
- College of Biomedical Engineering Sichuan University Chengdu, 610064, China
| | - Xiangdong Zhu
- College of Biomedical Engineering Sichuan University Chengdu, 610064, China
| | - Xingdong Zhang
- College of Biomedical Engineering Sichuan University Chengdu, 610064, China
| |
Collapse
|
9
|
Ribeiro KHC, da Silva RBP, Roseno ACB, Barreto AJM, Bacelar ACZ, Ervolino E, Duarte MAH, Fakhouri WD, Chaves-Neto AH, Biguetti CC, Matsumoto MA. Dose-response effect of Montelukast on post-extraction dental socket repair and skeletal phenotype of mice. Odontology 2023; 111:891-903. [PMID: 36920595 DOI: 10.1007/s10266-023-00800-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
Bone metabolism and repair are directly regulated by arachidonic acid metabolites. At present, we analyzed the dose-response effects of a selective cysteinyl leukotriene receptor type-1 antagonist during bone repair after tooth extraction and on non-injured skeleton. Sixty-three 129 Sv/Ev male mice composed the groups: C-Control (saline solution); MTK2-2 mg/Kg of Montelukast (MTK) and MTK4-4 mg/Kg of MTK, daily administered by mouth throughout all experimental periods set at 7, 14, and 21 days post-operative. Dental sockets were analyzed by computed microtomography (microCT), histopathology, and immunohistochemistry. Femurs, L5 vertebra and organs were also removed for observation. Blood was collected for plasma bone and liver markers. Histopathology and microCT analysis revealed early socket repair of MTK2 and MTK4 animals, with significant increased BV/TV at days 14 and 21 compared to C. Higher plasma calcium was detected at days 7 and 21 in MTK4 in comparison to C, while phosphate was significantly increased in MTK2 in the same periods in comparison to C and MTK4. No significant differences were found regarding plasma ALP and TRAP, neither for local TRAP and Runx2 immunolabeling at the healing sockets. Organs did not present histological abnormalities. Increased AST levels have been detected in distinct groups and periods. In general, femur phenotype was improved in MTK treated animals. Collectively, MTK promoted early bone formation after tooth extraction and increased bone quality of femurs and vertebra in a time-dose-dependent manner, and should be considered as an alternative therapy when improved post-extraction socket repair or skeleton preservation is required.
Collapse
Affiliation(s)
- Kim Henderson Carmo Ribeiro
- Department of Oral Surgery and Dental Clinics, Araçatuba School of Dentistry, São Paulo State University-Unesp, Rua José Bonifácio 1192, Araçatuba, São Paulo, CEP 160188-05, Brazil
| | - Raquel Barroso Parra da Silva
- Department of Oral Surgery and Dental Clinics, Araçatuba School of Dentistry, São Paulo State University-Unesp, Rua José Bonifácio 1192, Araçatuba, São Paulo, CEP 160188-05, Brazil
| | - Ana Carolyna Becher Roseno
- Department of Basic Sciences, Araçatuba School of Dentistry, SãoPauloStateUniversity-Unesp, Rua José Bonifácio 1192, CEP 160188-05, Araçatuba, São Paulo, Brasil
| | - Ana Julia Moreno Barreto
- Department of Basic Sciences, Araçatuba School of Dentistry, SãoPauloStateUniversity-Unesp, Rua José Bonifácio 1192, CEP 160188-05, Araçatuba, São Paulo, Brasil
| | - Ana Carolina Zucon Bacelar
- Department of Oral Surgery and Dental Clinics, Araçatuba School of Dentistry, São Paulo State University-Unesp, Rua José Bonifácio 1192, Araçatuba, São Paulo, CEP 160188-05, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, Araçatuba School of Dentistry, SãoPauloStateUniversity-Unesp, Rua José Bonifácio 1192, CEP 160188-05, Araçatuba, São Paulo, Brasil
| | - Marco Antônio Húngaro Duarte
- Department of DentistryEndodontics and Dental MaterialsSchool of Dentistry, University of São Paulo, Alameda Otávio Pinheiro Brisola, 9-20, BauruBauru, São Paulo, CEP 7012-901, Brazil
| | - Walid D Fakhouri
- School of Dentistry, The University of Texas at Health Science Center at Houston (UTH), 1941 East Road, Houston, TX, 77054, USA
| | - Antonio Hernandes Chaves-Neto
- Department of Basic Sciences, Araçatuba School of Dentistry, SãoPauloStateUniversity-Unesp, Rua José Bonifácio 1192, CEP 160188-05, Araçatuba, São Paulo, Brasil
| | - Cláudia Cristina Biguetti
- School of Podiatric Medicine, The University of Texas at Rio Grande Valley (UTRGV), 2120 Treasure Hills Blvd. Harlingen, Harlingen, TX, 78550, USA
| | - Mariza Akemi Matsumoto
- Department of Basic Sciences, Araçatuba School of Dentistry, SãoPauloStateUniversity-Unesp, Rua José Bonifácio 1192, CEP 160188-05, Araçatuba, São Paulo, Brasil.
| |
Collapse
|
10
|
Lindsay SE, Philipp T, Ryu WHA, Wright C, Yoo J. Nonsteroidal Anti-inflammatory Drugs in the Acute Post-operative Period Are Associated With an Increased Incidence of Pseudarthrosis, Hardware Failure, and Revision Surgery Following Single-level Spinal Fusion. Spine (Phila Pa 1976) 2023; 48:1057-1063. [PMID: 37134137 DOI: 10.1097/brs.0000000000004695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/24/2023] [Indexed: 05/04/2023]
Abstract
STUDY DESIGN Retrospective study. SUMMARY OF BACKGROUND DATA Research has shown that the use of NSAIDs and COX-2 inhibitors increases the risk of pseudoarthrosis following spinal fusion surgery. Pseudoarthrosis can lead to complications such as chronic pain and the need for additional surgeries. OBJECTIVE The purpose of this study was to examine the relationship between NSAID and COX-2 inhibitor use and pseudarthrosis, hardware complications, and revision surgeries in patients undergoing posterior spinal instrumentation and fusion. METHODS We queried the PearlDiver database using CPT and ICD-10 codes to identify patients between the ages of 50 and 85 who underwent posterior spinal instrumentation between 2016 and 2019 and experienced pseudarthrosis, hardware failure, or revision surgery. Information regarding age, Charlson Comorbidity Index, tobacco use, osteoporosis, and obesity were extracted from the database along with COX-2 or NSAID use during the first 6-week post-surgery period. Logistic regression was used to identify associations while adjusting for confounders. RESULTS There were 178,758 patients included in the cohort; 9,586 experienced pseudarthrosis (5.36%), 2828 (1.58%) experienced hardware failure, and 10,457 (5.85%) patients underwent revision fusion surgery. Of these patients 23,602 (13.2%) filled NSAID and 5278 (2.95%) filled COX-2 prescriptions. A significantly higher proportion of patients using NSAIDs experienced pseudarthrosis, hardware failure, and revision surgery compared to patients not taking NSAIDs. COX-2 inhibitors were also associated with a significantly higher rate of pseudarthrosis, hardware failure, and revision surgery. Postoperative ketorolac use was not associated with these complications. Regression models demonstrated that both NSAIDs and COX-2 inhibitors were associated with statistically higher pseudarthrosis, hardware failure, and revision surgery rates. CONCLUSIONS Both NSAID and COX-2 inhibitor use in the early post-surgical period may be associated with increased rates of pseudarthrosis, hardware failure, and revision surgery in patients undergoing posterior spinal instrumentation and fusion.
Collapse
Affiliation(s)
- Sarah E Lindsay
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University
| | - Travis Philipp
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University
| | - Won Hyung A Ryu
- Department of Neurosurgery, Oregon Health & Science University, Portland, OR
| | - Christina Wright
- Department of Neurosurgery, Oregon Health & Science University, Portland, OR
| | - Jung Yoo
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University
| |
Collapse
|
11
|
Sheng X, Li C, Wang Z, Xu Y, Sun Y, Zhang W, Liu H, Wang J. Advanced applications of strontium-containing biomaterials in bone tissue engineering. Mater Today Bio 2023; 20:100636. [PMID: 37441138 PMCID: PMC10333686 DOI: 10.1016/j.mtbio.2023.100636] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 07/15/2023] Open
Abstract
Strontium (Sr) and strontium ranelate (SR) are commonly used therapeutic drugs for patients suffering from osteoporosis. Researches have showed that Sr can significantly improve the biological activity and physicochemical properties of materials in vitro and in vivo. Therefore, a large number of strontium containing biomaterials have been developed for repairing bone defects and promoting osseointegration. In this review, we provide a comprehensive overview of Sr-containing biomaterials along with the current state of their clinical use. For this purpose, the different types of biomaterials including calcium phosphate, bioactive glass, and polymers are discussed and provided future outlook on the fabrication of the next-generation multifunctional and smart biomaterials.
Collapse
Affiliation(s)
| | | | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Yu Xu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Yang Sun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Weimin Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| |
Collapse
|
12
|
Zhang Z, Yang X, Cao X, Qin A, Zhao J. Current applications of adipose-derived mesenchymal stem cells in bone repair and regeneration: A review of cell experiments, animal models, and clinical trials. Front Bioeng Biotechnol 2022; 10:942128. [PMID: 36159705 PMCID: PMC9490047 DOI: 10.3389/fbioe.2022.942128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
In the field of orthopaedics, bone defects caused by severe trauma, infection, tumor resection, and skeletal abnormalities are very common. However, due to the lengthy and painful process of related surgery, people intend to shorten the recovery period and reduce the risk of rejection; as a result, more attention is being paid to bone regeneration with mesenchymal stromal cells, one of which is the adipose-derived mesenchymal stem cells (ASCs) from adipose tissue. After continuous subculture and cryopreservation, ASCs still have the potential for multidirectional differentiation. They can be implanted in the human body to promote bone repair after induction in vitro, solve the problems of scarce sources and large damage, and are expected to be used in the treatment of bone defects and non-union fractures. However, the diversity of its differentiation lineage and the lack of bone formation potential limit its current applications in bone disease. Here, we concluded the current applications of ASCs in bone repair, especially with the combination and use of physical and biological methods. ASCs alone have been proved to contribute to the repair of bone damage in vivo and in vitro. Attaching to bone scaffolds or adding bioactive molecules can enhance the formation of the bone matrix. Moreover, we further evaluated the efficiency of ASC-committed differentiation in the bone in conditions of cell experiments, animal models, and clinical trials. The results show that ASCs in combination with synthetic bone grafts and biomaterials may affect the regeneration, augmentation, and vascularization of bone defects on bone healing. The specific conclusion of different materials applied with ASCs may vary. It has been confirmed to benefit osteogenesis by regulating osteogenic signaling pathways and gene transduction. Exosomes secreted by ASCs also play an important role in osteogenesis. This review will illustrate the understanding of scientists and clinicians of the enormous promise of ASCs’ current applications and future development in bone repair and regeneration, and provide an incentive for superior employment of such strategies.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai, China
| | - Xiao Yang
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiankun Cao
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - An Qin
- Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: An Qin, ; Jie Zhao,
| | - Jie Zhao
- Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: An Qin, ; Jie Zhao,
| |
Collapse
|
13
|
Ding R, Lu C, Zhao J, He D. Heterotopic ossification after alloplastic temporomandibular joint replacement: a case cohort study. BMC Musculoskelet Disord 2022; 23:638. [PMID: 35787680 PMCID: PMC9252052 DOI: 10.1186/s12891-022-05582-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Heterotopic ossification (HO) is one of the serious complications leading to the failure of alloplastic temporomandibular joint replacement (TJR). However, there was few research on its exact incidence and occurrence. Severe HO might result in pain and limited mouth opening after surgery. Therefore, it is necessary to clarify its clinical and imaging manifestations. The purpose of this study was to study the occurrence and classify HO after the alloplastic TJR. Method Patients who underwent standard TJR (Zimmer Biomet stock prostheses or Chinese stock prostheses) with fat graft and at least 1-year-follow-up were included. HO was classified into 4 types according to postoperative computed tomography (CT) scans. Type and occurrence in different TMJ disease were compared. Joint space within 1 week after operation was measured and compared between HO and non-HO TJRs. Maximum incisal opening (MIO), pain, and quality of life (QoL) were recorded and their relevance with HO was analyzed statistically. Result 81cases with 101 joints were included in the study. The mean follow-up time was 22.9 months (12 ~ 56 months). Among the 48 joints, 27 (56.3%) were type I (bone islands); 16 (33.3%) were type II (bone spurs from the mandibular ramus); 3 (6.3%) were type III (bone spurs from the fossa); and 2 (4.2%) were type IV (bone spurs from both the mandibular ramus and fossa). In HO patients, joint space in type IV was smaller than the other 3 types. Pain scores in HO were significantly greater than non-HO patients before and after operations (p < 0.05). 1 patient in Type IV HO developed ankylosis and had prosthesis revision which accounted for 2.1% in HO patients and 1.0% in all TJR patients. Conclusion HO after alloplastic TJR with fat graft was not severe except for type IV, which was easy to cause ankylosis. Preserving sufficient TJR space was important for ankylosis prevention.
Collapse
Affiliation(s)
- Ruoyi Ding
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Huang Pu District, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No. 639 Zhi Zao Ju Road, Huang Pu District, Shanghai, 200011, China.,National Clinical Research Center of Stomatology, No. 639 Zhi Zao Ju Road, Huang Pu District, Shanghai, 200011, China
| | - Chuan Lu
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Huang Pu District, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No. 639 Zhi Zao Ju Road, Huang Pu District, Shanghai, 200011, China.,National Clinical Research Center of Stomatology, No. 639 Zhi Zao Ju Road, Huang Pu District, Shanghai, 200011, China
| | - Jieyun Zhao
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Huang Pu District, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No. 639 Zhi Zao Ju Road, Huang Pu District, Shanghai, 200011, China.,National Clinical Research Center of Stomatology, No. 639 Zhi Zao Ju Road, Huang Pu District, Shanghai, 200011, China
| | - Dongmei He
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Huang Pu District, Shanghai, 200011, China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No. 639 Zhi Zao Ju Road, Huang Pu District, Shanghai, 200011, China. .,National Clinical Research Center of Stomatology, No. 639 Zhi Zao Ju Road, Huang Pu District, Shanghai, 200011, China.
| |
Collapse
|
14
|
How Do Drugs Affect the Skeleton? Implications for Forensic Anthropology. BIOLOGY 2022; 11:biology11040524. [PMID: 35453723 PMCID: PMC9030599 DOI: 10.3390/biology11040524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 03/18/2022] [Indexed: 01/10/2023]
Abstract
Simple Summary Forensic anthropologists analyze human remains to assist in the identification of the deceased, predominantly by assessing age-at-death, sex, stature, ancestry and any unique identifying features. Whilst methods have been established to create this biological profile of the skeleton, these may be influenced by a number of factors. This paper, for the first time, provides an overview from a reading of the clinical and pharmacological literature to explore whether the intake of drugs can affect the skeleton and whether these may have implications for forensic anthropology casework. In effect, drugs such as tobacco, heroin, and prescription medications can alter bone mineral density, can increase the risk of fractures, destroy bone and changes to the dentition. By considering how drugs can affect the skeleton, forensic anthropologists can be aware of this when attempting to identify the deceased. Abstract Forensic anthropologists rely on a number of parameters when analyzing human skeletal remains to assist in the identification of the deceased, predominantly age-at-death, sex, stature, ancestry or population affinity, and any unique identifying features. During the examination of human remains, it is important to be aware that the skeletal features considered when applying anthropological methods may be influenced and modified by a number of factors, and particular to this article, prescription drugs (including medical and non-medical use) and other commonly used drugs. In view of this, this paper aims to review the medical, clinical and pharmacological literature to enable an assessment of those drug groups that as side effects have the potential to have an adverse effect on the skeleton, and explore whether or not they can influence the estimation of age-at-death, sex and other indicators of the biological profile. Moreover, it may be that the observation of certain alterations or inconsistencies in the skeleton may relate to the use of drugs or medication, and this in turn may help narrow down the list of missing persons to which a set of human remains could belong. The information gathered from the clinical and medical literature has been extracted with a forensic anthropological perspective and provides an awareness on how several drugs, such as opioids, cocaine, corticosteroids, non-steroidal anti-inflammatory drugs, alcohol, tobacco and others have notable effects on bone. Through different mechanisms, drugs can alter bone mineral density, causing osteopenia, osteoporosis, increase the risk of fractures, osteonecrosis, and oral changes. Not much has been written on the influence of drugs on the skeleton from the forensic anthropological practitioner perspective; and this review, in spite of its limitations and the requirement of further research, aims to investigate the current knowledge of the possible effects of both prescription and recreational drugs on bones, contributing to providing a better awareness in forensic anthropological practice and assisting in the identification process of the deceased.
Collapse
|
15
|
Abstract
Diagnosis and management of axial spondyloarthritis (axSpA) has vastly improved over the past two decades. With advances in the discernment of immunopathogenesis of this disease, new therapies have become available, which are associated with substantial improvement in symptoms, signs and quality of life. The four broad categories of approved treatment options are physical therapy and exercise (which have been known to be beneficial for millennia), NSAIDs (since the 1950s), TNF inhibitors (first FDA approval in 2003) and IL-17 inhibitors (first FDA approval in 2016). In addition, there have been a host of new developments in the axSpA field, including new treatment guidelines, the FDA approval of three biologic DMARDs to treat non-radiographic axSpA, the FDA and EMA approval of Janus kinase (JAK) inhibitors for ankylosing spondylitis, new data on the effect of biologic DMARDs on structural progression in ankylosing spondylitis, strategy trials on tapering or stopping TNF inhibitors in patients in remission, trials of treat-to-target strategy in axSpA, and several new molecules in phase III studies. This Review explores the developments in the management of axSpA.
Collapse
|
16
|
Pang Q, Xu Y, Huang L, Li Y, Lin Y, Hou Y, Hung VW, Qi X, Ni X, Li M, Jiang Y, Wang O, Xing X, Qin L, Xia W. Bone Geometry, Density, Microstructure, and Biomechanical Properties in the Distal Tibia in Patients With Primary Hypertrophic Osteoarthropathy Assessed by Second-Generation High-Resolution Peripheral Quantitative Computed Tomography. J Bone Miner Res 2022; 37:484-493. [PMID: 34894003 DOI: 10.1002/jbmr.4488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 11/28/2021] [Accepted: 12/08/2021] [Indexed: 11/11/2022]
Abstract
Periosteosis refers to pathological woven bone formation beneath the cortical bone of the long bones. It is an imaging hallmark of primary hypertrophic osteoarthropathy (PHO) and also considered as one of the major diagnostic criteria of PHO patients. Up to date, detailed information on bone quality changes in long bones of PHO patients is still missing. This study aimed to evaluate bone microarchitecture and bone strength in PHO patients by using high-resolution peripheral quantitative computed tomography (HR-pQCT). The study comprised 20 male PHO patients with the average age of 27.0 years and 20 age- and sex-matched healthy controls. The areal bone mineral density (aBMD) was assessed at the lumbar spine (L1 -L4 ) and hip (total hip and femoral neck) by dual-energy X-ray absorptiometry (DXA). Bone geometry, volumetric bone mineral density (vBMD), and microstructure parameters at the distal tibia were evaluated by using HR-pQCT. Bone strength was evaluated by finite element analysis (FEA) based on HR-pQCT screening at distal tibia. Urinary prostaglandin E2 (PGE2 ), serum phosphatase (ALP), beta-C-telopeptides of type I collagen (β-CTX), soluble receptor activator of nuclear factor-κB ligand (sRANKL), osteoprotegerin (OPG), and neuronal calcitonin gene-related peptide (CGRP) were investigated. As compared with healthy controls, PHO patients had larger bone cross-sectional areas; lower total, trabecular, and cortical vBMD; compromised bone microstructures with more porous cortices, thinned trabeculae, reduced trabecular connectivity, and relatively more significant resorption of rod-like trabeculae at distal tibia. The apparent Young's modulus was significantly lower in PHO patients. The concentration of PGE2 , biomarkers of bone resorption (β-CTX and sRANKL/OPG ratio), and the neuropeptide CGRP were higher in PHO patients versus healthy controls. PGE2 level correlated negatively with vBMD and estimated bone strength and positively with bone geometry at distal tibia. The present HR-pQCT study is the first one illustrating the microarchitecture and bone strength features in long bones. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Qianqian Pang
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Musculoskeletal Research Laboratory and Bone Quality and Health Assessment Centre, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Yuping Xu
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Le Huang
- Musculoskeletal Research Laboratory and Bone Quality and Health Assessment Centre, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Ye Li
- Musculoskeletal Research Laboratory and Bone Quality and Health Assessment Centre, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Yuanyuan Lin
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanfang Hou
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Vivian W Hung
- Musculoskeletal Research Laboratory and Bone Quality and Health Assessment Centre, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Xuan Qi
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaolin Ni
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Qin
- Musculoskeletal Research Laboratory and Bone Quality and Health Assessment Centre, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Palanisamy P, Alam M, Li S, Chow SKH, Zheng Y. Low-Intensity Pulsed Ultrasound Stimulation for Bone Fractures Healing: A Review. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:547-563. [PMID: 33949710 PMCID: PMC9290611 DOI: 10.1002/jum.15738] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/04/2021] [Accepted: 04/18/2021] [Indexed: 05/17/2023]
Abstract
Low-intensity pulsed ultrasound (LIPUS) is a developing technology, which has been proven to improve fracture healing process with minimal thermal effects. This noninvasive treatment accelerates bone formation through various molecular, biological, and biomechanical interactions with tissues and cells. Although LIPUS treatment has shown beneficial effects on different bone fracture locations, only very few studies have examined its effects on deeper bones. This study provides an overview on therapeutic ultrasound for fractured bones, possible mechanisms of action, clinical evidences, current limitations, and its future prospects.
Collapse
Affiliation(s)
- Poornima Palanisamy
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongS.A.RChina
| | - Monzurul Alam
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongS.A.RChina
| | - Shuai Li
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongS.A.RChina
| | - Simon K. H. Chow
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong KongS.A.RChina
| | - Yong‐Ping Zheng
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongS.A.RChina
| |
Collapse
|
18
|
Vater C, Mehnert E, Bretschneider H, Bolte J, Findeisen L, Matuszewski LM, Zwingenberger S. Dose-Dependent Effects of a Novel Selective EP 4 Prostaglandin Receptor Agonist on Treatment of Critical Size Femoral Bone Defects in a Rat Model. Biomedicines 2021; 9:biomedicines9111712. [PMID: 34829941 PMCID: PMC8615441 DOI: 10.3390/biomedicines9111712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022] Open
Abstract
Difficulties in treating pseudarthrosis and critical bone defects are still evident in physicians’ clinical routines. Bone morphogenetic protein 2 (BMP-2) has shown promising osteoinductive results but also considerable side effects, not unexpected given that it is a morphogen. Thus, the bone regenerative potential of the novel selective, non-morphogenic EP4 prostaglandin receptor agonist KMN-159 was investigated in this study. Therefore, mineralized collagen type-1 matrices were loaded with different amounts of BMP-2 or KMN-159 and implanted into a 5 mm critical-sized femoral defect in rats. After 12 weeks of observation, micro-computed tomography scans were performed to analyze the newly formed bone volume (BV) and bone mineral density (BMD). Histological analysis was performed to evaluate the degree of defect healing and the number of vessels, osteoclasts, and osteoblasts. Data were evaluated using Kruskal-Wallis followed by Dunn’s post hoc test. As expected, animals treated with BMP-2, the positive control for this model, showed a high amount of newly formed BV as well as bone healing. For KMN-159, a dose-dependent effect on bone regeneration could be observed up to a dose optimum, demonstrating that this non-morphogenic mechanism of action can stimulate bone formation in this model system.
Collapse
Affiliation(s)
- Corina Vater
- University Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany; (H.B.); (J.B.); (L.F.); (L.-M.M.); (S.Z.)
- Center for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- Correspondence: (C.V.); (E.M.)
| | - Elisabeth Mehnert
- University Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany; (H.B.); (J.B.); (L.F.); (L.-M.M.); (S.Z.)
- Center for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- Correspondence: (C.V.); (E.M.)
| | - Henriette Bretschneider
- University Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany; (H.B.); (J.B.); (L.F.); (L.-M.M.); (S.Z.)
- Center for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Julia Bolte
- University Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany; (H.B.); (J.B.); (L.F.); (L.-M.M.); (S.Z.)
- Center for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Lisa Findeisen
- University Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany; (H.B.); (J.B.); (L.F.); (L.-M.M.); (S.Z.)
- Center for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Lucas-Maximilian Matuszewski
- University Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany; (H.B.); (J.B.); (L.F.); (L.-M.M.); (S.Z.)
- Center for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Stefan Zwingenberger
- University Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany; (H.B.); (J.B.); (L.F.); (L.-M.M.); (S.Z.)
- Center for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
19
|
Liang W, Wu X, Dong Y, Chen X, Zhou P, Xu F. Mechanical stimuli-mediated modulation of bone cell function-implications for bone remodeling and angiogenesis. Cell Tissue Res 2021; 386:445-454. [PMID: 34665321 DOI: 10.1007/s00441-021-03532-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 09/21/2021] [Indexed: 12/20/2022]
Abstract
Bone remodeling, expressed as bone formation and turnover, is a complex and dynamic process closely related to its form and function. Different events, such as development, aging, and function, play a critical role in bone remodeling and metabolism. The ability of the bone to adapt to new loads and forces has been well known and has proven useful in orthopedics and insightful for research in bone and cell biology. Mechanical stimulation is one of the most important drivers of bone metabolism. Interestingly, different types of forces will have specific consequences in bone remodeling, and their beneficial effects can be traced using different biomarkers. In this narrative review, we summarize the major mediators and events in bone remodeling, focusing on the effects of mechanical stimulation on bone metabolism, cell populations, and ultimately, bone health.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan 316000, Zhejiang Province, People's Republic of China.
| | - Xudong Wu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan 316000, Zhejiang Province, People's Republic of China
| | - Yongqiang Dong
- Department of Orthopaedics, Xinchang People's Hospital, Shaoxing, 312500, Zhejiang Province, People's Republic of China
| | - Xuerong Chen
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang Province, People's Republic of China
| | - Ping Zhou
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang Province, People's Republic of China
| | - Fangming Xu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan 316000, Zhejiang Province, People's Republic of China.
| |
Collapse
|
20
|
Flunixin Meglumine Enhanced Bone Fracture Healing in Rabbits Associated with Activation of Early Collagen Deposition and Enhancement of Vascular Endothelial Growth Factor Expression. Animals (Basel) 2021; 11:ani11102834. [PMID: 34679855 PMCID: PMC8532723 DOI: 10.3390/ani11102834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 01/15/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly used postoperative analgesics, antipyretics, and anti-inflammatories, and they help prevent blood clotting. However, most NSAIDs delay bone healing. This study was aimed to investigate bone healing in a rabbit animal model by assessing the ability of flunixin meglumine (FM) and ketoprofen to induce fracture healing by examining histology, radiological changes, and vascular endothelial growth factor (VEGF) immunostaining during bone healing. For this purpose, 24 New Zealand rabbits were assigned to three groups: the control group, the FM group, and the ketoprofen group. Our results revealed that there were no intraoperative complications, and all surviving rabbits achieved full-weight bearing. Significant periosteal reaction and callus formation were confirmed at 2 postoperative weeks. Interestingly, FM enhanced callus formation, bone union, and remodeling in the FM group compared to the control and ketoprofen groups. FM enhanced bone healing through early collagen deposition and marked angiogenesis process activation by increasing the expression of VEGF. Our findings demonstrated, for the first time, the potential imperative action of FM in the bone healing process rather than other NSAIDs in animals.
Collapse
|
21
|
Schug SA. Do NSAIDs Really Interfere with Healing after Surgery? J Clin Med 2021; 10:jcm10112359. [PMID: 34072128 PMCID: PMC8198282 DOI: 10.3390/jcm10112359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Perioperative analgesia should be multimodal to improve pain relief, reduce opioid use and thereby adverse effects impairing recovery. Non-steroidal anti-inflammatory drugs (NSAIDs) are an important non-opioid component of this approach. However, besides potential other adverse effects, there has been a longstanding discussion on the potentially harmful effects of NSAIDs on healing after surgery and trauma. This review describes current knowledge of the effects of NSAIDs on healing of bones, cartilage, soft tissue, wounds, flaps and enteral anastomoses. Overall, animal data suggest some potentially harmful effects, but are contradictory in most areas studied. Human data are limited and of poor quality; in particular, there are only very few good randomized controlled trials (RCTs), but many cohort studies with potential for significant confounding factors influencing the results. The limited human data available are not precluding the use of NSAIDs postoperatively, in particular, short-term for less than 2 weeks. However, well-designed and large RCTs are required to permit definitive answers.
Collapse
Affiliation(s)
- Stephan A Schug
- Anaesthesiology and Pain Medicine, Medical School, University of Western Australia, 6000 Perth, Australia
| |
Collapse
|
22
|
Chen M, Li Y, Huang X, Gu Y, Li S, Yin P, Zhang L, Tang P. Skeleton-vasculature chain reaction: a novel insight into the mystery of homeostasis. Bone Res 2021; 9:21. [PMID: 33753717 PMCID: PMC7985324 DOI: 10.1038/s41413-021-00138-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/18/2020] [Accepted: 12/16/2020] [Indexed: 02/01/2023] Open
Abstract
Angiogenesis and osteogenesis are coupled. However, the cellular and molecular regulation of these processes remains to be further investigated. Both tissues have recently been recognized as endocrine organs, which has stimulated research interest in the screening and functional identification of novel paracrine factors from both tissues. This review aims to elaborate on the novelty and significance of endocrine regulatory loops between bone and the vasculature. In addition, research progress related to the bone vasculature, vessel-related skeletal diseases, pathological conditions, and angiogenesis-targeted therapeutic strategies are also summarized. With respect to future perspectives, new techniques such as single-cell sequencing, which can be used to show the cellular diversity and plasticity of both tissues, are facilitating progress in this field. Moreover, extracellular vesicle-mediated nuclear acid communication deserves further investigation. In conclusion, a deeper understanding of the cellular and molecular regulation of angiogenesis and osteogenesis coupling may offer an opportunity to identify new therapeutic targets.
Collapse
Affiliation(s)
- Ming Chen
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yi Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xiang Huang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ya Gu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Shang Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| |
Collapse
|
23
|
Reich KM, Viitanen P, Apu EH, Tangl S, Ashammakhi N. The Effect of Diclofenac Sodium-Loaded PLGA Rods on Bone Healing and Inflammation: A Histological and Histomorphometric Study in the Femur of Rats. MICROMACHINES 2020; 11:mi11121098. [PMID: 33322731 PMCID: PMC7764049 DOI: 10.3390/mi11121098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/03/2022]
Abstract
Implants made of poly(lactide-co-glycolide) (PLGA) are biodegradable and frequently provoke foreign body reactions (FBR) in the host tissue. In order to modulate the inflammatory response of the host tissue, PLGA implants can be loaded with anti-inflammatory drugs. The aim of this study was to analyze the impact of PLGA 80/20 rods loaded with the diclofenac sodium (DS) on local tissue reactions in the femur of rats. Special emphasis was put on bone regeneration and the presence of multinucleated giant cells (MGCs) associated with FBR. PLGA 80/20 alone and PLGA 80/20 combined with DS was extruded into rods. PLGA rods loaded with DS (PLGA+DS) were implanted into the femora of 18 rats. Eighteen control rats received unloaded PLGA rods. The follow-up period was of 3, 6 and 12 weeks. Each group comprised of six rats. Peri-implant tissue reactions were histologically and histomorphometrically evaluated. The implantation of PLGA and PLGA+DS8 rods induced the formation of a layer of newly formed bone islands parallel to the contour of the implants. PLGA+DS rods tended to reduce the presence of multi-nucleated giant cells (MGCs) at the implant surface. Although it is known that the systemic administration of DS is associated with compromised bone healing, the local release of DS via PLGA rods did not have negative effects on bone regeneration in the femora of rats throughout 12 weeks.
Collapse
Affiliation(s)
- Karoline M. Reich
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Division of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Petrus Viitanen
- Institute of Biomaterials, Tampere University of Technology, 33101 Tampere, Finland;
| | - Ehsanul Hoque Apu
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland;
- Institute for Quantitative Health Science and Engineering, Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Stefan Tangl
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Division of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Correspondence: (S.T.); (N.A.)
| | - Nureddin Ashammakhi
- Division of Plastic Surgery, Department of Surgery, Oulu University Hospital, 90220 Oulu, Finland
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: (S.T.); (N.A.)
| |
Collapse
|
24
|
Bernthal NM, Hart CM, Sheth KR, Bergese SD, Ho HS, Apfel CC, Stoicea N, Rojhani A, Jahr JS. Local and Intra-articular Administration of Nonsteroidal Anti-inflammatory Drugs for Pain Management in Orthopedic Surgery. Am J Ther 2020; 29:e219-e228. [PMID: 33315593 DOI: 10.1097/mjt.0000000000001309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Although growing evidence demonstrates the benefits of locally administered nonsteroidal anti-inflammatory drugs (NSAIDs) for postoperative pain management, there is ongoing debate regarding NSAID use in orthopedic surgery. AREAS OF UNCERTAINTY Current data largely support a local site of NSAID action and suggest that effective pain control can be achieved with delivery of NSAIDs intra-articularly (IA) and/or locally at the site of injury, where they can block peripheral production of inflammatory mediators and may desensitize nociceptors. Improvements in postoperative pain control with locally administered NSAIDs have been widely reported in the total joint arthroplasty literature and may offer benefits in patient's undergoing arthroscopic procedures and those with osteoarthritis as well. The purpose of this review is to examine the available evidence in the literature regarding the efficacy and safety profile of the use of local and IA NSAIDs in orthopedic surgery. DATA SOURCES Narrative literature review using keywords, expert opinion, either during or from live conference. THERAPEUTIC ADVANCES Local and IA administration of NSAIDs for pain management in orthopedic surgery. CONCLUSION There is convincing evidence that NSAIDs administered locally in and around the joint reduce postoperative pain scores and opioid consumption in patients undergoing total joint arthroplasty, yet further research is required regarding the risks of potential chondrotoxicity and the inhibition of bone and soft-tissue healing with locally administered NSAIDs.
Collapse
Affiliation(s)
- Nicholas M Bernthal
- Department of Orthopaedic Surgery, University of California Los Angeles David Geffen School of Medicine, UCLA Medical Center, Santa Monica, CA
| | - Christopher M Hart
- Department of Orthopaedic Surgery, University of California Los Angeles David Geffen School of Medicine, UCLA Medical Center, Santa Monica, CA
| | - Ketan R Sheth
- Department of General Surgery, Cambridge Health Alliance, Harvard Medical School, Cambridge, MA
| | - Sergio D Bergese
- Department of Anesthesiology, School of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY
| | - Hung S Ho
- Department of Surgery, University of California Davis, Sacramento, CA
| | - Christian C Apfel
- Department of Epidemiology and Biostatistics, University of California San Francisco, CA
| | - Nicoleta Stoicea
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH
| | - Allen Rojhani
- Drexel University College of Medicine, Philadelphia, PA
| | - Jonathan S Jahr
- Department of Anesthesiology and Perioperative Medicine, University of California Los Angeles David Geffen School of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, CA
| |
Collapse
|
25
|
Lisowska B, Jakubiak J, Siewruk K, Sady M, Kosson D. Which idea is better with regard to immune response? Opioid anesthesia or opioid free anesthesia. J Inflamm Res 2020; 13:859-869. [PMID: 33177861 PMCID: PMC7652233 DOI: 10.2147/jir.s275986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
The stress of surgery is characterized by an inflammatory response with immune suppression resulting from many factors, including the type of surgery and the kind of anesthesia, linked with the drugs that are used and the underlying disease of the patient. The trauma of surgery triggers a cascade of reactions involving the immune response and nociception. As strong analgesics, opioids provide the analgesic component of general anesthesia with bi-directional effect on the immune system. Opioids influence almost all aspects of the immune response in regards to leukocytes, macrophages, mast cells, lymphocytes, and NK cells. The suppressive effect of opioids on the immune system is limiting their use, especially in patients with impaired immune response, so the possibility of using multimodal anesthesia without opioids, known as opioid-free anesthesia (OFA), is gaining more and more sympathizers. The idea of OFA is to eliminate opioid analgesia in the treatment of acute pain and to replace it with drugs from other groups that are assumed to have a comparable analgesic effect without affecting the immune system. Here, we present a review on the impact of anesthesia, with and without the use of opioids, on the immune response to surgical stress.
Collapse
Affiliation(s)
- Barbara Lisowska
- Department Anesthesiology and Intensive Medical Care, National Geriatrics, Rheumatology and Rehabilitation Institute, Warsaw 02-637, Poland
| | - Jakub Jakubiak
- Department of Anesthesiology and Intensive Care, John Paul II Western Hospital, Grodzisk Mazowiecki 05-825, Poland
| | - Katarzyna Siewruk
- Faculty of Veterinary Medicine, Department of Large Animal Diseases with Clinic, Warsaw University of Life Sciences, Warsaw 02-797, Poland
| | - Maria Sady
- Faculty of Veterinary Medicine, Department of Large Animal Diseases with Clinic, Warsaw University of Life Sciences, Warsaw 02-797, Poland
| | - Dariusz Kosson
- Department of Anaesthesiology and Intensive Care, Division of Teaching, Medical University of Warsaw, Warsaw 02-005, Poland
| |
Collapse
|
26
|
Norel X, Sugimoto Y, Ozen G, Abdelazeem H, Amgoud Y, Bouhadoun A, Bassiouni W, Goepp M, Mani S, Manikpurage HD, Senbel A, Longrois D, Heinemann A, Yao C, Clapp LH. International Union of Basic and Clinical Pharmacology. CIX. Differences and Similarities between Human and Rodent Prostaglandin E 2 Receptors (EP1-4) and Prostacyclin Receptor (IP): Specific Roles in Pathophysiologic Conditions. Pharmacol Rev 2020; 72:910-968. [PMID: 32962984 PMCID: PMC7509579 DOI: 10.1124/pr.120.019331] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins are derived from arachidonic acid metabolism through cyclooxygenase activities. Among prostaglandins (PGs), prostacyclin (PGI2) and PGE2 are strongly involved in the regulation of homeostasis and main physiologic functions. In addition, the synthesis of these two prostaglandins is significantly increased during inflammation. PGI2 and PGE2 exert their biologic actions by binding to their respective receptors, namely prostacyclin receptor (IP) and prostaglandin E2 receptor (EP) 1-4, which belong to the family of G-protein-coupled receptors. IP and EP1-4 receptors are widely distributed in the body and thus play various physiologic and pathophysiologic roles. In this review, we discuss the recent advances in studies using pharmacological approaches, genetically modified animals, and genome-wide association studies regarding the roles of IP and EP1-4 receptors in the immune, cardiovascular, nervous, gastrointestinal, respiratory, genitourinary, and musculoskeletal systems. In particular, we highlight similarities and differences between human and rodents in terms of the specific roles of IP and EP1-4 receptors and their downstream signaling pathways, functions, and activities for each biologic system. We also highlight the potential novel therapeutic benefit of targeting IP and EP1-4 receptors in several diseases based on the scientific advances, animal models, and human studies. SIGNIFICANCE STATEMENT: In this review, we present an update of the pathophysiologic role of the prostacyclin receptor, prostaglandin E2 receptor (EP) 1, EP2, EP3, and EP4 receptors when activated by the two main prostaglandins, namely prostacyclin and prostaglandin E2, produced during inflammatory conditions in human and rodents. In addition, this comparison of the published results in each tissue and/or pathology should facilitate the choice of the most appropriate model for the future studies.
Collapse
Affiliation(s)
- Xavier Norel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yukihiko Sugimoto
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Gulsev Ozen
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Heba Abdelazeem
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yasmine Amgoud
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amel Bouhadoun
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Wesam Bassiouni
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Marie Goepp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Salma Mani
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Hasanga D Manikpurage
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amira Senbel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Dan Longrois
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Akos Heinemann
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Chengcan Yao
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Lucie H Clapp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| |
Collapse
|
27
|
Liu B, Ji C, Shao Y, Liang T, He J, Jiang H, Chen G, Luo Z. Etoricoxib decreases subchondral bone mass and attenuates biomechanical properties at the early stage of osteoarthritis in a mouse model. Biomed Pharmacother 2020; 127:110144. [PMID: 32330796 DOI: 10.1016/j.biopha.2020.110144] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 12/20/2022] Open
Abstract
Etoricoxib, a selective Cyclooxygenase-2 (COX-2) inhibitor, is commonly used in osteoarthritis (OA) for pain relief, however, little is known about the effects on subchondral bone. In the current study, OA was induced via destabilization of the medial meniscus (DMM) in C57BL/6 mice. Two days after surgery, mice were treated with different concentrations of Etoricoxib. Four weeks after treatment, micro computed tomography (Micro-CT) analysis, histological analysis, atomic force microscopy (AFM) analysis, and scanning electron microscopy (SEM) were performed to evaluate OA progression. We demonstrated that Etoricoxib inhibited osteophyte formation in the subchondral bone. However, it also reduced the bone volume fraction (BV/TV), lowered trabecular thickness (Tb.Th), and more microfractures and pores were observed in the subchondral bone. Moreover, Etoricoxib reduced the elastic modulus of subchondral bone. Exposure to Etoricoxib further increased the empty/total osteocyte ratio of the subchondral bone. Etoricoxib did not show significant improvement in articular cartilage destruction and synovial inflammation in early OA. Together, our observations suggested that although Etoricoxib can relieve OA-induced pain and inhibit osteophyte formation in the subchondral bone, it can also change the microstructures and biomechanical properties of subchondral bone, promote subchondral bone loss, and reduce subchondral bone quality in early OA mice.
Collapse
Affiliation(s)
- Bo Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China; Orthopedic Institute, Soochow University, 708 Renmin Rd, Suzhou, 215006, Jiangsu, PR China
| | - Chenchen Ji
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China; Orthopedic Institute, Soochow University, 708 Renmin Rd, Suzhou, 215006, Jiangsu, PR China
| | - Yijie Shao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China
| | - Ting Liang
- Orthopedic Institute, Soochow University, 708 Renmin Rd, Suzhou, 215006, Jiangsu, PR China
| | - Jiaheng He
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China; Orthopedic Institute, Soochow University, 708 Renmin Rd, Suzhou, 215006, Jiangsu, PR China
| | - Huaye Jiang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China; Orthopedic Institute, Soochow University, 708 Renmin Rd, Suzhou, 215006, Jiangsu, PR China
| | - Guangdong Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China.
| | - Zongping Luo
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China; Orthopedic Institute, Soochow University, 708 Renmin Rd, Suzhou, 215006, Jiangsu, PR China.
| |
Collapse
|
28
|
The effect of celecoxib in traumatic heterotopic ossification around temporomandibular joint in mice. Osteoarthritis Cartilage 2020; 28:502-515. [PMID: 32061965 DOI: 10.1016/j.joca.2020.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/15/2019] [Accepted: 01/17/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE In this study, the role of inflammation in traumatic heterotopic ossification around temporomandibular joint (THO-TMJ), as well as the preventive and treatment effect of celecoxib in THO-TMJ both in vivo and in vitro were explored. DESIGN A surgically-induced THO-TMJ mouse model and a co-culture model of ATDC-5 or MC3T3-E1 and RAW-264.7 cells were used in this study for in vivo and in vitro research. RESULTS A series of inflammatory factors, such as CD3, CD68, CD20, IL-10, IL-6 and TNF-α, were activated 48 h after trauma in a THO-TMJ model. Local trauma initiated systemic inflammatory responses as well as T cell- and macrophage-mediated local inflammatory responses around TMJ. In addition, expression of COX-2 was significantly elevated. The findings also showed that local injection of celecoxib could effectively alleviate the inflammatory response around TMJ at the early stage of trauma and inhibit the formation of THO-TMJ in vivo. Meanwhile, celecoxib could inhibit chondrogenic differentiation of ATDC-5 and osteogenic differentiation of MC3T3-E1 under inflammatory condition in vitro. Furthermore, celecoxib could inhibit the expression of Bmpr1b in the injured condylar cartilage at the initiation stage of THO-TMJ, which implied that Bmpr1b expressed by the residual condylar cartilage might be related to the pathogenesis of THO-TMJ. CONCLUSIONS Inflammation played a crucial role in the pathogenesis of THO-TMJ, and anti-inflammation might be a possible choice to inhibit THO-TMJ, which provided scientific clues for the mechanisms, pharmacotherapy and molecular intervention of THO-TMJ.
Collapse
|
29
|
Maruyama M, Rhee C, Utsunomiya T, Zhang N, Ueno M, Yao Z, Goodman SB. Modulation of the Inflammatory Response and Bone Healing. Front Endocrinol (Lausanne) 2020; 11:386. [PMID: 32655495 PMCID: PMC7325942 DOI: 10.3389/fendo.2020.00386] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023] Open
Abstract
The optimal treatment for complex fractures and large bone defects is an important unsolved issue in orthopedics and related specialties. Approximately 5-10% of fractures fail to heal and develop non-unions. Bone healing can be characterized by three partially overlapping phases: the inflammatory phase, the repair phase, and the remodeling phase. Eventual healing is highly dependent on the initial inflammatory phase, which is affected by both the local and systemic responses to the injurious stimulus. Furthermore, immune cells and mesenchymal stromal cells (MSCs) participate in critical inter-cellular communication or crosstalk to modulate bone healing. Deficiencies in this inter-cellular exchange, inhibition of the natural processes of acute inflammation, and its resolution, or chronic inflammation due to a persistent adverse stimulus can lead to impaired fracture healing. Thus, an initial and optimal transient stage of acute inflammation is one of the key factors for successful, robust bone healing. Recent studies demonstrated the therapeutic potential of immunomodulation for bone healing by the preconditioning of MSCs to empower their immunosuppressive properties. Preconditioned MSCs (also known as "primed/ licensed/ activated" MSCs) are cultured first with pro-inflammatory cytokines (e.g., TNFα and IL17A) or exposed to hypoxic conditions to mimic the inflammatory environment prior to their intended application. Another approach of immunomodulation for bone healing is the resolution of inflammation with anti-inflammatory cytokines such as IL4, IL10, and IL13. In this review, we summarize the principles of inflammation and bone healing and provide an update on cellular interactions and immunomodulation for optimal bone healing.
Collapse
Affiliation(s)
- Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Claire Rhee
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Masaya Ueno
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
- Department of Bioengineering, Stanford University, Stanford, CA, United States
- *Correspondence: Stuart B. Goodman
| |
Collapse
|
30
|
Affiliation(s)
- Jürgen Braun
- Rheumazentrum Ruhrgebiet, Herne, Germany. .,Ruhr University, Bochum, Germany.
| | - Xenofon Baraliakos
- Rheumazentrum Ruhrgebiet, Herne, Germany.,Ruhr University, Bochum, Germany
| |
Collapse
|
31
|
George EL, Truesdell SL, Magyar AL, Saunders MM. The effects of mechanically loaded osteocytes and inflammation on bone remodeling in a bisphosphonate-induced environment. Bone 2019; 127:460-473. [PMID: 31301402 DOI: 10.1016/j.bone.2019.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/23/2022]
Abstract
Bisphosphonate-related osteonecrosis of the jaw is a disease appearing after tooth removal in patients undergoing bisphosphonate treatment for metastasizing cancers and osteoporosis. The complexity of the condition requires a multicellular model to address the net effects of two key risk factors: mechanical trauma (pathologic overload) and inflammation. In this work, a system comprised of a polydimethylsiloxane chip and mechanical loading device is used to expose bisphosphonate-treated osteocytes to mechanical trauma. Specifically, osteocytes are treated with the potent nitrogen-containing bisphosphonate, zoledronic acid, and exposed to short-term pathologic overload via substrate stretch. During bone remodeling, osteocyte apoptosis plays a role in attracting pre-osteoclasts to sites of damage; as such, lactate dehydrogenase activity, cell death and protein expression are evaluated as functions of load. Additionally, the effects of osteocyte soluble factors on osteoclast and osteoblast functional activity are quantified. Osteoclast activity and bone resorption are quantified in the presence and absence of inflammatory components, lipopolysaccharide and interferon gamma. Results suggest that inflammation associated with bacterial infection may hinder bone resorption by osteoclasts. In addition, osteocytes may respond to overload by altering expression of soluble signals that act on osteoblasts to attenuate bone formation. These findings give insight into the multicellular interactions implicated in bisphosphonate-related osteonecrosis of the jaw.
Collapse
Affiliation(s)
- Estee L George
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325-0302, USA.
| | - Sharon L Truesdell
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325-0302, USA.
| | - Alexandria L Magyar
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325-0302, USA.
| | - Marnie M Saunders
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325-0302, USA.
| |
Collapse
|
32
|
Horváth Á, Botz B, Kiss T, Csekő K, Kiss I, Felinger A, Szabados T, Kenyeres É, Bencsik P, Mócsai A, Ferdinandy P, Helyes Z. Subantimicrobial Dose Doxycycline Worsens Chronic Arthritis-Induced Bone Microarchitectural Alterations in a Mouse Model: Role of Matrix Metalloproteinases? Front Pharmacol 2019; 10:233. [PMID: 30949048 PMCID: PMC6435543 DOI: 10.3389/fphar.2019.00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 02/22/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Rheumatoid arthritis (RA) is a chronic inflammatory joint disease hallmarked by irreversible damage of cartilage and bone. Matrix metalloproteinases (MMPs) involved in connective tissue remodeling play an important role in this process. Numerous MMPs have been examined in humans and animals, but their functions are still not fully understood. Therefore, we investigated the role of MMPs in the K/BxN serum-transfer model of RA with the broad-spectrum MMP inhibitor subantimicrobial dose doxycycline (SDD) using complex in vivo and in vitro methodolgy. Methods: Chronic arthritis was induced by repetitive i.p. injections of K/BxN serum in C57BL/6J mice. SDD was administered daily in acidified drinking water (0.5 mg/mL, 80 mg/kg) during the 30 days experimental period. Mechanonociceptive threshold of the paw was evaluated by aesthesiometry, grasping ability by grid test, arthritis severity by scoring, neutrophil myeloperoxidase activity by luminescence, vascular hyperpermeability and MMP activity by fluorescence in vivo imaging and the latter also by gelatin zymography, bone structure by micro-computed tomography (micro-CT). Plasma concentrations of doxycycline were determined by liquid chromatography-mass spectrometry analysis. Results: K/BxN serum induced significant inflammatory signs, mechanical hyperalgesia, joint function impairment, increased myeloperoxidase activity and vascular hyperpermeability. Significant increase of MMP activity was also observed both in vivo and ex vivo with elevation of the 57–60, 75, and 92 kDa gelatinolytic isoforms in the arthritic ankle joints, but neither MMP activity nor any above described functional parameters were influenced by SDD. Most importantly, SDD significantly reduced bone mineral density in the distal tibia and enhanced the Euler number in the ankle. Arthritis-induced microarchitectural alterations demonstrating increased irregularity and cancellous bone remodeling, such as increased Euler number was significantly elevated by SDD in both regions. Conclusion: We showed increase of various MMP activities in the joints by in vivo fluorescence imaging together with ex vivo zymography, and investigated their functional significance using the broad-spectrum MMP inhibitor SDD in the translational RA model. This is the first demonstration that SDD worsens arthritis-induced bone microarchitectural alterations, but it appears to be independent of MMP inhibition.
Collapse
Affiliation(s)
- Ádám Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary.,Molecular Pharmacology Research Group, Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Bálint Botz
- Molecular Pharmacology Research Group, Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Department of Radiology, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Tamás Kiss
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary.,Molecular Pharmacology Research Group, Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Kata Csekő
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary.,Molecular Pharmacology Research Group, Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Ibolya Kiss
- Department of Analytical and Environmental Chemistry, Faculty of Sciences, Institute of Chemistry, University of Pécs, Pécs, Hungary.,Environmental Analytical and Geoanalytical Research Group, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Attila Felinger
- Department of Analytical and Environmental Chemistry, Faculty of Sciences, Institute of Chemistry, University of Pécs, Pécs, Hungary.,Environmental Analytical and Geoanalytical Research Group, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Tamara Szabados
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Éva Kenyeres
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Péter Bencsik
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Attila Mócsai
- Department of Physiology, Faculty of Medicine, MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Péter Ferdinandy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary.,Molecular Pharmacology Research Group, Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Chronic Pain Research Group, National Brain Research Program, Medical School, University of Pécs, Pécs, Hungary.,PharmInVivo Ltd., Pécs, Hungary
| |
Collapse
|
33
|
Plotkin LI, Bruzzaniti A. Molecular signaling in bone cells: Regulation of cell differentiation and survival. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:237-281. [PMID: 31036293 PMCID: PMC7416488 DOI: 10.1016/bs.apcsb.2019.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The achievement of proper bone mass and architecture, and their maintenance throughout life requires the concerted actions of osteoblasts, the bone forming cells, and osteoclasts, the bone resorbing cells. The differentiation and activity of osteoblasts and osteoclasts are regulated by molecules produced by matrix-embedded osteocytes, as well as by cross talk between osteoblasts and osteoclasts through secreted factors. In addition, it is likely that direct contact between osteoblast and osteoclast precursors, and the contact of these cells with osteocytes and cells in the bone marrow, also modulates bone cell differentiation and function. With the advancement of molecular and genetic tools, our comprehension of the intracellular signals activated in bone cells has evolved significantly, from early suggestions that osteoblasts and osteoclasts have common precursors and that osteocytes are inert cells in the bone matrix, to the very sophisticated understanding of a network of receptors, ligands, intracellular kinases/phosphatases, transcription factors, and cell-specific genes that are known today. These advances have allowed the design and FDA-approval of new therapies to preserve and increase bone mass and strength in a wide variety of pathological conditions, improving bone health from early childhood to the elderly. We have summarized here the current knowledge on selected intracellular signal pathways activated in osteoblasts, osteocytes, and osteoclasts.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States.
| | - Angela Bruzzaniti
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States; Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, United States
| |
Collapse
|
34
|
Chai SC, Foley EM, Arjmandi BH. Anti-atherogenic properties of vitamin E, aspirin, and their combination. PLoS One 2018; 13:e0206315. [PMID: 30359442 PMCID: PMC6201936 DOI: 10.1371/journal.pone.0206315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/10/2018] [Indexed: 12/26/2022] Open
Abstract
The present study was designed to assess the extent to which vitamin E and aspirin individually or in combination prevent and/or reverse bone loss and atherosclerotic lesion formation in orchidectomized aged rats. Forty-nine 12-month old male Sprague-Dawley rats were either sham-operated (Sham, one group) or orchidectomized (Orx, four groups) and fed a control diet for 120 days to establish bone loss and atherosclerotic lesions. Thereafter, rats were assigned to the various treatment groups (n = 9 to 10 per group): 1) Sham and 2) Orx groups received AIN93M, containing 75 IU vitamin E and served as control, and the other three Orx groups received either 3) 500 IU vitamin E, 4) 500 mg aspirin, or 5) 500 IU vitamin E + 500 mg aspirin per kg diet for 90 days. After 90 days of treatment, rats were sacrificed, necropsied, and tissues were collected for analyses. Results show that 500 IU vitamin E was able to reduce the development of atherosclerosis lesion formation and aortic streak area compared to Orx control. More importantly, 500 mg aspirin completely reversed the fatty streak area and made the atherosclerotic lesions disappear. Vitamin E and aspirin were not able to reverse bone loss as shown by whole body, lumbar and femoral bone mineral content and bone mineral density due to gonadal hormone deficiency. Instead, 500 mg aspirin somewhat increased the trabecular separation while decreased trabecular thickness compared to Orx control. Our findings suggest that both, vitamin E and aspirin exert anti-atherogenic effects and aspirin is more effective than vitamin E in preventing atherosclerosis lesions in Orx rats.
Collapse
Affiliation(s)
- Sheau C. Chai
- Department of Behavioral Health and Nutrition, College of Health Sciences, University of Delaware, Newark, DE, United State of America
- * E-mail:
| | - Elizabeth M. Foley
- Department of Nutrition, Food and Exercise Sciences, College of Human Sciences, Florida State University, Tallahassee, FL, United State of America
- Center for Advancing Exercise and Nutrition Research on Aging (CAENRA), College of Human Sciences, Florida State University, Tallahassee, FL, United State of America
| | - Bahram H. Arjmandi
- Department of Nutrition, Food and Exercise Sciences, College of Human Sciences, Florida State University, Tallahassee, FL, United State of America
- Center for Advancing Exercise and Nutrition Research on Aging (CAENRA), College of Human Sciences, Florida State University, Tallahassee, FL, United State of America
| |
Collapse
|
35
|
Gravallese EM, Schett G. Effects of the IL-23–IL-17 pathway on bone in spondyloarthritis. Nat Rev Rheumatol 2018; 14:631-640. [DOI: 10.1038/s41584-018-0091-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|