1
|
Dou R, Zhu X, Liu X, Bao J, Jin R, Mao G, Yu H, Liu Y. Icariside II inhibits gastric cancer progression by suppressing the Wnt/β-catenin signaling pathway. Cytotechnology 2025; 77:106. [PMID: 40416998 PMCID: PMC12098252 DOI: 10.1007/s10616-025-00761-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/24/2025] [Indexed: 05/27/2025] Open
Abstract
Gastric cancer is one of the common malignant tumours in clinical practice with poor prognosis and high mortality. Icariside II is a single compound extracted from the traditional Chinese medicine Epimedium brevicornu Maxim, and it is also the main active ingredient of Epimedium brevicornu Maxim that exerts pharmacological effects. Studies have shown that Icariside II has anti-tumour activity, but its mechanism of action on gastric cancer cells is unclear. This study aims to analyze the impact of Icariside II on gastric cancer cells as well as on xenograft tumor models of gastric cancer, and to examine the potential molecular regulatory pathways. GES-1, a normal gastric cell line, and gastric cancer cell lines AGS and MGC803 were cultured to investigate the cytotoxic effects of Icariside II using the methylthiazolyldiphenyl-tetrazolium (MTT). Flow cytometry (FCM) was employed to measure the impact of Icariside II on the apoptosis levels of gastric cancer cells, while western blot analysis was used to examine the expression of apoptosis-related proteins and the Wnt/β-catenin signaling pathway. Subsequently, a xenograft tumor model was established and treated with Icariside II to observe changes in tumor volume and weight in the model mice. Finally, alterations in the expression of the Wnt/β-catenin signaling pathway were assessed through immunofluorescence (IF) and immunohistochemistry (IHC). The results showed that Icariside II had faint significant toxic effect on GES-1 cells, and was able to inhibit the proliferative activity and promote apoptosis of the gastric cancer cells. Moreover, Icariside II was able to inhibit the growth of gastric cancer in nude mice subcutaneous transplantation tumor. In addition, both in vivo and in vitro results indicated that Icariside II inhibited the activation of the Wnt/β-catenin signaling pathway. Icariside II inhibited tumorigenicity of gastric cancer by suppressing the Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Rongrong Dou
- Department of Pathology and Pathophysiology, Medical School of Nantong University, Nantong, 226001 China
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300 China
| | - Xiaowei Zhu
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300 China
| | - Xinyun Liu
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300 China
| | - Jingjing Bao
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300 China
| | - Rongrong Jin
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300 China
| | - Guangyao Mao
- Central laboratory, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300 China
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300 China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, 226001 China
- Medical School of Nantong University, Nantong, China
| |
Collapse
|
2
|
Elsayed GH, Fahim AM. Studying the impact of chitosan salicylaldehyde/schiff base/CuFe 2O 4 in PC3 cells via theoretical studies and inhibition of PI3K/AKT/mTOR signalling. Sci Rep 2025; 15:4129. [PMID: 39900661 PMCID: PMC11790862 DOI: 10.1038/s41598-025-86096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/08/2025] [Indexed: 02/05/2025] Open
Abstract
In this elucidation, the nucleophilic attack of salicyladehyde with chitosan, which was obtained from the shrimp shell, afforded the cellulose aldehyde (Schiff base), and then the dispersion of CuFe2O4 on the surface of cellulose aldehyde gave the novel nanomaterial of bimetallic oxide, which was confirmed through spectral analysis such as FT-IR, NMR, SEM, and XRD analysis. Moreover, the anti-proliferative effect of chitosan, chitosan salicylaldehyde, and chitosan salicylaldehyde/CuFe2O4 was evaluated in PC3 human prostate cancer cells and HSF normal human skin fibroblasts. After 48 h, PC3 cell proliferation was significantly inhibited by chitosan salicylaldehyde/CuFe2O4 and chitosan salicylaldehyde (IC50 = 35.3 and 45.55 µg/ml, respectively) without any effects on normal HSF cells. The mRNA expression levels of PI3K, AKT, mTOR, and CCND1 were examined in PC3-treated cells by using QRT-PCR, and the results demonstrated that, by down-regulating the expression levels of these genes, chitosan salicylaldehyde/CuFe2O4 significantly affected prostate cancer cell proliferation, progression, and autophagy more than chitosan salicylaldehyde. Furthermore, the docking stimulation of the chitosan derivatives with different proteins showed the presence of CuFe2O4 particles effect on the interaction inside their pockets and increased the activities, and it's related to biological evaluation. Additionally, the theoretical investigation of these chitosan derivatives and the determination of their physical descriptors showed the activity of bimetallic oxide and the presence of electrostatic hydrogen bond interaction. Finally, these findings may suggest that chitosan salicylaldehyde/CuFe2O4 has a promising anticancer impact against prostate cancer.
Collapse
Affiliation(s)
- Ghada H Elsayed
- Hormones Department, Medical Research and Clinical Studies Institute, and Stem Cell Lab, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo, 12622, Egypt.
| | - Asmaa M Fahim
- Department of Green Chemistry, National Research Centre, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
3
|
He S, Yan C, Wang Z, Mao Y, Liu K, Sun J, Zang Y, Wang M, Li G, Yang Y. Icariside II relieves radiation enteritis by regulating PINK/Parkin-mediated mitophagy. Int Immunopharmacol 2025; 146:113861. [PMID: 39733645 DOI: 10.1016/j.intimp.2024.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/10/2024] [Accepted: 12/11/2024] [Indexed: 12/31/2024]
Abstract
Radiation enteritis (RE) is one of the major side effects of radiotherapy. So far, there are no effective drugs for preventing the disease process. Icariside II (ICS II) is a highly efficient monomer compound extracted and purified from the classic Chinese medicinal herb Epimedium. It has anti-inflammatory, antioxidant, and immunomodulatory effects. However, the role and mechanism of ICS II on radiation enteritis are not clear. Here, we reveal the role of ICS II in radiation enteritis by using an irradiation-induced rat model and a human colorectal cancer cell (CaCo2). After intragastric administration, HE staining and Tunel staining to observe the histopathological changes in the colon, and TEM to observe the ultrastructure of mitochondria; The antioxidant indexes and mitochondrial function-related markers of colon tissues were determined; DCFH-DA fluorescent probe were used to detect the cellular ROS level, JC-1 staining was used to detect the changes in mitochondrial membrane potential, and Western Blot was used to detect related protein expression. The results showed that ICS II could reduce intestinal injury and attenuate the radiation-induced oxidative stress and inflammatory response. In addition, ICS II could effectively attenuate mitochondrial damage and activate mitochondrial autophagy in rats. Mechanistically, ICS II activates mitochondrial autophagy-related protein expression to rescue radiation-induced damage to mitophagy. We found that by inhibiting mitophagy, the therapeutic effect of ICS II can be eliminated and our data suggest that ICS II may be a new and effective drug candidate for the treatment of radiation enteritis.
Collapse
Affiliation(s)
- Shuangyan He
- Changchun University of Chinese Medicine, Changchun, China
| | - Chengqiu Yan
- Department of Anorectal, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Zhuo Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Yinhui Mao
- Changchun University of Chinese Medicine, Changchun, China
| | - Kunjian Liu
- Changchun University of Chinese Medicine, Changchun, China
| | - Juntao Sun
- Changchun University of Chinese Medicine, Changchun, China
| | - Yueyue Zang
- Changchun University of Chinese Medicine, Changchun, China
| | - Mingxing Wang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China.
| | - Guofeng Li
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China; Anorectal Department, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, China.
| | - Yong Yang
- Changchun University of Chinese Medicine, Changchun, China; Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
4
|
Singh D, Singh R. Pharmacological and Therapeutic Potential of a Natural Flavonoid Icariside II in Human Complication. Curr Drug Targets 2025; 26:320-330. [PMID: 39757637 DOI: 10.2174/0113894501329810241117231839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/16/2024] [Accepted: 10/22/2024] [Indexed: 01/07/2025]
Abstract
Emerging challenges to human health necessitate a coordinated effort to find both preventative and therapeutic techniques, with natural products at the forefront of attempts to gain novel medicines and minimize disease transmission and related death. The medicinal potential of chemicals contained in plants has been known for centuries, leading to its use in homes and clinics for the treatment of numerous disorders. Despite global advancements, plant-based medicines continue to be utilized to treat various pathological illnesses or as alternatives to contemporary pharmaceuticals. The safety and low toxicity of natural products have led to their increasing acceptability for the prevention or treatment of many ailments. Flavonoids are biologically active compounds that are classified as polyphenols, which are a type of secondary metabolite found in all plants. Icariside II (ICA-II) is one of the secondary metabolites that belong to the flavonoid category of phytochemicals and is present in Epimedium brevicornum Maxim. In recent years, ICA-II has been discovered to show anti-inflammatory, antioxidant, anticancer, renal protecting, and cardiac protective effects, as well as several other biological characteristics. This review is focused on the exploration of the pharmacological activities of ICA-II. ICA-II is considered a prospective candidate for future clinical investigations due to a number of therapeutic properties.
Collapse
Affiliation(s)
- Dhirendra Singh
- Department of Pharmacology, M.M. College of Pharmacy, M.M. (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bhatinda, Punjab, India
| |
Collapse
|
5
|
Liu SP, Li YF, Zhang D, Li CY, Dai XF, Lan DF, Cai J, Zhou H, Song T, Zhao YY, He ZX, Tan J, Zhang JD. Pharmacological actions of the bioactive compounds of Epimedium on the male reproductive system: current status and future perspective. Asian J Androl 2025; 27:20-29. [PMID: 38978290 PMCID: PMC11784961 DOI: 10.4103/aja20248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/26/2024] [Indexed: 07/10/2024] Open
Abstract
ABSTRACT Compounds isolated from Epimedium include the total flavonoids of Epimedium , icariin, and its metabolites (icaritin, icariside I, and icariside II), which have similar molecular structures. Modern pharmacological research and clinical practice have proved that Epimedium and its active components have a wide range of pharmacological effects, especially in improving sexual function, hormone regulation, anti-osteoporosis, immune function regulation, anti-oxidation, and anti-tumor activity. To date, we still need a comprehensive source of knowledge about the pharmacological effects of Epimedium and its bioactive compounds on the male reproductive system. However, their actions in other tissues have been reviewed in recent years. This review critically focuses on the Epimedium , its bioactive compounds, and the biochemical and molecular mechanisms that modulate vital pathways associated with the male reproductive system. Such intrinsic knowledge will significantly further studies on the Epimedium and its bioactive compounds that protect the male reproductive system and provide some guidances for clinical treatment of related male reproductive disorders.
Collapse
Affiliation(s)
- Song-Po Liu
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Medical Genetics, Zunyi Medical University, Zunyi 563000, China
| | - Yun-Fei Li
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi 563000, China
| | - Dan Zhang
- Zunyi Medical University Library, Zunyi 563000, China
| | - Chun-Yang Li
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Xiao-Fang Dai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Dong-Feng Lan
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Ji Cai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - He Zhou
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Yan-Yu Zhao
- Department of Medical Genetics, Zunyi Medical University, Zunyi 563000, China
| | - Zhi-Xu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, China
| | - Ji-Dong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
6
|
Ye J, Chang T, Zhang X, Wei D, Wang Y. Mefenamic acid exhibits antitumor activity against osteosarcoma by impeding cell growth and prompting apoptosis in human osteosarcoma cells and xenograft mice model. Chem Biol Interact 2024; 393:110931. [PMID: 38423378 DOI: 10.1016/j.cbi.2024.110931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
The study investigates the anticancer activity of mefenamic acid against osteosarcoma, shedding light on its underlying mechanisms and therapeutic potential. Mefenamic acid exhibited robust inhibitory effects on the proliferation of MG-63, HOS, and H2OS osteosarcoma cells in a dose-dependent manner. Moreover, mefenamic acid induced cellular toxicity in MG63 cells, as evidenced by LDH leakage, reflecting its cytotoxic impact. Furthermore, mefenamic acid effectively suppressed the migration and invasion of MG-63 cells. Mechanistically, mefenamic acid induced apoptosis in MG-63 cells through mitochondrial depolarization, activation of caspase-dependent pathways, and modulation of the Bcl-2/Bax axis. Additionally, mefenamic acid promoted autophagy and inhibited the PI3K/Akt/mTOR pathway, further contributing to its antitumor effects. The molecular docking studies provide compelling evidence that mefenamic acid interacts specifically and strongly with key proteins in the PI3K/AKT/mTOR pathway, suggesting a novel mechanism by which mefenamic acid could exert anti-osteosarcoma effects. In vivo studies using a xenograft mouse model demonstrated significant inhibition of MG-63 tumor growth without adverse effects, supporting the translational potential of mefenamic acid as a safe and effective therapeutic agent against osteosarcoma. Immunohistochemistry staining corroborated the in vivo findings, highlighting mefenamic acid's ability to suppress tumor proliferation and inhibit the PI3K/AKT/mTOR pathway within the tumor microenvironment. Collectively, these results underscore the promising therapeutic implications of mefenamic acid in combating osteosarcoma, warranting further investigation for clinical translation and development.
Collapse
Affiliation(s)
- Junwu Ye
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Tianmin Chang
- Clinical Skills Training Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xihai Zhang
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Daiqing Wei
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yuanhui Wang
- Department of Pediatric Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
7
|
Zhang X, Tang B, Wen S, Wang Y, Pan C, Qu L, Yin Y, Wei Y. Advancements in the Biotransformation and Biosynthesis of the Primary Active Flavonoids Derived from Epimedium. Molecules 2023; 28:7173. [PMID: 37894651 PMCID: PMC10609448 DOI: 10.3390/molecules28207173] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Epimedium is a classical Chinese herbal medicine, which has been used extensively to treat various diseases, such as sexual dysfunction, osteoporosis, cancer, rheumatoid arthritis, and brain diseases. Flavonoids, such as icariin, baohuoside I, icaritin, and epimedin C, are the main active ingredients with diverse pharmacological activities. Currently, most Epimedium flavonoids are extracted from Epimedium plants, but this method cannot meet the increasing market demand. Biotransformation strategies promised huge potential for increasing the contents of high-value Epimedium flavonoids, which would promote the full use of the Epimedium herb. Complete biosynthesis of major Epimedium flavonoids by microbial cell factories would enable industrial-scale production of Epimedium flavonoids. This review summarizes the structures, pharmacological activities, and biosynthesis pathways in the Epimedium plant, as well as the extraction methods of major Epimedium flavonoids, and advancements in the biotransformation and complete microbial synthesis of Epimedium flavonoids, which would provide valuable insights for future studies on Epimedium herb usage and the production of Epimedium flavonoids.
Collapse
Affiliation(s)
- Xiaoling Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Zhengzhou 450003, China
| | - Bingling Tang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sijie Wen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yitong Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chengxue Pan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410081, China
| | - Yongjun Wei
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Zhou Y, Liu T, Wu Q, Wang H, Sun Y. Baohuoside I inhibits resistance to cisplatin in ovarian cancer cells by suppressing autophagy via downregulating HIF-1α/ATG5 axis. Mol Carcinog 2023; 62:1474-1486. [PMID: 37283234 DOI: 10.1002/mc.23590] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/29/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023]
Abstract
Since chemotherapy's therapeutic impact is diminished by drug resistance, treating ovarian cancer is notably challenging. Thereafter, it is critical to develop cutting-edge approaches to treating ovarian cancer. Baohuoside I (derived from Herba Epimedii) is reported to have antitumor properties in various malignancies. It is unknown, however, what role Baohuoside I plays in cisplatin (DDP)-resistant ovarian cancer cells. 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT), colony formation, and flow cytometry assay were used to investigate the impact of Baohuoside I on ovarian cancer A2780 cells and DDP-resistant A2780 (A2780/DDP) cells. The level of microtubule associated protein 1 light chain 3 (LC3) was determined using immunofluorescence staining. Utilizing the mRFP-GFP-LC3B tandem fluorescent probe allowed us to analyse the autophagy flux. Analysis of mRNA and protein level was performed using RT-qPCR and Western blot analysis, respectively. The interaction between hypoxia inducible factor 1 subunit alpha (HIF-1α) and autophagy related 5 (ATG5) promoter was investigated by dual luciferase and ChIP assay. Additionally, evaluation of Baohuoside I's role in ovarian cancer was performed using a nude mouse xenograft model. Baohuoside I decreased the viability and proliferation and triggered the apoptosis of both A2780 and A2780/DDP cells in a concentration-dependent manner. Baohuoside I also increased the sensitivity of A2780/DDP cells to DDP. Concurrently, HIF-1α could promote A2780/DDP cells resistance to DDP. In addition, HIF-1α could induce the autophagy of A2780/DDP cells through transcriptionally activating ATG5, and Baohuoside I imporved the chemosensitivity of A2780/DDP cells to DDP by downregulating HIF-1α. Moreover, Baohuoside I could inhibit the chemoresistance to DDP in ovarian cancer in vivo. Baohuoside I sensitizes ovarian cancer cells to DDP by suppressing autophagy via downregulating the HIF-1α/ATG5 axis. Consequently, Baohuoside I might be evaluated as a new agent for enhancing the chemotherapeutic efficacy of drug treatment for ovarian cancer.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, People's Republic of China
- Department of Obstetrics and Gynecology, Shengli Clinical Medical College of Fujian Medical University and Fujian Provincial Hospital, Fuzhou, Fujian, People's Republic of China
| | - Tongyu Liu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, People's Republic of China
| | - Qiaoling Wu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, People's Republic of China
| | - Huihui Wang
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, People's Republic of China
| | - Yang Sun
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
9
|
Raee P, Tan SC, Najafi S, Zandsalimi F, Low TY, Aghamiri S, Fazeli E, Aghapour M, Mofarahe ZS, Heidari MH, Fathabadi FF, Abdi F, Asouri M, Ahmadi AA, Ghanbarian H. Autophagy, a critical element in the aging male reproductive disorders and prostate cancer: a therapeutic point of view. Reprod Biol Endocrinol 2023; 21:88. [PMID: 37749573 PMCID: PMC10521554 DOI: 10.1186/s12958-023-01134-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/01/2023] [Indexed: 09/27/2023] Open
Abstract
Autophagy is a highly conserved, lysosome-dependent biological mechanism involved in the degradation and recycling of cellular components. There is growing evidence that autophagy is related to male reproductive biology, particularly spermatogenic and endocrinologic processes closely associated with male sexual and reproductive health. In recent decades, problems such as decreasing sperm count, erectile dysfunction, and infertility have worsened. In addition, reproductive health is closely related to overall health and comorbidity in aging men. In this review, we will outline the role of autophagy as a new player in aging male reproductive dysfunction and prostate cancer. We first provide an overview of the mechanisms of autophagy and its role in regulating male reproductive cells. We then focus on the link between autophagy and aging-related diseases. This is followed by a discussion of therapeutic strategies targeting autophagy before we end with limitations of current studies and suggestions for future developments in the field.
Collapse
Affiliation(s)
- Pourya Raee
- Student Research Committee, Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19395-4719, Iran
| | - Farshid Zandsalimi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Fazeli
- Mehr Fertility Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahyar Aghapour
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Zahra Shams Mofarahe
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Heidari
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fadaei Fathabadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Abdi
- Department of Chemical Engineering, Science and Research branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Asouri
- North Research Center, Pasteur Institute of Iran, Amol, Iran
| | | | - Hossein Ghanbarian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19395-4719, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
He K, Wang J, Zhou Y, Huang Z, Xie N, Li Y, Hu H, Chen Z, He Y, Tang Y. Network pharmacology analysis of Icariside II against bladder cancer. Eur J Pharmacol 2023; 955:175914. [PMID: 37460054 DOI: 10.1016/j.ejphar.2023.175914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
As a global health threat, bladder cancer (BC) is a common urological disease characterized by a high risk of progression and recurrence. Icariside II (ICA-II), a flavonol glycoside, exhibits antitumor ability in various tumors. However, there is no systematic study exploring the pharmacological mechanism of ICA-II in BC. We used public databases to obtain potential targets of ICA-II and related genes in BC. Bioinformatics analysis and molecular docking were used to identify potential targets and signaling pathways. Then, MTT, cell cycle assays and western blot (WB) were used to validate the predicted pathways in bladder cell lines, and in situ bladder cancer models were also established to verify the effect of ICA-II. Our research demonstrated that these ICA-II hub genes were related to the cell cycle. Then, our molecular docking analysis confirmed the interaction between ICA-II and CCNB1. In addition, our in vitro experiment demonstrated that ICA-II restrained the proliferation of BC cells mainly by blocking the cell cycle. WB also verified that ICA-II decreased the expression levels of CCNB1. In situ BC models showed that ICA-II had no hepatotoxicity or nephrotoxicity and could suppress the growth of in situ BC. In summary, during this study, we found that ICA-II had low toxicity in the kidney and liver. Network pharmacology was used, and both cell and animal experiments verified that ICA-II has a good therapeutic effect on bladder cancer, which may inhibit the proliferation and progression of bladder cancer by blocking the cell cycle of BC cells.
Collapse
Affiliation(s)
- Kancheng He
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Department of Urology, The First People's Hospital of Foshan, Foshan, China
| | - Jinhua Wang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Yihong Zhou
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China
| | - Zihao Huang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China
| | - Nengqing Xie
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China
| | - Yawei Li
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China
| | - Huating Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao
| | - ZhaoYin Chen
- Department of Critical Care Medicine, The Second Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen) (LonggangDistrict People's Hospital of Shenzhen), China
| | - Yuanqiao He
- Center of Laboratory Animal Science Nanchang University, No.999,Xuefu Road, Nanchang, 330031, China; Jiangxi Province Key Laboratory of Laboratory Animal, China; Nanchang Royo Biotech Co,. Ltd, China
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.
| |
Collapse
|
11
|
Hashemi M, Taheriazam A, Daneii P, Hassanpour A, Kakavand A, Rezaei S, Hejazi ES, Aboutalebi M, Gholamrezaie H, Saebfar H, Salimimoghadam S, Mirzaei S, Entezari M, Samarghandian S. Targeting PI3K/Akt signaling in prostate cancer therapy. J Cell Commun Signal 2023; 17:423-443. [PMID: 36367667 PMCID: PMC10409967 DOI: 10.1007/s12079-022-00702-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/26/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Urological cancers have obtained much attention in recent years due to their mortality and morbidity. The most common and malignant tumor of urological cancers is prostate cancer that imposes high socioeconomic costs on public life and androgen-deprivation therapy, surgery, and combination of chemotherapy and radiotherapy are employed in its treatment. PI3K/Akt signaling is an oncogenic pathway responsible for migration, proliferation and drug resistance in various cancers. In the present review, the role of PI3K/Akt signaling in prostate cancer progression is highlighted. The activation of PI3K/Akt signaling occurs in prostate cancer, while PTEN as inhibitor of PI3K/Akt shows down-regulation. Stimulation of PI3K/Akt signaling promotes survival of prostate tumor cells and prevents apoptosis. The cell cycle progression and proliferation rate of prostate tumor cells increase by PI3K/Akt signaling induction. PI3K/Akt signaling stimulates EMT and enhances metastasis of prostate tumor cells. Silencing PI3K/Akt signaling impairs growth and metastasis of prostate tumor cells. Activation of PI3K/Akt signaling mediates drug resistance and reduces radio-sensitivity of prostate tumor cells. Anti-tumor compounds suppress PI3K/Akt signaling in impairing prostate tumor progression. Furthermore, upstream regulators such as miRNAs, lncRNAs and circRNAs regulate PI3K/Akt signaling and it has clinical implications for prostate cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Gholamrezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- League of European Research Universities, European University Association, University of Milan, Milan, Italy
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
12
|
Wang X, Li J, Liu L, Kan JM, Niu P, Yu ZQ, Ma C, Dong F, Han MX, Li J, Zhao DX. Pharmacological mechanism and therapeutic efficacy of Icariside II in the treatment of acute ischemic stroke: a systematic review and network pharmacological analysis. BMC Complement Med Ther 2022; 22:253. [PMID: 36180911 PMCID: PMC9526298 DOI: 10.1186/s12906-022-03732-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/19/2022] [Indexed: 03/17/2025] Open
Abstract
Background and objective Epimedii has long been used as a traditional medicine in Asia for the treatment of various common diseases, including Alzheimer's disease, cancer, erectile dysfunction, and stroke. Studies have reported the ameliorative effects of Icariside II (ICS II), a major metabolite of Epimedii, on acute ischemic stroke (AIS) in animal models. Based on network pharmacology, molecular docking, and molecular dynamics (MD) simulations, we conducted a systematic review to evaluate the effects and neuroprotective mechanisms of ICS II on AIS. Methods First, we have searched 6 databases using studies with ICS II treatment on AIS animal models to explore the efficacy of ICS II on AIS in preclinical studies. The literature retrieval time ended on March 8, 2022 (Systematic Review Registration ID: CRD42022306291). There were no restrictions on the language of the search strategy. Systematic review follows the Patient, Intervention, Comparison and Outcome (PICO) methodology and framework. SYCLE's RoB tool was used to evaluate the the risk of bias. In network pharmacology, AIS-related genes were identified and the target-pathway network was constructed. Then, these targets were used in the enrichments of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene ontology (GO). Molecular docking and MD simulation were finally employed between ICS II and the potential target genes. Results Twelve publications were included describing outcomes of 1993 animals. The literature details, animal strains, induction models, doses administered, duration of administration, and outcome measures were extracted from the 12 included studies. ICS II has a good protective effect against AIS. Most of the studies in this systematic review had the appropriate methodological quality, but some did not clearly state the controlling for bias of potential study. Network pharmacology identified 246 targets with SRC, CTNNB1, HSP90AA1, MAPK1, and RELA as the core target proteins. Besides, 215 potential pathways of ICS II were identified, such as PI3K-Akt, MAPK, and cGMP-PKG signaling pathway. GO enrichment analysis showed that ICS II was significantly enriched in subsequent regulation such as MAPK cascade. Molecular docking and MD simulations showed that ICS II can closely bind with important targets. Conclusions ICS II is a promising drug in the treatment of AIS. However, this systematic review reveals key knowledge gaps (i.e., the protective role of ICS II in women) that ICS II must address before it can be used for the treatment of human AIS. Our study shows that ICS II plays a protective role in AIS through multi-target and multi-pathway characteristics, providing ideas for the development of drugs for the treatment of AIS. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03732-9.
Collapse
|
13
|
You X, Wu Y, Li Q, Sheng W, Zhou Q, Fu W. Astragalus-Scorpion Drug Pair Inhibits the Development of Prostate Cancer by Regulating GDPD4-2/PI3K/AKT/mTOR Pathway and Autophagy. Front Pharmacol 2022; 13:895696. [PMID: 35847007 PMCID: PMC9277392 DOI: 10.3389/fphar.2022.895696] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Prostate cancer (PCa) is an epithelial malignancy of the prostate that currently lacks effective treatment. Traditional Chinese medicine (TCM) can play an anticancer role through regulating the immune system, anti-tumor angiogenesis, regulating tumor cell apoptosis, autophagy dysfunction, and other mechanisms. This study attempted to explore the active ingredients and potential mechanism of action of the Astragalus-Scorpion (A-S) drug pair in PCa, in order to provide new insights into the treatment of PCa. Methods: Network pharmacology was used to analyze the A-S drug pair and PCa targets. Bioinformatics analysis was used to analyze the LncRNAs with significant differences in PCa. The expression of LC3 protein was detected by immunofluorescence. CCK8 was used to detect cell proliferation. The expressions of GDPD4-2, AC144450.1, LINC01513, AC004009.2, AL096869.1, AP005210.1, and BX119924.1 were detected by RT-qPCR. The expression of the PI3K/AKT/mTOR pathway and autophagy-related proteins were detected by western blot. LC-MS/MS was used to identify the active components of Astragalus and Scorpion. Results: A-S drug pair and PCa have a total of 163 targets, which were mainly related to the prostate cancer and PI3K/AKT pathways. A-S drug pair inhibited the formation of PCa, promoted the expression of LC3Ⅱ and Beclin1 proteins, and inhibited the expression of P62 and PI3K-AKT pathway proteins in PCa mice. Astragaloside IV and polypeptide extract from scorpion venom (PESV) were identified as the main active components of the A-S drug pair. GDPD4-2 was involved in the treatment of PCa by Astragaloside IV-PESV. Silencing GDPD4-2 reversed the therapeutic effects of Astragaloside IV-PESV by regulating the PI3K/AKT/mTOR pathway. Conclusion: Astragaloside IV-PESV is the main active components of A-S drug pair treated PCa by regulating the GDPD4-2/PI3K-AKT/mTOR pathway and autophagy.
Collapse
Affiliation(s)
- Xujun You
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
- Department of Andrology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yongrong Wu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qixin Li
- Department of Andrology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wen Sheng
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Wei Fu
- Department of Andrology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
14
|
Xu F, Wu Q, Li L, Gong J, Huo R, Cui W. Icariside II: Anticancer Potential and Molecular Targets in Solid Cancers. Front Pharmacol 2021; 12:663776. [PMID: 33981241 PMCID: PMC8107468 DOI: 10.3389/fphar.2021.663776] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
Icariside II, an active flavonoid, is extracted from the traditional Chinese medicinal herb Epimedii. It possesses multiple biological and pharmacological properties, including anti-inflammatory, anticancer, and anti-osteoporotic properties. In recent years, apoptosis has become the hot spot in anticancer therapies. Icariside II exerts positive effects on inducing apoptosis and inhibiting proliferation in various cancers. The antitumorigenic activity of Icariside II was also proven through cell cycle arrest, triggering autophagy, reducing cellular metabolism, and inhibiting cancer metastasis and tumor-associated angiogenesis. Additionally, Icariside II, as a natural product, contributed to a synergistic effect alongside chemotherapeutic drugs. Due to its poor aqueous solubility and permeability, more strategies were developed to improve its therapeutic effects. This review aimed to summarize the chemopreventive properties of Icariside II in solid tumors and reveal its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Fei Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qiaolan Wu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Gong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ran Huo
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenqiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|