1
|
Xuan X, Pu X, Yang Y, Yang J, Li Y, Wu H, Xu J. Plasma MCP-1 and TGF-β1 Levels are Associated with Kidney Injury in Children with Congenital Anomalies of the Kidney and Urinary Tract. Appl Biochem Biotechnol 2024; 196:6222-6233. [PMID: 38244151 DOI: 10.1007/s12010-023-04808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/22/2024]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are primarily causal for end-stage renal disease and have significant implications for long-term survival. A total of 39 healthy controls and 94 children with chronic kidney disease (CKD) were enrolled (3-12 years old as children, 13-18 years old as adolescents), who were divided into CAKUT and Non-CAKUT according to the etiology of CKD. CKD group was further classified according to estimating glomerular filtration rate (eGFR). Circulating levels of inflammatory markers such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), monocyte chemokine-1 (MCP-1), and transforming growth factor-β1 (TGF-β1) were analyzed. The relationship between these inflammatory markers with eGFR and the kidney injury parameter (urine protein) was investigated to assess their potential as early markers of disease progression. All circulating levels of these inflammatory cytokines were increased in CKD patients (including CAKUT and Non-CAKUT) compared with healthy subjects. The circulating levels of MCP-1 and TGF-β1 were increased in CAKUT adolescents compared with CAKUT children. In CAKUT children, levels of MCP-1 and TGF-β1 increased as CKD progressed, and MCP-1 and TGF-β1 were negatively and significantly correlated with eGFR and positively with urine protein. MCP-1 and TGF-β1 may contribute to the early detection of CKD and disease stage/progression in CAKUT children.
Collapse
Affiliation(s)
- XiaoQi Xuan
- Department of Pediatric, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), No.299-1, Qingyang Road, Liangxi District, Wuxi City, Jiangsu Province, 214023, China
| | - Xiao Pu
- Department of Pediatric, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), No.299-1, Qingyang Road, Liangxi District, Wuxi City, Jiangsu Province, 214023, China
| | - Yue Yang
- Department of Pediatric, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), No.299-1, Qingyang Road, Liangxi District, Wuxi City, Jiangsu Province, 214023, China
| | - JinLong Yang
- Department of Pediatric, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), No.299-1, Qingyang Road, Liangxi District, Wuxi City, Jiangsu Province, 214023, China
| | - YongLe Li
- Department of Pediatric, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), No.299-1, Qingyang Road, Liangxi District, Wuxi City, Jiangsu Province, 214023, China
| | - Hang Wu
- Department of Pediatric, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), No.299-1, Qingyang Road, Liangxi District, Wuxi City, Jiangsu Province, 214023, China
| | - JianGuo Xu
- Department of Pediatric, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), No.299-1, Qingyang Road, Liangxi District, Wuxi City, Jiangsu Province, 214023, China.
| |
Collapse
|
2
|
Sun J, Han J, Dong J, Zhai X, Zhang R. A kidney-targeted chitosan-melanin nanoplatform for alleviating diabetic nephropathy through modulation of blood glucose and oxidative stress. Int J Biol Macromol 2024; 264:130663. [PMID: 38453104 DOI: 10.1016/j.ijbiomac.2024.130663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/12/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Diabetic nephropathy (DN) is a serious complication in patients with diabetes, whose expansion process is closely related to oxidative stress caused by hyperglycemia. Herein, we report a chitosan-targeted dagliflozin-loaded melanin nanoparticle (CSMDNPs) that can selectively accumulate in injured kidneys, reduce blood glucose, and alleviate the oxidative stress-induced damage. CSMDNPs possess good dispersion and physiological stability, responsive release at acidic pH, and strong scavenging activities for various reactive oxygen and reactive nitrogen radicals. Moreover, in vitro experiments confirm that CSMDNPs have good biocompatibility, enable targeted uptake in NRK-52E renal tubular cells, and also well alleviate high glucose-induced oxidative stress. In the STZ-induced DN model, CSMDNPs exhibit high targeting distribution and retention in the damaged kidneys of DN mice according to photoacoustic imaging. At the end of CSMDNPs treatment, DN mice show a decrease in fasting blood glucose and a return to near-normal urine and blood indices. H&E, PAS, and masson pathological staining also indicates that CSMDNPs significantly inhibit the expansion of renal interstitium, glycogen, and collagen deposition, showing excellent therapeutic effects. In addition, melanin acts as both drug carrier and antioxidant without exogenous carrier introduction, exhibiting better biosafety and translational prospects.
Collapse
Affiliation(s)
- Jinghua Sun
- First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Juanjuan Han
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Jie Dong
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaoyan Zhai
- Department of Baisic Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
3
|
Pan J, Li Y, Wu X, Pan X, Liu C, Zhang H, Wang L, Jiang X, Wang J, Zang N, Pang L, Lv X. The mechanism of Shenlong Jianji treatment of idiopathic pulmonary fibrosis inhibits fibroblast-to-myofibroblast transformation via the TGF-β1/smads signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117507. [PMID: 38122910 DOI: 10.1016/j.jep.2023.117507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenlong Jianji (SLJJ) is a Chinese herbal compound composed of traditional medicines for supplementing Qi, nourishing Yin, promoting blood circulation, and removing obstruction in channels. It is widely used to treat idiopathic pulmonary fibrosis (IPF) in China. However, the underlying mechanism of SLJJ remains unclear. AIM OF THIS STUDY To elucidate the efficacy and mechanisms of SLJJ in the treatment of IPF through in vivo and in vitro experiments. MATERIAL AND METHODS 84 Wistar rats were randomly and equally divided into 7 groups: the control group (CTRL), the sham operation group (SHAM), the model group (IPF), the low dose of SLJJ group (L-SLJJ), the middle dose of SLJJ group (M-SLJJ), the high dose of SLJJ group (H-SLJJ), and the pirfenidone group (PFD). The rats in the CTRL, SHAM, and IPF groups were given normal saline each time for 28 days; the SLJJ groups were given Shenlong Jianji (9 g kg-1·d-1, 18 g kg-1·d-1, 36 g kg-1·d-1), and pirfenidone was administered as a sequential dose. After 28 days, the general condition of the rats was evaluated, and samples were collected. The lung coefficient was measured. The pathological changes of lung in each group were observed by H&E staining and Masson staining. α-SMA, collagen 1, and E-cadherin proteins were detected by immunohistochemistry. α-SMA, collagen 1, vimentin, E-cadherin, N-cadherin, TGF-β1, smad2, and smad3 proteins were detected by WB in vivo.In vitro, A scratch test was used to assess the ratio of cell migration. α-SMA, vimentin, E-cadherin, and N-cadherin protein levels were evaluated by a cellular immunofluorescence assay. TGF-β1/smads signaling pathway was detected by WB. HPLC-Q-TOF/MS analysis was used to identify the active compounds in the SLJJ. Molecular docking determined the free binding energy of the compound with the TGF-β1 protein. RESULTS SLJJ significantly improved the respiratory symptoms, heart rate, mental state, and food intake of IPF group rats and decreased the lung coefficient. In the IPF group, inflammatory cells were infiltrated, and the thickened alveoli wall and alveoli collapse were shown, while significantly alleviating pathological changes in the SLJJ and PFD groups. Masson staining showed that SLJJ and PFD decreased the collagen expression. Immunohistochemical results showed that the expressions of α-SMA, collagen 1, and N-cadherin decreased in the SLJJ and PFD groups, while E-cadherin increased significantly compared with the IPF group. SLJJ regulates TGF-β1/smads signaling pathway proteins in vivo. SLJJ decreased the ratio of migration in HFL-1 cells; SLJJ reduced the fluorescence intensity of α-SMA, vimentin, and N-cadherin and increased the fluorescence intensity of E-cadherin in primary rat lung (PRL) fibroblast cells and HFL-1 cells. WB results showed that SLJJ significantly down-regulated α-SMA, Vimentin, N-cadherin, TGF-β1, smad2, and p-smad2/3 proteins expression and up-regulated E-cadherin protein expression in vitro, whereas SRI-011381 (a TGF-β1 agonist) antagonized the effects of SLJJ. CONCLUSION SLJJ inhibits idiopathic pulmonary fibrosis. The TGF- β1/Smads signaling pathway can be the target of SLJJ, which inhibits fibroblast-to-myofibroblast transformation and is expected to be a new drug for the treatment of IPF.
Collapse
Affiliation(s)
- Jiaxiang Pan
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Street, Shenyang, 110032, Liaoning, China.
| | - Yue Li
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Street, Shenyang, 110032, Liaoning, China.
| | - Xize Wu
- Liaoning University of Traditional Chinese Medicine, 79 East of Chongshan Road, Shenyang, 110847, Liaoning, China; Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, 226000, Jiangsu, China.
| | - Xue Pan
- Liaoning University of Traditional Chinese Medicine, 79 East of Chongshan Road, Shenyang, 110847, Liaoning, China; Dazhou Vocational College of Chinese Medicine, Dazhou, 635000, Sichuan, China.
| | - Chuang Liu
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Street, Shenyang, 110032, Liaoning, China.
| | - Haoyang Zhang
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Street, Shenyang, 110032, Liaoning, China.
| | - Linlin Wang
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Street, Shenyang, 110032, Liaoning, China.
| | - Xin Jiang
- The Fourth Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, No. 9, Xuesong Road, Jiefang Street, Sujiatun District, Shenyang, 110101, Liaoning, China.
| | - Jiaran Wang
- Liaoning University of Traditional Chinese Medicine, 79 East of Chongshan Road, Shenyang, 110847, Liaoning, China.
| | - Ningzi Zang
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Street, Shenyang, 110032, Liaoning, China.
| | - Lijian Pang
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Street, Shenyang, 110032, Liaoning, China.
| | - Xiaodong Lv
- Liaoning University of Traditional Chinese Medicine, 79 East of Chongshan Road, Shenyang, 110847, Liaoning, China.
| |
Collapse
|
4
|
Guo N, Yang L, Wan X, Qiu D, Sun W, Ma H. Relationship between elevated circulating thrombospondin-1 levels and vascular complications in diabetes mellitus. J Diabetes Investig 2024; 15:197-207. [PMID: 37822187 PMCID: PMC10804906 DOI: 10.1111/jdi.14095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023] Open
Abstract
AIMS/INTRODUCTION Thrombospondin-1 (TSP-1) participates in a series of physiological and pathological processes by binding to various receptors regulating cell proliferation, adhesion and apoptosis. Elevated circulating TSP-1 is linked with diabetic vascular complications (DVC). This study aimed to determine the relationship between circulating TSP-1 levels and DVC. MATERIALS AND METHODS A comprehensive search of PubMed, Embase, Web of Science and CNKI databases was carried out. A meta-analysis was carried out to compare circulating TSP-1 levels between diabetes patients without vascular complications (DNVC), diabetes patients with DVC and non-diabetes patients. The correlation between TSP-1 and metabolic parameters was also analyzed. Subgroup analysis was carried out according to complication type, defined as diabetic retinopathy, diabetic nephropathy and diabetic cardiovascular disease (DCVD). RESULTS A total of eight studies were included. Compared with non-diabetes patients, diabetic patients, including DNVC and DVC, had significantly higher circulating TSP-1 levels (standardized mean difference [SMD] 2.660, 95% CI 1.17-4.145, P = 0.000). DNVC had significantly higher circulating TSP-1 levels than non-diabetes patients (SMD 3.613, 95% CI 1.607-5.619, P = 0.000). DVC had significantly higher TSP-1 levels than DNVC (SMD 0.568, 95% CI 0.100-1.036, P = 0.017). TSP-1 was significantly positively correlated with fasting plasma glucose (overall Fisher's z = 0.696, 95% CI 0.559-0.833) and HbA1c (overall Fisher's z = 0.849, 95% CI 0.776-0.923). CONCLUSIONS Elevated circulating TSP-1 levels are closely related to DVC, especially in diabetic nephropathy and diabetic cardiovascular disease. Circulating TSP-1 detection might be helpful in the timely diagnosis and treatment of DVC.
Collapse
Affiliation(s)
- Na Guo
- Graduate School of Hebei North UniversityZhangjiakouChina
| | - Linlin Yang
- Hebei Key Laboratory of Metabolic DiseasesHebei General HospitalShijiazhuangChina
| | - Xiaozheng Wan
- Graduate School of Hebei North UniversityZhangjiakouChina
- Department of EndocrinologyHebei General HospitalShijiazhuangChina
| | - Dongze Qiu
- Department of EndocrinologyHebei General HospitalShijiazhuangChina
- Graduate School of Hebei Medical UniversityShijiazhuangChina
| | - Wenwen Sun
- Department of EndocrinologyHebei General HospitalShijiazhuangChina
- Graduate School of North China University of Science and TechnologyTangshanChina
| | - Huijuan Ma
- Hebei Key Laboratory of Metabolic DiseasesHebei General HospitalShijiazhuangChina
- Department of EndocrinologyHebei General HospitalShijiazhuangChina
| |
Collapse
|
5
|
Zhang F, Wu R, Liu Y, Dai S, Xue X, Li Y, Gong X. Nephroprotective and nephrotoxic effects of Rhubarb and their molecular mechanisms. Biomed Pharmacother 2023; 160:114297. [PMID: 36716659 DOI: 10.1016/j.biopha.2023.114297] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Rhubarb, in the form of a traditional Chinese medicine, is used in the treatment of chronic kidney disease (CKD). Previous studies have demonstrated that Rhubarb possesses a good nephroprotective effect, which primarily protects the kidneys from fibrosis, oxidation, inflammation, autophagy, and apoptosis. However, studies have shown that the long-term inappropriate use of Rhubarb may cause damage to renal function. Therefore, how to correctly understand and scientifically evaluate the pharmacodynamics and toxicity of Rhubarb with regard to CKD is a scientific question that urgently needs to be answered. In this review, we explain and illustrate how Rhubarb exerts its nephroprotective effect against CKD. We also describe the mechanisms of action that may cause its nephrotoxicity. Valuable and practical clinical guidance is proposed with regard to methods for mitigating the nephrotoxicity of Rhubarb.
Collapse
Affiliation(s)
- Fang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaohong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
6
|
Liao HH, Chen HT, Livneh H, Huang HL, Lai NS, Lu MC, Yeh CC, Tsai TY. Integration of Chinese Herbal Medicine into Routine Care Was Related to Lower Risk of Chronic Kidney Disease in Patients with Rheumatoid Arthritis: A Population-Based Nested Case-Control Study in Taiwan. J Multidiscip Healthc 2023; 16:1191-1201. [PMID: 37153357 PMCID: PMC10155711 DOI: 10.2147/jmdh.s400917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/22/2023] [Indexed: 05/09/2023] Open
Abstract
Objective Non-steroidal anti-inflammatory drugs (NSAIDs) are frequently used as the first-line agents for the symptomatic relief of rheumatoid arthritis (RA), but it may insidiously provoke the onset of renal diseases, especially chronic kidney disease (CKD). While Chinese herbal medicine (CHM) has become an increasingly popular adjunctive therapy among RA groups, there are currently no available data on the effect of CHM use towards risk of CKD. This study aimed to explore on a population-level whether CHM use decreases sequent CKD risk among them. Methods In this nested case-control study retrieved from the nationwide insurance database of Taiwan from 2000 to 2012, we looked at the association between CHM use and the likelihood of developing CKD, with a focus on usage intensity. Cases with CKD claims were defined and matched to one randomly selected control case. Conditional logistic regression was then applied to estimate odds ratio (OR) of CKD from CHM treatment measured before the index date. For each OR, we calculated a 95% confidence interval for CHM use relative to the matched control. Results This nested case-control study included 5464 patients with RA, where after matching comprised 2712 cases and 2712 controls. Among them, there were 706 and 1199 cases that ever received CHM treatment, respectively. After the adjustment, CHM use in RA individuals was related to a lower likelihood of CKD, with an adjusted OR of 0.49 (95% CI: 0.44-0.56). Additionally, a dose-dependent, reverse association was found between the cumulative duration of CHM use and risk of CKD. Conclusion Integrating CHM into conventional therapy may reduce the likelihood of developing CKD, which could be a reference in instituting novel preventive strategies to improve treatment outcomes and reduce related fatalities for RA subjects.
Collapse
Affiliation(s)
- Hou-Hsun Liao
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Hsiao-Tien Chen
- Department of Chinese Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Hanoch Livneh
- Rehabilitation Counseling Program, Portland State University, Portland, OR, USA
| | - Hua-Lung Huang
- Department of Rehabilitation, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
| | - Ning-Sheng Lai
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Allergy, Immunology and Rheumatology, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
| | - Ming-Chi Lu
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Allergy, Immunology and Rheumatology, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
| | - Chia-Chou Yeh
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
- Correspondence: Chia-Chou Yeh; Tzung-Yi Tsai, Tel +886-5-2648000-8713; +886-5-2648000 ext. 3209, Fax +886-5-2648006, Email ;
| | - Tzung-Yi Tsai
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Research, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
| |
Collapse
|
7
|
Wang Y, Yu F, Li A, He Z, Qu C, He C, Ma X, Zhan H. The progress and prospect of natural components in rhubarb (Rheum ribes L.) in the treatment of renal fibrosis. Front Pharmacol 2022; 13:919967. [PMID: 36105187 PMCID: PMC9465315 DOI: 10.3389/fphar.2022.919967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Renal fibrosis is a key pathological change that occurs in the progression of almost all chronic kidney diseases . CKD has the characteristics of high morbidity and mortality. Its prevalence is increasing each year on a global scale, which seriously affects people’s health and quality of life. Natural products have been used for new drug development and disease treatment for many years. The abundant natural products in R. ribes L. can intervene in the process of renal fibrosis in different ways and have considerable therapeutic prospects. Purpose: The etiology and pathology of renal fibrosis were analyzed, and the different ways in which the natural components of R. ribes L. can intervene and provide curative effects on the process of renal fibrosis were summarized. Methods: Electronic databases, such as PubMed, Life Science, MEDLINE, and Web of Science, were searched using the keywords ‘R. ribes L.’, ‘kidney fibrosis’, ‘emodin’ and ‘rhein’, and the various ways in which the natural ingredients protect against renal fibrosis were collected and sorted out. Results: We analyzed several factors that play a leading role in the pathogenesis of renal fibrosis, such as the mechanism of the TGF-β/Smad and Wnt/β-catenin signaling pathways. Additionally, we reviewed the progress of the treatment of renal fibrosis with natural components in R. ribes L. and the intervention mechanism of the crucial therapeutic targets. Conclusion: The natural components of R. ribes L. have a wide range of intervention effects on renal fibrosis targets, which provides new ideas for the development of new anti-kidney fibrosis drugs.
Collapse
Affiliation(s)
- Yangyang Wang
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangwei Yu
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ao Li
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zijia He
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiyan Qu
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiying He
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Huakui Zhan,
| | - Huakui Zhan
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine-Sichuan Provincial Hospital of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Huakui Zhan,
| |
Collapse
|
8
|
Luo LP, Suo P, Ren LL, Liu HJ, Zhang Y, Zhao YY. Shenkang Injection and Its Three Anthraquinones Ameliorates Renal Fibrosis by Simultaneous Targeting IƙB/NF-ƙB and Keap1/Nrf2 Signaling Pathways. Front Pharmacol 2021; 12:800522. [PMID: 35002735 PMCID: PMC8729217 DOI: 10.3389/fphar.2021.800522] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022] Open
Abstract
Oxidative stress and inflammation are important and critical mediators in the development and progression of chronic kidney disease (CKD) and its complications. Shenkang injection (SKI) has been widely used to treat patients with CKD. Although the anti-oxidative and anti-inflammatory activity was involved in SKI against CKD, its bioactive components and underlying mechanism remain enigmatic. A rat model of adenine-induced chronic renal failure (CRF) is associated with, and largely driven by, oxidative stress and inflammation. Hence, we identified the anti-oxidative and anti-inflammatory components of SKI and further revealed their underlying mechanism in the adenine-induced CRF rats. Compared with control rats, the levels of creatinine, urea, uric acid, total cholesterol, triglyceride, and low-density lipoprotein cholesterol in serum were significantly increased in the adenine-induced CRF rats. However, treatment with SKI and its three anthraquinones including chrysophanol, emodin, and rhein could reverse these aberrant changes. They could significantly inhibit pro-fibrotic protein expressions including collagen I, α-SMA, fibronectin, and vimentin in the kidney tissues of the adenine-induced CRF rats. Of note, SKI and rhein showed the stronger inhibitory effect on these pro-fibrotic protein expressions than chrysophanol and emodin. Furthermore, they could improve dysregulation of IƙB/NF-ƙB and Keap1/Nrf2 signaling pathways. Chrysophanol and emodin showed the stronger inhibitory effect on the NF-κB p65 protein expression than SKI and rhein. Rhein showed the strongest inhibitory effect on p65 downstream target gene products including NAD(P)H oxidase subunits (p47phox, p67phox, and gp91phox) and COX-2, MCP-1, iNOS, and 12-LO in the kidney tissues. However, SKI and rhein showed the stronger inhibitory effect on the significantly downregulated anti-inflammatory and anti-oxidative protein expression nuclear Nrf2 and its target gene products including HO-1, catalase, GCLC, and NQO1 in the Keap1/Nrf2 signaling pathway than chrysophanol and emodin. This study first demonstrated that SKI and its major components protected against renal fibrosis by inhibiting oxidative stress and inflammation via simultaneous targeting IƙB/NF-ƙB and Keap1/Nrf2 signaling pathways, which illuminated the potential molecular mechanism of anti-oxidative and anti-inflammatory effects of SKI.
Collapse
Affiliation(s)
- Liang-Pu Luo
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ping Suo
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| | - Li-Li Ren
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| | - Hong-Jiao Liu
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| | - Yamei Zhang
- Clinical Genetics Laboratory, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Ying-Yong Zhao
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| |
Collapse
|
9
|
Ma S, Xu H, Huang W, Gao Y, Zhou H, Li X, Zhang W. Chrysophanol Relieves Cisplatin-Induced Nephrotoxicity via Concomitant Inhibition of Oxidative Stress, Apoptosis, and Inflammation. Front Physiol 2021; 12:706359. [PMID: 34658905 PMCID: PMC8514135 DOI: 10.3389/fphys.2021.706359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023] Open
Abstract
Cisplatin (CDDP) is one of the most frequently prescribed chemotherapy medications. However, its nephrotoxicity which often leads to acute kidney injury (AKI), greatly limits its clinical application. Chrysophanol (CHR), a mainly active anthraquinone ingredient, possesses various biological and pharmacological activities. In this study, we aimed to investigate the underlying protective mechanisms of CHR against CDDP-induced AKI (CDDP-AKI) using C57BL/6 mouse and human proximal tubule epithelial cells. In vivo, we found that pre-treatment with CHR greatly relieved CDDP-AKI and improved the kidney function and morphology. The mechanistic studies indicated that it might alleviate CDDP-AKI by inhibiting oxidative stress, apoptosis, and IKKβ/IκBα/p65/transcription factor nuclear kappa B (NF-κB) inflammation signaling pathway induced by CDDP. Moreover, we found that the cell viability of HK2 cells reduced by CDDP was partially rescued by CHR pre-incubation. Flow cytometry results further indicated that CHR pre-incubation suppressed CDDP induced cellular reactive oxygen species (ROS) generation and inhibited cell apoptosis in a dose-dependent manner. In summary, our results suggested that CHR might be a novel therapy for CDDP-induced AKI.
Collapse
Affiliation(s)
- Siqing Ma
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics. Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Heng Xu
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics. Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Yongchao Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics. Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics. Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Xiong Li
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong, China
- Xiong Li,
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics. Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- *Correspondence: Wei Zhang,
| |
Collapse
|