1
|
Al Khzem AH, Gomaa MS, Alturki MS, Tawfeeq N, Sarafroz M, Alonaizi SM, Al Faran A, Alrumaihi LA, Alansari FA, Alghamdi AA. Drug Repurposing for Cancer Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:12441. [PMID: 39596504 PMCID: PMC11595001 DOI: 10.3390/ijms252212441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer ranks among the primary contributors to global mortality. In 2022, the global incidence of new cancer cases reached about 20 million, while the number of cancer-related fatalities reached 9.7 million. In Saudi Arabia, there were 13,399 deaths caused by cancer and 28,113 newly diagnosed cases of cancer. Drug repurposing is a drug discovery strategy that has gained special attention and implementation to enhance the process of drug development due to its time- and money-saving effect. It involves repositioning existing medications to new clinical applications. Cancer treatment is a therapeutic area where drug repurposing has shown the most prominent impact. This review presents a compilation of medications that have been repurposed for the treatment of various types of cancers. It describes the initial therapeutic and pharmacological classes of the repurposed drugs and their new applications and mechanisms of action in cancer treatment. The review reports on drugs from various pharmacological classes that have been successfully repurposed for cancer treatment, including approved ones and those in clinical trials and preclinical development. It stratifies drugs based on their anticancer repurpose as multi-type, type-specific, and mechanism-directed, and according to their pharmacological classes. The review also reflects on the future potential that drug repurposing has in the clinical development of novel anticancer therapies.
Collapse
Affiliation(s)
- Abdulaziz H. Al Khzem
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Mohamed S. Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Mansour S. Alturki
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Nada Tawfeeq
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Mohammad Sarafroz
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Shareefa M. Alonaizi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Alhassan Al Faran
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Laela Ahmed Alrumaihi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Fatimah Ahmed Alansari
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Abdullah Abbas Alghamdi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| |
Collapse
|
2
|
Ghosh MK, Tabassum S, Basu M. COVID‐19 and cancer: Dichotomy of the menacing dilemma. MEDCOMM – ONCOLOGY 2023; 2. [DOI: 10.1002/mog2.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2025]
Abstract
AbstractThe coronavirus disease 2019 (COVID‐19) pandemic brought about unprecedented challenges to global healthcare systems. Among the most vulnerable populations are cancer patients, who face dilemmas due to their compromised immune systems and the intricate interplay with the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) virus. This comprehensive review delves into the multifaceted relationship between COVID‐19 and cancer. Through an analysis of existing literature and clinical data, this review unravels the structural intricacies of the virus and examines its profound implications for cancer patients, thereby bridging the knowledge gap between virology and oncology. The review commences with an introduction regarding the COVID‐19 pandemic and cancer. It then transitions into a detailed examination of the SARS‐CoV‐2 virus and its variants such as Alpha (PANGO lineage B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529 lineage). Subsequently, an insightful analysis of the impact of COVID‐19 on major cancer types (viz., Lung, Colon, Brain, and gastrointestinal cancer) is elaborated. Finally, the therapeutic avenues, oncological care, and management are discussed. The nexus between COVID‐19 and cancer adds a layer of complexity to patient care, emphasizing the importance of tailored approaches for those grappling with both conditions. Amid the landscape defined by the evolving viral strains, this review navigates through the multifaceted implications of COVID‐19 on cancer patients and underscores the significance of integrating virology and oncology.
Collapse
Affiliation(s)
- Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division Council of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB) Kolkata West Bengal India
| | - Shaheda Tabassum
- Cancer Biology and Inflammatory Disorder Division Council of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB) Kolkata West Bengal India
| | - Malini Basu
- Department of Microbiology Dhruba Chand Halder College Dakshin Barasat West Bengal India
| |
Collapse
|
3
|
Laxmikeshav K, Rahman Z, Mahale A, Gurukkala Valapil D, Sharma P, George J, Phanindranath R, Dandekar MP, Kulkarni OP, Nagesh N, Shankaraiah N. Benzimidazole derivatives as tubulin polymerization inhibitors: Design, synthesis and in vitro cytotoxicity studies. Bioorg Med Chem Lett 2023; 96:129494. [PMID: 37797804 DOI: 10.1016/j.bmcl.2023.129494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
A new class of benzimidazole derivatives as tubulin polymerization inhibitors has been designed and synthesized in this study. The in vitro anticancer profile of the developed molecules was reconnoitred on selected human cancer cells. The highest cytotoxicity was illustrated by compounds 7n and 7u with IC50 values ranging from 2.55 to 17.89 µM with specificity toward SK-Mel-28 cells. They displayed 5-fold less cytotoxicity towards normal rat kidney epithelial NRK52E cells, which implies that they are not harmful to normal, healthy cells. The cellular staining procedures like AO/EB, DCFDA, and DAPI were applied to comprehend the inherent mechanism of apoptosis which displayed nuclear and morphological alterations. The Annexin V binding and JC-1 studies were executed to evaluate the extent of apoptosis and the decline in mitochondrial transmembrane potential in SK-Mel-28 cell lines. Compound 7n dose-dependently arrested the G2/M phase of the cell cycle and the target-based outcomes proposed tubulin polymerization inhibition by 7n (IC50 of 5.05±0.13 μM). Computational studies were also conducted on the tubulin protein (PDB ID: 3E22) to investigate the stabilized binding interactions of compounds 7n and 7u with tubulin, respectively.
Collapse
Affiliation(s)
- Kritika Laxmikeshav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ziaur Rahman
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ashutosh Mahale
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Durgesh Gurukkala Valapil
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pravesh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Joel George
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Uppal Road, Hyderabad 500007, India
| | - Regur Phanindranath
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Uppal Road, Hyderabad 500007, India
| | - Manoj P Dandekar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| | - Onkar P Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Narayana Nagesh
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Uppal Road, Hyderabad 500007, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
4
|
Sokouti B. A review on in silico virtual screening methods in COVID-19 using anticancer drugs and other natural/chemical inhibitors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:994-1026. [PMID: 38023988 PMCID: PMC10651357 DOI: 10.37349/etat.2023.00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/22/2023] [Indexed: 12/01/2023] Open
Abstract
The present coronavirus disease 2019 (COVID-19) pandemic scenario has posed a difficulty for cancer treatment. Even under ideal conditions, malignancies like small cell lung cancer (SCLC) are challenging to treat because of their fast development and early metastases. The treatment of these patients must not be jeopardized, and they must be protected as much as possible from the continuous spread of the COVID-19 infection. Initially identified in December 2019 in Wuhan, China, the contagious coronavirus illness 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Finding inhibitors against the druggable targets of SARS-CoV-2 has been a significant focus of research efforts across the globe. The primary motivation for using molecular modeling tools against SARS-CoV-2 was to identify candidates for use as therapeutic targets from a pharmacological database. In the published study, scientists used a combination of medication repurposing and virtual drug screening methodologies to target many structures of SARS-CoV-2. This virus plays an essential part in the maturation and replication of other viruses. In addition, the total binding free energy and molecular dynamics (MD) modeling findings showed that the dynamics of various medications and substances were stable; some of them have been tested experimentally against SARS-CoV-2. Different virtual screening (VS) methods have been discussed as potential means by which the evaluated medications that show strong binding to the active site might be repurposed for use against SARS-CoV-2.
Collapse
Affiliation(s)
- Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665813, Iran
| |
Collapse
|
5
|
Pingali MS, Singh A, Singh V, Sahoo AK, Varadwaj PK, Samanta SK. Docking and molecular dynamics simulation for therapeutic repurposing in small cell lung cancer (SCLC) patients infected with COVID-19. J Biomol Struct Dyn 2023; 41:16-25. [PMID: 34791969 DOI: 10.1080/07391102.2021.2002719] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cancer care has become a challenge with the current COVID-19 pandemic scenario. Specially, cancers like small cell lung cancers (SCLC) are difficult to treat even in the normal situation due to their rapid growth and early metastasis. For such patients, treatment can't be compromised and care must be taken to ensure their minimum exposure to the ongoing spread of COVID-19 infection. For this reason, in-house treatments are being suggested for these patients. Another issue is that symptoms of SCLC match well with that of COVID-19 infection. Hence, the detection of COVID-19 may also get delayed leading to unnecessary complications. Thus, we have tried to investigate if the therapeutics that is currently used in lung cancer treatment can also act against SARS-CoV-2. If it is so, the same treatment protocols can be continued even if the SCLC patient had contracted COVID-19 without compromising the cancer care. For this, RNA dependent RNA polymerase (RdRP) from SARS-CoV-2 has been selected as drug target. Both docking and molecular dynamicssimulation analysis have indicated that Paclitaxel and Dacomitinib may be explored as multi-target drugs for both SCLC and COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- M Shivapriya Pingali
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India
| | - Anirudh Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India
| | - Vishal Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India
| | - Pritish Kumar Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India
| |
Collapse
|
6
|
Abraham S, Manohar SA, Patel R, Saji AM, Dani SS, Ganatra S. Strategies for Cardio-Oncology Care During the COVID-19 Pandemic. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2022; 24:137-153. [PMID: 36090762 PMCID: PMC9446588 DOI: 10.1007/s11936-022-00965-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
Abstract
Purpose of review The COVID-19 pandemic has disrupted healthcare and has disproportionately affected the marginalized populations. Patients with cancer and cardiovascular disease (cardio-oncology population) are uniquely affected. In this review, we explore the current data on COVID-19 vulnerability and outcomes in these patients and discuss strategies for cardio-oncology care with a focus on healthcare innovation, health equity, and inclusion. Recent findings The growing evidence suggest increased morbidity and mortality from COVID-19 in patients with comorbid cancer and cardiovascular disease. Additionally, de novo cardiovascular complications such as myocarditis, myocardial infarction, arrhythmia, heart failure, and thromboembolic events have increasingly emerged, possibly due to an accentuated host immune response and cytokine release syndrome. Summary Patient-centric policies are helpful for cardio-oncology surveillance like remote monitoring, increased use of biomarker-based surveillance, imaging modalities like CT scan, and point-of-care ultrasound to minimize the exposure for high-risk patients. Abundant prior experience in cancer therapy scaffolded the repurposed use of corticosteroids, IL-6 inhibitors, and Janus kinase inhibitors in the treatment of COVID-19 infection. COVID-19 vaccine timing and dose frequency present a challenge due to overlapping toxicities and immune cell depletion in patients receiving cancer therapies. The SARS-CoV-2 pandemic laid bare social and ethnic disparities in healthcare but also steered in innovation to combat problems of patient outreach, particularly with virtual care. In the recovery phase, the backlog in cardio-oncology care, interplay of cancer therapy-related side effects, and long COVID-19 syndrome are crucial issues to address.
Collapse
Affiliation(s)
- Sonu Abraham
- Department of Cardiovascular Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805 USA
| | | | - Rushin Patel
- Department of Cardiovascular Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805 USA
| | - Anu Mariam Saji
- Department of Internal Medicine, Saint Vincent Hospital, Worcester, MA USA
| | - Sourbha S. Dani
- Department of Cardiovascular Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805 USA
| | - Sarju Ganatra
- Department of Cardiovascular Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805 USA
| |
Collapse
|
7
|
Niranjan V, Setlur AS, Karunakaran C, Uttarkar A, Kumar KM, Skariyachan S. Scope of repurposed drugs against the potential targets of the latest variants of SARS-CoV-2. Struct Chem 2022; 33:1585-1608. [PMID: 35938064 PMCID: PMC9346052 DOI: 10.1007/s11224-022-02020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022]
Abstract
The unprecedented outbreak of the severe acute respiratory syndrome (SARS) Coronavirus-2, across the globe, triggered a worldwide uproar in the search for immediate treatment strategies. With no specific drug and not much data available, alternative approaches such as drug repurposing came to the limelight. To date, extensive research on the repositioning of drugs has led to the identification of numerous drugs against various important protein targets of the coronavirus strains, with hopes of the drugs working against the major variants of concerns (alpha, beta, gamma, delta, omicron) of the virus. Advancements in computational sciences have led to improved scope of repurposing via techniques such as structure-based approaches including molecular docking, molecular dynamic simulations and quantitative structure activity relationships, network-based approaches, and artificial intelligence-based approaches with other core machine and deep learning algorithms. This review highlights the various approaches to repurposing drugs from a computational biological perspective, with various mechanisms of action of the drugs against some of the major protein targets of SARS-CoV-2. Additionally, clinical trials data on potential COVID-19 repurposed drugs are also highlighted with stress on the major SARS-CoV-2 targets and the structural effect of variants on these targets. The interaction modelling of some important repurposed drugs has also been elucidated. Furthermore, the merits and demerits of drug repurposing are also discussed, with a focus on the scope and applications of the latest advancements in repurposing.
Collapse
Affiliation(s)
- Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bengaluru, Karnataka India
| | | | | | - Akshay Uttarkar
- Department of Biotechnology, RV College of Engineering, Bengaluru, Karnataka India
| | - Kalavathi Murugan Kumar
- Department of Bioinformatics, Pondicherry University, Chinna Kalapet, Kalapet, Puducherry, Tamil Nadu India
| | - Sinosh Skariyachan
- Department of Microbiology, St. Pius X College, Rajapuram, Kasaragod, Kerala India
| |
Collapse
|
8
|
Zhuang Z, Zhong X, Chen Q, Chen H, Liu Z. Bioinformatics and System Biology Approach to Reveal the Interaction Network and the Therapeutic Implications for Non-Small Cell Lung Cancer Patients With COVID-19. Front Pharmacol 2022; 13:857730. [PMID: 35721149 PMCID: PMC9201692 DOI: 10.3389/fphar.2022.857730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/28/2022] [Indexed: 01/17/2023] Open
Abstract
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the leading cause of coronavirus disease-2019 (COVID-19), is an emerging global health crisis. Lung cancer patients are at a higher risk of COVID-19 infection. With the increasing number of non-small-cell lung cancer (NSCLC) patients with COVID-19, there is an urgent need of efficacious drugs for the treatment of COVID-19/NSCLC. Methods: Based on a comprehensive bioinformatic and systemic biological analysis, this study investigated COVID-19/NSCLC interactional hub genes, detected common pathways and molecular biomarkers, and predicted potential agents for COVID-19 and NSCLC. Results: A total of 122 COVID-19/NSCLC interactional genes and 21 interactional hub genes were identified. The enrichment analysis indicated that COVID-19 and NSCLC shared common signaling pathways, including cell cycle, viral carcinogenesis, and p53 signaling pathway. In total, 10 important transcription factors (TFs) and 44 microRNAs (miRNAs) participated in regulations of 21 interactional hub genes. In addition, 23 potential candidates were predicted for the treatment of COVID-19 and NSCLC. Conclusion: This study increased our understanding of pathophysiology and screened potential drugs for COVID-19 and NSCLC.
Collapse
Affiliation(s)
- Zhenjie Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoying Zhong
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qianying Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiqi Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhanhua Liu
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
De P, Kumar V, Kar S, Roy K, Leszczynski J. Repurposing FDA approved drugs as possible anti-SARS-CoV-2 medications using ligand-based computational approaches: sum of ranking difference-based model selection. Struct Chem 2022; 33:1741-1753. [PMID: 35692512 PMCID: PMC9171098 DOI: 10.1007/s11224-022-01975-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/19/2022]
Abstract
The worldwide burden of coronavirus disease 2019 (COVID-19) is still unremittingly prevailing, with more than 440 million infections and over 5.9 million deaths documented so far since the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic. The non-availability of treatment further aggravates the scenario, thereby demanding the exploration of pre-existing FDA-approved drugs for their effectiveness against COVID-19. The current research aims to identify potential anti-SARS-CoV-2 drugs using a computational approach and repurpose them if possible. In the present study, we have collected a set of 44 FDA-approved drugs of different classes from a previously published literature with their potential antiviral activity against COVID-19. We have employed both regression- and classification-based quantitative structure–activity relationship (QSAR) modeling to identify critical chemical features essential for anticoronaviral activity. Multiple models with the consensus algorithm were employed for the regression-based approach to improve the predictions. Additionally, we have employed a machine learning-based read-across approach using Read-Across-v3.1 available from https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home and linear discriminant analysis for the efficient prediction of potential drug candidate for COVID-19. Finally, the quantitative prediction ability of different modeling approaches was compared using the sum of ranking differences (SRD). Furthermore, we have predicted a true external set of 98 pharmaceuticals using the developed models for their probable anti-COVID activity and their prediction reliability was checked employing the “Prediction Reliability Indicator” tool available from https://dtclab.webs.com/software-tools. Though the present study does not target any protein of viral interaction, the modeling approaches developed can be helpful for identifying or screening potential anti-coronaviral drug candidates.
Collapse
Affiliation(s)
- Priyanka De
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, India
| | - Vinay Kumar
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, India
| | - Supratik Kar
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217 USA
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, India
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217 USA
| |
Collapse
|
10
|
Hussein RK, Khouqeer G, Alkaoud AM, El-Khayatt AM. Probing the Action of Screened Anticancer Triazole–Tetrazole Derivatives Against COVID-19 Using Molecular Docking and DFT Investigations. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221093915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Drugs are continuously being evaluated for novel therapeutic uses. The purpose of this work was to screen anticancer triazole/tetrazole derivatives for effectiveness against the SARS-CoV-2 main protease (Mpro). First, the chemical structures’ activity was derived from conceptual quantum chemical calculations. According to molecular docking analysis, the compounds scored good interactions against SAR-COV-2's Mpro, with binding energies extending from −8.21 to −8.97 kcal/mol. The docked complexes included various bindings with His41 and Cys145, both catalytic residues responsible for cleavage of the SARS-CoV-2 Mpro. Among the 4 studied compounds, TD3 exhibited the highest affinity by achieving the most stable binding energy and lowest value for the inhibition constant. Most striking was that TD3 not only formed strong bonds with the catalytic residues His41 and Cys145, but also captured the residues of the catalytic loop (Cys44 to Pro52), which flank the catalytic dyads in Mpro's active site. As a result, the studied triazole/tetrazole derivatives, notably TD3, must be reviewed as potent drugs that could be repurposed for SARS-CoV-2 treatment.
Collapse
Affiliation(s)
- Rageh K. Hussein
- College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Kingdom of Saudi Arabia
| | - Ghada Khouqeer
- College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Kingdom of Saudi Arabia
| | - Ahmed M. Alkaoud
- College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Kingdom of Saudi Arabia
| | - Ahmed M. El-Khayatt
- College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Shahabi M, Raissi H. A new insight into the transfer and delivery of anti-SARS-CoV-2 drug Carmofur with the assistance of graphene oxide quantum dot as a highly efficient nanovector toward COVID-19 by molecular dynamics simulation. RSC Adv 2022; 12:14167-14174. [PMID: 35558858 PMCID: PMC9092566 DOI: 10.1039/d2ra01420c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
Currently, a preventive and curative treatment for COVID-19 is an urgent global issue. According to the fact that nanomaterial-based drug delivery systems as risk-free approaches for successful therapeutic strategies may led to immunization against COVID-19 pandemic, the delivery of Carmofur as a potential drug for the SARS-CoV-2 treatment via graphene oxide quantum dots (GOQDs) was investigated in silico using molecular dynamics (MD) simulation. MD simulation showed that π-π stacking together with hydrogen bonding played vital roles in the stability of the Carmofur-GOQD complex. Spontaneous attraction of GOQDs loaded with Carmofur toward the binding pocket of the main protease (Mpro) resulted in the penetration of Carmofur into the active catalytic region. It was found that the presence of GOQD as an effective carrier in the loading and delivery of Carmofur inhibitor affected the structural conformation of Mpro. Higher RMSF values of the key residues of the active site indicated their greater displacement to adopt Carmofur. These results suggested that the binding pocket of Mpro is not stable during the interaction with the Carmofur-GOQD complex. This study provided insights into the potential application of graphene oxide quantum dots as an effective Carmofur drug delivery system for the treatment of COVID-19.
Collapse
Affiliation(s)
- Mahnaz Shahabi
- Department of Chemistry, University of Birjand Birjand Iran
| | - Heidar Raissi
- Department of Chemistry, University of Birjand Birjand Iran
| |
Collapse
|
12
|
COVID-19 Phenotypes and Comorbidity: A Data-Driven, Pattern Recognition Approach Using National Representative Data from the United States. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084630. [PMID: 35457497 PMCID: PMC9029400 DOI: 10.3390/ijerph19084630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023]
Abstract
The aim of our study was to determine COVID-19 syndromic phenotypes in a data-driven manner using the survey results based on survey results from Carnegie Mellon University’s Delphi Group. Monthly survey results (>1 million responders per month; 320,326 responders with a certain COVID-19 test status and disease duration <30 days were included in this study) were used sequentially in identifying and validating COVID-19 syndromic phenotypes. Logistic Regression-weighted multiple correspondence analysis (LRW-MCA) was used as a preprocessing procedure, in order to weigh and transform symptoms recorded by the survey to eigenspace coordinates, capturing a total variance of >75%. These scores, along with symptom duration, were subsequently used by the Two Step Clustering algorithm to produce symptom clusters. Post-hoc logistic regression models adjusting for age, gender, and comorbidities and confirmatory linear principal components analyses were used to further explore the data. Model creation, based on August’s 66,165 included responders, was subsequently validated in data from March−December 2020. Five validated COVID-19 syndromes were identified in August: 1. Afebrile (0%), Non-Coughing (0%), Oligosymptomatic (ANCOS); 2. Febrile (100%) Multisymptomatic (FMS); 3. Afebrile (0%) Coughing (100%) Oligosymptomatic (ACOS); 4. Oligosymptomatic with additional self-described symptoms (100%; OSDS); 5. Olfaction/Gustatory Impairment Predominant (100%; OGIP). Our findings indicate that the COVID-19 spectrum may be undetectable when applying current disease definitions focusing on respiratory symptoms alone.
Collapse
|
13
|
Serra A, Fratello M, Federico A, Ojha R, Provenzani R, Tasnadi E, Cattelani L, Del Giudice G, Kinaret PAS, Saarimäki LA, Pavel A, Kuivanen S, Cerullo V, Vapalahti O, Horvath P, Lieto AD, Yli-Kauhaluoma J, Balistreri G, Greco D. Computationally prioritized drugs inhibit SARS-CoV-2 infection and syncytia formation. Brief Bioinform 2021; 23:6484515. [PMID: 34962256 PMCID: PMC8769897 DOI: 10.1093/bib/bbab507] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
The pharmacological arsenal against the COVID-19 pandemic is largely based on generic anti-inflammatory strategies or poorly scalable solutions. Moreover, as the ongoing vaccination campaign is rolling slower than wished, affordable and effective therapeutics are needed. To this end, there is increasing attention toward computational methods for drug repositioning and de novo drug design. Here, multiple data-driven computational approaches are systematically integrated to perform a virtual screening and prioritize candidate drugs for the treatment of COVID-19. From the list of prioritized drugs, a subset of representative candidates to test in human cells is selected. Two compounds, 7-hydroxystaurosporine and bafetinib, show synergistic antiviral effects in vitro and strongly inhibit viral-induced syncytia formation. Moreover, since existing drug repositioning methods provide limited usable information for de novo drug design, the relevant chemical substructures of the identified drugs are extracted to provide a chemical vocabulary that may help to design new effective drugs.
Collapse
Affiliation(s)
- Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,BioMediTech Institute, Tampere University, Tampere, Finland.,Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
| | - Michele Fratello
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,BioMediTech Institute, Tampere University, Tampere, Finland.,Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
| | - Antonio Federico
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,BioMediTech Institute, Tampere University, Tampere, Finland.,Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
| | - Ravi Ojha
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riccardo Provenzani
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ervin Tasnadi
- Synthetic and Systems Biology Unit, Biological Research Centre, Eotvos Lorand Research Network, Szeged, Hungary
| | - Luca Cattelani
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,BioMediTech Institute, Tampere University, Tampere, Finland.,Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
| | - Giusy Del Giudice
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,BioMediTech Institute, Tampere University, Tampere, Finland.,Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
| | - Pia A S Kinaret
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,BioMediTech Institute, Tampere University, Tampere, Finland.,Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Laura A Saarimäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,BioMediTech Institute, Tampere University, Tampere, Finland.,Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
| | - Alisa Pavel
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,BioMediTech Institute, Tampere University, Tampere, Finland.,Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
| | - Suvi Kuivanen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Peter Horvath
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.,Synthetic and Systems Biology Unit, Biological Research Centre, Eotvos Lorand Research Network, Szeged, Hungary
| | - Antonio Di Lieto
- Department of Forensic Psychiatry, Aarhus University, Aarhus, Denmark
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Giuseppe Balistreri
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,BioMediTech Institute, Tampere University, Tampere, Finland.,Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Asili P, Mirahmad M, Tabatabaei-Malazy O, Manayi A, Haghighat E, Mahdavi M, Larijani B. Characteristics of published/registered clinical trials on COVID-19 treatment: A systematic review. Daru 2021; 29:449-467. [PMID: 34762250 PMCID: PMC8581284 DOI: 10.1007/s40199-021-00422-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES Due to the rapid spread of COVID-19 worldwide, many countries have designed clinical trials to find efficient treatments. We aimed to critically report the characteristics of all the registered and published randomized clinical trials (RCTs) conducted on COVID-19, and summarize the evaluation of potential therapies developed in various regions. EVIDENCE ACQUISITION We comprehensively searched PubMed, Cochrane Library, Web of Science, Scopus, and Clinicaltrial.gov databases to retrieve all the relevant studies up to July 19, 2021, in conformity with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart. We included all English-language published/registered RCTs on COVID-19, and excluded non-RCT, in-vitro/in-vivo, editorials, and review studies. Two reviewers independently evaluated all the records, and then analyzed by using SPSS 17. RESULTS Within 3018 included studies, 2801 (92.8%) and 217 (7.2%) were registered or published RCTs consisting of about 600 synthetic drugs. Herbal medicines have been studied in 23 trials (10.6%) among the published RCTs and in 357 registered RCTs (12.7%). Hydroxychloroquine 23 (10.6%) and convalescent plasma 194 (6.9%) alone or in combination with other agents were the most frequently used interventions in published and registered RCTs, respectively. Most published RCTs have been conducted in Western Pacific Region (WPRO) (50 trials, 23.0%) including 45 trials from China. Also, a greater proportion of registered RCTs have been conducted in the Region of the Americas (PAHO) (885 trials, 31.6%) including 596 RCTs from the United States (U.S). Globally, 283 registered trials have been conducted to assess new developed vaccines for COVID or previously established for other disorders. CONCLUSION The present study highlighted the wide range of potential therapeutic agents in published and registered COVID-19 clinical trials across a wide range of regions. However, it is urgently required to global coordination in order to conduct more well-designed trials and progress in discovering safe and effective treatments.
Collapse
Affiliation(s)
- Pooria Asili
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Manayi
- Medicinal Plants Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Haghighat
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Abdalla AE, Xie J, Junaid K, Younas S, Elsaman T, Abosalif KOA, Alameen AAM, Mahjoob MO, Elamir MYM, Ejaz H. Insight into the emerging role of SARS-CoV-2 nonstructural and accessory proteins in modulation of multiple mechanisms of host innate defense. Bosn J Basic Med Sci 2021; 21:515-527. [PMID: 33714258 PMCID: PMC8381213 DOI: 10.17305/bjbms.2020.5543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/04/2021] [Indexed: 11/23/2022] Open
Abstract
Coronavirus disease-19 (COVID-19) is an extremely infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has become a major global health concern. The induction of a coordinated immune response is crucial to the elimination of any pathogenic infection. However, SARS-CoV-2 can modulate the host immune system to favor viral adaptation and persistence within the host. The virus can counteract type I interferon (IFN-I) production, attenuating IFN-I signaling pathway activation and disrupting antigen presentation. Simultaneously, SARS-CoV-2 infection can enhance apoptosis and the production of inflammatory mediators, which ultimately results in increased disease severity. SARS-CoV-2 produces an array of effector molecules, including nonstructural proteins (NSPs) and open-reading frames (ORFs) accessory proteins. We describe the complex molecular interplay of SARS-CoV-2 NSPs and accessory proteins with the host's signaling mediating immune evasion in the current review. In addition, the crucial role played by immunomodulation therapy to address immune evasion is discussed. Thus, the current review can provide new directions for the development of vaccines and specific therapies.
Collapse
Affiliation(s)
- Abualgasim Elgaili Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf, Saudi Arabia
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman, Sudan
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | - Kashaf Junaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf, Saudi Arabia
| | - Sonia Younas
- Department of Pathology, Tehsil Headquarter Hospital Kamoke, District Gujranwala, Kamoke, Pakistan
| | - Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Al Jouf, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Omdurman, Sudan
| | - Khalid Omer Abdalla Abosalif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf, Saudi Arabia
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman, Sudan
| | - Ayman Ali Mohammed Alameen
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf, Saudi Arabia
- Department of Chemical Pathology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Mahjoob Osman Mahjoob
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman, Sudan
| | - Mohammed Yagoub Mohammed Elamir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf, Saudi Arabia
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman, Sudan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf, Saudi Arabia
| |
Collapse
|
16
|
Mohiuddin M, Kasahara K. The Mechanisms of the Growth Inhibitory Effects of Paclitaxel on Gefitinib-resistant Non-small Cell Lung Cancer Cells. Cancer Genomics Proteomics 2021; 18:661-673. [PMID: 34479918 DOI: 10.21873/cgp.20288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND/AIM Coronavirus disease 2019 (COVID-19) poses a great challenge for the treatment of cancer patients. It presents as a severe respiratory infection in aged individuals, including some lung cancer patients. COVID-19 may be linked to the progression of aggressive lung cancer. In addition, the side effects of chemotherapy, such as chemotherapy resistance and the acceleration of cellular senescence, can worsen COVID-19. Given this situation, we investigated the role of paclitaxel (a chemotherapy drug) in the cell proliferation, apoptosis, and cellular senescence of gefitinib-resistant non-small-cell lung cancer (NSCLC) cells (PC9-MET) to clarify the underlying mechanisms. MATERIALS AND METHODS PC9-MET cells were treated with paclitaxel for 72 h and then evaluated by a cell viability assay, DAPI staining, Giemsa staining, apoptosis assay, a reactive oxygen species (ROS) assay, SA-β-Gal staining, a terminal deoxynucleotidyl transferase dUTP nick-end labeling assay and Western blotting. RESULTS Paclitaxel significantly reduced the viability of PC9-MET cells and induced morphological signs of apoptosis. The apoptotic effects of paclitaxel were observed by increased levels of cleaved caspase-3 (Asp 175), cleaved caspase-9 (Asp 330) and cleaved PARP (Asp 214). In addition, paclitaxel increased ROS production, leading to DNA damage. Inhibition of ROS production by N-acetylcysteine attenuates paclitaxel-induced DNA damage. Importantly, paclitaxel eliminated cellular senescence, as observed by SA-β-Gal staining. Cellular senescence elimination was associated with p53/p21 and p16/pRb signaling inactivation. CONCLUSION Paclitaxel may be a promising anticancer drug and offer a new therapeutic strategy for managing gefitinib-resistant NSCLC during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Md Mohiuddin
- Department of Respiratory Medicine, Kanazawa University, Ishikawa, Japan
| | - Kazuo Kasahara
- Department of Respiratory Medicine, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
17
|
Dowarah J, Marak BN, Yadav UCS, Singh VP. Potential drug development and therapeutic approaches for clinical intervention in COVID-19. Bioorg Chem 2021; 114:105016. [PMID: 34144277 PMCID: PMC8143914 DOI: 10.1016/j.bioorg.2021.105016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/20/2021] [Indexed: 01/25/2023]
Abstract
While the vaccination is now available to many countries and will slowly dissipate to others, effective therapeutics for COVID-19 is still illusive. The SARS-CoV-2 pandemic has posed an unprecedented challenge to researchers, scientists, and clinicians and affected the wellbeing of millions of people worldwide. Since the beginning of the pandemic, a multitude of existing anti-viral, antibiotic, antimalarial, and anticancer drugs have been tested, and some have shown potency in the treatment and management of COVID-19, albeit others failed to leave any positive impact and a few also became controversial as they showed mixed clinical outcomes. In the present article, we have brought together some of the candidate therapeutic drugs being repurposed or used in the clinical trials and discussed their clinical efficacy and safety for COVID-19.
Collapse
Affiliation(s)
- Jayanta Dowarah
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Brilliant N Marak
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | | | - Ved Prakash Singh
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India; Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India.
| |
Collapse
|
18
|
Jin T, Xu Y, Dai C, Zhou X, Xu Q, Wu Z. Cold atmospheric plasma: A non-negligible strategy for viral RNA inactivation to prevent SARS-CoV-2 environmental transmission. AIP ADVANCES 2021; 11:085019. [PMID: 34413992 PMCID: PMC8371919 DOI: 10.1063/5.0060530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/02/2021] [Indexed: 05/13/2023]
Abstract
Cold atmospheric plasma (CAP), regarded as a powerful physics technology, displays antimicrobial, antitumor, and even antiviral properties, but the underlying mechanism is rarely studied. In this study, four CAP exposure doses (30, 60, 120, and 240 s) were applied to inactivate a severe acute respiratory syndrome coronavirus 2 like pseudovirus on a stainless steel disk, which comprised spike protein on its membrane and can express a green fluorescent protein. In order to unravel the potential effects of CAP irradiation on pseudovirus, infection assay, optical emission spectra analysis, transmission electron microscopy (TEM), sodium dodecyl sulfate polyacrylamide gel electrophoresis, ELISA, and qPCR experiments were carried out. As a result, our study indicated that CAP irradiation can significantly decrease the infectivity of pseudovirus in a dose dependent manner through destroying the cell membrane and further damaging viral RNA, with the molecular weight and conformation of spike receptor binding domain protein unchanged.
Collapse
Affiliation(s)
- Tao Jin
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Yong Xu
- Anhui Academy of Medical Sciences, Hefei, China
| | - Chenwei Dai
- Anhui Academy of Medical Sciences, Hefei, China
| | | | - Qinghua Xu
- Anhui Academy of Medical Sciences, Hefei, China
| | - Zhengwei Wu
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
19
|
Bora VR, Patel BM. The Deadly Duo of COVID-19 and Cancer! Front Mol Biosci 2021; 8:643004. [PMID: 33912588 PMCID: PMC8072279 DOI: 10.3389/fmolb.2021.643004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
As of September 19, 2020, about 30 million people have been infected with the novel corona virus disease 2019 (COVID-19) globally, and the numbers are increasing at an alarming rate. The disease has a tremendous impact on every aspect of life, but one of the biggest, related to human health and medical sciences, is its effect on cancer. Nearly 2% of the total COVID-19 patients prior to May 2020 had cancer, and the statistics are quite frightening as the patient can be referred to as "doubly unfortunate" to suffer from cancer with the added misery of infection with COVID-19. Data regarding the present situation are scarce, so this review will focus on the deadly duo of COVID-19 and cancer. The focus is on molecular links between COVID-19 and cancer as inflammation, immunity, and the role of angiotensin converting enzyme 2 (ACE2). Complications may arise or severity may increase in cancer patients due to restrictions imposed by respective authorities as an effort to control COVID-19. The impact may vary from patient to patient and factors may include a delay in diagnosis, difficulty managing both cancer therapy and COVID-19 at same time, troubles in routine monitoring of cancer patients, and delays in urgent surgical procedures and patient care. The effect of anti-cancer agents on the condition of cancer patients suffering from COVID-19 and whether these anti-cancer agents can be repurposed for effective COVID-19 treatment are discussed. The review will be helpful in the management of deadly duo of COVID-19 and cancer.
Collapse
Affiliation(s)
| | - Bhoomika M. Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
20
|
Abstract
BACKGROUND Many drugs approved for other indications can control the growth of tumor cells and limit adverse events (AE). DATA SOURCES Literature searches with keywords 'repurposing and cancer' books, websites: https://clinicaltrials.gov/, for drug structures: https://pubchem.ncbi.nlm.nih.gov/. AREAS OF AGREEMENT Introducing approved drugs, such as those developed to treat diabetes (Metformin) or inflammation (Thalidomide), identified to have cytostatic activity, can enhance chemotherapy or even replace more cytotoxic drugs. Also, anti-inflammatory compounds, cytokines and inhibitors of proteolysis can be used to control the side effects of chemo- and immuno-therapies or as second-line treatments for tumors resistant to kinase inhibitors (KI). Drugs specifically developed for cancer therapy, such as interferons (IFN), the tyrosine KI abivertinib TKI (tyrosine kinase inhibitor) and interleukin-6 (IL-6) receptor inhibitors, may help control symptoms of Covid-19. AREAS OF CONTROVERSY Better knowledge of mechanisms of drug activities is essential for repurposing. Chemotherapies induce ER stress and enhance mutation rates and chromosome alterations, leading to resistance that cannot always be related to mutations in the target gene. Metformin, thalidomide and cytokines (IFN, tumor necrosis factor (TNF), interleukin-2 (IL-2) and others) have pleiomorphic activities, some of which can enhance tumorigenesis. The small and fragile patient pools available for clinical trials can cloud the data on the usefulness of cotreatments. GROWING POINTS Better understanding of drug metabolism and mechanisms should aid in repurposing drugs for primary, adjuvant and adjunct treatments. AREAS TIMELY FOR DEVELOPING RESEARCH Optimizing drug combinations, reducing cytotoxicity of chemotherapeutics and controlling associated inflammation.
Collapse
Affiliation(s)
- Catherine H Schein
- Department of Biochemistry and Molecular Biology Faculty, Institute for Human Infections and Immunity (IHII), University of Texas Medical Branch, Galveston 301 University Boulevard, Galveston, Texas 77555, USA
| |
Collapse
|
21
|
Pojero F, Candore G, Caruso C, Di Bona D, Groneberg DA, Ligotti ME, Accardi G, Aiello A. The Role of Immunogenetics in COVID-19. Int J Mol Sci 2021; 22:2636. [PMID: 33807915 PMCID: PMC7961811 DOI: 10.3390/ijms22052636] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is induced by SARS-CoV-2 and may arise as a variety of clinical manifestations, ranging from an asymptomatic condition to a life-threatening disease associated with cytokine storm, multiorgan and respiratory failure. The molecular mechanism behind such variability is still under investigation. Several pieces of experimental evidence suggest that genetic variants influencing the onset, maintenance and resolution of the immune response may be fundamental in predicting the evolution of the disease. The identification of genetic variants behind immune system reactivity and function in COVID-19 may help in the elaboration of personalized therapeutic strategies. In the frenetic look for universally shared treatment plans, those genetic variants that are common to other diseases/models may also help in addressing future research in terms of drug repurposing. In this paper, we discuss the most recent updates about the role of immunogenetics in determining the susceptibility to and the history of SARS-CoV-2 infection. We propose a narrative review of available data, speculating about lessons that we have learnt from other viral infections and immunosenescence, and discussing what kind of aspects of research should be deepened in order to improve our knowledge of how host genetic variability impacts the outcome for COVID-19 patients.
Collapse
Affiliation(s)
- Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Danilo Di Bona
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - David A. Groneberg
- Institute of Occupational, Social and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany;
| | - Mattia E. Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| |
Collapse
|