1
|
Tabar MMM, Fathi M, Kazemi F, Bazregari G, Ghasemian A. STING pathway as a cancer immunotherapy: Progress and challenges in activating anti-tumor immunity. Mol Biol Rep 2024; 51:487. [PMID: 38578532 DOI: 10.1007/s11033-024-09418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
The stimulator of the interferon genes (STING) signaling pathway plays a crucial role in innate immunity by detecting cytoplasmic DNA and initiating antiviral host defense mechanisms. The STING cascade is triggered when the enzyme cyclic GMP-AMP synthase (cGAS) binds cytosolic DNA and synthesizes the secondary messenger cGAMP. cGAMP activates the endoplasmic reticulum adaptor STING, leading to the activation of kinases TBK1 and IRF3 that induce interferon production. Secreted interferons establish an antiviral state in infected and adjacent cells. Beyond infections, aberrant DNA in cancer cells can also activate the STING pathway. Preclinical studies have shown that pharmacological STING agonists like cyclic dinucleotides elicit antitumor immunity when administered intratumorally by provoking innate and adaptive immunity. Combining STING agonists with immune checkpoint inhibitors may improve outcomes by overcoming tumor immunosuppression. First-generation STING agonists encountered challenges like poor pharmacokinetics, limited tumor specificity, and systemic toxicity. The development of the next-generation STING-targeted drugs to realize the full potential of engaging this pathway for cancer treatment can be a solution to overcome the current challenges, but further studies are required to determine optimal applications and combination regimens for the clinic. Notably, the controlled activation of STING is needed to preclude adverse effects. This review explores the mechanisms and effects of STING activation, its role in cancer immunotherapy, and current challenges.
Collapse
Affiliation(s)
| | - Mahnaz Fathi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Kazemi
- Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ghazal Bazregari
- Department of Hematology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
2
|
Daei Farshchi Adli A, Jahanban-Esfahlan R, Seidi K, Farajzadeh D, Behzadi R, Zarghami N. Co-Administration of Vadimezan and Recombinant Coagulase-NGR Inhibits Growth of Melanoma Tumor in Mice. Adv Pharm Bull 2020; 11:385-392. [PMID: 33880362 PMCID: PMC8046391 DOI: 10.34172/apb.2021.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/01/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose: Tumor vascular targeting appeared as an appealing approach to fight cancer, though, the results from the clinical trials and drugs in the market were proved otherwise. The promise of anti-angiogenic therapy as the leading tumor vascular targeting strategy was negatively affected with the discovery that tumor vascularization can occur non-angiogenic mechanisms such as co-option. An additional strategy is induction of tumor vascular infarction and ischemia. Methods: Such that we used truncated coagulase (tCoa) coupled to tumor endothelial targeting moieties to produce tCoa-NGR fusion proteins. We showed that tCoa-NGR can bypass coagulation cascade to induce selective vascular thrombosis and infarction of mild and highly proliferative solid tumors in mice. Moreover, combination therapy can be used to improve the potential of cancer vascular targeting modalities. Herein, we report combination of tCoa-NGR with vascular disrupting agent (VDA), vadimezan. Results: Our results show that synergistic work of these two agents can significantly suppress growth of B16-F10 melanoma tumors in C57/BL6 mice. Conclusion: For the first time, we used the simultaneous benefits of two strategies for inducing thrombosis and destruction of tumor vasculature as spatial co-operation. The tCoa-NGR induce thrombosis which reduces blood flow in the peripheral tumor region. And combined with the action of DMXAA, which target inner tumor mass, growth and proliferation of melanoma tumors can be significantly suppressed.
Collapse
Affiliation(s)
- Amir Daei Farshchi Adli
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khaled Seidi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Farajzadeh
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Ramezan Behzadi
- North Research Center, Pasture Institute of Iran, Tehran, Amol, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Synergistic Effect of Network-Based Multicomponent Drugs: An Investigation on the Treatment of Non-Small-Cell Lung Cancer with Compound Liuju Formula. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9854047. [PMID: 31949474 PMCID: PMC6948348 DOI: 10.1155/2019/9854047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/25/2019] [Accepted: 11/12/2019] [Indexed: 11/22/2022]
Abstract
Lung cancer is the most common cause of cancer death with high morbidity and mortality, which non-small-cell lung cancer (NSCLC) accounting for the majority. Traditional Chinese Medicine (TCM) is effective in the treatment of complex diseases, especially cancer. However, TCM is still in the conceptual stage. The interaction between different components remains unknown due to its multicomponent and multitarget characteristics. In this study, compound Liuju formula was taken as an example to isolate compounds with synergistic biological activity through systems pharmacology strategy. Through pharmacokinetic evaluation, 37 potentially active compounds were screened out. Meanwhile, 116 targets of these compounds were obtained by combing with the target prediction model. Through network analysis, we found that multicomponent drugs can present a synergistic effect through regulating inflammatory signaling pathway, invasion pathway, proliferation, and apoptosis pathway. Finally, it was confirmed that the bioactive compounds of compound Liuju formula have not only a killing effect on NSCLC tumor cells but also a synergistic effect on inhibiting the secretion of correlative inflammatory mediators, including TNF-α and IL-1β. The systems pharmacology method was applied in this study, which provides a new direction for analyzing the mechanism of TCM.
Collapse
|
4
|
Wang C, Li X, Jin L, Zhao Y, Zhu G, Shen W. Dieckol inhibits non-small-cell lung cancer cell proliferation and migration by regulating the PI3K/AKT signaling pathway. J Biochem Mol Toxicol 2019; 33:e22346. [PMID: 31291034 PMCID: PMC6771741 DOI: 10.1002/jbt.22346] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/18/2019] [Accepted: 04/08/2019] [Indexed: 01/02/2023]
Abstract
Non-small-cell lung cancer (NSCLC) is one of the most prevalent type of lung cancers with an increased mortality rate in both developed and developing countries worldwide. Dieckol is one such polyphenolic drug extracted from brown algae which has proven antioxidant and anti-inflammatory properties. In the present study, we evaluated the anticancer property of dieckol against NSCLC cell line A549. The LC50 value of dieckol was found to be 25 µg/mL by performing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the antiapoptotic property of dieckol was analyzed by dual staining technique with acridine orange/propidium iodide (AO/PI) stains. It was further confirmed with flow cytometry analysis with Annexin FITC and JC-1 staining and the anti-invasive property was assessed by Transwell assay. The molecular mechanism of dieckol anticancer activity was confirmed by estimating the levels of caspases and by estimating the signaling proteins of Pi3K/AKT/mTOR signaling pathway using the immunoblotting technique. Our data suggest that dieckol is potent anticancer agent, it effectively inhibits the invasive and migratory property A549 cells and it also induces apoptosis via inhibiting Pi3K/AKT/mTOR signaling, activating the tumor suppressor protein E-cadherin signifying that dieckol is potent natural anticancer drug to treat NSCLC.
Collapse
Affiliation(s)
- Chun‐Hong Wang
- Department of Oncology and HematologyThe Second Hospital of Jilin UniversityChangchunJilinChina
| | - Xiao‐Feng Li
- Department of Oncology and HematologyThe Second Hospital of Jilin UniversityChangchunJilinChina
| | - Li‐Fang Jin
- Department of Oncology and HematologyThe Second Hospital of Jilin UniversityChangchunJilinChina
| | - Yan Zhao
- Department of Oncology and HematologyThe Second Hospital of Jilin UniversityChangchunJilinChina
| | - Geng‐Jun Zhu
- Department of Oncology and HematologyThe Second Hospital of Jilin UniversityChangchunJilinChina
| | - Wei‐Zhang Shen
- Department of Oncology and HematologyThe Second Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
5
|
Xu HD, Luo W, Lin Y, Zhang J, Zhang L, Zhang W, Huang SM. Discovery of potential therapeutic targets for non-small cell lung cancer using high-throughput metabolomics analysis based on liquid chromatography coupled with tandem mass spectrometry. RSC Adv 2019; 9:10905-10913. [PMID: 35515291 PMCID: PMC9062476 DOI: 10.1039/c9ra00987f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is a severe health problem and threatens a patient's quality of life. The metabolites present in biological systems are expected to be key mediators and the changes in these metabolites play an important role in promoting health. Metabolomics can unravel the global metabolic changes and identify significant biological pathways involved in disease development. However, the role of metabolites in lung cancer is still largely unknown. In the present study, we developed a liquid chromatography coupled with tandem mass spectrometry method for biomarker discovery and identification of non-small cell lung cancer (NSCLC) from metabolomics data sets and aimed to investigate the metabolic profiles of NSCLC samples to identify potential disease biomarkers and to reveal the pathological mechanism. After cell metabolite extraction, the metabolic changes in NSCLC cells were characterized and targeted metabolite analysis was adopted to offer a novel opportunity to probe into the relationship between differentially regulated cell metabolites and NSCLC. Quantitative analysis of key enzymes in the disturbed pathways by proteomics was employed to verify metabolomic pathway changes. A total of 13 specific biomarkers were identified in NSCLC cells related with metabolic disturbance of NSCLC morbidity, which were involved in 4 vital pathways, namely glycine, serine and threonine metabolism, aminoacyl-tRNA biosynthesis, tyrosine metabolism and sphingolipid metabolism. The proteomics analysis illustrated the obvious fluctuation of the expression of the key enzymes in these pathways, including the downregulation of 3-phosphoglycerate dehydrogenase, phosphoserine phosphatase, tyrosinase and argininosuccinic acid catenase. NSCLC occurrence is mainly related to amino acid and fatty acid metabolic alteration. These findings highlight that the metabolome can provide information on the molecular profiles of cells, which can aid in investigating the metabolite changes to reveal the pathological mechanism.
Collapse
Affiliation(s)
- Hong-Dan Xu
- College of Jiamusi, Heilongjiang University of Chinese Medicine Jiamusi 154007 China
| | - Wen Luo
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University Harbin 150081 China +86-451-85555787 +86-451-85555787
| | - Yuanlong Lin
- Infectious Diseases Department, Fourth Affiliated Hospital, Harbin Medical University Harbin China
| | - Jiawen Zhang
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University Harbin 150081 China +86-451-85555787 +86-451-85555787
| | - Lijuan Zhang
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University Harbin 150081 China +86-451-85555787 +86-451-85555787
| | - Wei Zhang
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University Harbin 150081 China +86-451-85555787 +86-451-85555787
| | - Shu-Ming Huang
- Institute of Chinese Medicine, Heilongjiang University of Medicine Chinese Heping Road 24, Xiangfang District Harbin 150040 China +86-451-87266816
| |
Collapse
|
6
|
Chen X, Lee J, Wu H, Tsang AW, Furdui CM. Mass Spectrometry in Advancement of Redox Precision Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:327-358. [PMID: 31347057 PMCID: PMC9236553 DOI: 10.1007/978-3-030-15950-4_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Redox (portmanteau of reduction-oxidation) reactions involve the transfer of electrons between chemical species in biological processes fundamental to life. It is of outmost importance that cells maintain a healthy redox state by balancing the action of oxidants and antioxidants; failure to do so leads to a multitude of diseases including cancer, diabetes, fibrosis, autoimmune diseases, and cardiovascular and neurodegenerative diseases. From the perspective of precision medicine, it is therefore beneficial to interrogate the redox phenotype of the individual-similar to the use of genomic sequencing-in order to design tailored strategies for disease prevention and treatment. This chapter provides an overview of redox metabolism and focuses on how mass spectrometry (MS) can be applied to advance our knowledge in redox biology and precision medicine.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Hanzhi Wu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Allen W Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA.
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
7
|
Shi W, Yin Y, Wang Y, Zhang B, Tan P, Jiang T, Mei H, Deng J, Wang H, Guo T, Pang Z, Hu Y. A tissue factor-cascade-targeted strategy to tumor vasculature: a combination of EGFP-EGF1 conjugation nanoparticles with photodynamic therapy. Oncotarget 2018; 8:32212-32227. [PMID: 27793028 PMCID: PMC5458279 DOI: 10.18632/oncotarget.12922] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/22/2016] [Indexed: 02/03/2023] Open
Abstract
Tumor requires tumor vasculature to supply oxygen and nutrients so as to support its continued growth, as well as provide a main route for metastatic spread. In this study, a TF-cascade-targeted strategy aiming to disrupt tumor blood vessels was developed by combination of TF-targeted HMME-loaded drug delivery system and PDT. PDT is a promising new modality in the treatment of cancers, which employs the interaction between a tumor-localizing photosensitizer and light of an appropriate wavelength to bring about ROS-induced cell death. In vitro results showed that protein EGFP-EGF1modification could significantly contribute to the uptake of nanoparticles by TF over-expressed BCECs. In vivo multispectral fluorescent imaging, the EGFP-EGF1 conjugated nanoparticles showed significantly higher accumulation in tumor tissues than non-conjugated ones. Tumor tissue slides further presented that EGFP-EGF1 conjugated nanoparticles showed significantly higher accumulation in tumor vasculature than non-conjugated ones. In vitro study demonstrated that PDT increased TF expression of BCECs. In vivo imaging, ex vivo imaging and tumor tissue slides showed that PDT further contribute EGFP-EGF1-NP accumulation in tumor. These promising results indicated that PDT enhanced EGFP-EGF1modified PEG-PLGA nanoparticle accumulation in tumor vaculature. Considering that EGFP-EGF1 conjugation enhanced nanoparticles uptake by TF over-expressed endothelium and PDT increased endothelium TF expression. We conclude that PDT triggered a TF cascade targeted effect. A combination of both EGFP-EGF1 modification and PDT provided a positive feed-back target effect to tumor vessels and might have a great potential for tumor therapy.
Collapse
Affiliation(s)
- Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China.,Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, China
| | - Yanxue Yin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China.,Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, China
| | - Yao Wang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Bo Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China.,Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, China
| | - Pei Tan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China.,Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, China
| | - Ting Jiang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China.,Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China.,Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, China
| | - Jun Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China.,Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, China
| | - Huafang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China.,Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, China
| | - Tao Guo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China.,Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, China
| | - Zhiqing Pang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China.,Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, China
| |
Collapse
|
8
|
Zhang S, Wang Y. Telmisartan inhibits NSCLC A549 cell proliferation and migration by regulating the PI3K/AKT signaling pathway. Oncol Lett 2018; 15:5859-5864. [PMID: 29552215 DOI: 10.3892/ol.2018.8002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
Expression of angiotensin II (Ang II), a key biological peptide in the renin-angiotensin system, is closely associated with the occurrence and development of cancer. Ang II binds two receptor subtypes, the Ang II type 1 receptor (AT1R) and the AT2R, to mediate a series of biological effects. Telmisartan, a specific AT1R blocker, has been reported to have potential as an anticancer drug for treating renal cancer. In the present study, whether telmisartan had an effect on non-small cell lung cancer (NSCLC) cell proliferation and migration was investigated. The Cell Counting kit-8 assay revealed that telmisartan significantly inhibited the growth of the NSCLC A549 cell line in a time- and dose-dependent manner. In a transwell assay, telmisartan significantly inhibited cellular invasion and migration. Furthermore, it was determined that the expression of the anti-apoptotic protein B-cell lymphoma was decreased, and that of the pro-apoptotic proteins caspase-3 and Bcl-associated X increased in the A549 cells treated with telmisartan. Additionally, levels of phosphorylated RAC serine/threonine-protein kinase (p-AKT), p-mechanistic target of rapamycin, p70-S6 kinase and cyclin D1 was decreased in the telmisartan-treated group. Therefore, the current study reveals that telmisartan-induced NSCLC apoptosis may be regulated via the phosphoinositide 3-kinase/AKT signaling pathway, which indicates that it may be a potential novel drug for clinical NSCLC treatment.
Collapse
Affiliation(s)
- Suolin Zhang
- Department of Chest Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| | - Yayan Wang
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, Jilin 133000, P.R. China
| |
Collapse
|
9
|
Wang XY, Zhang XH, Peng L, Liu Z, Yang YX, He ZX, Dang HW, Zhou SF. Bardoxolone methyl (CDDO-Me or RTA402) induces cell cycle arrest, apoptosis and autophagy via PI3K/Akt/mTOR and p38 MAPK/Erk1/2 signaling pathways in K562 cells. Am J Transl Res 2017; 9:4652-4672. [PMID: 29118925 PMCID: PMC5666072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Chronic myeloid leukemia (CML) treatment remains a challenge due to drug resistance and severe side effect, rendering the need on the development of novel therapeutics. CDDO-Me (Bardoxolone methyl), a potent Nrf2 activator and NF-κB inhibitor, is a promising candidate for cancer treatment including leukemia. However, the underlying mechanism for CDDO-Me in CML treatment is unclear. This study aimed to evaluate the molecular interactome of CDDO-Me in K562 cells using the quantitative proteomics approach stable-isotope labeling by amino acids in cell culture (SILAC) and explore the underlying mechanisms using cell-based functional assays. A total of 1,555 proteins responded to CDDO-Me exposure, including FANCI, SRPK2, XPO5, HP1BP3, NELFCD, Na+,K+-ATPase 1, etc. in K562 cells. A total of 246 signaling pathways and 25 networks regulating cell survival and death, cellular function and maintenance, energy production, protein synthesis, response to oxidative stress, and nucleic acid metabolism were involved. Our verification experiments confirmed that CDDO-Me down-regulated Na+,K+-ATPase α1 in K562 cells, and significantly arrested cells in G2/M and S phases, accompanied by remarkable alterations in the expression of key cell cycle regulators. CDDO-Me caused mitochondria-, death receptor-dependent and ER stress-mediated apoptosis in K562 cells, also induced autophagy with the suppression of PI3K/Akt/mTOR signaling pathway. p38 MAPK/Erk1/2 signaling pathways contributed to both apoptosis- and autophagy-inducing effects of CDDO-Me in K562 cells. Taken together, these data demonstrate that CDDO-Me is a potential anti-cancer agent that targets cell cycle, apoptosis, and autophagy in the treatment of CML.
Collapse
Affiliation(s)
- Xin-Yu Wang
- Institute of Clinical Pharmacology, General Hospital of Ningxia Medical UniversityYinchuan, Ningxia Hui Autonomous Region, China
- Department of Pharmacy, General Hospital of Ningxia Medical UniversityYinchuan, Ningxia Hui Autonomous Region, China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL, USA
| | - Xue-Hong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL, USA
- Department of Pediatrics, General Hospital of Ningxia Medical UniversityYinchuan, Ningxia Hui Autonomous Region, China
| | - Li Peng
- Department of Pharmacy, General Hospital of Ningxia Medical UniversityYinchuan, Ningxia Hui Autonomous Region, China
| | - Zheng Liu
- Department of Neurosurgery, General Hospital of Ningxia Medical UniversityYinchuan, Ningxia Hui Autonomous Region, China
| | - Yin-Xue Yang
- Department of Colorectal Surgery, General Hospital, Ningxia Medical UniversityYinchuan, Ningxia Hui Autonomous Region, China
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical UniversityGuiyang, Guizhou, China
| | - Hong-Wan Dang
- Institute of Clinical Pharmacology, General Hospital of Ningxia Medical UniversityYinchuan, Ningxia Hui Autonomous Region, China
- Department of Pharmacy, General Hospital of Ningxia Medical UniversityYinchuan, Ningxia Hui Autonomous Region, China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL, USA
- Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao UniversityXiamen, Fujian 361021, China
| |
Collapse
|
10
|
Zhu Q, Luo M, Zhou C, Zhou Z, He Z, Yu X, Zhou S. A proteomics-based investigation on the anticancer activity of alisertib, an Aurora kinase A inhibitor, in hepatocellular carcinoma Hep3B cells. Am J Transl Res 2017; 9:3558-3572. [PMID: 28861148 PMCID: PMC5575171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
Targeted therapy may provide survival benefit for advanced hepatocellular carcinoma (HCC) and Aurora A kinase (AURKA) represents a feasible target in cancer treatment. The purpose of this study is to investigate the anticancer activity of alisertib (ALS) on Hep3B cells based on a proteomic study conducted with the stable-isotope labeling by amino acids in cell culture (SILAC). The proteomic response to ALS was obtained with SILAC-based proteomic study. Cell cycle distribution and apoptosis were assessed using flow cytometry and autophagy was determined using flow cytometry and confocal microscopy. ALS inhibited the proliferation of Hep3B cells, with IC50 values for 24- and 48-h exposure of 46.8 and 28.0 μM, respectively. Our SILAC study demonstrated that there were at least 565 proteins responding to ALS treatment, with 256 upregulated, 275 downregulated and 35 stable. Ninety-four signaling pathways, majority of which involved cell proliferation and survival, programmed cell death, and nutrition and energy metabolism, were regulated by ALS. ALS significantly inhibited the phosphorylation of AURKA at Thr288 in a concentration-dependent manner. Subsequent study showed that ALS remarkably arrested Hep3B cells in G2/M phase via regulating the expression of key cell cycle regulators, and induced a marked autophagy via the PI3K/Akt/mTOR axis. Inhibition of autophagy enhanced the anticancer activity of ALS in Hep3B cells. Overall, ALS leads to comprehensive proteomic response, inhibits cellular proliferation, and induces cell cycle arrest and autophagy in Hep3B cells. Further studies are warranted to explore the role of ALS in the treatment of HCC.
Collapse
Affiliation(s)
- Qiaohua Zhu
- Department of Oncology and Interventional Radiology, Shunde Hospital, Southern Medical UniversityShunde 528300, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL, USA
| | - Meihua Luo
- Department of Oncology and Interventional Radiology, Shunde Hospital, Southern Medical UniversityShunde 528300, Guangdong, China
| | - Chengyu Zhou
- Department of Oncology and Interventional Radiology, Shunde Hospital, Southern Medical UniversityShunde 528300, Guangdong, China
| | - Zhiwei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL, USA
| | - Zhixu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical UniversityGuiyang 550004, China
| | - Xinfa Yu
- Department of Oncology and Interventional Radiology, Shunde Hospital, Southern Medical UniversityShunde 528300, Guangdong, China
| | - Shufeng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL, USA
- Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao UniversityXiamen 361021, Fujian, China
| |
Collapse
|
11
|
Parker GC, Carruthers NJ, Gratsch T, Caruso JA, Stemmer PM. Proteomic profile of embryonic stem cells with low survival motor neuron protein is consistent with developmental dysfunction. J Neural Transm (Vienna) 2017; 124:13-23. [PMID: 27145767 PMCID: PMC5097705 DOI: 10.1007/s00702-016-1520-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
Spinal muscular atrophy is an autosomal recessive motor neuron disease caused by a genetic defect carried by as many as one in 75 people. Unlike most neurological disorders, we know exactly what the genetic basis is of the disorder, but in spite of this, have little understanding of why the low levels of one protein, survival motor neuron protein, results in the specific progressive die back of only one cell type in the body, the motor neuron. Given the fact that all cells in the body of a patient with spinal muscular atrophy share the same low abundance of the protein throughout development, an appropriate approach is to ask how lower levels of survival motor neuron protein affects the proteome of embryonic stem cells prior to development. Convergent biostatistical analyses of a discovery proteomic analysis of these cells provide results that are consistent with the pathomechanistic fate of the developed motor neuron.
Collapse
Affiliation(s)
- Graham C Parker
- Carman and Ann Adam Department of Pediatrics, Wayne State University, Detroit, USA.
- iBio, 6135 Woodward Ave., Suite 2128 CURES H208, Detroit, MI, 48202, USA.
| | - Nicholas J Carruthers
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Theresa Gratsch
- Carman and Ann Adam Department of Pediatrics, Wayne State University, Detroit, USA
| | - Joseph A Caruso
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Paul M Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
12
|
Wang YY, Zhou S, Zhao R, Hai P, Zhe H. The therapeutic response of CDDO-Me in the esophageal squamous cell carcinoma (ESCC) cells is mediated by CaMKIIα. Am J Transl Res 2016; 8:1695-1707. [PMID: 27186293 PMCID: PMC4859898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
CDDO-Me has exhibited a potent anticancer effect in human esophageal squamous cell carcinoma (ESCC) cells in our previous study, but the molecular interactome remains elusive. We applied the approach of stable-isotope labeling by amino acids in cell culture (SILAC) to assess the proteomic responses of CDDO-Me treatment in human ESCC Ec109 cells. The data were subsequently validated using Western blot assay. The results of our study revealed that CDDO-Me increased the expression level of 543 protein molecules, but decreased the expression level of 709 protein molecules in Ec109 cells. Among these modulated protein molecules, calcium/calmodulin-dependent protein kinase type II subunit α (CaMKIIα) was highly expressed in all tested ESCC cell lines, whereas its expression levels were substantially lower in normal control cell line. Its silencing by small interfering RNA inhibited CDDO-Me induced apoptosis and autophagy in ESCC cells. Collectively, these data demonstrate that the therapeutic response of CDDO-Me in the human ESCC cells is mediated by CaMKIIα.
Collapse
Affiliation(s)
- Yan-Yang Wang
- Department of Radiation Oncology, General Hospital of Ningxia Medical UniversityYinchuan 750004, Ningxia, China
- Cancer Institute, Ningxia Medical UniversityYinchuan 750004, Ningxia, China
| | - Shun Zhou
- Graduated School, Ningxia Medical UniversityYinchuan 750004, Ningxia, China
| | - Ren Zhao
- Department of Radiation Oncology, General Hospital of Ningxia Medical UniversityYinchuan 750004, Ningxia, China
- Cancer Institute, Ningxia Medical UniversityYinchuan 750004, Ningxia, China
| | - Ping Hai
- Department of Radiation Oncology, General Hospital of Ningxia Medical UniversityYinchuan 750004, Ningxia, China
- Cancer Institute, Ningxia Medical UniversityYinchuan 750004, Ningxia, China
| | - Hong Zhe
- Department of Radiation Oncology, General Hospital of Ningxia Medical UniversityYinchuan 750004, Ningxia, China
- Cancer Institute, Ningxia Medical UniversityYinchuan 750004, Ningxia, China
| |
Collapse
|
13
|
Huang YT, Zhao L, Fu Z, Zhao M, Song XM, Jia J, Wang S, Li JP, Zhu ZF, Lin G, Lu R, Yao Z. Therapeutic effects of tyroservatide on metastasis of lung cancer and its mechanism affecting integrin-focal adhesion kinase signal transduction. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:649-63. [PMID: 27041993 PMCID: PMC4780724 DOI: 10.2147/dddt.s86284] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tyroservatide (YSV) can inhibit the growth and metastasis of mouse lung cancer significantly. This study investigated the therapeutic effects of tripeptide YSV on metastasis of human lung cancer cells and explored its possible mechanism that affects integrin–focal adhesion kinase (FAK) signal transduction in tumor cells. YSV significantly inhibited the adhesion and the invasion of highly metastatic human lung cancer cell lines 95D, A549, and NCI-H1299. In addition, YSV significantly inhibited phosphorylation of FAK Tyr397 and FAK Tyr576/577 in the 95D, A549, and NCI-H1299 human lung cancer cells in vitro. And the mRNA level and protein expression of FAK in these human lung cancer cells decreased at the same time. YSV also significantly inhibited mRNA and protein levels of integrin β1 and integrin β3 in the 95D, A549, and NCI-H1299 human lung cancer cells. Our research showed that YSV inhibited adhesion and invasion of human lung cancer cells and exhibited therapeutic effects on metastasis of lung cancer.
Collapse
Affiliation(s)
- Yu-ting Huang
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Lan Zhao
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zheng Fu
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Meng Zhao
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xiao-meng Song
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jing Jia
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Song Wang
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jin-ping Li
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zhi-feng Zhu
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Gang Lin
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China; Shenzhen Kangzhe Pharmaceutical Co., Ltd., Shenzhen, People's Republic of China
| | - Rong Lu
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China; Shenzhen Kangzhe Pharmaceutical Co., Ltd., Shenzhen, People's Republic of China
| | - Zhi Yao
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China; Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
14
|
Shu LP, Zhou ZW, Zi D, He ZX, Zhou SF. A SILAC-based proteomics elicits the molecular interactome of alisertib (MLN8237) in human erythroleukemia K562 cells. Am J Transl Res 2015; 7:2442-2461. [PMID: 26807190 PMCID: PMC4697722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
Alisertib (MLN8237, ALS), an Aurora kinase A (AURKA) inhibitor, exerts potent anti-tumor effects in the treatment of solid tumor and hematologic malignancies in preclinical and clinical studies. However, the fully spectrum of molecular targets of ALS and its anticancer effect in the treatment of chronic myeloid leukemia (CML) are not clear. This study aimed to examine the proteomic responses to ALS treatment and unveil the molecular interactome and possible mechanisms for its anticancer effect in K562 cells using stable-isotope labeling by amino acids in cell culture (SILAC) approach. The proteomic data identified that ALS treatment modulated the expression of 1541 protein molecules (570 up; 971 down). The pathway analysis showed that 299 signaling pathways and 459 cellular functional proteins directly responded to ALS treatment in K562 cells. These targeted molecules and signaling pathways were mainly involved in cell growth and proliferation, cell metabolism, and cell survival and death. Subsequently, the effects of ALS on cell cycle distribution, apoptosis, and autophagy were verified. The flow cytometric analysis showed that ALS significantly induced G2/M phase arrest and the Western blotting assays showed that ALS induced apoptosis via mitochondria-dependent pathway and promoted autophagy with the involvement of PI3K/Akt/mTOR, p38 MAPK, and AMPK signaling pathways in K562 cells. Collectively, this study provides a clue to quantitatively evaluate the proteomic responses to ALS and assists in globally identifying the potential molecular targets and elucidating the underlying mechanisms of ALS for CML treatment, which may help develop new efficacious and safe therapies for CML treatment.
Collapse
Affiliation(s)
- Li-Ping Shu
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Laboratory Animal Center, Department of Immunology, Guiyang Medical UniversityGuiyang, Guizhou 550004, People’s Republic of China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL 33612, USA
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL 33612, USA
| | - Dan Zi
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Laboratory Animal Center, Department of Immunology, Guiyang Medical UniversityGuiyang, Guizhou 550004, People’s Republic of China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL 33612, USA
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Laboratory Animal Center, Department of Immunology, Guiyang Medical UniversityGuiyang, Guizhou 550004, People’s Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL 33612, USA
| |
Collapse
|
15
|
Pan ST, Qin Y, Zhou ZW, He ZX, Zhang X, Yang T, Yang YX, Wang D, Zhou SF, Qiu JX. Plumbagin suppresses epithelial to mesenchymal transition and stemness via inhibiting Nrf2-mediated signaling pathway in human tongue squamous cell carcinoma cells. Drug Des Devel Ther 2015; 9:5511-51. [PMID: 26491260 PMCID: PMC4599573 DOI: 10.2147/dddt.s89621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tongue squamous cell carcinoma (TSCC) is the most common malignancy in oral and maxillofacial tumors with highly metastatic characteristics. Plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone; PLB), a natural naphthoquinone derived from the roots of Plumbaginaceae plants, exhibits various bioactivities, including anticancer effects. However, the potential molecular targets and underlying mechanisms of PLB in the treatment of TSCC remain elusive. This study employed stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomic approach to investigate the molecular interactome of PLB in human TSCC cell line SCC25 and elucidate the molecular mechanisms. The proteomic data indicated that PLB inhibited cell proliferation, activated death receptor-mediated apoptotic pathway, remodeled epithelial adherens junctions pathway, and manipulated nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress response signaling pathway in SCC25 cells with the involvement of a number of key functional proteins. Furthermore, we verified these protein targets using Western blotting assay. The verification results showed that PLB markedly induced cell cycle arrest at G2/M phase and extrinsic apoptosis, and inhibited epithelial to mesenchymal transition (EMT) and stemness in SCC25 cells. Of note, N-acetyl-l-cysteine (NAC) and l-glutathione (GSH) abolished the effects of PLB on cell cycle arrest, apoptosis induction, EMT inhibition, and stemness attenuation in SCC25 cells. Importantly, PLB suppressed the translocation of Nrf2 from cytosol to nucleus, resulting in an inhibition in the expression of downstream targets. Taken together, these results suggest that PLB may act as a promising anticancer compound via inhibiting Nrf2-mediated oxidative stress signaling pathway in SCC25 cells. This study provides a clue to fully identify the molecular targets and decipher the underlying mechanisms of PLB in the treatment of TSCC.
Collapse
Affiliation(s)
- Shu-Ting Pan
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Yiru Qin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Yin-Xue Yang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
16
|
Niu NK, Yin JJ, Yang YX, Wang ZL, Zhou ZW, He ZX, Chen XW, Zhang X, Duan W, Yang T, Zhou SF. Novel targeting of PEGylated liposomes for codelivery of TGF-β1 siRNA and four antitubercular drugs to human macrophages for the treatment of mycobacterial infection: a quantitative proteomic study. Drug Des Devel Ther 2015; 9:4441-70. [PMID: 26300629 PMCID: PMC4535548 DOI: 10.2147/dddt.s79369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is still a major public health issue in developing countries, and its chemotherapy is compromised by poor drug compliance and severe side effects. This study aimed to synthesize and characterize new multimodal PEGylated liposomes encapsulated with clinically commonly used anti-TB drugs with linkage to small interfering RNA (siRNA) against transforming growth factor-β1 (TGF-β1). The novel NP-siRNA liposomes could target THP-1-derived human macrophages that were the host cells of mycobacterium infection. The biological effects of the NP-siRNA liposomes were evaluated on cell cycle distribution, apoptosis, autophagy, and the gene silencing efficiency of TGF-β1 siRNA in human macrophages. We also explored the proteomic responses to the newly synthesized NP-siRNA liposomes using the stable isotope labeling with amino acids in cell culture approach. The results showed that the multifunctional PEGylated liposomes were successfully synthesized and chemically characterized with a mean size of 265.1 nm. The novel NP-siRNA liposomes functionalized with the anti-TB drugs and TGF-β1 siRNA were endocytosed efficiently by human macrophages as visualized by transmission electron microscopy and scanning electron microscopy. Furthermore, the liposomes showed a low cytotoxicity toward human macrophages. There was no significant effect on cell cycle distribution and apoptosis in THP-1-derived macrophages after drug exposure at concentrations ranging from 2.5 to 62.5 μg/mL. Notably, there was a 6.4-fold increase in the autophagy of human macrophages when treated with the NP-siRNA liposomes at 62.5 μg/mL. In addition, the TGF-β1 and nuclear factor-κB expression levels were downregulated by the NP-siRNA liposomes in THP-1-derived macrophages. The Ingenuity Pathway Analysis data showed that there were over 40 signaling pathways involved in the proteomic responses to NP-siRNA liposome exposure in human macrophages, with 160 proteins mapped. The top five canonical signaling pathways were eukaryotic initiation factor 2 signaling, actin cytoskeleton signaling, remodeling of epithelial adherens junctions, epithelial adherens junction signaling, and Rho GDP-dissociation inhibitor signaling pathways. Collectively, the novel synthetic targeting liposomes represent a promising delivery system for anti-TB drugs to human macrophages with good selectivity and minimal cytotoxicity.
Collapse
Affiliation(s)
- Ning-Kui Niu
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Department of Spinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Juan-Juan Yin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Yin-Xue Yang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Zi-Li Wang
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Xiao-Wu Chen
- Department of General Surgery, The First People’s Hospital of Shunde Affiliated to Southern Medical University, Shunde, Foshan, Guangdong, People’s Republic of China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of China
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|