1
|
Wrobel EC, de Lara LS, de Fátima Â, Oliveira ON. Nanoarchitectonics and Simulation on the Molecular-Level Interactions between p-Sulfonic Acid Calix[4]arene and Langmuir Monolayers Representing Healthy and Cancerous Cell Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27010-27027. [PMID: 39663612 DOI: 10.1021/acs.langmuir.4c03948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The design of chemotherapeutic drug carriers requires precise information on their interaction with the plasma membrane since the carriers should be internalized by cells without disrupting or compromising the overall integrity of the membrane. In this study, we employ Langmuir monolayers mimicking the outer leaflet of plasma membranes of healthy and cancerous cells to determine the molecular-level interactions with a water-soluble calixarene derivative, p-sulfonic acid calix[4]arene (SCX4), which is promising as drug carrier. The cancer membrane models comprised either 40% 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 30% cholesterol (Chol), 20% 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and 10% 1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (DPPS). The healthy membrane models were composed of 60% DPPC or DOPC, 30% Chol, and 10% DPPE. SCX4 expanded the surface pressure isotherms and decreased compressional moduli in all membrane models, altering their morphologies as seen in Brewster angle microscopy images. A combination of polarization-modulated infrared reflection absorption spectroscopy and molecular dynamics simulations revealed that SCX4 interacts preferentially with lipid headgroups in cancer membrane models through electrostatic interactions with the amine groups of DPPS and DPPE. In healthy membrane models, SCX4 interacts mostly with cholesterol through van der Waals forces. Using a multidimensional projection technique to compare data from the distinct membrane models, we observed that SCX4 effects depend on membrane composition with no preference for cancer or healthy membrane models, which is consistent with its biocompatibility. Furthermore, the interactions and close location of SCX4 to the headgroups indicate that it does not compromise membrane integrity, confirming that SCX4 may be a suitable drug carrier.
Collapse
Affiliation(s)
- Ellen C Wrobel
- Sao Carlos Institute of Physics, University of Sao Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| | - Lucas Stori de Lara
- Department of Physics, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
| | - Ângelo de Fátima
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Osvaldo N Oliveira
- Sao Carlos Institute of Physics, University of Sao Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
2
|
Alshahateet SF, Altarawneh RM, Al-Trawneh SA, Al-Saraireh YM, Al-Tawarh WM, Abuawad KR, Abuhalaweh YM, Zerrouk M, Mansour AA, Salghi R, Hammouti B, Merzouki M, Sabbahi R, Rhazi L, Alanazi MM, Azzaoui K. Cheminformatics-based design and biomedical applications of a new Hydroxyphenylcalix[4] resorcinarene as anti-cancer agent. Sci Rep 2024; 14:30460. [PMID: 39672820 PMCID: PMC11645408 DOI: 10.1038/s41598-024-82115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024] Open
Abstract
The distinct conformational characteristics, functionality, affordability, low toxicity, and usefulness make calixarene-based compounds a promising treatment option for cancer. The aim of the present study is to synthesize a new calixarene-based compound and assess of its anticancer potential on some human cancer cells. The synthesized C-4-Hydroxyphenylcalix[4] resorcinarene (HPCR) was characterized by several spectroscopic techniques such as 1HNMR, 13CNMR, and X-ray crystallographic analysis to confirm its purity and identity. IC50 values were identified for cancer cell lines (U-87, MCF-7, A549) and human dermal fibroblasts cell line (HDF) after treatment with HPCR and the standard drug Cisplatin. A significant selective growth inhibitory activity against U-87 and A549 cell lines was obtained at an HPCR concentration of 100 μM. The MOE docking module (version 2015) was utilized to assess the extent of inhibition for HPCR compound against four cancer-related proteins (3RJ3, 7AXD, 6DUK, and 1CGL).
Collapse
Affiliation(s)
- S F Alshahateet
- Department of Chemistry, Faculty of Science, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan.
| | - R M Altarawneh
- Department of Chemistry, Faculty of Science, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - S A Al-Trawneh
- Department of Chemistry, Faculty of Science, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - Y M Al-Saraireh
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - W M Al-Tawarh
- Department of Chemistry, Faculty of Science, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - K R Abuawad
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - Y M Abuhalaweh
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - M Zerrouk
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences, Sidi Mohammed Ben Abdellah University, 30000, Fez, Morocco
| | - A Ait Mansour
- Laboratory of Applied Chemistry and Environment, ENSA, University Ibn Zohr, P.O. Box 1136, 80000, Agadir, Morocco
| | - R Salghi
- Laboratory of Applied Chemistry and Environment, ENSA, University Ibn Zohr, P.O. Box 1136, 80000, Agadir, Morocco
| | - B Hammouti
- Euromed Research Center, Euromed Polytechnic School, Euromed University of Fes, UEMF, 30030, Fez, Morocco
- Laboratory of Industrial Engineering, Energy and the Environment (LI3E) SUPMTI, Rabat, Morocco
| | - M Merzouki
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Mohammed 1st University, Oujda, Morocco
| | - R Sabbahi
- Research Team in Science and Technology, Higher School of Technology, Ibn Zohr University, P.O. Box 3007, Laayoune, Morocco
| | - L Rhazi
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - K Azzaoui
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences, Sidi Mohammed Ben Abdellah University, 30000, Fez, Morocco
| |
Collapse
|
3
|
de Souza Viol LC, Liberto Silva NA, Cerceau CI, de Andrade Barros MV, Siqueira RP, Sousa Gonçalves VH, Bressan GC, Fernandes SA, Alvarenga ES, Teixeira RR. NMR analysis, cytotoxic activity and theoretical study of a complex between SRPIN340 and p-sulfonic acid calix[6]arene. Future Med Chem 2024; 16:1537-1550. [PMID: 38949866 PMCID: PMC11370924 DOI: 10.1080/17568919.2024.2366690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/06/2024] [Indexed: 07/02/2024] Open
Abstract
Aim: This study aimed to enhance the aqueous dissolution of SRPK inhibitor N-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl)isonicotinamide (SRPIN340).Materials & Methods: A complex with p-sulfonic calix[6]arene (Host) and SRPIN340 (Guest) was prepared, studied via 1H nuclear magnetic resonance (NMR) and theoretical calculations and biologically evaluated on cancer cell lines.Results & conclusion: The 1:1 host (H)/guest (G) complex significantly enhanced the aqueous dissolution of SRPIN340, achieving 64.8% water solubility as determined by 1H NMR quantification analysis. The H/G complex reduced cell viability by 75% for HL60, ∼50% for Nalm6 and Jurkat, and ∼30% for B16F10 cells. It exhibited greater cytotoxicity than free SRPIN340 against Jurkat and B16F10 cells. Theoretical studies indicated hydrogen bond stabilization of the complex, suggesting broader applicability of SRPIN340 across diverse biological systems.
Collapse
Affiliation(s)
| | | | | | | | - Raoni Pais Siqueira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa36570-900, MG, Brazil
| | - Victor Hugo Sousa Gonçalves
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa36570-900, MG, Brazil
| | - Gustavo Costa Bressan
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa36570-900, MG, Brazil
| | | | | | | |
Collapse
|
4
|
Moskalik MY. Sulfonamides with Heterocyclic Periphery as Antiviral Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010051. [PMID: 36615245 PMCID: PMC9822084 DOI: 10.3390/molecules28010051] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Sulfonamides are the basic motifs for a whole generation of drugs from a large group of antibiotics. Currently, research in the field of the new sulfonamide synthesis has received a "second wind", due to the increase in the synthetic capabilities of organic chemistry and the study of their medical and biological properties of a wide spectrum of biological activity. New reagents and new reactions make it possible to significantly increase the number of compounds with a sulfonamide fragment in combination with other important pharmacophore groups, such as, for example, a wide class of N-containing heterocycles. The result of these synthetic possibilities is the extension of the activity spectrum-along with antibacterial activity, many of them exhibit other types of biological activity. Antiviral activity is also observed in a wide range of sulfonamide derivatives. This review provides examples of the synthesis of sulfonamide compounds with antiviral properties that can be used to develop drugs against coxsackievirus B, enteroviruses, encephalomyocarditis viruses, adenoviruses, human parainfluenza viruses, Ebola virus, Marburg virus, SARS-CoV-2, HIV and others. Since over the past three years, viral infections have become a special problem for public health throughout the world, the development of new broad-spectrum antiviral drugs is an extremely important task for synthetic organic and medicinal chemistry. Sulfonamides can be both sources of nitrogen for building a nitrogen-containing heterocyclic core and the side chain substituents of a biologically active substance. The formation of the sulfonamide group is often achieved by the reaction of the N-nucleophilic center in the substrate molecule with the corresponding sulfonylchloride. Another approach involves the use of sulfonamides as the reagents for building a nitrogen-containing framework.
Collapse
Affiliation(s)
- Mikhail Yu Moskalik
- Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia
| |
Collapse
|
5
|
Fahmy S, Preis E, Dayyih AA, Alawak M, El-Said Azzazy HM, Bakowsky U, Shoeib T. Thermosensitive Liposomes Encapsulating Nedaplatin and Picoplatin Demonstrate Enhanced Cytotoxicity against Breast Cancer Cells. ACS OMEGA 2022; 7:42115-42125. [PMID: 36440163 PMCID: PMC9686199 DOI: 10.1021/acsomega.2c04525] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Thermosensitive liposomes (TSL) have been used for localized temperature-responsive release of chemotherapeutics into solid cancers, with a minimum of one invention currently in clinical trials (phase III). In this study, TSL was designed using a lipid blend comprising 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000] (DSPE-PEG-2000) (molar ratio of 88:9:2.8:0.2). Either nedaplatin (ND) or p-sulfonatocalix[4]arene-nedaplatin was encapsulated in the aqueous inner layer of TSL to form (ND-TSL) or p-SC4-ND-TSL, respectively. The hydrophobic platinum-based drug picoplatin (P) was loaded into the external lipid bilayer of the TSL to develop P-TSL. The three nanosystems were studied in terms of size, PDI, surface charge, and on-shelf stability. Moreover, the entrapment efficiency (EE%) and release % at 37 and 40 °C were evaluated. In a 30 min in vitro release study, the maximum release of ND, p-SC4-ND, and picoplatin at 40 °C reached 74, 79, and 75%, respectively, compared to approximately 10% at 37 °C. This demonstrated temperature-triggered drug release from the TSL in all three developed systems. The designed TSL exhibited significant in vitro anticancer activity at 40 °C when tested on human mammary gland/breast adenocarcinoma cells (MDA-MB-231). The cytotoxicity of ND-TSL, p-SC4-ND-TSL, and P-TSL at 40 °C was approximately twice those observed at 37 °C. This study suggests that TSL is a promising nanoplatform for the temperature-triggered release of platinum-based drugs into cancer cells.
Collapse
Affiliation(s)
- Sherif
Ashraf Fahmy
- Department
of Chemistry, American University in Cairo
(AUC), AUC Avenue, P.O. Box 74, New Cairo11835, Egypt
- Department
of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative
Capital, AL109AB, Cairo11835, Egypt
| | - Eduard Preis
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Str. 4, 35037Marburg, Germany
| | - Alice Abu Dayyih
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Str. 4, 35037Marburg, Germany
| | - Mohamed Alawak
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Str. 4, 35037Marburg, Germany
| | | | - Udo Bakowsky
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Str. 4, 35037Marburg, Germany
| | - Tamer Shoeib
- Department
of Chemistry, American University in Cairo
(AUC), AUC Avenue, P.O. Box 74, New Cairo11835, Egypt
| |
Collapse
|
6
|
Association Complexes of Calix[6]arenes with Amino Acids Explained by Energy-Partitioning Methods. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227938. [PMID: 36432040 PMCID: PMC9699162 DOI: 10.3390/molecules27227938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022]
Abstract
Intermolecular complexes with calixarenes are intriguing because of multiple possibilities of noncovalent binding for both polar and nonpolar molecules, including docking in the calixarene cavity. In this contribution calix[6]arenes interacting with amino acids are studied with an additional aim to show that tools such as symmetry-adapted perturbation theory (SAPT), functional-group SAPT (F-SAPT), and systematic molecular fragmentation (SMF) methods may provide explanations for different numbers of noncovalent bonds and of their varying strength for various calixarene conformers and guest molecules. The partitioning of the interaction energy provides an easy way to identify hydrogen bonds, including those with unconventional hydrogen acceptors, as well as other noncovalent bonds, and to find repulsive destabilizing interactions between functional groups. Various other features can be explained by energy partitioning, such as the red shift of an IR stretching frequency for some hydroxy groups, which arises from their attraction to the phenyl ring of calixarene. Pairs of hydrogen bonds and other noncovalent bonds of similar magnitude found by F-SAPT explain an increase in the stability of both inclusion and outer complexes.
Collapse
|
7
|
Synthesis, molecular docking and antiproliferative activity of upper rim modified azo calix[4]arene derivatives. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Liu Z, Li B, Song L, Zhang H. Pillar[ n]arene-calix[ m]arene hybrid macrocyclic structures. RSC Adv 2022; 12:28185-28195. [PMID: 36320255 PMCID: PMC9528731 DOI: 10.1039/d2ra05118d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023] Open
Abstract
To reserve planar chirality, enhance molecular recognition, and build advanced self-assemblies, hybrid macrocyclic hosts containing rigid pillar[n]arene and flexible calix[m]arene were designed, prepared and investigated for interesting applications. This review summarizes and discusses different synthetic strategies for constructing hybrid macrocyclic structures. Pillar[n]arene dimer with rigid aromatic double bridges provided the possibility of introducing calix[m]arene cavities, where the planar chirality was reserved in the structure of pillararene. The capacity for molecular recognition was enhanced by hybrid macrocyclic cavities. Interestingly, the obtained pillar[n]arene-calix[m]arene could self-assemble into "channels" and "honeycomb" in both the solid state and solution phase as well as donate the molecular architecture as the wheel for the formation of mechanically interlocked molecules, such as rotaxane. In addition, the pillar[n]arene and calix[m]arene could also be coupled together to produce pillar[n]arene embeded 1,3-alternate and cone conformational calix[m]arene derivatives, which could catalyze the oxidative polymerization of aniline in aqueous solutions. Except for building hybrid cyclophanes by covalent bonds, weak supramolecular interactions were used to prepare pillar[n]arene-calix[m]arene analogous composites with other pillar-like pillar[n]pyridiniums and calix-like calix[m]pyrroles, exhibiting reasonable performances in enhancing molecular recognition and trapping solvent molecules.
Collapse
Affiliation(s)
- Zhaona Liu
- Medical School, Xi'an Peihua University Xi'an 710125 Shaanxi China
| | - Bing Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Leqian Song
- School of Chemical Engineering and Technology, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| |
Collapse
|
9
|
Electrospun Sulfonatocalix[4]arene Loaded Blended Nanofibers: Process Optimization and In Vitro Studies. Pharmaceutics 2022; 14:pharmaceutics14091912. [PMID: 36145660 PMCID: PMC9501171 DOI: 10.3390/pharmaceutics14091912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
In the past decade, electrospun nanofibers made of biodegradable polymers have been used for different biomedical applications due to their flexible features in terms of surface area to volume ratio, pores, and fiber size, as well as their highly tunable surface properties. Recently, interest is growing in the use of supramolecular structures in combination with electrospun nanofibers for the fabrication of bioactive platforms with improved in vitro responses, to be used for innovative therapeutic treatments. Herein, sulfonatocalix[4]arene (SCX4) was synthesized from p-tert-butyl-calix[4]arene and embedded in electrospun nanofibers made of polycaprolactone (PCL) and gelatin (GEL). The supramolecular structure of SCX4 and its efficient entrapment into electrospun fibers was confirmed by NMR spectroscopy and FTIR analysis, respectively. SEM analysis supported via image analysis enabled the investigation of the fiber morphology at the sub-micrometric scale, showing a drastic reduction in fiber diameters in the presence of SCX4: 267 ± 14 nm (without SCX) to 115 ± 5 nm (3% SCX4). Moreover, it was demonstrated that SCX4 significantly contributes to the hydrophilic properties of the fiber surface, as was confirmed by the reduction in contact angles from 54 ± 1.4° to 31 ± 5.5° as the SCX4 amount increased, while no effects on thermal stability were recognized, as was confirmed by TGA analyses. In vitro tests also confirmed that SCX4 is not cytotoxic, but plays a supporting role in L929 interactions, as was validated by the cell viability of PGC15% after 7 days, with respect to the control. These preliminary but promising data suggest their use for the fabrication of innovative platforms able to bind SCX4 to bioactive compounds and molecules for different therapeutic applications, from molecular recognition to controlled drug delivery.
Collapse
|
10
|
Potential of C-Phenylcalix[4]Resorcinarene Epoxide Compound as Drug Delivery Agent in Breast Cancer Cells MCF-7. JURNAL KIMIA SAINS DAN APLIKASI 2022. [DOI: 10.14710/jksa.25.3.123-129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cancer therapy through conventional chemotherapy has been widely applied; however, one of the main disadvantages of chemotherapy is the non-selective targeting of cancer cells which causes various adverse side effects. The development of drug delivery agents that are more selective and effective in cancer therapy needs to be performed so that the drugs have a therapeutic effect and minimize side effects. In this study, the compound C-phenylcalyx[4]resorcinarene epoxide (CFKRE) has acted as a drug delivery agent because it can form host complex interactions with ligands. The CFKRE compound was synthesized through two reaction steps: the condensation and alkylation reactions of the epoxide. The structure was analyzed using FTIR, 1H-, and 13C-NMR spectrophotometers and then tested for in vitro cytotoxicity using the MTT assay. The results showed that 70% yield of CFKRE was obtained. Molecular docking analysis of CFKRE compounds against PDGFR and EGFR proteins showed high binding energy compared to conventional chemotherapeutic agents. Molecular dynamic studies showed that CFKRE compounds could form a host-ligand complex with a −350.4 kcal/mol binding energy. Cytotoxic assay of CFKRE compound against MCF-7 breast cancer cells and Vero cells gave IC50 values of 4.04 and 29.59 μg/mL, respectively. These results indicated that CFKRE compounds are not toxic and have the potential to be utilized as new candidates for drug delivery agents.
Collapse
|
11
|
Blumberg M, Al-Ameed K, Eiselt E, Luber S, Mamat C. Synthesis of Ionizable Calix[4]arenes for Chelation of Selected Divalent Cations. Molecules 2022; 27:1478. [PMID: 35268577 PMCID: PMC8911665 DOI: 10.3390/molecules27051478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Two sets of functionalised calix[4]arenes, either with a 1,3-crown ether bridge or with an open-chain oligo ether moiety in 1,3-position were prepared and further equipped with additional deprotonisable sulfonamide groups to establish chelating systems for selected cations Sr2+, Ba2+, and Pb2+ ions. To improve the complexation behaviour towards these cations, calix[4]arenes with oligo ether groups and modified crowns of different sizes were synthesized. Association constants were determined by UV/Vis titration in acetonitrile using the respective perchlorate salts and logK values between 3.2 and 8.0 were obtained. These findings were supported by the calculation of the binding energies exemplarily for selected complexes with Ba2+.
Collapse
Affiliation(s)
- Markus Blumberg
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Bautzner Landstraße 400, D-01328 Dresden, Germany; (M.B.); (E.E.)
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Karrar Al-Ameed
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland; (K.A.-A.); (S.L.)
| | - Erik Eiselt
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Bautzner Landstraße 400, D-01328 Dresden, Germany; (M.B.); (E.E.)
| | - Sandra Luber
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland; (K.A.-A.); (S.L.)
| | - Constantin Mamat
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Bautzner Landstraße 400, D-01328 Dresden, Germany; (M.B.); (E.E.)
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
12
|
Fang S, Dang YY, Li H, Li H, Liu J, Zhong R, Chen Y, Liu S, Lin S. Membrane-Active Antibacterial Agents Based on Calix[4]arene Derivatives: Synthesis and Biological Evaluation. Front Chem 2022; 10:816741. [PMID: 35211455 PMCID: PMC8861315 DOI: 10.3389/fchem.2022.816741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteria have developed increasing resistance to currently used antimicrobial agents. New classes of antimicrobial drugs are urgently required to fight drug-resistant pathogens. Here, we designed and synthesized a series of calix[4]arene derivatives as antibacterial agents by biomimicking the structural properties and biological functions of antibacterial peptides. After introducing cationic hydrophilic moieties and preliminary structural optimization, we obtained a lead compound (16) that exhibited excellent antibacterial activity against Gram-positive bacteria, low toxicity toward mammalian cells and poor hemolytic activity. The antibacterial mechanism studies showed that compound 16 can destroy bacterial cell membrane directly, leading to bacterial death and a low tendency to develop bacterial resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shuimu Lin
- *Correspondence: Shouping Liu, ; Shuimu Lin,
| |
Collapse
|
13
|
Malinska M. Insights into molecular recognition from the crystal structures of p-tert-butyl-calix[6]arene complexed with different solvents. IUCRJ 2022; 9:55-64. [PMID: 35059210 PMCID: PMC8733874 DOI: 10.1107/s2052252521010678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/14/2021] [Indexed: 06/14/2023]
Abstract
Calixarenes are host molecules that can form complexes with one or more guest molecules, and molecular recognition in calixarenes can be affected by many factors. With a view to establishing molecular recognition rules, the host p-tert-butyl-calix[6]arene (TBC6) was crystallized with different guest molecules (cyclo-hexane, anisole, heptane, toluene, benzene, methyl acetate, ethyl acetate, di-chloro-methane, tetra-hydro-furan and pyridine) and the obtained structures were characterized by X-ray diffraction. With most solvents, 1:1 and/or 1:3 host-guest complexes were formed, although other stoichiometries were also observed with small guest molecules, and crystallization from ethyl acetate produced the unsolvated form. The calculated fill percentage of the TBC6 cavity was ∼55% for apolar guests and significantly lower for polar solvents, indicating that polar molecules can bind to apolar cavities with significantly lower packing coefficients. The most stable crystals were formed by 1:1 host-guest inclusion complexes. The ratio between the apolar surface area and the volume was used to predict the formation of inclusion versus exclusion complexes, with inclusion complexes observed at ratios <40. These findings allow the binding of potential guest molecules to be predicted and a suitable crystal packing for the designed properties to be obtained.
Collapse
Affiliation(s)
- Maura Malinska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, Poland
| |
Collapse
|
14
|
Role of Calixarene in Chemotherapy Delivery Strategies. Molecules 2021; 26:molecules26133963. [PMID: 34209495 PMCID: PMC8272165 DOI: 10.3390/molecules26133963] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/14/2023] Open
Abstract
Since cancer is a multifactorial disease with a high mortality rate, the study of new therapeutic strategies is one of the main objectives in modern research. Numerous chemotherapeutic agents, although widely used, have the disadvantage of being not very soluble in water or selective towards cancerous cells, with consequent side effects. Therefore, in recent years, a greater interest has emerged in innovative drug delivery systems (DDSs) such as calixarene, a third-generation supramolecular compound. Calixarene and its water-soluble derivatives show good biocompatibility and have low cytotoxicity. Thanks to their chemical–physical characteristics, calixarenes can be easily functionalized, and by itself can encapsulate host molecules forming nanostructures capable of releasing drugs in a controlled way. The encapsulation of anticancer drugs in a calixarene derivate improves their bioavailability and efficacy. Thus, the use of calixarenes as carriers of anticancer drugs could reduce their side effects and increase their affinity towards the target. This review summarizes the numerous research advances regarding the development of calixarene nanoparticles capable of encapsulating various anticancer drugs.
Collapse
|
15
|
Fahmy S, Issa MY, Saleh BM, Meselhy MR, Azzazy HMES. Peganum harmala Alkaloids Self-Assembled Supramolecular Nanocapsules with Enhanced Antioxidant and Cytotoxic Activities. ACS OMEGA 2021; 6:11954-11963. [PMID: 34056350 PMCID: PMC8153973 DOI: 10.1021/acsomega.1c00455] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/15/2021] [Indexed: 05/27/2023]
Abstract
Amphiphilic macrocycles, such as p-sulfonatocalix[6]arenes (p-SC6), have demonstrated great potential in designing synthetic nanovesicles based on self-assembly approaches. These supramolecular nanovesicles are capable of improving the solubility, stability, and biological activity of various drugs. In the present study, the biologically active harmala alkaloid-rich fraction (HARF) was extracted from Peganum harmala L. seeds. Ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC/ESI-MS) analysis of HARF revealed 15 alkaloids. The reversed-phase high-performance liquid chromatography (RP-HPLC) analysis revealed three peaks: peganine, harmol, and harmine. The HARF was then encapsulated in p-SC6 nanocapsules employing a thin-film hydration approach. The designed nanocapsules had an average particle size of 264.8 ± 10.6 nm, and a surface charge of -30.3 ± 2.2 mV. They were able to encapsulate 89.3 ± 1.4, 74.4 ± 1.3, and 76.1 ± 1.7% of the three harmala alkaloids; harmine, harmol, and peganine; respectively. The in vitro drug release experiments showed the potential of the designed nanocapsules to release their cargo at a pH of 5.5 (typical of cancerous tissue). The IC50 values of HARF encapsulated in p-SC6 (H/p-SC6 nanocapsules) were 5 and 2.7 μg/mL against ovarian cancer cells (SKOV-3) and breast adenocarcinoma cells (MCF-7), respectively. The prepared nanocapsules were found to be biocompatible when tested on human skin fibroblasts. Additionally, the antioxidant activity of the designed nanocapsules was 5 times that of the free powder fraction; the IC50 of the H/p-SC6 nanocapsules was 30.1 ± 1.3 μg/mL, and that of the HARF was 169.3 ± 7.2 μg/mL. In conclusion, encapsulation of P. harmala alkaloid-rich fraction into self-assembled p-SC6 significantly increases its antioxidant and cytotoxic activities.
Collapse
Affiliation(s)
- Sherif
Ashraf Fahmy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
- School
of Life and Medical Sciences, University
of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Capital, Cairo 11835, Egypt
| | - Marwa Y. Issa
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Basma M. Saleh
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Meselhy Ragab Meselhy
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| |
Collapse
|
16
|
Fahmy SA, Ponte F, Fawzy IM, Sicilia E, Bakowsky U, Azzazy HMES. Host-Guest Complexation of Oxaliplatin and Para-Sulfonatocalix[n]Arenes for Potential Use in Cancer Therapy. Molecules 2020; 25:E5926. [PMID: 33327642 PMCID: PMC7765097 DOI: 10.3390/molecules25245926] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 01/25/2023] Open
Abstract
P-sulfonatocalix[n]arenes have demonstrated a great potential for encapsulation of therapeutic drugs via host-guest complexation to improve solubility, stability, and bioavailability of encapsulated drugs. In this work, guest-host complexes of a third-generation anticancer drug (oxaliplatin) and p-4-sulfocalix[n]arenes (n = 4 and 6; p-SC4 and p-SC6, respectively) were prepared and investigated, using 1H NMR, UV, Job's plot analysis, and DFT calculations, for use as cancer therapeutics. The peak amplitude of the prepared host-guest complexes was linearly proportional to the concentration of oxaliplatin in the range of 1.0 × 10-5 M-1 to 2.1 × 10-4 M-1. The reaction stoichiometry between either p-SC4 or p-SC6 and oxaliplatin in the formed complexes was 1:1. The stability constants for the complexes were 5.07 × 104 M-1 and 6.3 × 104 M-1. These correspond to complexation free energy of -6.39 and -6.52 kcal/mol for p-SC4 and p-SC6, respectively. Complexation between oxaliplatin and p-SC4 or p-SC6 was found to involve hydrogen bonds. Both complexes exhibited enhanced biological and high cytotoxic activities against HT-29 colorectal cells and MCF-7 breast adenocarcinoma compared to free oxaliplatin, which warrants further investigation for cancer therapy.
Collapse
Affiliation(s)
- Sherif Ashraf Fahmy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt;
| | - Fortuna Ponte
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.P.); (E.S.)
| | - Iten M. Fawzy
- Pharmaceutical Chemistry Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo 12311, Egypt;
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.P.); (E.S.)
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt;
| |
Collapse
|
17
|
Al-Douh MH, Ali Y, Abd Hamid S. Microwave-Assisted and Thermal Synthesis of Calix[4]arene Derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020; 56:1251-1257. [DOI: 10.1134/s1070428020070209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/16/2020] [Accepted: 02/22/2020] [Indexed: 09/02/2023]
|
18
|
Jamal QMS. Structural Recognition and Binding Pattern Analysis of Human Topoisomerase II Alpha with Steroidal Drugs: In Silico Study to Switchover the Cancer Treatment. Asian Pac J Cancer Prev 2020; 21:1349-1355. [PMID: 32458643 PMCID: PMC7541882 DOI: 10.31557/apjcp.2020.21.5.1349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/30/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Topoisomerase TOP-IIA (TTOP-IIA) is widely used as a significant target for cancer therapeutics because of its involvement in cell proliferation. Steroidal drugs have been suggested for breast cancer treatment as aromatase enzymes inhibitors . TTOP-IIA inhibitors can be used as a target for the development of new cancer therapeutics. MATERIALS AND METHODS In this study, we conducted a docking study on steroidal drugs Anastrozole (ANA), Letrozole (LET), and exemestane (EXE) with TTOP-IIA to explore the therapeutic area of these drugs. RESULTS The binding interaction of EXE drug had significant docking interaction which is followed by ANA and LET. Thus, all these drugs could be used to inhibit the TTOP-IIA mediated cell proliferation and could be a hope to treat the other types of cancers. Among all three tested steroidal drugs, EXE showed binding energy -7.05 kcal/mol, hydrogen bond length1.78289 Å and amino acid involved in an interaction was A: LYS723:HZ3 -: UNK1:O6. CONCLUSION The obtained data showed the most significant binding interaction analyzed with the tested enzyme. Thus, in vitro laboratory experimentation and in vivo research are necessary to put forward therapeutic repositioning of these drugs to establish them as a broad spectrum potential anticancer drugs. .
Collapse
Affiliation(s)
- Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Saudi Arabia.
| |
Collapse
|
19
|
Humbert N, Kovalenko L, Saladini F, Giannini A, Pires M, Botzanowski T, Cherenok S, Boudier C, Sharma KK, Real E, Zaporozhets OA, Cianférani S, Seguin-Devaux C, Poggialini F, Botta M, Zazzi M, Kalchenko VI, Mori M, Mély Y. (Thia)calixarenephosphonic Acids as Potent Inhibitors of the Nucleic Acid Chaperone Activity of the HIV-1 Nucleocapsid Protein with a New Binding Mode and Multitarget Antiviral Activity. ACS Infect Dis 2020; 6:687-702. [PMID: 32045204 DOI: 10.1021/acsinfecdis.9b00290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nucleocapsid protein (NC) is a highly conserved protein that plays key roles in HIV-1 replication through its nucleic acid chaperone properties mediated by its two zinc fingers and basic residues. NC is a promising target for antiviral therapy, particularly to control viral strains resistant to currently available drugs. Since calixarenes with antiviral properties have been described, we explored the ability of calixarene hydroxymethylphosphonic or sulfonic acids to inhibit NC chaperone properties and exhibit antiviral activity. By using fluorescence-based assays, we selected four calixarenes inhibiting NC chaperone activity with submicromolar IC50 values. These compounds were further shown by mass spectrometry, isothermal titration calorimetry, and fluorescence anisotropy to bind NC with no zinc ejection and to compete with nucleic acids for the binding to NC. Molecular dynamic simulations further indicated that these compounds interact via their phosphonate or sulfonate groups with the basic surface of NC but not with the hydrophobic plateau at the top of the folded fingers. Cellular studies showed that the most soluble compound CIP201 inhibited the infectivity of wild-type and drug-resistant HIV-1 strains at low micromolar concentrations, primarily targeting the early steps of HIV-1 replication. Moreover, CIP201 was also found to inhibit the flipping and polymerization activity of reverse transcriptase. Calixarenes thus form a class of noncovalent NC inhibitors, endowed with a new binding mode and multitarget antiviral activity.
Collapse
Affiliation(s)
- Nicolas Humbert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Lesia Kovalenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Francesco Saladini
- Department of Medical Biotechnologies, University of Siena, viale Mario Bracci no. 16, 53100 Siena, Italy
| | - Alessia Giannini
- Department of Medical Biotechnologies, University of Siena, viale Mario Bracci no. 16, 53100 Siena, Italy
| | - Manuel Pires
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Sergiy Cherenok
- Institute of Organic Chemistry, National Academy of Science of Ukraine, Murmanska str. 5, Kyiv 02660, Ukraine
| | - Christian Boudier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Kamal K. Sharma
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Eleonore Real
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Olga A. Zaporozhets
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Federica Poggialini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 Università degli Studi di Siena, via Aldo Moro 2, I-53019 Siena, Italy
| | - Maurizio Botta
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 Università degli Studi di Siena, via Aldo Moro 2, I-53019 Siena, Italy
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, viale Mario Bracci no. 16, 53100 Siena, Italy
| | - Vitaly I. Kalchenko
- Institute of Organic Chemistry, National Academy of Science of Ukraine, Murmanska str. 5, Kyiv 02660, Ukraine
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 Università degli Studi di Siena, via Aldo Moro 2, I-53019 Siena, Italy
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
20
|
Kashapov RR, Razuvayeva YS, Ziganshina AY, Mukhitova RK, Sapunova AS, Voloshina AD, Nizameev IR, Kadirov MK, Zakharova LY. Design of N-Methyl-d-Glucamine-Based Resorcin[4]arene Nanoparticles for Enhanced Apoptosis Effects. Mol Pharm 2020; 17:40-49. [PMID: 31746611 DOI: 10.1021/acs.molpharmaceut.9b00599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The addition of specific chemical groups in a macrocycle structure influences its functional properties and, consequently, can provide new possibilities, among which are aggregation properties, water solubility, biocompatibility, stimuli response, biological activity, etc. Herein, we report synthesis of new resorcin[4]arene with N-methyl-d-glucamine groups on the upper rim and n-decyl chains on the lower rim, an investigation of its self-assembly behavior in aqueous media, and its use as a building block for the formation of drug nanocontainer. N-methyl-d-glucamine fragments in the resorcin[4]arene structure promote higher stability in solutions, simplification of self-aggregation, and increased biological activity. Antimicrobial and hemolytic activity assessment revealed that this resorcin[4]arene obtained is nontoxic. The study of cell penetration was carried out with both free and encapsulated doxorubicin (DOX). Surprisingly, DOX-loaded macrocycle aggregates are more efficient in causing apoptosis in human cancer cell line. Conceivably, this knowledge will help in the rational design of DOX combination for novel drug-administration strategies in cancer treatment.
Collapse
Affiliation(s)
- Ruslan R Kashapov
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , 8 Arbuzov str. , Kazan 420088 , Russia
| | - Yuliya S Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , 8 Arbuzov str. , Kazan 420088 , Russia.,Kazan National Research Technological University , 68 K. Marx str. , Kazan 420015 , Russia
| | - Albina Y Ziganshina
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , 8 Arbuzov str. , Kazan 420088 , Russia
| | - Rezeda K Mukhitova
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , 8 Arbuzov str. , Kazan 420088 , Russia
| | - Anastasiya S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , 8 Arbuzov str. , Kazan 420088 , Russia
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , 8 Arbuzov str. , Kazan 420088 , Russia
| | - Irek R Nizameev
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , 8 Arbuzov str. , Kazan 420088 , Russia.,Kazan National Research Technological University , 68 K. Marx str. , Kazan 420015 , Russia
| | - Marsil K Kadirov
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , 8 Arbuzov str. , Kazan 420088 , Russia.,Kazan National Research Technological University , 68 K. Marx str. , Kazan 420015 , Russia
| | - Lucia Ya Zakharova
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , 8 Arbuzov str. , Kazan 420088 , Russia.,Kazan National Research Technological University , 68 K. Marx str. , Kazan 420015 , Russia
| |
Collapse
|
21
|
Mammino L. Five- and six-member bowl-shaped structures from acylphloroglucinols: an ab initio and DFT study. J Mol Model 2019; 26:13. [PMID: 31838594 DOI: 10.1007/s00894-019-4208-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/12/2019] [Indexed: 11/29/2022]
Abstract
Molecular structures containing bowl-shaped cavities are interesting for purposes such as hosting molecules or metal ions. Acylphloroglucinols are derivatives of phloroglucinol (1,3,5-trihydroxybenzene) containing a CRO group. A previous study had considered bowl-shaped structures consisting of 3 or 4 identical acylphloroglucinol units linked by methylene bridges, selecting representative R chains and including also a structure with phloroglucinol units. The presence of three 'binding' levels between neighbouring units (consecutive hydrogen bonds in the lower rim, the methylene bridges at intermediate level, and another set of hydrogen bonds in the upper rim) makes these bowls 'deeper' than bowls from other hydroxybenzenes. The current study considers larger bowls, consisting of 5 and 6 identical units, to investigate how the molecular properties change with the increase in the size of the bowl. The monomeric units are the same as in the previous study, and the levels of theory are the same as in the previous study, to enable meaningful comparisons. Like in the previous study, two conformers are considered for each bowl, differing by the orientation of the OH groups in the lower rim. Calculations were performed at the HF/6-31G(d,p) and DFT/B3LYP/6-31+G(d,p) levels with fully relaxed geometry, complemented by single-point MP2/HF/6-31G(d,p) calculations. The results show that the Cnv symmetry (with n being the number of constituting monomers) is maintained for 5-member bowls, while 6-member bowls do not show C6v symmetry but only C2v symmetry. The molecular properties of the calculated bowls are analysed in detail and also compared with the properties of the previously calculated 4- and 5-member bowls. Graphical abstract Bowls built from acylphloroglucinol units have three levels of intermonomer linkages: hydrogen bonds in the bottom rim, methylene bridges at intermediate level, and other hydrogen bonds in the upper rim. They are the deepest bowls that can be built from hydroxybenzene units.
Collapse
Affiliation(s)
- Liliana Mammino
- School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, South Africa.
| |
Collapse
|
22
|
An L, Wang C, Han L, Liu J, Huang T, Zheng Y, Yan C, Sun J. Structural Design, Synthesis, and Preliminary Biological Evaluation of Novel Dihomooxacalix[4]arene-Based Anti-tumor Agents. Front Chem 2019; 7:856. [PMID: 31921778 PMCID: PMC6923765 DOI: 10.3389/fchem.2019.00856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
Calixarene and its derivatives have extensively served as promising anti-tumor agents. Previously, we have synthesized a series of calix[n]arene polyhydroxyamine derivatives (n = 4, 6, 8) and found that 5,11,17,23-tetra-tert-butyl-25,27-bis [N-(2-hydroxyethyl)aminocarbonylmethoxyl] calix[4]arene (CLX-4) displayed significant effect toward SKOV3, A549, SW1990, HeLa, Raji, and MDA-MB-231 cancer cells. In the present work, we find a replacement of calix[4]arene bone and synthesized 19 novel structurally related dihomooxacalix[4]arene amide derivatives 4A-4S to optimize its efficacy. Their abilities to induce cytotoxicity in human lung carcinoma (A549) cells, breast cancer (MCF-7) cells, cervical cancer (HeLa) cells, hepatocellular carcinoma (HepG2) cells, as well as human umbilical vein endothelial (HUVEC) cells are evaluated in vitro. Encouraging results show that the majority of dihomooxacalix[4]arene amide derivatives are effective at inhibiting A549 cell proliferation with the corresponding IC50 ranging from 0.6 to 20.1 μM. In particular, compounds 4A, 4D, and 4L explore markedly increased potency (IC50 value is 2.0 ± 0.5 μM, 0.7 ± 0.1 μM, and 1.7 ± 0.4 μM) over the cytotoxicity profiles of control CLX-4, whose IC50 value is 2.8 ± 0.3 μM. More interestingly, 4A also demonstrates the perfect cytotoxic effect against MCF-7, HeLa, and HepG2 cells with IC50 values of 1.0 ± 0.1 μM, 0.8 ± 0.2 μM, and 2.7 ± 0.4 μM. In addition, the results proved that our synthesized 4A has much lower toxicity (41%) to normal cells at a concentration of 10 μM than that of 4D (90%). To reveal the mechanisms, the key indicators including the cell cycle and apoptosis are observed by the flow cytometry analysis in MCF-7 cells. The results demonstrate that both 4A and 4D can induce the MCF-7 cell cycle arrest in G0/G1 phase and cell apoptosis. Therefore, our finding proves that the dihomooxacalix[4]arene amide derivatives are convenient platforms for potential supramolecular anticancer agents.
Collapse
Affiliation(s)
- Lin An
- College of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Chan Wang
- College of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Lili Han
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jiadong Liu
- College of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Tonghui Huang
- College of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Youguang Zheng
- College of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Chaoguo Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
23
|
An L, Wang JW, Liu JD, Zhao ZM, Song YJ. Design, Preparation, and Characterization of Novel Calix[4]arene Bioactive Carrier for Antitumor Drug Delivery. Front Chem 2019; 7:732. [PMID: 31788467 PMCID: PMC6855266 DOI: 10.3389/fchem.2019.00732] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/14/2019] [Indexed: 01/12/2023] Open
Abstract
An amphiphilic and bioactive calix[4]arene derivative 8 (CA) is designed and successfully synthesized from tert-butyl calix[4] arene 1 by sequential inverse F-C alkylation, nitration, O-alkylation, esterification, aminolysis, reduction, and acylation reaction. The blank micelles of FA-CA and doxorubicin (DOX) loaded micelles FA-CA-DOX are prepared subsequently undergoing self-assembly and dialysis of CA and DSPE-PEG2000-FA. The drug release kinetics curve of the encapsulated-DOX micelle demonstrates a rapid release under mild conditions, indicating the good pH-responsive ability. Furthermore, the cytotoxicity of DOX-loaded micelle respect to the blank micelle against seven different human carcinoma (A549, HeLa, HepG2, HCT116, MCF-7, MDA-MB231, and SW480) cells has been also investigated. The results confirm the more significant inhibitory effect of DOX-loaded micelle than those of DOX and the blank micelles. The CDI calculations show a synergistic effect between blank micelles and DOX in inducing tumor cell death. In conclusion, FA-CA micelles reported in this work was a promising drug delivery vehicle for tumor targeting therapy.
Collapse
Affiliation(s)
- Lin An
- College of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jia-Wei Wang
- College of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jia-Dong Liu
- College of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zi-Ming Zhao
- College of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yuan-Jian Song
- Department of Genetics, Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
24
|
Nag R, Polepalli S, Althaf Hussain M, Rao CP. Ratiometric Cu 2+ Binding, Cell Imaging, Mitochondrial Targeting, and Anticancer Activity with Nanomolar IC 50 by Spiro-Indoline-Conjugated Calix[4]arene. ACS OMEGA 2019; 4:13231-13240. [PMID: 31460450 PMCID: PMC6704586 DOI: 10.1021/acsomega.9b01402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/16/2019] [Indexed: 05/23/2023]
Abstract
A triazole-derivatized, spiro-indoline-linked, 1,3-di-derivative of calix[4]arene (L) has been synthesized to take advantage of its ion-binding capability in the ring-open form. Indeed, the spiro-indoline moiety is well known for its photochromic, acidochromic, and metallochromic properties. Therefore, the L has been explored for Cu2+ binding, cell imaging, and anticancer activity of the corresponding complex since Cu2+ complexes are known for such activity. The conversion from the closed to open form of L is expedited by light or proton, while the metal ion can open as well as stabilize it. The open form of L showed binding of Cu2+ ratiometrically as demonstrated by absorption and fluorescence spectroscopy. This leads to the formation of 1:1 complex with a binding constant of (6.9 ± 2.3) × 105 M-1, with the lowest detection limit being 1.9 nM. In the complex, the Cu2+ is bound by two triazole-N and two phenolic-O groups resulting in a distorted tetrahedral coordination core of CuN2O2 as demonstrated based on density functional theory studies. To form such coordination core, the arms underwent considerable changes in some of the dihedral angles. The binding of Cu2+ to L induces self-assembly of L by varying from simple particles to rodlike structures when bound to Cu2+. The on-off fluorescence intensity of L and its Cu2+-bound species are responsible for imaging cancer cells. The L shows red fluorescence in MDA-MB-231 cancer cells by targeting mitochondria as proved based on the colocalization study carried out using MitoTracker Green. While the L alone is nontoxic to cancer cells, the presence of Cu2+ brings cell death to an extent of 90% with an IC50 value of 165 nM by bringing a substantial quench in the fluorescence of L. A shift of population from G0/G1 and G2M phases to the Sub-G1 phase was observed as the concentration of the complex was increased, indicating cell death as studied by fluorescence-activated cell sorting. Thus, the present work clearly proved that a calix[4]arene functionalized at the lower rim with spiro-indoline moieities when complexed with Cu2+ acts as an efficient anticancer agent and is capable of imaging cancer cells.
Collapse
Affiliation(s)
- Rahul Nag
- Bioinorganic Laboratory,
Department of Chemistry, Indian Institute
of Technology Bombay, Powai, Mumbai 400076, India
| | - Sirilata Polepalli
- Bioinorganic Laboratory,
Department of Chemistry, Indian Institute
of Technology Bombay, Powai, Mumbai 400076, India
| | - Mohammed Althaf Hussain
- Bioinorganic Laboratory,
Department of Chemistry, Indian Institute
of Technology Bombay, Powai, Mumbai 400076, India
| | - Chebrolu Pulla Rao
- Bioinorganic Laboratory,
Department of Chemistry, Indian Institute
of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
25
|
Nikolova VK, Kirkova CV, Angelova SE, Dudev TM. Host-guest interactions between p-sulfonatocalix[4]arene and p-sulfonatothiacalix[4]arene and group IA, IIA and f-block metal cations: a DFT/SMD study. Beilstein J Org Chem 2019; 15:1321-1330. [PMID: 31293681 PMCID: PMC6604682 DOI: 10.3762/bjoc.15.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/05/2019] [Indexed: 11/23/2022] Open
Abstract
The molecular recognition in aqueous solution is extremely important because most biological processes occur in aqueous solution. Water-soluble members of the calix[n]arene family (e.g., p-sulfonato substituted) can serve as model systems for studying the nature and manner of interactions between biological receptors and small ions. The complex formation behavior of water-soluble p-sulfonatocalix[4]arene and thiacalix[4]arene and group IA, IIA and f-block metal cations has been investigated computationally by means of density functional theory computations in the gas phase and in aqueous environment. The calculated Gibbs free energy values of the complex formation reaction of these ligands with the bare metal cations suggest a spontaneous and energy-favorable process for all metal cations in the gas phase and only for Na+, Mg2+, Lu3+ cations in water environment. For one of the studied cations (La3+) a supramolecular approach with explicit solvent treatment has been applied in the study of the effect of metal hydration on the complexation process. The La3+ binding to the p-sulfonatocalix[4]arene host molecule (now in the metal's second coordination shell) is still exergonic as evidenced by the negative Gibbs free energy values (ΔG 1 and ΔG 78). The combination of implicit/explicit solvent treatment seems useful in the modeling of the p-sulfonatocalix[4]arene (and thiacalix[4]arene) complexes with metal cations and in the prediction of the thermodynamic parameters of the complex formation reactions.
Collapse
Affiliation(s)
- Valya K Nikolova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski", 1164 Sofia, Bulgaria
| | - Cristina V Kirkova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski", 1164 Sofia, Bulgaria
| | - Silvia E Angelova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Todor M Dudev
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski", 1164 Sofia, Bulgaria
| |
Collapse
|
26
|
Jaschonek S, Schäfer K, Diezemann G. Mechanical and Structural Tuning of Reversible Hydrogen Bonding in Interlocked Calixarene Nanocapsules. J Phys Chem B 2019; 123:4688-4694. [PMID: 31070922 DOI: 10.1021/acs.jpcb.9b02676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present force probe molecular dynamics simulations of dimers of interlocked calixarene nanocapsules and study the impact of structural details and solvent properties on the mechanical unfolding pathways. The system consists of two calixarene "cups" that form a catenane structure via interlocked aliphatic loops of tunable length. The dimer shows reversible rebinding, and the kinetics of the system can be understood in terms of a two-state model for shorter loops (≤14 CH2 units) and a three-state model for longer loops (≥15 CH2 units). The various conformational states of the dimer are stabilized by networks of hydrogen bonds, the mechanical susceptibility of which can be altered by changing the polarity and proticity of the solvent. The variation of the loop length and the solvent properties in combination with changes in the pulling protocol allows to tune the reversibility of the conformational transitions.
Collapse
Affiliation(s)
- Stefan Jaschonek
- Institut für Physikalische Chemie , Universität Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Ken Schäfer
- Institut für Physikalische Chemie , Universität Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Gregor Diezemann
- Institut für Physikalische Chemie , Universität Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany
| |
Collapse
|
27
|
Size and Flexibility Define the Inhibition of the H3N2 Influenza Endonuclease Enzyme by Calix[n]arenes. Antibiotics (Basel) 2019; 8:antibiotics8020073. [PMID: 31163674 PMCID: PMC6627454 DOI: 10.3390/antibiotics8020073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022] Open
Abstract
Inhibition of H3N2 influenza PA endonuclease activity by a panel of anionic calix[n]arenes and β-cyclodextrin sulfate has been studied. The joint experimental and theoretical results reveal that the larger, more flexible and highly water-soluble sulfonato-calix[n]arenes have high inhibitory activity, with para-sulfonato-calix[8]arene, SC8, having an IC50 value of 6.4 μM. Molecular docking calculations show the SC8 can interact at both the polyanion binding site and also the catalytic site of H3N2 influenza PA endonuclease.
Collapse
|
28
|
Kashapov RR, Razuvayeva YS, Ziganshina AY, Mukhitova RK, Sapunova AS, Voloshina AD, Syakaev VV, Latypov SK, Nizameev IR, Kadirov MK, Zakharova LY. N-Methyl-d-glucamine-Calix[4]resorcinarene Conjugates: Self-Assembly and Biological Properties. Molecules 2019; 24:E1939. [PMID: 31137548 PMCID: PMC6572135 DOI: 10.3390/molecules24101939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 11/16/2022] Open
Abstract
Deep insight of the toxicity of supramolecular systems based on macrocycles is of fundamental interest because of their importance in biomedical applications. What seems to be most interesting in this perspective is the development of the macrocyclic compounds with biocompatible fragments. Here, calix[4]resorcinarene derivatives containing N-methyl- d-glucamine moieties at the upper rim and different chemical groups at the lower rim were synthesized and investigated. These macrocycles showed a tendency to self-aggregate in aqueous solution, and their self-assembly abilities depend on the structure of the lower rim. The in vitro cytotoxic and antimicrobial activity of the calix[4]resorcinarenes revealed the relationship of biological properties with the ability to aggregate. Compared to macrocycles with methyl groups on the lower rim, calix[4]resorcinarenes with sulfonate groups appear to possess very similar antibacterial properties, but over six times less hemolytic activity. In some ways, this is the first example that reveals the dependence of the observed hemolytic and antibacterial activity on the lipophilicity of the calix[4]arene structure.
Collapse
Affiliation(s)
- Ruslan R Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia.
- Kazan National Research Technological University, 68 K. Marks str., Kazan 420015, Russia.
| | - Yuliya S Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia.
- Kazan National Research Technological University, 68 K. Marks str., Kazan 420015, Russia.
| | - Albina Y Ziganshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia.
| | - Rezeda K Mukhitova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia.
| | - Anastasiia S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia.
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia.
| | - Victor V Syakaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia.
| | - Shamil K Latypov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia.
| | - Irek R Nizameev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia.
- Kazan National Research Technological University, 68 K. Marks str., Kazan 420015, Russia.
| | - Marsil K Kadirov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia.
- Kazan National Research Technological University, 68 K. Marks str., Kazan 420015, Russia.
| | - Lucia Y Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia.
- Kazan National Research Technological University, 68 K. Marks str., Kazan 420015, Russia.
| |
Collapse
|
29
|
Braegelman AS, Webber MJ. Integrating Stimuli-Responsive Properties in Host-Guest Supramolecular Drug Delivery Systems. Theranostics 2019; 9:3017-3040. [PMID: 31244940 PMCID: PMC6567965 DOI: 10.7150/thno.31913] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/27/2019] [Indexed: 12/17/2022] Open
Abstract
Host-guest motifs are likely the most recognizable manifestation of supramolecular chemistry. These complexes are characterized by the organization of small molecules on the basis of preferential association of a guest within the portal of a host. In the context of their therapeutic use, the primary application of these complexes has been as excipients which enhance the solubility or improve the stability of drug formulations, primarily in a vial. However, there may be opportunities to go significantly beyond such a role and leverage key features of the affinity, specificity, and dynamics of the interaction itself toward "smarter" therapeutic designs. One approach in this regard would seek stimuli-responsive host-guest recognition, wherein a complex forms in a manner that is sensitive to, or can be governed by, externally applied triggers, disease-specific proteins and analytes, or the presence of a competing guest. This review will highlight the general and phenomenological design considerations governing host-guest recognition and the specific types of chemistry which have been used and are available for different applications. Finally, a discussion of the molecular engineering and design approaches which enable sensitivity to a variety of different stimuli are highlighted. Ultimately, these molecular-scale approaches offer an assortment of new chemistry and material design tools toward improving precision in drug delivery.
Collapse
Affiliation(s)
| | - Matthew J. Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
30
|
Gassoumi B, Chaabene M, Ghalla H, Chaabane RB. Physicochemical properties of the three-cavity form of calix[n = 4, 6, 8]aren molecules: DFT investigation. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2425-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
31
|
Ali Y, Alqudah A, Ahmad S, Abd Hamid S, Farooq U. Macromolecules as targeted drugs delivery vehicles: an overview. Des Monomers Polym 2019; 22:91-97. [PMID: 31007637 PMCID: PMC6461068 DOI: 10.1080/15685551.2019.1591681] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/24/2019] [Indexed: 12/12/2022] Open
Abstract
Targeted drug delivery system improves the efficiency and safety of the therapeutic agents by managing the pharmacokinetics and pharmacodynamics of drugs. Currently, numerous drug carrier systems have been developed with different sizes, architectures and characteristics surface properties. Among different systems, macromolecules have a wide range of applications in targeted drug delivery system. The optimal drug loading potential, smooth drug releasing ability and biocompatibility are the distinguishing features that ensure the drugs delivery ability of macromolecules. This review briefly introduces some of the most commonly studied macromolecules which have been recommended as drugs delivery vehicles.
Collapse
Affiliation(s)
- Yousaf Ali
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Ali Alqudah
- Applied Biological Department, Tafila Technical University, Tafilah, Jordan
| | - Sadiq Ahmad
- Department of Pharmacy, University of Malakand, Malakand, Pakistan
| | - Shafida Abd Hamid
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
| | - Umar Farooq
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| |
Collapse
|
32
|
Behboodi-Sadabad F, Trouillet V, Welle A, Messersmith PB, Levkin PA. Surface Functionalization and Patterning by Multifunctional Resorcinarenes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39268-39278. [PMID: 30335364 DOI: 10.1021/acsami.8b14771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plant phenolic compounds and catecholamines have been widely used to obtain substrate-independent precursor nanocoatings and adhesives. Nevertheless, there are downsides in using such phenolic compounds for surface modification such as formation of nonuniform coatings, need for multistep modification, and restricted possibilities for postfunctionalization. In this study, inspired by a strong binding ability of natural polyphenols found in plants, we used three different macrocyclic polyphenols, known as resorcin[4]arenes, to modify the surface of different substrates by simple dip-coating into the dilute solution of these compounds. Eight hydroxyl groups on the large rim of these resorcin[4]arenes provide multiple anchoring points to the surface, whereas the lower rim decorated with different appending groups introduces the desired chemical and physical functionalities to the substrate's surface. Deposition of a uniform and transparent resorcinarene layer on the surface was confirmed by several surface characterization techniques. Incubation of the modified substrates in different environments indicated that the stability of the resorcinarene layer was dependent on the type of substrate and the pH value. The most stable resorcinarene layer was formed on amine-functionalized substrates. The surface was modified with alkenyl functional groups in one step using a resorcinarene compound possessing four alkenyl appending groups on its small rim. Thiol-ene photoclick chemistry was used to site-selectively postfunctionalize the surface with hydrophilic and hydrophobic micropatterns, which was confirmed by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. Thus, we demonstrate that resorcin[4]arenes extend the scope of applications of plant polyphenol and mussel-inspired precursors to tailor-made multifunctional nanocoatings, suitable for a variety of potential applications in biotechnology, biology, and material science.
Collapse
Affiliation(s)
- F Behboodi-Sadabad
- Institute of Organic Chemistry (IOC) , Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe , Germany
| | | | | | - Phillip B Messersmith
- Departments of Materials Science and Engineering and Bioengineering , University of California Berkeley , 94720 Berkeley , United States
| | - Pavel A Levkin
- Institute of Organic Chemistry (IOC) , Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe , Germany
| |
Collapse
|
33
|
Ali Y, Muhamad Bunnori N, Susanti D, Muhammad Alhassan A, Abd Hamid S. Synthesis, in-Vitro and in Silico Studies of Azo-Based Calix[4]arenes as Antibacterial Agent and Neuraminidase Inhibitor: A New Look Into an Old Scaffold. Front Chem 2018; 6:210. [PMID: 29946538 PMCID: PMC6005842 DOI: 10.3389/fchem.2018.00210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/23/2018] [Indexed: 01/29/2023] Open
Abstract
Calixarene derivatives are reported as potential therapeutic agents. Azo derivatives of calixarenes have not been given much consideration to explore their biomedical applications. In the present study, some azo-based derivatives of calix[4]arene were synthesized and characterized and their antibacterial and antiviral potentials were studied. The mono azo products of sulphanilamide, sulfaguanidine and 2-methyl-4-aminobenzoic acid showed good activity against bacterial strains with minimum inhibition concentration values ranging from 0.97 to 62.5 μg/mL. For mono azo products, the diazotized salt was applied as a limiting reagent. The use of calix[4]arene and sodium acetate trihydrate in 1:3 (molar ratio) helped in partial substitution. Molecular docking was performed to see the interaction of the designed compounds with two bacterial and one viral (neuraminidase) receptor. Some of the derivatives showed good interaction with the active site of bacterial and neuraminidase enzymes through hydrogen, hydrophobic and pi-pi interactions, and could inhibit the activity of the selected enzymes.
Collapse
Affiliation(s)
- Yousaf Ali
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan.,Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
| | | | - Deny Susanti
- Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
| | | | - Shafida Abd Hamid
- Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
| |
Collapse
|
34
|
Russo M, Lo Meo P. Binding abilities of a chiral calix[4]resorcinarene: a polarimetric investigation on a complex case of study. Beilstein J Org Chem 2018; 13:2698-2709. [PMID: 29564007 PMCID: PMC5753176 DOI: 10.3762/bjoc.13.268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/30/2017] [Indexed: 11/23/2022] Open
Abstract
Polarimetry was used to investigate the binding abilities of a chiral calix[4]resorcinarene derivative, bearing L-proline subunits, towards a set of suitably selected organic guests. The simultaneous formation of 1:1 and 2:1 host–guest inclusion complexes was observed in several cases, depending on both the charge status of the host and the structure of the guest. Thus, the use of the polarimetric method was thoroughly revisited, in order to keep into account the occurrence of multiple equilibria. Our data indicate that the stability of the host–guest complexes is affected by an interplay between Coulomb interactions, π–π interactions, desolvation effects and entropy-unfavorable conformational dynamic restraints. Polarimetry is confirmed as a very useful and versatile tool for the investigation of supramolecular interactions with chiral hosts, even in complex systems involving multiple equilibria.
Collapse
Affiliation(s)
- Marco Russo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, V.le delle Scienze ed. 17, 90128 Palermo, Italy
| | - Paolo Lo Meo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, V.le delle Scienze ed. 17, 90128 Palermo, Italy.,ATeNCenter, University of Palermo, V.le delle Scienze ed. 18, 90128 Palermo, Italy
| |
Collapse
|
35
|
Granata G, Paterniti I, Geraci C, Cunsolo F, Esposito E, Cordaro M, Blanco AR, Cuzzocrea S, Consoli GML. Potential Eye Drop Based on a Calix[4]arene Nanoassembly for Curcumin Delivery: Enhanced Drug Solubility, Stability, and Anti-Inflammatory Effect. Mol Pharm 2017; 14:1610-1622. [PMID: 28394618 DOI: 10.1021/acs.molpharmaceut.6b01066] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Curcumin is an Indian spice with a wide spectrum of biological and pharmacological activities but poor aqueous solubility, rapid degradation, and low bioavailability that affect medical benefits. To overcome these limits in ophthalmic application, curcumin was entrapped in a polycationic calix[4]arene-based nanoaggregate by a simple and reproducible method. The calix[4]arene-curcumin supramolecular assembly (Calix-Cur) appeared as a clear colloidal solution consisting in micellar nanoaggregates with size, polydispersity index, surface potential, and drug loading percentage meeting the requirements for an ocular drug delivery system. The encapsulation in the calix[4]arene nanoassembly markedly enhanced the solubility, reduced the degradation, and improved the anti-inflammatory effects of curcumin compared to free curcumin in both in vitro and in vivo experiments. Calix-Cur did not compromise the viability of J774A.1 macrophages and suppressed pro-inflammatory marker expression in J774A.1 macrophages subjected to LPS-induced oxidative stress. Histological and immunohistochemical analyses showed that Calix-Cur reduced signs of inflammation in a rat model of LPS-induced uveitis when topically administrated in the eyes. Overall, the results supported the calix[4]arene nanoassembly as a promising nanocarrier for delivering curcumin to anterior ocular tissues.
Collapse
Affiliation(s)
- Giuseppe Granata
- Institute of Biomolecular Chemistry, National Research Council (C.N.R.) , 95126 Catania, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina , 98166 Messina, Italy
| | - Corrada Geraci
- Institute of Biomolecular Chemistry, National Research Council (C.N.R.) , 95126 Catania, Italy
| | - Francesca Cunsolo
- Institute of Biomolecular Chemistry, National Research Council (C.N.R.) , 95126 Catania, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina , 98166 Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina , 98166 Messina, Italy
| | | | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina , 98166 Messina, Italy
| | - Grazia M L Consoli
- Institute of Biomolecular Chemistry, National Research Council (C.N.R.) , 95126 Catania, Italy
| |
Collapse
|
36
|
Buldenko V, Kobzar O, Trush V, Drapailo A, Kalchenko V, Vovk A. Sulfonyl-bridged Calix[4]arene as an Inhibitor of Protein Tyrosine Phosphatases. FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY 2017. [DOI: 10.17721/fujcv5i2p144-151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previously, phosphonic acid derivatives of calix[4]arene and thiacalix[4]arene were found to be potential inhibitors of protein tyrosine phosphatase 1B. In the present paper, the inhibitory activity of unsubstituted sulfonyl-bridget calix[4]arene towards some of the therapeutically important protein tyrosine phosphatases has been established. The obtained results showed that the sulfonylcalix[4]arene is able to inhibit protein tyrosine phosphatase MEG2 with IC50 value in the micromolar range. At the same time, the inhibitor demonstrated lower activity in case of other protein tyrosine phosphatases such as PTP1B, MEG1, TC-PTP, SHP2, and PTPβ. The performed molecular docking indicated that the inhibitor binds to the active site region of MEG2 and PTP1B with WPD-loop in the open conformation.
Collapse
Affiliation(s)
- Vladyslav Buldenko
- Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine
| | - Oleksandr Kobzar
- Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine
| | - Viacheslav Trush
- Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine
| | - Andriy Drapailo
- Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine
| | - Vitaly Kalchenko
- Institute of Organic Chemistry of the National Academy of Sciences of Ukraine
| | - Andriy Vovk
- Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine
| |
Collapse
|