1
|
El Souda SS, Ahmed HH, Maamoun AA, Matloub AA, Aglan HA. Chemical Profile and Potential Application of Agri-food Waste Products for Counteracting Diabetes Induced Neuropathy in Rats. Chem Biodivers 2024; 21:e202400843. [PMID: 39140441 DOI: 10.1002/cbdv.202400843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
This study aimed to prepare defatted ethanol extract of Abelmoschus esculentus leaves, Morus nigra leaves and Punica granatum peel, to identify the chemical composition of these extracts and to explore their efficacy in counteracting diabetic neuropathy. LC-ESI-MS spectrometry was the hyphenated tool for component identification of these extracts. Behavioral, biochemical, and histopathological investigations were carried out after treatments of diabetic rats. The phenolic contents in the extracts are 16.38, 34.75 and 40.57 mg GAE/g extract regarding A. esculentus leaves, M. nigra leaves and P. granatum peel respectively. Chemodiversity of the phenolic contents was observed from the LC/Mass, where A. esculentus extract contained isoflavonoids and flavanones, M. nigra extract consisted of benzofurans, prenylated flavonoids, stilbenes, and xanthones, and P. granatum extract was rich in ellagitanins, condensed tannins, and anthocyanins. The extracts normalize of blood glucose levels, enhance the explorative behavior of the rats and their response time to thermal pain, restore the oxidant/antioxidant balance, attenuate inflammation, augment brain monoamines levels and modulate MAO-A and Ache enzyme activity. Furthermore, they recovered brain histopathological alterations. Conclusively, this study offers experimental evidence for the neuroprotective impact of studied defatted ethanol extracts against diabetic neuropathy via their hypoglycemic effect, antioxidant activity, and anti-inflammatory potential.
Collapse
Affiliation(s)
- Sahar S El Souda
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Buhouth St, Giza, Dokki, P.O.12622 (ID: 60014618), Cairo, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Dokki, Egypt
| | - Amal A Maamoun
- Pharmacognosy Department, National Research Centre, 33 El Buhouth St, Cairo, Giza, Dokki, P.O.12622 (ID:60014618), Egypt
| | - Azza A Matloub
- Pharmacognosy Department, National Research Centre, 33 El Buhouth St, Cairo, Giza, Dokki, P.O.12622 (ID:60014618), Egypt
| | - Hadeer A Aglan
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Dokki, Egypt
| |
Collapse
|
2
|
Aroca-Esteban J, Souza-Neto FV, Aguilar-Latorre C, Tribaldo-Torralbo A, González-López P, Ruiz-Simón R, Álvarez-Villareal M, Ballesteros S, de Ceniga MV, Landete P, González-Rodríguez Á, Martín-Ventura JL, de Las Heras N, Escribano Ó, Gómez-Hernández A. Potential protective role of let-7d-5p in atherosclerosis progression reducing the inflammatory pathway regulated by NF-κB and vascular smooth muscle cells proliferation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167327. [PMID: 38945455 DOI: 10.1016/j.bbadis.2024.167327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
The prevalence of cardiovascular diseases (CVDs) is increasing in the last decades, even is the main cause of death in first world countries being atherosclerosis one of the principal triggers. Therefore, there is an urgent need to decipher the underlying mechanisms involved in atherosclerosis progression. In this respect, microRNAs dysregulation is frequently involved in the progression of multiple diseases including CVDs. Our aim was to demonstrate that let-7d-5p unbalance could contribute to the pathophysiology of atherosclerosis and serve as a potential diagnostic biomarker. We evaluated let-7d-5p levels in vascular biopsies and exosome-enriched extracellular vesicles (EVs) from patients with carotid atherosclerosis and healthy donors. Moreover, we overexpressed let-7d-5p in vitro in vascular smooth muscle cells (VSMCs) to decipher the targets and the underlying mechanisms regulated by let-7d-5p in atherosclerosis. Our results demonstrate that let-7d-5p was significantly upregulated in carotid plaques from overweight patients with carotid atherosclerosis. Moreover, in EVs isolated from plasma, we found that let-7d-5p levels were increased in carotid atherosclerosis patients compared to control subjects specially in overweight patients. Receiver Operating Characteristic (ROC) analyses confirmed its utility as a diagnostic biomarker for atherosclerosis. In VSMCs, we demonstrated that increased let-7d-5p levels impairs cell proliferation and could serve as a protective mechanism against inflammation by impairing NF-κB pathway without affecting insulin resistance. In summary, our results highlight the role of let-7d-5p as a potential therapeutic target for atherosclerosis since its overexpression induce a decrease in inflammation and VSMCs proliferation, and also, as a novel non-invasive diagnostic biomarker for atherosclerosis in overweight patients.
Collapse
Affiliation(s)
- Javier Aroca-Esteban
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Francisco V Souza-Neto
- Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Carlota Aguilar-Latorre
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Alba Tribaldo-Torralbo
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Paula González-López
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Rubén Ruiz-Simón
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Marta Álvarez-Villareal
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Sandra Ballesteros
- Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Melina Vega de Ceniga
- Department of Angiology and Vascular Surgery, Hospital of Galdakao-Usansolo, Galdakao, Bizkaia, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Pedro Landete
- Departmento de Neumología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain; Faculty of Medicine, Autonoma University of Madrid, Madrid, Spain
| | - Águeda González-Rodríguez
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - José L Martín-Ventura
- IIS-Fundation Jimenez-Diaz, Autonoma University of Madrid and CIBERCV, Madrid, Spain
| | - Natalia de Las Heras
- Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Óscar Escribano
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Almudena Gómez-Hernández
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
3
|
Mao W, Zong G, Gao Y, Qu S, Cheng X. Integrative Analyses of Mitophagy-Related Genes and Mechanisms Associated with Type 2 Diabetes in Muscle Tissue. Curr Issues Mol Biol 2024; 46:10411-10429. [PMID: 39329971 PMCID: PMC11430763 DOI: 10.3390/cimb46090619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Type 2 diabetes (T2D) represents the most prevalent metabolic condition that is primarily distinguished by a range of metabolic imbalances, including hyperglycemia, hyperlipidemia, and insulin resistance (IR). Currently, mitophagy has become increasingly recognized as an important process involved in the pathogenesis and progression of T2D. Therefore, it is very important to explore the role of mitochondrial damage and autophagy-related genes in T2D. This study investigated the role of mitophagy in the development of T2D, and 12 MRHGs associated with T2D were identified using bioinformatic analysis and machine learning methods. Our findings provide the first insight into mitophagy-related genes and their mechanisms in T2D. This study aimed to investigate possible molecular targets for therapy and the underlying mechanisms involved in T2D. This information might be useful to further elucidate the pathogenesis of T2D-related diseases and identify more optimal therapeutic approaches.
Collapse
Affiliation(s)
- Wangjia Mao
- Department of Endocrinology and Metabolism, Division of Metabolic Surgery for Obesity and Diabetes, Shanghai Tenth People’s Hospital, Institute of Obesity, Institute of Thyroid Diseases, Shanghai Center of Thyroid Diseases, School of Medicine, Tongji University, Shanghai 200072, China;
| | - Guannan Zong
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China;
| | - Yuan Gao
- School of Medicine, Tongji University, Shanghai 200092, China;
| | - Shen Qu
- Department of Endocrinology and Metabolism, Division of Metabolic Surgery for Obesity and Diabetes, Shanghai Tenth People’s Hospital, Institute of Obesity, Institute of Thyroid Diseases, Shanghai Center of Thyroid Diseases, School of Medicine, Tongji University, Shanghai 200072, China;
| | - Xiaoyun Cheng
- Department of Endocrinology and Metabolism, Division of Metabolic Surgery for Obesity and Diabetes, Shanghai Tenth People’s Hospital, Institute of Obesity, Institute of Thyroid Diseases, Shanghai Center of Thyroid Diseases, School of Medicine, Tongji University, Shanghai 200072, China;
| |
Collapse
|
4
|
Liu M, He C, Zhu T, Jia X, Zhang L, Jiang W, Chi C, Li X, Jiang G, Liu H, Zhang D. Characterizing and identifying of miRNAs involved in berberine modulating glucose metabolism of Megalobrama amblycephala. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1667-1682. [PMID: 38963582 DOI: 10.1007/s10695-024-01362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/24/2024] [Indexed: 07/05/2024]
Abstract
The present study, as one part of a larger project that aimed to investigate the effects of dietary berberine (BBR) on fish growth and glucose regulation, mainly focused on whether miRNAs involve in BBR's modulation of glucose metabolism in fish. Blunt snout bream Megalobrama amblycephala (average weight of 20.36 ± 1.44 g) were exposed to the control diet (NCD, 30% carbohydrate), the high-carbohydrate diet (HCD, 43% carbohydrate) and the berberine diet (HCB, HCD supplemented with 50 mg/kg BBR). After 10 weeks' feeding trial, intraperitoneal injection of glucose was conducted, and then, the plasma and liver were sampled at 0 h, 1 h, 2 h, 6 h, and 12 h. The results showed the plasma glucose levels in all groups rose sharply and peaked at 1 h after glucose injection. Unlike the NCD and HCB groups, the plasma glucose in the HCD group did not decrease after 1 h, while remained high level until at 2 h. The NCD group significantly increased liver glycogen content at times 0-2 h compared to the other two groups and then liver glycogen decreased sharply until at times 6-12 h. To investigate the role of BBR that may cause the changes in plasma glucose and liver glycogen, miRNA high-throughput sequencing was performed on three groups of liver tissues at 2 h time point. Eventually, 20 and 12 differentially expressed miRNAs (DEMs) were obtained in HCD vs NCD and HCB vs HCD, respectively. Through function analyzing, we found that HCD may affect liver metabolism under glucose loading through the NF-κB pathway; and miRNAs regulated by BBR mainly play roles in adipocyte lipolysis, niacin and nicotinamide metabolism, and amino acid transmembrane transport. In the functional exploration of newly discovered novel:Chr12_18892, we found its target gene, adenylate cyclase 3 (adcy3), was widely involved in lipid decomposition, amino acid metabolism, and other pathways. Furthermore, a targeting relationship of novel:Chr12_18892 and adcy3 was confirmed by double luciferase assay. Thus, BBR may promote novel:Chr12_18892 to regulate the expression of adcy3 and participate in glucose metabolism.
Collapse
Affiliation(s)
- Mingyang Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Chang He
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Zhu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyan Jia
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weibo Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cheng Chi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiangfei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hengtong Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Cho SB. Comorbidity Genes of Alzheimer's Disease and Type 2 Diabetes Associated with Memory and Cognitive Function. Int J Mol Sci 2024; 25:2211. [PMID: 38396891 PMCID: PMC10889845 DOI: 10.3390/ijms25042211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are comorbidities that result from the sharing of common genes. The molecular background of comorbidities can provide clues for the development of treatment and management strategies. Here, the common genes involved in the development of the two diseases and in memory and cognitive function are reviewed. Network clustering based on protein-protein interaction network identified tightly connected gene clusters that have an impact on memory and cognition among the comorbidity genes of AD and T2DM. Genes with functional implications were intensively reviewed and relevant evidence summarized. Gene information will be useful in the discovery of biomarkers and the identification of tentative therapeutic targets for AD and T2DM.
Collapse
Affiliation(s)
- Seong Beom Cho
- Department of Biomedical Informatics, College of Medicine, Gachon University, 38-13, Dokgeom-ro 3 Street, Namdon-gu, Incheon 21565, Republic of Korea
| |
Collapse
|
6
|
Piron A, Szymczak F, Papadopoulou T, Alvelos MI, Defrance M, Lenaerts T, Eizirik DL, Cnop M. RedRibbon: A new rank-rank hypergeometric overlap for gene and transcript expression signatures. Life Sci Alliance 2024; 7:e202302203. [PMID: 38081640 PMCID: PMC10709657 DOI: 10.26508/lsa.202302203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
High-throughput omics technologies have generated a wealth of large protein, gene, and transcript datasets that have exacerbated the need for new methods to analyse and compare big datasets. Rank-rank hypergeometric overlap is an important threshold-free method to combine and visualize two ranked lists of P-values or fold-changes, usually from differential gene expression analyses. Here, we introduce a new rank-rank hypergeometric overlap-based method aimed at gene level and alternative splicing analyses at transcript or exon level, hitherto unreachable as transcript numbers are an order of magnitude larger than gene numbers. We tested the tool on synthetic and real datasets at gene and transcript levels to detect correlation and anticorrelation patterns and found it to be fast and accurate, even on very large datasets thanks to an evolutionary algorithm-based minimal P-value search. The tool comes with a ready-to-use permutation scheme allowing the computation of adjusted P-values at low time cost. The package compatibility mode is a drop-in replacement to previous packages. RedRibbon holds the promise to accurately extricate detailed information from large comparative analyses.
Collapse
Affiliation(s)
- Anthony Piron
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
| | - Florian Szymczak
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Brussels, Belgium
| | - Theodora Papadopoulou
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Brussels, Belgium
| | - Maria Inês Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Matthieu Defrance
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
| | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
- Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Décio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
7
|
Albogami S. Genome-Wide Identification of lncRNA and mRNA for Diagnosing Type 2 Diabetes in Saudi Arabia. Pharmgenomics Pers Med 2023; 16:859-882. [PMID: 37731406 PMCID: PMC10508282 DOI: 10.2147/pgpm.s427977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
Purpose According to the World Health Organization, Saudi Arabia ranks seventh worldwide in the number of patients with diabetes mellitus. To our knowledge, no research has addressed the potential of noncoding RNA as a diagnostic and/or management biomarker for patients with type 2 diabetes mellitus (T2DM) living in high-altitude areas. This study aimed to identify molecular biomarkers influencing patients with T2DM living in high-altitude areas by analyzing lncRNA and mRNA. Patients and Methods RNA sequencing and bioinformatics analyses were used to identify significantly expressed lncRNAs and mRNAs in T2DM and healthy control groups. Coding potential was analyzed using coding-noncoding indices, the coding potential calculator, and PFAM, and the lncRNA function was predicted using Pearson's correlation. Differentially expressed transcripts between the groups were identified, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to identify the biological functions of both lncRNAs and mRNAs. Results We assembled 1766 lncRNAs in the T2DM group, of which 582 were novel. This study identified three lncRNA target genes (KLF2, CREBBP, and REL) and seven mRNAs (PIK3CD, PIK3R5, IL6R, TYK2, ZAP70, LAMTOR4, and SSH2) significantly enriched in important pathways, playing a role in the progression of T2DM. Conclusion To the best of our knowledge, this comprehensive study is the first to explore the applicability of certain lncRNAs as diagnostic or management biomarkers for T2DM in females in Taif City, Saudi Arabia through the genome-wide identification of lncRNA and mRNA profiling using RNA seq and bioinformatics analysis. Our findings could help in the early diagnosis of T2DM and in designing effective therapeutic targets.
Collapse
Affiliation(s)
- Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, 21944, Saudi Arabia
| |
Collapse
|
8
|
Huang Y, He B, Song C, Long X, He J, Huang Y, Liu L. Oxymatrine ameliorates myocardial injury by inhibiting oxidative stress and apoptosis via the Nrf2/HO-1 and JAK/STAT pathways in type 2 diabetic rats. BMC Complement Med Ther 2023; 23:2. [PMID: 36597092 PMCID: PMC9808977 DOI: 10.1186/s12906-022-03818-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/06/2022] [Indexed: 01/04/2023] Open
Abstract
The necessity of increasing the efficiency of organ preservation has encouraged researchers to explore the mechanisms underlying diabetes-related myocardial injuries. This study intended to evaluate the protective effects of oxymatrine (OMT) in myocardial injury caused by type 2 diabetes mellitus. A model of diabetic rats was established to simulate type 2 diabetes mellitus using an intraperitoneal injection of a single dose of 65 mg/kg streptozotocin with a high-fat and high-cholesterol diet, and diabetic rats were subsequently treated with OMT (60, 120 mg/kg) by gavage for 8 weeks. Thereafter, diabetic rats demonstrated notable decreases in left ventricular systolic pressure (LVSP), ±dp/dtmax, and in the activities of glutathione peroxidase, superoxide dismutase, and catalase. Moreover, we found notable increases in left ventricular end-diastolic pressure, fasting blood glucose, and malondialdehyde, as well as changes in cell apoptosis and decreased expression levels of Nrf2, HO-1, tyrosine protein kinase JAK (JAK), and signal transducer and transcription activator (STAT). Treatment with OMT alleviated all of the measured parameters. Collectively, these findings suggest that activation of the Nrf2/HO-1 and inhibition of the JAK/STAT signaling are involved in mediating the cardioprotective effects of OMT and also highlight the benefits of OMT in ameliorating myocardial injury in diabetic rats.
Collapse
Affiliation(s)
- Yongpan Huang
- Medicine School, Changsha Social Work College, Changsha, 410004 Hunan China
| | - Bin He
- grid.67293.39School of Nursing, Hunan University of Medicine, Huaihua, 418000 China
| | - Chong Song
- Medicine School, Changsha Social Work College, Changsha, 410004 Hunan China
| | - Xian Long
- Medicine School, Changsha Social Work College, Changsha, 410004 Hunan China
| | - Jianbin He
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Huaihua, affiliated to University of South China, Huaihua, 418000 Hunan China
| | - Yansong Huang
- Medicine School, Changsha Social Work College, Changsha, 410004 Hunan China
| | - Lijing Liu
- Medicine School, Changsha Social Work College, Changsha, 410004 Hunan China
| |
Collapse
|
9
|
Discovery of immune-related diagnostic biomarkers and construction of diagnostic model in varies polycystic ovary syndrome. Arch Gynecol Obstet 2022; 306:1607-1615. [PMID: 35904610 DOI: 10.1007/s00404-022-06686-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
Abstract
AIMS The various diagnostic criteria for polycystic ovary syndrome (PCOS) raised problem for PCOS research worldwide. PCOS has been demonstrated to be significantly associated with immune response. We aimed to identify several immune-related biomarkers and construct a nomogram model for diagnosis in PCOS. METHODS The mRNA expression data were downloaded from Gene Expression Omnibus (GEO) database. Significant immune-related genes were identified to be the biomarkers for the diagnosis of PCOS using random forest model (RF), support vector machine model (SVM) and generalized linear model (GLM). The key biomarkers were selected from the optimal model and were utilized to construct a diagnostic nomogram. Receiver operating characteristic (ROC) curves was used to evaluate diagnostic ability of nomogram. Moreover, the relative proportion of 22 immune cell types was calculated by CIBERSORT algorithm. RESULTS Four immune-related biomarkers (cAMP, S100A9, TLR8 and IL6R) were demonstrated to be highly expressed in PCOS. The nomogram constructed on the ground of the four key biomarkers showed perfect performance in diagnosis of PCOS, whose AUC were greater than 0.7. Higher infiltrating abundance of neutrophils, resting NK cells and activated dendritic cells were observed in PCOS and were tightly associated with the four key biomarkers. CONCLUSIONS This study identified several immune-related diagnostic biomarkers for PCOS patients. The diagnostic nomogram constructed based the biomarkers provide a theory foundation for clinical application. Multiple immune cells were associated with the expression of these four biomarkers and might played a vital role in the procession of PCOS.
Collapse
|
10
|
Li W, Yuan X, He X, Yang L, Wu Y, Deng X, Zeng Y, Hu K, Tang B. The downregulation of miR-22 and miR-372 may contribute to gestational diabetes mellitus through regulating glucose metabolism via the PI3K/AKT/GLUT4 pathway. J Clin Lab Anal 2022; 36:e24557. [PMID: 35712865 PMCID: PMC9279990 DOI: 10.1002/jcla.24557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/07/2022] [Accepted: 05/25/2022] [Indexed: 11/27/2022] Open
Abstract
Background Identifying effective regulatory mechanisms will be significant for Gestational diabetes mellitus (GDM) diagnosis and treatment. Methods The expressions of miR‐22 and miR‐372 in placenta tissues from 75 pregnant women with GDM and 75 matched healthy controls and HRT8/SVneo cells (a model of insulin resistance) were analyzed by qPCR. The expressions of PI3K, AKT, IRS, and GLUT4 in high glucose‐treated HRT8/SVneo cells transfected with miR‐22 or miR‐372 mimics or inhibitors was assessed by Western blot. A luciferase gene reporter assay was employed to verify miRNAs' target genes. Results The expressions of miR‐22 and miR‐372 in placental tissues from GDM patients and HRT8/SVneo cells were significantly decreased compared with the respective controls. The GLUT4 expression was significantly decreased in the placenta tissues of GDM and HRT8/SVneo cells with high glucose transfected with miR‐22 and miR‐372 inhibitors. We confirmed that SLC2A4, the gene encoding GLUT4, was a direct target of miR‐22 and miR‐372. In this study, we report that the lower expressions of miR‐22 and miR‐372 in placental tissue from GDM patients. Conclusion Our results further suggested that the downregulations of miR‐22 and miR‐372 may contribute to GDM through regulating the PI3K/GLUT4 pathway.
Collapse
Affiliation(s)
- Wei Li
- Department of Endocrinology, Armed Police Corps Hospital of Guangdong Province, Guangzhou, China
| | - Xianlin Yuan
- Department of Food and Biological Engineering, Guangdong Industry Technical College, Guangzhou, China
| | - Xin He
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Li Yang
- Department of Endocrinology, Armed Police Corps Hospital of Guangdong Province, Guangzhou, China
| | - Yingyuan Wu
- Department of Obstetrics and Gynecology, Armed Police Corps Hospital of Guangdong Province, Guangzhou, China
| | - Xiaofeng Deng
- Department of Central Sterile Supply, Armed Police Corps Hospital of Guangdong Province, Guangzhou, China
| | - Yiwen Zeng
- Department of Endocrinology, Armed Police Corps Hospital of Guangdong Province, Guangzhou, China
| | - Kesheng Hu
- Department of Clinical Laboratory, Armed Police Corps Hospital of Guangdong Province, Guangzhou, China
| | - Bo Tang
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Pujar M, Vastrad B, Kavatagimath S, Vastrad C, Kotturshetti S. Identification of candidate biomarkers and pathways associated with type 1 diabetes mellitus using bioinformatics analysis. Sci Rep 2022; 12:9157. [PMID: 35650387 PMCID: PMC9160069 DOI: 10.1038/s41598-022-13291-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a metabolic disorder for which the underlying molecular mechanisms remain largely unclear. This investigation aimed to elucidate essential candidate genes and pathways in T1DM by integrated bioinformatics analysis. In this study, differentially expressed genes (DEGs) were analyzed using DESeq2 of R package from GSE162689 of the Gene Expression Omnibus (GEO). Gene ontology (GO) enrichment analysis, REACTOME pathway enrichment analysis, and construction and analysis of protein–protein interaction (PPI) network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network, and validation of hub genes were performed. A total of 952 DEGs (477 up regulated and 475 down regulated genes) were identified in T1DM. GO and REACTOME enrichment result results showed that DEGs mainly enriched in multicellular organism development, detection of stimulus, diseases of signal transduction by growth factor receptors and second messengers, and olfactory signaling pathway. The top hub genes such as MYC, EGFR, LNX1, YBX1, HSP90AA1, ESR1, FN1, TK1, ANLN and SMAD9 were screened out as the critical genes among the DEGs from the PPI network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network. Receiver operating characteristic curve (ROC) analysis confirmed that these genes were significantly associated with T1DM. In conclusion, the identified DEGs, particularly the hub genes, strengthen the understanding of the advancement and progression of T1DM, and certain genes might be used as candidate target molecules to diagnose, monitor and treat T1DM.
Collapse
Affiliation(s)
- Madhu Pujar
- Department of Pediatrics, J J M Medical College, Davangere, Karnataka, 577004, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag, Karnataka, 582101, India
| | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E. College of Pharmacy, Belagavi, Karnataka, 590010, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India.
| | - Shivakumar Kotturshetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India
| |
Collapse
|
12
|
MiR-520h inhibits viability and facilitates apoptosis of KGN cells through modulating IL6R and the JAK/STAT pathway. Reprod Biol 2022; 22:100607. [DOI: 10.1016/j.repbio.2022.100607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/22/2022]
|
13
|
Yang L, Du W, Zheng Z, Wang L, Xiao L, Yang Q, Hao Q, Zhou J, Du J, Li J, Valencia CA, Dong B, Chow HY, Fu X, Dong B. Optimization of miR-22 expression cassette for rAAV delivery on diabetes. MOLECULAR BIOMEDICINE 2022; 3:1. [PMID: 34984525 PMCID: PMC8727650 DOI: 10.1186/s43556-021-00063-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023] Open
Abstract
MicroRNA-22 (miR-22) was suggested to be important for type 2 diabetes but its functions for this disease remained unclear. Recombinant adeno-associated virus (rAAV)-mediated miR delivery is a powerful approach to study miR functions in vivo, however, the overexpression of miR-22 by rAAV remains challenging because it is one of the most abundant miRs in the liver. In this study, a series of expression cassettes were designed and compared. It was shown that different lengths of primary miR-22 were overexpressed in HEK293 and HeLa cells but the longer ones were more efficiently expressed. miR-22 may be placed in either introns or the 3′ UTR of a transgene for efficient overexpression. RNA polymerase III or II promoters were successfully utilized for miR expression but the latter showed higher expression levels in cell lines. Specifically, miR-22 was expressed efficiently together with an EGFP gene. After screening, a liver-specific TTR promoter was chosen to overexpress miR-22 in diabetic mice fed a high-fat diet. It was shown that miR-22 was overexpressed 2-3 folds which improved the insulin sensitivity significantly. The approach utilized in this study to optimize miR overexpression is a powerful tool for the creation of efficient rAAV vectors for the other miRs.
Collapse
Affiliation(s)
- Li Yang
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wenya Du
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhaoyue Zheng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Wang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lin Xiao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qingzhe Yang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qiukui Hao
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiao Zhou
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jintao Du
- Department of Otorhinolaryngology Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jun Li
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - C Alexander Valencia
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Birong Dong
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hoi Yee Chow
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xianghui Fu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Biao Dong
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China. .,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
14
|
Abnormal Expression of microRNA-296-3p in Type 2 Diabetes Patients and its Role in Pancreatic β-Cells Function by Targeting Tensin Homolog Deleted on Chromosome Ten. Biochem Genet 2021; 60:39-53. [PMID: 34085179 DOI: 10.1007/s10528-021-10083-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/09/2021] [Indexed: 12/09/2022]
Abstract
Diabetes mellitus (DM), a familiar disease, is characterized by high blood glucose levels owing to insulin deficiency. Researches have suggested that the incidence rate of diabetes is increasing and it has become an important global epidemic. The type 2 diabetes mellitus (T2DM) is featured with pancreatic β-cell loss and lack of insulin release. Nevertheless, the therapeutic methods that was helpful to improve pancreatic β-cell damage still unclear. Previous report have revealed that tensin homolog deleted on chromosome ten (PTEN) was remarkably enhanced in serum of patients with T2DM, and the lack of PTEN may prevent function deficiency of pancreatic β-cells in DM. However, the underlying mechanisms are rarely illustrated. Our purpose in this report was to illustrated the roles and potential mechanism of microRNA-296-3p (miR-296-3p) in uric acid (UA)-induced pancreatic β-cell injury. The direct target of miR-296-3p was predicted and verified by dual-luciferase reporter system and TargetScan assay. Moreover, Min6 cells were induced by 5 mg/dl UA and the cell proliferation, apoptosis, and insulin release were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry and glucose-stimulated insulin secretion (GSIS), respectively. Quantitative reverse transcription PCR (qRT-PCR) and western blot assay were adopted to analyze the levels of miR-296-3p, PTEN and apoptosis-related proteins. TargetScan and Dual-luciferase reporter system confirmed that PTEN directly target miR-296-3p. MiR-296-3p was downregulated in UA-induced Min6 cells and the serum of type 2 diabetes patients, while PTEN was upregulated in UA-induced Min6 cells. Upregulation of miR-296-3p by mimic dramatically promoted miR-296-3p level and decreased PTEN level. Besides, PTEN was over-expressed after PTEN-plasmid transfection. UA treatment prominently decreased cell viability, promoted apoptotic cells, enhanced Bax levels, declined Bcl-2 level as well as decreased insulin release in Min6 cells. MiR-296-3p mimic significantly alleviated UA-induced pancreatic β-cells dysfunction, and PTEN-plasmid eliminated the protective effect of miR-296-3p on insulin release, cell viability, and apoptosis of pancreatic β-cells in UA-stimulated Min6 cells. In summary, our findings revealed that upregulation of miR-296-3p protected pancreatic β-cells functions against UA-induced dysfunction by targeting PTEN, which provides a novel agent for type 2 diabetes treatment.
Collapse
|
15
|
Vijayan M, Reddy PH. Non-Coding RNAs Based Molecular Links in Type 2 Diabetes, Ischemic Stroke, and Vascular Dementia. J Alzheimers Dis 2021; 75:353-383. [PMID: 32310177 DOI: 10.3233/jad-200070] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article reviews recent advances in the study of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and their functions in type 2 diabetes mellitus (T2DM), ischemic stroke (IS), and vascular dementia (VaD). miRNAs and lncRNAs are gene regulation markers that both regulate translational aspects of a wide range of proteins and biological processes in healthy and disease states. Recent studies from our laboratory and others have revealed that miRNAs and lncRNAs expressed differently are potential therapeutic targets for neurological diseases, especially T2DM, IS, VaD, and Alzheimer's disease (AD). Currently, the effect of aging in T2DM, IS, and VaD and the cellular and molecular pathways are largely unknown. In this article, we highlight results from the works on the molecular connections between T2DM and IS, and IS and VaD. In each disease, we also summarize the pathophysiology and the differential expressions of miRNAs and lncRNAs. Based on current research findings, we hypothesize that 1) T2DM bi-directionally and age-dependently induces IS and VaD, and 2) these changes are precursors to the onset of dementia in elderly people. Research into these hypotheses is required to examine further whether research efforts on reducing T2DM, IS, and VaD may affect dementia and/or delay the AD disease process in the aged population.
Collapse
Affiliation(s)
- Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
16
|
Dessie G, Ayelign B, Akalu Y, Shibabaw T, Molla MD. Effect of Leptin on Chronic Inflammatory Disorders: Insights to Therapeutic Target to Prevent Further Cardiovascular Complication. Diabetes Metab Syndr Obes 2021; 14:3307-3322. [PMID: 34305402 PMCID: PMC8296717 DOI: 10.2147/dmso.s321311] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023] Open
Abstract
In response to obesity-associated chronic inflammatory disorders, adipose tissue releases a biologically active peptide known as leptin. Leptin activates the secretion of chemical mediators, which contribute to the pathogenesis of chronic inflammatory disorders, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and psoriasis. Conversely, adiposity and obesity are the major aggravating risk factors in the pathogenesis of metabolic syndrome (MetS), including type II diabetes mellitus and obesity-associated hypertension. Elevated level of leptin in obesity-associated hypertension causes an increase in the production of aldosterone, which also results in elevation of arterial blood pressure. Hyperleptinemia is associated with the progress of the atherosclerosis through secretion of pro-inflammatory cytokines, like interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), IL-17, and other cytokines to promote inflammation. The release of those cytokines leads to chronic inflammatory disorders and obesity-associated MetS. Thus, the aberrant leptin level in both MetS and chronic inflammatory disorders also leads to the complication of cardiovascular diseases (CVD). Therapeutic target of leptin regarding its pro-inflammatory effect and dysregulated sympathetic nervous system activity may prevent further cardiovascular complication. This review mainly assesses the mechanism of leptin on the pathogenesis and further cardiovascular risk complication of chronic inflammatory disorders.
Collapse
Affiliation(s)
- Gashaw Dessie
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- Correspondence: Gashaw Dessie Tel +251 975152796 Email
| | - Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Science, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yonas Akalu
- Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tewodros Shibabaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
17
|
Zhang X, Fan Y, Luo Y, Jin L, Li S. Lipid Metabolism is the common pathologic mechanism between Type 2 Diabetes Mellitus and Parkinson's disease. Int J Med Sci 2020; 17:1723-1732. [PMID: 32714075 PMCID: PMC7378658 DOI: 10.7150/ijms.46456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Although increasing evidence has suggested crosstalk between Parkinson's disease (PD) and type 2 diabetes mellitus (T2DM), the common mechanisms between the two diseases remain unclear. The aim of our study was to characterize the interconnection between T2DM and PD by exploring their shared biological pathways and convergent molecules. The intersections among the differentially expressed genes (DEGs) in the T2DM dataset GSE95849 and PD dataset GSE6613 from the Gene Expression Omnibus (GEO) database were identified as the communal DEGs between the two diseases. Then, an enrichment analysis, protein-protein interaction (PPI) network analysis, correlation analysis, and transcription factor-target regulatory network analysis were performed for the communal DEGs. As a result, 113 communal DEGs were found between PD and T2DM. They were enriched in lipid metabolism, including protein modifications that regulate metabolism, lipid synthesis and decomposition, and the biological effects of lipid products. All these pathways and their biological processes play important roles in both diseases. Fifteen hub genes identified from the PPI network could be core molecules. Their function annotations also focused on lipid metabolism. According to the correlation analysis and the regulatory network analysis based on the 15 hub genes, Sp1 transcription factor (SP1) could be a key molecule since it affected other hub genes that participate in the common mechanisms between PD and T2DM. In conclusion, our analyses reveal that changes in lipid metabolism could be a key intersection between PD and T2DM, and that SP1 could be a key molecule regulating these processes. Our findings provide novel points for the association between PD and T2DM.
Collapse
Affiliation(s)
- Xi Zhang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
- Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yu Fan
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yuping Luo
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Lingjing Jin
- Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Siguang Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
18
|
Zheng WP, Meng FL, Wang LY. miR-544a Stimulates endometrial carcinoma growth via targeted inhibition of reversion-inducing cysteine-rich protein with Kazal motifs. Mol Cell Probes 2020; 53:101572. [PMID: 32525042 DOI: 10.1016/j.mcp.2020.101572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
Abstract
Endometrial carcinoma (EC) is a female-specific malignant tumor. Although current treatments can achieve good outcomes and improve patient survival, there remains a high incidence of treatment-induced infertility, a serious side effect that is unacceptable to those of childbearing age. Studies have demonstrated that micro ribonucleic acids (microRNAs or miRNAs) such as miR-544a regulate tumor-related gene expression. However, whether miR-544a is involved in the progression of EC is unknown. This study aimed to investigate the biological functions and underlying mechanisms of miR-544a in EC in vivo and in vitro. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed miR-544a overexpression in EC tissue and cell lines, which was associated with a decreased in overall survival as revealed by Kaplan-Meier analysis. Functionally, the miR-544a inhibitor restricted the proliferation [detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay], invasion, and migration (detected by transwell assay) of human endometrial adenocarcinoma cells (HEC-1B and Ishikawa) and facilitated cell apoptosis (detected by flow cytometry assay). Western blotting analysis revealed that the miR-544a inhibitor decreased the expressions of matrix metalloproteinase (MMP)-2 and MMP-9 and elevated the levels of cleaved caspase3 and cleaved poly (ADP-ribose) polymerase. Furthermore, animal experiments indicated that the miR-544a antagonist (antagomir-544a) suppressed tumor growth significantly in a mouse xenograft model. The mechanistic, qRT-PCR, and immunohistochemical indications were that a reversion-inducing cysteine-rich protein with Kazal motifs (RECK) and miR-544a had inverse expression changes in EC. Bioinformatics analysis revealed RECK as a potential target for miR-544a, and this was verified by the dual-luciferase reporter assay. Subsequently, in vitro experiments, including transwell assay, MTT assay, flow cytometry assay, and Western blotting analysis, demonstrated that RECK exerted antitumor effects on EC, which were negatively regulated by miR-544a. Taken together, our study findings suggested miR-544a as a valuable target in EC therapy.
Collapse
Affiliation(s)
- Wei-Ping Zheng
- Department of Gynecology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, PR China
| | - Fan-Long Meng
- Department of Obstetrics and Gynecology, Changxing County Hospital, Changxing, PR China
| | - Lian-Yun Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China.
| |
Collapse
|
19
|
PBMCs to Stress-Associated miR-18a-5p and miR-22-3p Ratios as New Indicators of Metabolic Syndrome. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8159342. [PMID: 32382575 PMCID: PMC7196138 DOI: 10.1155/2020/8159342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Purpose Metabolic syndrome (MetS) is associated with chronic stress. miR-18a-5p and miR-22-3p are two miRNAs which can target the glucocorticoid receptor. This study looked at the changes in metabolic parameters and the predictive value of the peripheral blood mononuclear cells (PBMCs) to stress-associated miRNA ratios as new indicators in subjects with and without MetS in southern China. Patients and Methods. There were 81 participants (39 with MetS and 42 without MetS) in this cross-sectional study. The potential miRNAs were filtrated in the GEO database. The expression of miR-18a-5p and miR-22-3p in PBMCs was evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The risk of miRNA and PBMCs to stress-associated miRNA ratios contributing to the presence of MetS was estimated by univariate and multivariate logistic regression models. The area under the receiver operating characteristic curve (AUC) was used to evaluate diagnostic accuracy. Results MetS was positively correlated with cortisol, IL-6, lymphocyte to miR-18a-5p ratio (LT18R), lymphocyte to miR-22-3p ratio (LT22R), monocyte to miR-18a-5p ratio (MT18R), monocyte to miR-22-3p ratio (MT22R), PBMCs to miR-18a-5p ratio (PT18R), and PBMCs to miR-22-3p ratio (PT22R) and negatively associated with the expression levels of miR-18a-5p and miR-22-3p (P < 0.05). In addition, PT18R (odds ratio: 0.894; 95% CI: 0.823-0.966; P < 0.001) and PT22R (odds ratio: 0.809; 95% CI: 0.717-0.900; P < 0.001) were independent predictors of MetS, respectively. A receiver operating characteristic (ROC) curve analysis was performed to assess the value of the PT18R-PT22R (PMR) panel (odds ratio: 0.905; 95% CI: 0.838-0.971; P < 0.001) for predicting MetS. The area under the curve yielded a cut-off value of 0.608, with sensitivity of 74.4% and specificity of 95.2% (P < 0.001). Conclusion In summary, miR-18a-5p and miR-22-3p in PBMCs may be important biomarkers of stress reaction and may play a role in vulnerability to MetS. Besides, the inflammatory cells to the two miRNA ratios demonstrated high accuracy in the diagnosis of MetS.
Collapse
|
20
|
Cubillos-Angulo JM, Vinhaes CL, Fukutani ER, Albuquerque VVS, Queiroz ATL, Andrade BB, Fukutani KF. In silico transcriptional analysis of mRNA and miRNA reveals unique biosignatures that characterizes different types of diabetes. PLoS One 2020; 15:e0239061. [PMID: 32956382 PMCID: PMC7505453 DOI: 10.1371/journal.pone.0239061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes (DM) has a significant impact on public health. We performed an in silico study of paired datasets of messenger RNA (mRNA) micro-RNA (miRNA) transcripts to delineate potential biosignatures that could distinguish prediabetes (pre-DM), type-1DM (T1DM) and type-2DM (T2DM). Two publicly available datasets containing expression values of mRNA and miRNA obtained from individuals diagnosed with pre-DM, T1DM or T2DM, and normoglycemic controls (NC), were analyzed using systems biology approaches to define combined signatures to distinguish different clinical groups. The mRNA profile of both pre-DM and T2DM was hallmarked by several differentially expressed genes (DEGs) compared to NC. Nevertheless, T1DM was characterized by an overall low number of DEGs. The miRNA signature profiles were composed of a substantially lower number of differentially expressed targets. Gene enrichment analysis revealed several inflammatory pathways in T2DM and fewer in pre-DM, but with shared findings such as Tuberculosis. The integration of mRNA and miRNA datasets improved the identification and discriminated the group composed by pre-DM and T2DM patients from that constituted by normoglycemic and T1DM individuals. The integrated transcriptomic analysis of mRNA and miRNA expression revealed a unique biosignature able to characterize different types of DM.
Collapse
Affiliation(s)
- Juan M. Cubillos-Angulo
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
| | - Caian L. Vinhaes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | | | | | - Artur T. L. Queiroz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- * E-mail: (BBA); (ATLQ); (KFF)
| | - Bruno B. Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
- Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
- * E-mail: (BBA); (ATLQ); (KFF)
| | - Kiyoshi F. Fukutani
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- * E-mail: (BBA); (ATLQ); (KFF)
| |
Collapse
|