1
|
Huang M, Chang J, Liu Y, Yin J, Zeng X. Apelin/APJ increased renal blood flow through endothelial BKCa channel induced p-eNOS and ET-1 in diabetic conditions. Peptides 2025; 183:171333. [PMID: 39644975 DOI: 10.1016/j.peptides.2024.171333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/13/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Renal hemodynamics damage, an important driving mechanism of diabetic nephropathy (DN), is related to many abnormal endothelial released molecules, such as endothelial nitrogen monoxide synthase (eNOS) and endothelin-1 (ET-1), caused by glomerular endothelial cells dysfunction. Apelin, as the endogenous ligand for APJ, was reported to be associated with endothelial cell dysfunction in diabetes. Therefore, it is hypothesized that apelin/APJ increased renal perfusion in DN through regulating endothelial released molecules. Diabetic models were replicated via injecting STZ intraperitoneally (40 mg/kg/day) for 5 consecutive days. Apelin-13 was infused with micro-osmotic pump at 30 μg/kg/day for 4 weeks. The results showed that apelin increased renal blood flow by increasing phosphorylated eNOS and decreasing ET-1 in diabetic mice, which were cancelled in endothelial-specific APJ knockout mice or whole-body large conductance Ca2 +-activated K+ (BKCa) channel knockout rats. Additionally, apelin/APJ activated BKCa channel via increasing expression of BKCa subunits through PI3K/AKT/GSK-3β/Nrf2 pathway but not increasing intracellular Ca2+ concentration under high glucose conditions. In conclusion, this study revealed that apelin/APJ increased renal blood flow in early phase of DN via increasing p-eNOS and decreasing ET-1 in glomerular endothelial cells dependent on PI3K/AKT/GSK-3β/Nrf2 pathway induced expression of BKCa subunits.
Collapse
Affiliation(s)
- Mingcong Huang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jing Chang
- Department of Physiology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Yu Liu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jiming Yin
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China.
| | - Xiangjun Zeng
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
2
|
Chen K, Ou B, Huang Q, Deng D, Xiang Y, Hu F. LncRNA NEAT1 aggravates human microvascular endothelial cell injury by inhibiting the Apelin/Nrf2/HO-1 signalling pathway in type 2 diabetes mellitus with obstructive sleep apnoea. Epigenetics 2024; 19:2293409. [PMID: 38232183 PMCID: PMC10795783 DOI: 10.1080/15592294.2023.2293409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) regulate the progression of type 2 diabetes mellitus complicated with obstructive sleep apnoea (T2DM-OSA). However, the role of the lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in T2DM-OSA remains unknown. This study aimed to reveal the function of NEAT1 in T2DM-OSA and the underlying mechanism. KKAy mice were exposed to intermittent hypoxia (IH) or intermittent normoxia to generate a T2DM-OSA mouse model. HMEC-1 cells were treated with high glucose (HG) and IH to construct a T2DM-OSA cell model. RNA expression was detected by qRT-PCR. The protein expression of Apelin, NF-E2-related factor 2 (Nrf2), haem oxygenase-1 (HO-1), and up-frameshift suppressor 1 (UPF1) was assessed using western blot. Cell injury was evaluated using flow cytometry, enzyme-linked immunosorbent assay, and oxidative stress kit assays. RIP, RNA pull-down, and actinomycin D assays were performed to determine the associations between NEAT1, UPF1, and Apelin. NEAT1 expression was upregulated in the aortic vascular tissues of mice with T2DM exposed to IH and HMEC-1 cells stimulated with HG and IH, whereas Apelin expression was downregulated. The absence of NEAT1 protected HMEC-1 cells from HG- and IH-induced damage. Furthermore, NEAT1 destabilized Apelin mRNA by recruiting UPF1. Apelin overexpression decreased HG- and IH-induced injury to HMEC-1 cells by activating the Nrf2/HO-1 pathway. Moreover, NEAT1 knockdown reduced HG- and IH-induced injury to HMEC-1 cells through Apelin. NEAT1 silencing reduced HMEC-1 cell injury through the Apelin/Nrf2/HO-1 signalling pathway in T2DM-OSA.Abbreviations: LncRNAs, long non-coding RNAs; T2DM, type 2 diabetes mellitus; OSA, obstructive sleep apnoea; NEAT1, nuclear paraspeckle assembly transcript 1; IH, intermittent hypoxia; HMEC-1, human microvascular endothelial cells; HG, high glucose; Nrf2, NF-E2-related factor 2; UPF1, up-frameshift suppressor 1; HO-1, haem oxygenase-1; qRT-PCR, quantitative real-time polymerase chain reaction; ELISA, enzyme-linked immunosorbent assay; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; TNF-α, tumour necrosis factor-α; CCK-8, Cell Counting Kit-8; IL-1β, interleukin-1β; ROS, reactive oxygen species; MDA, malondialdehyde; SOD, superoxide dismutase; RIP, RNA immunoprecipitation; SD, standard deviations; GSH, glutathione; AIS, acute ischaemic stroke; HMGB1, high mobility group box-1 protein; TLR4, toll-like receptor 4.
Collapse
Affiliation(s)
- Kai Chen
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Baiqing Ou
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Quan Huang
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Daqing Deng
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Yi Xiang
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Fang Hu
- Comprehensive internal medicine of Hunan Provincial People’s Hospital, Changsha, Hunan, China
| |
Collapse
|
3
|
Patil NS, Shelke V, Gaikwad AB. Apelinergic system in acute kidney injury: Mechanistic insights and therapeutic potential. Life Sci 2024; 356:123032. [PMID: 39217720 DOI: 10.1016/j.lfs.2024.123032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Acute kidney injury (AKI) has emerged as a global health crisis, surpassing mortality rates associated with several cancers and heart failure. The lack of effective therapies, coupled with challenges in diagnosis and the high cost of kidney transplantation, underscores the urgent need to explore novel therapeutic targets and strategies for AKI. Understanding the intricate pathophysiology of AKI is paramount in this endeavor. The components of the apelinergic system-namely, apelin and elabela/toddler, along with their receptor-are prominently expressed in various kidney cells and have garnered significant attention in renal research. Recent studies have highlighted the renoprotective role of the apelinergic system in AKI. This system exerts its protective effects by modulating several pathophysiological processes, including reducing endoplasmic reticulum (ER) stress, improving mitochondrial dynamics, inhibiting inflammation and apoptosis, promoting diuresis through vasodilation of renal vasculature, and counteracting the effects of reactive oxygen species (ROS). Despite these advancements, the precise involvement of the apelinergic system in the progression of AKI remains unclear. Furthermore, the therapeutic potential of apelin-13 in AKI is not fully understood. This review aims to elucidate the role of the apelinergic system in AKI and its interactions with key pathomechanisms involved in the progression of AKI. Additionally, we discuss the current clinical status of exogenous apelin-13 therapy, providing insights that will guide future research on apelin against AKI.
Collapse
Affiliation(s)
- Niraj Sunil Patil
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Vishwadeep Shelke
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
4
|
Tomruk C, Şirin Tomruk C, Denizlioğlu B, Olukman M, Ercan G, Duman S, Köse T, Çetin Uyanıkgil EÖ, Uyanıkgil Y, Uysal A. Effects of apelin on neonatal brain neurogenesis in L-NAME-induced maternal preeclampsia. Sci Rep 2024; 14:19347. [PMID: 39164321 PMCID: PMC11335761 DOI: 10.1038/s41598-024-69326-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
The aim of this study was to investigate the possible protective effects of apelin, which is known to have antioxidant and anti-inflammatory effects, on changes in neurogenesis in newborns of pregnant rats with L-NAME-induced preeclampsia. Wistar albino female rats were divided into four experimental groups: Control, Apelin, Preeclampsia and Preeclampsia + Apelin. Blood pressure was measured on the 5th, 11th and 17th days of gestation, urine protein was analyzed from urine samples collected for 24 h on the 6th, 12th and 18th days and serum creatinine was analyzed from serum samples. Maternal kidney and placenta tissues were obtained to establish the preeclampsia model, and neonatal brain tissues including the cortex, hippocampus and cerebellum regions were obtained to investigate neurogenesis and examined by histological and immunohistochemical methods. The number of newborns, body weight and brain weight of the newborns were measured. eNOS, IL-10, nNOS and NO levels in the brain analyzed via ELISA. Mean arterial pressure, urine protein and serum creatinine increased in the preeclampsia. Newborn weight decreased in the Preeclampsia group, the values in the Preeclampsia + Apelin group were closer to the Control and Apelin groups. In the Preeclampsia group, edema and dilatation in the proximal and distal tubules of kidneys, perivillous fibrin deposition and increase in syncytial nodules of placenta were observed. VEGF immunoreactivity decreased and iNOS immunoreactivity increased in both kidney and placenta. In neonatal brain tissue examinations, cytotoxic edema accompanied by thinning of cortex, delayed migration and lower cell counts in the hippocampus, and increase in intercellular spaces and EGL thickening in the cerebellum were observed in the preeclampsia. Expression of NeuN, GFAP, MBP, IL-10, eNOS, nNOS and NO levels decreased, whereas expression of Iba-1 increased in the preeclampsia. In the Preeclampsia + Apelin group, these findings were similar to the Control and Apelin groups. Apelin administration was found to be beneficial for preventing the adverse consequences of preeclampsia, but further experimental and clinical studies are needed to better understand these effects.
Collapse
Affiliation(s)
- Canberk Tomruk
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye
- Histology and Embryology, Samsun Training and Research Hospital, İlkadim, Samsun, Türkiye
| | - Cansın Şirin Tomruk
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye
| | - Burcu Denizlioğlu
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye
- Emergency Medicine, Aydın State Hospital, Efeler, Aydın, Türkiye
| | - Murat Olukman
- Department of Medical Pharmacology, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye
| | - Gülinnaz Ercan
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye
| | - Soner Duman
- Department of Internal Medicine, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye
| | - Timur Köse
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye
| | - Emel Öykü Çetin Uyanıkgil
- Department of Pharmaceutical Technology, Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, Ege University, Bornova, İzmir, Türkiye
| | - Yiğit Uyanıkgil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye.
| | - Ayşegül Uysal
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye
| |
Collapse
|
5
|
Guo X, Lei M, Ma G, Ouyang C, Yang X, Liu C, Chen Q, Liu X. Schisandrin A Alleviates Spatial Learning and Memory Impairment in Diabetic Rats by Inhibiting Inflammatory Response and Through Modulation of the PI3K/AKT Pathway. Mol Neurobiol 2024; 61:2514-2529. [PMID: 37910285 DOI: 10.1007/s12035-023-03725-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
Clinical and epidemiological research shows that people with diabetes mellitus frequently experience diabetic cognitive impairment. Schisandrin A (SchA), one of the lignans found in the dried fruit of Schisandra chinensis, has a variety of pharmacological effects on immune system control, apoptosis suppression, anti-oxidation and anti-inflammation. The goal of the current investigation was to clarify the probable neuro-protective effects of SchA against streptozotocin-induced diabetes deficiencies of the spatial learning and memory in rats. The outcomes show that SchA therapy effectively improved impaired glucose tolerance, fasting blood glucose level and serum insulin level in diabetic rats. Additionally, in the Morris water maze test, diabetic rats showed deficits in spatial learning and memory that were ameliorated by SchA treatment. Moreover, giving diabetic rats SchA reduced damage to the hippocampus structure and increased the production of synaptic proteins. Further research revealed that SchA therapy reduced diabetic-induced hippocampus neuron damage and the generation of Aβ, as demonstrated by the upregulated phosphorylation levels of insulin signaling pathway connected proteins and by the decreased expression levels of inflammatory-related factors. Collectively, these results suggested that SchA could improve diabetes-related impairments in spatial learning and memory, presumably by reducing inflammatory responses and regulating the insulin signaling system.
Collapse
Affiliation(s)
- Xiying Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Min Lei
- Hubei Key Laboratory of Diabetes and Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Guandi Ma
- Hubei Key Laboratory of Diabetes and Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Changhan Ouyang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Xiaosong Yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Chao Liu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China.
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China.
| | - Xiufen Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China.
| |
Collapse
|
6
|
Li XJ, Liu T, Wang Y. Allicin ameliorates sepsis-induced acute kidney injury through Nrf2/HO-1 signaling pathway. J Nat Med 2024; 78:53-67. [PMID: 37668824 PMCID: PMC10764392 DOI: 10.1007/s11418-023-01745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Acute kidney injury (AKI) is a complication that can be induced by different factors. Allicin is a class of organic sulfur compounds with anticancer and antibacterial effects, and has not been reported in sepsis-induced AKI (S-AKI). S-AKI was induced in c57BL/6 mice by cecal ligation puncture. In response to the treatment of allicin, the survival rate of mice with S-AKI was increased. Reduced levels of serum creatinine, blood urea nitrogen, UALB, KIM-1 and NGAL indicated an improvement in renal function of S-AKI mice. Allicin inhibited the inflammation and cell apoptosis, which evidenced by decreased levels of inflammatory cytokines and apoptosis-related proteins. Oxidative stress was evaluated by the levels of oxidative stress biomarkers, and suppressed by allicin. In addition, allicin-alleviated mitochondrial dysfunction was characterized by decreased JC-1 green monomer. These effects of allicin were also evidenced in HK2 cells primed with lipopolysaccharide (LPS). Both in vivo and in vitro experiments showed that the nuclear translocation of Nrf2 and the expression of HO-1 increased after allicin treatment, which was confirmed by ML385 and CDDO-Me. In summary, this study revealed the alleviating effect of allicin on S-AKI and demonstrated the promotive effect of allicin on nuclear translocation of Nrf2 for the first time. It was inferred that allicin inhibited the progression of S-AKI through Nrf2/HO-1 signaling pathway. This study makes contributions to the understanding of the roles of allicin in S-AKI.
Collapse
Affiliation(s)
- Xiao-Jun Li
- Department of Nephrology, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China
| | - Ting Liu
- Department of General Practice, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China
| | - Yuan Wang
- Department of Nephrology, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China.
| |
Collapse
|
7
|
Rossin D, Vanni R, Lo Iacono M, Cristallini C, Giachino C, Rastaldo R. APJ as Promising Therapeutic Target of Peptide Analogues in Myocardial Infarction- and Hypertension-Induced Heart Failure. Pharmaceutics 2023; 15:pharmaceutics15051408. [PMID: 37242650 DOI: 10.3390/pharmaceutics15051408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The widely expressed G protein-coupled apelin receptor (APJ) is activated by two bioactive endogenous peptides, apelin and ELABELA (ELA). The apelin/ELA-APJ-related pathway has been found involved in the regulation of many physiological and pathological cardiovascular processes. Increasing studies are deepening the role of the APJ pathway in limiting hypertension and myocardial ischaemia, thus reducing cardiac fibrosis and adverse tissue remodelling, outlining APJ regulation as a potential therapeutic target for heart failure prevention. However, the low plasma half-life of native apelin and ELABELA isoforms lowered their potential for pharmacological applications. In recent years, many research groups focused their attention on studying how APJ ligand modifications could affect receptor structure and dynamics as well as its downstream signalling. This review summarises the novel insights regarding the role of APJ-related pathways in myocardial infarction and hypertension. Furthermore, recent progress in designing synthetic compounds or analogues of APJ ligands able to fully activate the apelinergic pathway is reported. Determining how to exogenously regulate the APJ activation could help to outline a promising therapy for cardiac diseases.
Collapse
Affiliation(s)
- Daniela Rossin
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Roberto Vanni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Marco Lo Iacono
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Caterina Cristallini
- Institute for Chemical and Physical Processes, IPCF ss Pisa, CNR, 56126 Pisa, Italy
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| |
Collapse
|
8
|
Wu M, Liao W, Zhang R, Gao Y, Chen T, Hua L, Cai F. PTP1B Inhibitor Claramine Rescues Diabetes-Induced Spatial Learning and Memory Impairment in Mice. Mol Neurobiol 2023; 60:524-544. [PMID: 36319905 DOI: 10.1007/s12035-022-03079-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
Accumulating clinical and epidemiological studies indicate that learning and memory impairment is more prevalent among people with diabetes mellitus (DM). PTP1B is a member of protein tyrosine phosphatase family and participates in a variety of pathophysiological effects including inflammatory, insulin signaling pathway, and learning and memory. This study was aimed to investigate the effects of CA, a specific inhibitor of PTP1B, on spatial learning and memory impairment in diabetic mice caused by high-fat diet and injection of streptozotocin. We found that the protein expressions of PTP1B increased in hippocampal CA1, CA3, and PFC regions of diabetic mice. Network pharmacology results showed that PTP1B might be one of the key targets between diabetes and cognitive dysfunction, and CA might alleviate DM-induced cognitive dysfunction. Animal experiments showed that CA ameliorated DM-induced spatial learning and memory impairment, and improved glucose and lipid metabolic disorders. Moreover, administration of CA alleviated hippocampal structure damage and enhanced the expressions of synaptic proteins, including PSD-95, SYN-1, and SYP in diabetic mice. Furthermore, CA treatment not only significantly down-regulated the expressions of PTP1B and NLRP3 inflammatory related proteins (NLRP3, ASC, Caspase-1, COX-2, IL-1β, and TNF-α), but also significantly up-regulated the expressions of insulin signaling pathway-related proteins (p-IRS1, p-PI3K, p-AKT, and p-GSK-3β) in diabetic mice. Taken together, these results suggested that PTP1B might be a targeted strategy to rescue learning and memory deficits in DM, possibly through inhibition of NLRP3 inflammasome and regulation of insulin signaling pathway.
Collapse
Affiliation(s)
- Mengyu Wu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Wenli Liao
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ruyi Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Yuting Gao
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Tao Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Liangliang Hua
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Fei Cai
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
9
|
Huang D, Chen D, Hu T, Liang H. GATA2 promotes oxidative stress to aggravate renal ischemia-reperfusion injury by up-regulating Redd1. Mol Immunol 2023; 153:75-84. [PMID: 36444820 DOI: 10.1016/j.molimm.2022.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/08/2022] [Accepted: 09/24/2022] [Indexed: 11/26/2022]
Abstract
Renal ischemia-reperfusion injury (RIRI) is a common pathophysiological process, and it is also an important cause of acute renal failure. Therefore, finding an effective therapeutic target for RIRI is extremely urgent. In our study, we constructed hypoxia-reoxygenation (HR) model in vitro and a renal ischemia-reperfusion (IR) model in vivo. Elevated levels of serum creatinine (Cr), blood urea nitrogen (BUN) tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and malondialdehyde (MDA) along with the decreased levels of superoxide dismutase (SOD) and glutathione (GSH) proved that kidney function was damaged after IR, and pathological changes of renal tissues were observed using HE staining and TUNEL staining. The protein of Redd1 expression level was detected to be upregulated after IR by western blot (WB). However, transfection of short hairpin RNA of Redd1 (sh-Redd1) alleviated the HR injury on LLC-PK1 cells, as evidenced by increased cell viability, proliferation and decreased cell apoptosis; additionally, the accumulation of ROS was inhibited. Sh-Redd1 also alleviated IR injury in the mouse model. Subsequently, GATA2 was proved to be upregulated in IR and HR models and was the transcription factor of Redd1. Knockdown of GATA2 efficiently mitigated the oxidative stress induced damages in vivo and in vitro, while these mitigations were reversed by transfection of Redd1 overexpression plasmid. In conclusion, our study clarified the possible underlying mechanism of protecting RIRI.
Collapse
Affiliation(s)
- Dan Huang
- Institutes Renal Division, Wuhan Integrated TCM & Western Medicine Hospital, Wuhan 430022, China
| | - Dan Chen
- Institutes Renal Division, Wuhan Integrated TCM & Western Medicine Hospital, Wuhan 430022, China.
| | - Taotao Hu
- Institutes Renal Division, Wuhan Integrated TCM & Western Medicine Hospital, Wuhan 430022, China
| | - Hongqing Liang
- Institutes Renal Division, Wuhan Integrated TCM & Western Medicine Hospital, Wuhan 430022, China.
| |
Collapse
|
10
|
Chen Y, Xu C, Hu J, Deng M, Qiu Q, Mo S, Du Y, Yang T. Diuretic Action of Apelin-13 Mediated by Inhibiting cAMP/PKA/sPRR Pathway. Front Physiol 2021; 12:642274. [PMID: 33868005 PMCID: PMC8044521 DOI: 10.3389/fphys.2021.642274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence is showing that apelin plays an important role in regulating salt and water balance by counteracting the antidiuretic action of vasopressin (AVP). However, the underlying mechanism remains unknown. Here, we hypothesized that (pro) renin receptor (PRR)/soluble prorenin receptor (sPRR) might mediate the diuretic action of apelin in the distal nephron. During water deprivation (WD), the urine concentrating capability was impaired by an apelin peptide, apelin-13, accompanied by the suppression of the protein expression of aquaporin 2 (AQP2), NKCC2, PRR/sPRR, renin and nuclear β-catenin levels in the kidney. The upregulated expression of AQP2 or PRR/sPRR both induced by AVP and 8-Br-cAMP was blocked by apelin-13, PKA inhibitor (H89), or β-catenin inhibitor (ICG001). Interestingly, the blockage of apelin-13 on AVP-induced AQP2 protein expression was reversed by exogenous sPRR. Together, the present study has defined the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/sPRR pathway in the CD as the molecular target of the diuretic action of apelin.
Collapse
Affiliation(s)
- Yanting Chen
- Zhongshan School of Medicine, Institute of Hypertension, Sun Yat-sen University, Guangzhou, China
| | - Chuanming Xu
- Zhongshan School of Medicine, Institute of Hypertension, Sun Yat-sen University, Guangzhou, China.,Center for Translational Medicine, Jiangxi University of Traditional Chinese, Nanchang, China
| | - Jiajia Hu
- Zhongshan School of Medicine, Institute of Hypertension, Sun Yat-sen University, Guangzhou, China
| | - Mokan Deng
- Zhongshan School of Medicine, Institute of Hypertension, Sun Yat-sen University, Guangzhou, China
| | - Qixiang Qiu
- Zhongshan School of Medicine, Institute of Hypertension, Sun Yat-sen University, Guangzhou, China
| | - Shiqi Mo
- Zhongshan School of Medicine, Institute of Hypertension, Sun Yat-sen University, Guangzhou, China
| | - Yanhua Du
- Department of Pharmacology, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT, United States
| |
Collapse
|
11
|
Hamza RZ, Diab AAA, Zahra MH, Asalah AK, Attia MS, Moursi SM. Ameliorative effect of apelin-13 against renal complications in L-NAME-induced preeclampsia in rats. PeerJ 2021; 9:e11110. [PMID: 33850656 PMCID: PMC8019317 DOI: 10.7717/peerj.11110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/23/2021] [Indexed: 01/01/2023] Open
Abstract
Pre-eclampsia (PE) accompanying acute liver and kidney injury has remained a master cause of both fetal and maternal mortality and morbidity. Vasoactive mediators, oxidative stress and inflammatory imbalanceshave an important role in PE pathogenesis. Apelin is an adipokine that improves endothelial dysfunction; has anti-inflammatory and antioxidant effects; moreover, its level reduced during PE. This study aimed to explore the effects of apelin-13 administration on preeclampsia-associated renal dysfunction and proteinuria. Thirty-three pregnant female rats were divided into three groups; group: 1 (normal pregnant rats), group: 2 (preeclamptic rats); where rats were injected subcutaneously with 75 mg L-NAME/ kg body weight/day beginning from 9th to 20th day of pregnancy andgroup 3 (apelin-13 treated preeclamptic rats); In which L-NAME-induced preeclamptic rats were subcutaneously injected with 6 × 10-8 mol apelin-13/kg body weight/twice daily starting from 6th to 20th day of pregnancy. In all groups, mean arterial blood pressure, total urine protein, serum urea, creatinine, nitric oxide (NO), endothelin-1 (ET-1), interleukin-6 (IL-6) and malondialdhyde (MDA) were measured. Histopathological examination of kidney tissues was also done. preeclamptic rats showed significantly increased mean arterial blood pressure, total urine proteins, serum urea, creatinine, ET-1, IL-6, and MDA, but revealed a significantly decreased serum NO level. On the other hand, apelin treatment significantly improved these parameters together with amelioration of kidney histoarchitecture in the treated group. In conclusion, apelin may be a potentially curative candidate for prohibiting kidney damage and have a therapeutic benefit in PE rat models.
Collapse
Affiliation(s)
- Reham Z Hamza
- Biology Department, College of Sciences, Taif University, Taif, Taif, Saudi Arabia
| | - Abdel Aziz A Diab
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Mansour H Zahra
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Ali K Asalah
- Medical Physiology Department - Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Mai S Attia
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Suzan Mm Moursi
- Medical Physiology Department - Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
12
|
Zhang J, Wang C, Kang K, Liu H, Liu X, Jia X, Yu K. Loganin Attenuates Septic Acute Renal Injury with the Participation of AKT and Nrf2/HO-1 Signaling Pathways. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:501-513. [PMID: 33603340 PMCID: PMC7886113 DOI: 10.2147/dddt.s294266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/12/2021] [Indexed: 01/23/2023]
Abstract
Purpose Sepsis, a destructive inflammatory response syndrome, is the principal reason to induce death in the intensive care unit. Loganin has been proved to possess the property of anti-inflammation, antioxidant, neuroprotection, and sedation. The primary aim of this study was to evaluate whether Loganin could alleviate acute kidney injury (AKI) during sepsis and investigate the latent mechanisms. Methods Septic AKI models were established by cecal ligation and puncture (CLP) surgery in mice and given Loganin (20, 40, 80 mg/kg) by gavage. Lipopolysaccharides (LPS)-stimulated human kidney proximal tubular (HK2) cells incubated in Loganin (5, 10, 20 μ M) were used to explore the accurate mechanisms. Survival rate, renal function (creatinine and blood urea nitrogen), and renal pathological changes were detected in septic mice. Oxidative stress markers (SOD, GSH-Px, MDA, and SOD), mitochondrial membrane potential, mitochondrial calcium overload, and nuclear factor E2-related factor 2 (Nrf2)/heme-oxygenase 1 (HO-1) pathway activation in vivo and in vitro were determined by commercial kits and Western blot. Cell apoptosis, apoptotic-related protein (cleaved caspase-3, Bcl-2, and Bax) expression and protein kinase B (AKT) phosphorylation in vivo and in vitro were measured by TUNEL staining and Western blot. Finally, AKT blockage by 10 μM LY294002 or Nrf2 inhibition by10 μ M ML385 were utilized to prove the involvement of AKT and Nrf2/HO-1 pathway in AKI during sepsis. Results We found Loganin treatment (20, 40, 80 mg/kg) mitigated septic AKI reflected by elevated renal function and palliative pathological changes. Oxidative stress and apoptosis in the kidney and LPS-treated HK2 cells were also inhibited by Loganin administration, which was accompanied by AKT and Nrf2/HO-1 pathway activation. Besides, the protective effects of Loganin could be diminished by AKT or Nrf2 blockage, indicating the involvement of AKT and Nrf2/HO-1 pathway. Conclusion The results suggested that the protective effects of Loganin on AKI during sepsis might be mediated by AKT and Nrf2/HO-1 pathway signaling activation in kidney proximal tubular cells.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150001, People's Republic of China
| | - Changsong Wang
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, People's Republic of China
| | - Kai Kang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150001, People's Republic of China
| | - Haitao Liu
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, People's Republic of China
| | - Xiaowei Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150001, People's Republic of China
| | - Xiaonan Jia
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150001, People's Republic of China
| | - Kaijiang Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150001, People's Republic of China
| |
Collapse
|
13
|
Wang Z, Wang L, Luo J, Zhang J. Protection against acute renal injury by naturally occurring medicines which act through Nrf2 signaling pathway. J Food Biochem 2020; 45:e13556. [PMID: 33152804 DOI: 10.1111/jfbc.13556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/26/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
The cellular defense pathway plays a key role in maintaining the homeostasis, tissues and organisms. Nuclear factor E2-related factor 2 (Nrf2), as a key cell signaling pathway, plays an important role in encoding detoxification enzymes and other stress response mediators. Recent studies have shown that it is closely related to the prevention and treatment of acute kidney injury (AKI). Therefore, this article reviews the protective effects of Nrf2-related signaling pathways on acute kidney injury, and summarizes the strategies of natural pharmaceutical ingredients such as flavonoids, alkaloids, terpenes, phenylpropionic acid, polyphenols, and polysaccharides to prevent and treat acute kidney injury. It is of great significance to further study the relationship between Nrf2 regulated signal pathway and kidney disease and the development of new medicines for acute kidney injury treatment. It can also provide new ideas and treatment strategies for clinical treatment of acute kidney injury. PRACTICAL APPLICATIONS: This article reviewed the mechanisms by which the active ingredients of natural medicines slow down acute kidney injury through the Nrf2 pathway. It will help us to understand the regulatory role of the Nrf2 pathway in AKI more comprehensively, and provide a theoretical basis for further exploring the mechanism of more natural drugs to reduce acute kidney injury.
Collapse
Affiliation(s)
- Zhenyi Wang
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Lulu Wang
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China.,Changchun Institute of Technology School of Medicine, Changchun, China
| | - Jiacheng Luo
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Jing Zhang
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China.,Changchun Institute of Technology School of Medicine, Changchun, China
| |
Collapse
|