1
|
Huang Y, Yu Z, Xu M, Zhao X, Tang Y, Luo L, Deng D, Chen M. Negative pressure wound therapy promotes wound healing by down-regulating miR-155 expression in granulation tissue of diabetic foot ulcers. Sci Rep 2025; 15:6733. [PMID: 40000694 PMCID: PMC11861317 DOI: 10.1038/s41598-025-90643-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Our study aims to investigate the effect of negative pressure wound therapy (NPWT) on microRNA-155 (miR-155) in the granulation tissue of patients suffering from diabetic foot ulcers (DFUs) and its correlation with wound healing. A total of sixty patients diagnosed with DFUs were randomly assigned to either the NPWT group (n = 40) or the Non-NPWT group (n = 20) in a 2:1 ratio. After debridement, the NPWT group received NPWT treatment for one week, while the Non-NPWT group underwent routine dressing therapy. The expression of miR-155 in DFU granulation tissues was evaluated by qRT-PCR before and after treatment for one week. Following termination, wound healing rates were assessed in the NPWT group, and the correlation between variations in miR-155 expression (ΔmiR-155) and wound healing was analyzed pre and post NPWT treatment. In vitro experiments were conducted to investigate the effects of negative pressure on variations of miR-155 expression, as well as proliferation, migration, and apoptosis in normal human dermal fibroblasts (NHDFs). The NPWT group showed a decrease in miR-155 expression in wound granulation tissue compared with pre-treatment [4.12 (1.22, 14.85) vs. 6.83 (2.15, 15.72), P < 0.05]. Conversely, there was no statistically significant difference in miR-155 expression in wound granulation tissue between pre-treatment and post-treatment in the Non-NPWT group (P > 0.05). However, analysis revealed a positive correlation between ΔmiR-155 and wound healing rate after 4 weeks in the NPWT group (χ2 = 4.829, P = 0.028). The in vitro experiments showed a significant decrease in miR-155 expression in NHDFs under negative pressure measured at -125 mmHg (P < 0.05). This reduction in miR-155 expression, in turn, enhanced the proliferation and migration ability while decreasing the apoptosis rate of NHDFs by targeting the upregulation of fibroblast growth factor 7 (FGF7) gene expression (P < 0.05). It is concluded that NPWT promotes DFU healing by reducing the expression of miR-155 in granulation tissue and the efficacy of NPWT correlated with altered miR-155 expression in wound tissue.
Collapse
Affiliation(s)
- Yixuan Huang
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, P.R. China
| | - Zhenyi Yu
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, P.R. China
| | - Murong Xu
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, P.R. China
| | - Xiaotong Zhao
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, P.R. China
| | - Yizhong Tang
- Department of Burn, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, P.R. China
| | - Li Luo
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, P.R. China
| | - Datong Deng
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, P.R. China
| | - Mingwei Chen
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, P.R. China.
| |
Collapse
|
2
|
Yan Q, Wang Q. Exploring the Characters of Non-Coding RNAs in Spermatogenesis and Male Infertility. Int J Mol Sci 2025; 26:1128. [PMID: 39940895 PMCID: PMC11817410 DOI: 10.3390/ijms26031128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Infertility is a widespread clinical problem that affects human reproduction and species persistence worldwide. Around 40-70% of cases are due to male reproductive defects. Functional spermatogenesis (sperm production through several coordinated events) is at the heart of male fertility. Non-coding RNAs (ncRNAs) are the primary regulators of gene expression, controlling extensive critical cellular processes, for example proliferation, differentiation, apoptosis, and reproduction. Due to advancements in high-throughput sequencing tools, many studies have revealed that ncRNAs are widely expressed in germ cells, meiosis, spermatogenesis, sperm fertility, early post-fertilization development, and male infertility. The present review examines the biology and function of ncRNAs, including microRNAs, circular RNAs, and long ncRNAs, in spermatogenesis, their correlation with infertility, and their potential as biomarkers for sperm quality and fertility. The function of ncRNA in Sertoli cells (SCs) and Leydig cells (LCs) is also outlined throughout this study, because spermatogenesis requires testicular somatic cells to be involved in testicular development and male fertility. Meanwhile, the future development of ncRNAs for the clinical treatment of male infertility is also anticipated and discussed.
Collapse
Affiliation(s)
- Qiu Yan
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China;
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Qi Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China;
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
3
|
Williams-Reid H, Johannesson A, Buis A. Wound management, healing, and early prosthetic rehabilitation: Part 2 - A scoping review of physical biomarkers. CANADIAN PROSTHETICS & ORTHOTICS JOURNAL 2024; 7:43716. [PMID: 39990247 PMCID: PMC11844764 DOI: 10.33137/cpoj.v7i2.43716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/29/2024] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND The timely provision of load-bearing prostheses significantly reduces healthcare costs and lowers post-amputation mortality risk. However, current methods for assessing residuum health remain subjective, underscoring the need for standardized, evidence-based approaches incorporating physical biomarkers to evaluate residual limb healing and determine readiness for prosthetic rehabilitation. OBJECTIVES This review aimed to identify predictive, diagnostic, and indicative physical biomarkers of healing of the tissues and structures found in the residual limbs of adults with amputation. METHODOLOGY A scoping review was conducted following Joanna Briggs Institute (JBI) and PRISMA-ScR guidance. Searches using "biomarkers", "wound healing", and "amputation" were performed on May 6, 2023, on Web of Science, Ovid MEDLINE, Ovid Embase, Scopus, Cochrane, PubMed, and CINAHL databases. Inclusion criteria were: 1) References to physical biomarkers and healing; 2) Residuum tissue healing; 3) Clear methodology with ethical approval; 4) Published from 2017 onwards. Articles were assessed for quality (QualSyst tool) and evidence level (JBI system), and categorized by study, wound, and model type. Physical biomarkers that were repeated not just within categories, but across more than one of the study categories were reported on. FINDINGS The search strategy identified 3,306 sources, 157 of which met the inclusion criteria. Histology was the most frequently repeated physical biomarker used in 64 sources, offering crucial diagnostic insights into cellular healing processes. Additional repeated indicative and predictive physical biomarkers, including ankle-brachial index, oxygenation measures, perfusion, and blood pulse and pressure measurements, were reported in 25, 19, 13, and 12 sources, respectively, providing valuable data on tissue oxygenation and vascular health. CONCLUSION Ultimately, adopting a multifaceted approach that integrates a diverse array of physical biomarkers (accounting for physiological factors and comorbidities known to influence healing) may substantially enhance our understanding of the healing process and inform the development of effective rehabilitation strategies for individuals undergoing amputation.
Collapse
Affiliation(s)
- H Williams-Reid
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, Scotland
| | | | - A Buis
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
4
|
Williams-Reid H, Johannesson A, Buis A. Wound management, healing, and early prosthetic rehabilitation: Part 1 - A scoping review of healing and non-healing definitions. CANADIAN PROSTHETICS & ORTHOTICS JOURNAL 2024; 7:43715. [PMID: 39990241 PMCID: PMC11844765 DOI: 10.33137/cpoj.v7i2.43715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/25/2024] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Following lower limb amputation, timely prosthetic fitting enhances mobility and quality of life. However, inconsistent definitions of surgical site healing complicate prosthesis readiness assessment and highlight the need for objective wound management measures. OBJECTIVE This review aimed to compile definitions of healing and non-healing provided in the literature investigating biomarkers of healing of the tissues and structures found in the residual limbs of adults with amputation. METHODOLOGY A scoping review was conducted following JBI and PRISMA-ScR guidance. Searches using "biomarkers," "wound healing," and "amputation" were performed on May 6, 2023, on Web of Science, Ovid MEDLINE, Ovid Embase, Scopus, Cochrane, PubMed, and CINAHL databases. Inclusion criteria were: 1) References to biomarkers and healing; 2) Residuum tissue healing; 3) Clear methodology with ethical approval; 4) Published from 2017 onwards. Articles were assessed for quality (QualSyst tool) and evidence level (JBI system). FINDINGS Of 3,306 articles screened, 219 met the inclusion criteria and are reviewed in this article, with 77% rated strong quality. 43% of all included sources did not define healing, while the remainder used specific criteria including epithelialization (14%), wound size reduction (28%), gradings scales (3%), scarring (1%), absence of wound complications (2%), hydroxyproline levels (0.5%), no amputation (0.5%), or neovascularization (0.5%). 84% of included sources did not provide definitions of non-healing. Studies defining non-healing used criteria like wound complications (4%), the need for operative interventions (4%), or lack of wound size reduction (1%). For 10% of included sources, healing and non-healing definitions were considered not applicable given the research content. Total percentages exceed 100% for both healing and non-healing definitions because some sources used two definition classifications, such as epithelialization and wound size reduction. The findings indicate a lack of standardized definitions irrespective of study type. CONCLUSION This review reveals significant gaps in current definitions of healing and non-healing, often based on superficial assessments that overlook deeper tissue healing and mechanical properties essential for prosthesis use. It emphasizes the need for comprehensive definitions incorporating biomarkers and psychosocial factors to improve wound management and post-amputation recovery.
Collapse
Affiliation(s)
- H Williams-Reid
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, Scotland
| | | | - A Buis
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
5
|
Hussain MS, Shaikh NK, Agrawal M, Tufail M, Bisht AS, Khurana N, Kumar R. Osteomyelitis and non-coding RNAS: A new dimension in disease understanding. Pathol Res Pract 2024; 255:155186. [PMID: 38350169 DOI: 10.1016/j.prp.2024.155186] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/15/2024]
Abstract
Osteomyelitis, a debilitating bone infection, presents considerable clinical challenges due to its intricate etiology and limited treatment options. Despite strides in surgical and chemotherapeutic interventions, the treatment landscape for osteomyelitis remains unsatisfactory. Recent attention has focused on the role of non-coding RNAs (ncRNAs) in the pathogenesis and progression of osteomyelitis. This review consolidates current knowledge on the involvement of distinct classes of ncRNAs, including microRNAs, long ncRNAs, and circular RNAs, in the context of osteomyelitis. Emerging evidence from various studies underscores the potential of ncRNAs in orchestrating gene expression and influencing the differentiation of osteoblasts and osteoclasts, pivotal processes in bone formation. The review initiates by elucidating the regulatory functions of ncRNAs in fundamental cellular processes such as inflammation, immune response, and bone remodeling, pivotal in osteomyelitis pathology. It delves into the intricate network of interactions between ncRNAs and their target genes, illuminating how dysregulation contributes to the establishment and persistence of osteomyelitic infections. Understanding their regulatory roles may pave the way for targeted diagnostic tools and innovative therapeutic interventions, promising a paradigm shift in the clinical approach to this challenging condition. Additionally, we delve into the promising therapeutic applications of these molecules, envisioning novel diagnostic and treatment approaches to enhance the management of this challenging bone infection.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Department of Pharmacology, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan 302017, India
| | - Nusrat K Shaikh
- Department of Quality Assurance, Smt. N. M. Padalia Pharmacy College, Ahmedabad, 382210 Gujarat, India
| | - Mohit Agrawal
- Department of Pharmacology, School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram 122103, India
| | - Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
6
|
Berlanga-Acosta J, Garcia-Ojalvo A, Guillen-Nieto G, Ayala-Avila M. Endogenous Biological Drivers in Diabetic Lower Limb Wounds Recurrence: Hypothetical Reflections. Int J Mol Sci 2023; 24:10170. [PMID: 37373317 DOI: 10.3390/ijms241210170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
An impaired healing response underlies diabetic foot wound chronicity, frequently translating to amputation, disability, and mortality. Diabetics suffer from underappreciated episodes of post-epithelization ulcer recurrence. Recurrence epidemiological data are alarmingly high, so the ulcer is considered in "remission" and not healed from the time it remains epithelialized. Recurrence may result from the combined effects of behavioral and endogenous biological factors. Although the damaging role of behavioral, clinical predisposing factors is undebatable, it still remains elusive in the identification of endogenous biological culprits that may prime the residual scar tissue for recurrence. Furthermore, the event of ulcer recurrence still waits for the identification of a molecular predictor. We propose that ulcer recurrence is deeply impinged by chronic hyperglycemia and its downstream biological effectors, which originate epigenetic drivers that enforce abnormal pathologic phenotypes to dermal fibroblasts and keratinocytes as memory cells. Hyperglycemia-derived cytotoxic reactants accumulate and modify dermal proteins, reduce scar tissue mechanical tolerance, and disrupt fibroblast-secretory activity. Accordingly, the combination of epigenetic and local and systemic cytotoxic signalers induce the onset of "at-risk phenotypes" such as premature skin cell aging, dysmetabolism, inflammatory, pro-degradative, and oxidative programs that may ultimately converge to scar cell demise. Post-epithelialization recurrence rate data are missing in clinical studies of reputed ulcer healing therapies during follow-up periods. Intra-ulcer infiltration of epidermal growth factor exhibits the most consistent remission data with the lowest recurrences during 12-month follow-up. Recurrence data should be regarded as a valuable clinical endpoint during the investigational period for each emergent healing candidate.
Collapse
Affiliation(s)
- Jorge Berlanga-Acosta
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Havana 10600, Cuba
| | - Ariana Garcia-Ojalvo
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Havana 10600, Cuba
| | - Gerardo Guillen-Nieto
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Havana 10600, Cuba
| | - Marta Ayala-Avila
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Havana 10600, Cuba
| |
Collapse
|
7
|
Tang Y, Huang Y, Luo L, Xu M, Deng D, Fang Z, Zhao X, Chen M. Level of 25-hydroxyvitamin D and vitamin D receptor in diabetic foot ulcer and factor associated with diabetic foot ulcers. Diabetol Metab Syndr 2023; 15:30. [PMID: 36829206 PMCID: PMC9951493 DOI: 10.1186/s13098-023-01002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND At present, there is no clinical study to elucidate the correlation between vitamin D deficiency and the incidence of diabetic foot osteomyelitis (DFO).This study aims to clarify levels of 25-hydroxyvitamin D [25(OH)VD] in peripheral blood and vitamin D receptor (VDR) expression in wound margin tissues (T-VDR) of patients with type 2 diabetes mellitus (T2DM) with diabetic foot ulcer (DFU) and DFO, and to determine its correlation with treatment outcomes of DFU and DFO, and and its value as a potential biomarker for the diagnosis of DFU and DFO. METHODS 156 T2DM patients with DFU (DFU group), 100 T2DM patients without DFU (T2DM group), and 100 healthy controls (NC group). The DFU group patients were subdivided into DFO (n = 80) and NDFO groups (n = 76). The level of serum 25(OH)VD was measured via chemiluminescence immunoassay, and T-VDR expression level was determined by quantitative real-time PCR. RESULTS The levels of serum 25(OH)VD in the DFU group were significantly lower than the T2DM group [(10.3 (5.8, 18.7) vs 15.7 (8.6, 24.6) ng/mL, P = 0.002)]. Similarly, the levels of serum 25(OH)VD and T-VDR expression in the DFO group were statistically lower than the NDFO group [9.2 (5.2, 20.5) vs 12.8 (6.9, 22.1) ng/mL, P = 0.006)], [1.96 (0.61, 3.97) vs 3.11 (1.36, 5.11), P = 0.004)], respectively. Furthermore, the levels of serum 25(OH)VD and T-VDR expression in DFU patients were positively correlated with the ulcer healing rate of foot ulcer after 8 weeks of treatment ( P = 0.031, P = 0.016, respectively). Multivariate logistic regression analysis showed that low level of serum 25(OH)VD was an independent risk factor for DFU and DFO (ORDFU = 2.42, ORDFO = 3.05, P = 0.008, 0.001, respectively), and decreased T-VDR expression level was an independent risk factor for DFO (OR = 2.83, P = 0.004). Meanwhile, the ROC curve analysis indicated that the AUC of serum 25(OH)VD level for the diagnosis of DFU and DFO was 0.821 (95% CI, 0.754-0.886, P < 0.001) and 0.786 (95%CI, 0.643-0.867, P < 0.001), respectively. When establishing a diagnosis of DFO, the AUC of T-VDR expression level was 0.703 (95%CI: 0.618-0.853, P < 0.001). CONCLUSIONS The levels of serum 25(OH)VD and T-VDR expression in DFU and DFO decreased. Serum 25(OH)VD and T-VDR are potentially valuable biomarkers for diagnosis and prognosis of DFU and DFO. .
Collapse
Affiliation(s)
- Ying Tang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui People’s Republic of China
| | - Yixuan Huang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui People’s Republic of China
| | - Li Luo
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui People’s Republic of China
| | - Murong Xu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui People’s Republic of China
| | - Datong Deng
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui People’s Republic of China
| | - Zhaohui Fang
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui People’s Republic of China
| | - Xiaotong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui People’s Republic of China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui People’s Republic of China
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui People’s Republic of China
| |
Collapse
|
8
|
De Sousa RAL, Improta-Caria AC. Regulation of microRNAs in Alzheimer´s disease, type 2 diabetes, and aerobic exercise training. Metab Brain Dis 2022; 37:559-580. [PMID: 35075500 DOI: 10.1007/s11011-022-00903-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia. The evolution and aggregation of amyloid beta (β) oligomers is linked to insulin resistance in AD, which is also the major characteristic of type 2 diabetes (T2D). Being physically inactive can contribute to the development of AD and/or T2D. Aerobic exercise training (AET), a type of physical exercise, can be useful in preventing or treating the negative outcomes of AD and T2D. AD, T2D and AET can regulate the expression of microRNAs (miRNAs). Here, we review some of the changes in miRNAs expression regulated by AET, AD and T2D. MiRNAs play an important role in the gene regulation of key signaling pathways in both pathologies, AD and T2D. MiRNA dysregulation is evident in AD and has been associated with several neuropathological alterations, such as the development of a reactive gliosis. Expression of miRNAs are associated with many pathophysiological mechanisms involved in T2D like insulin synthesis, insulin resistance, glucose intolerance, hyperglycemia, intracellular signaling, and lipid profile. AET regulates miRNAs levels. We identified 5 miRNAs (miR-21, miR-29a/b, miR-103, miR-107, and miR-195) that regulate gene expression and are modulated by AET on AD and T2D. The identified miRNAs are potential targets to treat the symptoms of AD and T2D. Thus, AET is a non-pharmacological tool that can be used to prevent and fight the negative outcomes in AD and T2D.
Collapse
Affiliation(s)
- Ricardo Augusto Leoni De Sousa
- Programa Multicêntrico de Pós-Graduação Em Ciências Fisiológicas- Sociedade Brasileira de Fisiologia (SBFis), Universidade Federal Dos Vales Do Jequitinhonha E Mucuri (UFVJM), Campus JK, Rodovia MGT 367, Km 583, Alto da Jacuba, nº 5000, Diamantina, Minas Gerais, CEP 39100-000, Brazil.
| | - Alex Cleber Improta-Caria
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Bahia, Brazil
| |
Collapse
|
9
|
Ulloque-Badaracco JR, Mosquera-Rojas MD, Hernandez-Bustamante EA, Alarcón-Braga EA, Ulloque-Badaracco RR, Al-kassab-Córdova A, Herrera-Añazco P, Benites-Zapata VA, Hernandez AV. Association between Lipid Profile and Apolipoproteins with Risk of Diabetic Foot Ulcer: A Systematic Review and Meta-Analysis. Int J Clin Pract 2022; 2022:5450173. [PMID: 36016824 PMCID: PMC9385316 DOI: 10.1155/2022/5450173] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/21/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND AIMS Biomarkers are necessary to stratify the risk of diabetic foot ulcers (DFUs). This systematic review and meta-analysis aimed to evaluate the association between the lipid profile and apolipoproteins with the risk of DFU. METHODS A systematic search was conducted in PubMed, Scopus, Cochrane Library, and Web of Science among adult patients. Cohort and case-control studies were included. Random-effects models were used for meta-analyses, and the effects were expressed as odds ratio (OR) and their 95% confidence intervals (CIs). We evaluated publication bias through Egger's test and funnel plot. RESULTS A total of 12 cohort studies and 26 case-control studies were included, with 17076 patients. We found that the higher values of total cholesterol (TC), low-density lipoprotein (LDL), triglycerides, and lipoprotein(a) (Lp(a)) were associated with a higher risk of developing DFU (OR: 1.47, OR: 1.47, OR: 1.5, OR: 1.85, respectively). Otherwise, the lower values of HDL were associated with a higher risk of developing DFU (OR: 0.49). Publication bias was not found for associations between TC, HDL, LDL, or TG and the risk of DFU. CONCLUSIONS The high values of LDL, TC, TG, and Lp(a) and low values of HDL are associated with a higher risk of developing DFU. Furthermore, we did not find a significant association for VLDL, ApoA1, ApoB, and ApoB/ApoA1 ratio.
Collapse
Affiliation(s)
- Juan R. Ulloque-Badaracco
- Escuela de Medicina, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
- Sociedad Científica de Estudiantes de Medicina de la Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Melany D. Mosquera-Rojas
- Escuela de Medicina, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
- Sociedad Científica de Estudiantes de Medicina de la Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Enrique A Hernandez-Bustamante
- Sociedad Científica de Estudiantes de Medicina de la Universidad Nacional de Trujillo, Trujillo, Peru
- Grupo Peruano de Investigación Epidemiológica, Unidad para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima, Peru
| | - Esteban A Alarcón-Braga
- Escuela de Medicina, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
- Sociedad Científica de Estudiantes de Medicina de la Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | | | | | - Percy Herrera-Añazco
- Universidad Privada San Juan Bautista, Lima, Peru
- Instituto de Evaluación de Tecnologías en Salud e Investigación—IETSI, EsSalud, Lima, Peru
| | - Vicente A. Benites-Zapata
- Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima, Peru
| | - Adrian V. Hernandez
- Unidad de Revisiones Sistemáticas y Meta-Análisis, Guías de Práctica Clínica y Evaluaciones de Tecnología Sanitaria, Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima, Peru
- Health Outcomes, Policy, and Evidence Synthesis (HOPES) Group, University of Connecticut School of Pharmacy, Mansfield, CT, USA
| |
Collapse
|