1
|
Proença AB, Alexandre‐Santos B, Giori IG, Alex‐Marques JSF, Machado‐Santos C, Machado M, Magliano DC, da Nobrega ACL, Frantz EDC. Obesity-induced skeletal muscle remodeling: A comparative analysis of exercise training and ACE-inhibitory drug in male mice. Physiol Rep 2024; 12:e16025. [PMID: 38684378 PMCID: PMC11058004 DOI: 10.14814/phy2.16025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Obesity over-activates the classical arm of the renin-angiotensin system (RAS), impairing skeletal muscle remodeling. We aimed to compare the effect of exercise training and enalapril, an angiotensin-converting enzyme inhibitor, on RAS modulation in the skeletal muscle of obese animals. Thus, we divided C57BL/6 mice into two groups: standard chow (SC) and high-fat (HF) diet for 16 weeks. At the eighth week, the HF-fed animals were divided into four subgroups-sedentary (HF), treated with enalapril (HF-E), exercise training protocol (HF-T), and combined interventions (HF-ET). After 8 weeks of treatment, we evaluated body mass and index (BMI), body composition, exercise capacity, muscle morphology, and skeletal muscle molecular markers. All interventions resulted in lower BMI and attenuation of overactivation in the classical arm, while favoring the B2R in the bradykinin receptors profile. This was associated with reduced apoptosis markers in obese skeletal muscles. The HF-T group showed an increase in muscle mass and expression of biosynthesis markers and a reduction in expression of degradation markers and muscle fiber atrophy due to obesity. These findings suggest that the combination intervention did not have a synergistic effect against obesity-induced muscle remodeling. Additionally, the use of enalapril impaired muscle's physiological adaptations to exercise training.
Collapse
Affiliation(s)
- Ana Beatriz Proença
- Laboratory of Exercise Sciences, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
- Research Center on Morphology and Metabolism, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
| | - Beatriz Alexandre‐Santos
- Laboratory of Exercise Sciences, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
- Research Center on Morphology and Metabolism, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
| | - Isabele Gomes Giori
- Laboratory of Exercise Sciences, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
| | - Jaime Silva Filho Alex‐Marques
- Laboratory of Exercise Sciences, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
- Research Center on Morphology and Metabolism, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
| | - Clarice Machado‐Santos
- Laboratory of Teaching and Research in Histology and Compared EmbryologyFluminense Federal UniversityNiteroiRio de JaneiroBrazil
| | - Marcus Machado
- Biomedical Science DepartmentRoss University School of Veterinary MedicineBasseterreSt. Kitts & Nevis
| | - D'Angelo Carlo Magliano
- Research Center on Morphology and Metabolism, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
| | - Antonio Claudio Lucas da Nobrega
- Laboratory of Exercise Sciences, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
- National Institute for Science & Technology—INCT Physical (in)Activity & Exercise, CNPqNiteroiRio de JaneiroBrazil
| | - Eliete Dalla Corte Frantz
- Laboratory of Exercise Sciences, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
- Research Center on Morphology and Metabolism, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
- National Institute for Science & Technology—INCT Physical (in)Activity & Exercise, CNPqNiteroiRio de JaneiroBrazil
| |
Collapse
|
2
|
Alves-Silva T, Húngaro TG, Freitas-Lima LC, de Melo Arthur G, Arruda AC, Santos RB, Oyama LM, Mori MA, Bader M, Araujo RC. Kinin B1 receptor controls maternal adiponectin levels and influences offspring weight gain. iScience 2023; 26:108409. [PMID: 38058311 PMCID: PMC10696114 DOI: 10.1016/j.isci.2023.108409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/16/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023] Open
Abstract
Given the importance of the kinin B1 receptor in insulin and leptin hormonal regulation, which in turn is crucial in maternal adaptations to ensure nutrient supply to the fetus, we investigated the role of this receptor in maternal metabolism and fetoplacental development. Wild-type and kinin B1 receptor-deficient (B1KO) female mice were mated with male mice of the opposite genotype. Consequently, the entire litter was heterozygous for kinin B1 receptor, ensuring that there would be no influence of offspring genotype on the maternal phenotype. Maternal kinin B1 receptor blockade reduces adiponectin secretion by adipose tissue ex vivo, consistent with lower adiponectin levels in pregnant B1KO mice. Furthermore, fasting insulinemia also increased, which was associated with placental insulin resistance, reduced placental glycogen accumulation, and heavier offspring. Therefore, we propose the combination of chronic hyperinsulinemia and reduced adiponectin secretion in B1KO female mice create a maternal obesogenic environment that results in heavier pups.
Collapse
Affiliation(s)
- Thaís Alves-Silva
- Laboratory of Genetics and Exercise Metabolism, Molecular Biology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
- Max-Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, 13125 Berlin, Germany
| | - Talita G.R. Húngaro
- Laboratory of Genetics and Exercise Metabolism, Nephrology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Leandro C. Freitas-Lima
- Laboratory of Genetics and Exercise Metabolism, Molecular Biology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Gabriel de Melo Arthur
- Laboratory of Genetics and Exercise Metabolism, Molecular Biology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Adriano C. Arruda
- Laboratory of Genetics and Exercise Metabolism, Nephrology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Raisa B. Santos
- Laboratory of Genetics and Exercise Metabolism, Nephrology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Lila M. Oyama
- Laboratory of Nutrition and Endocrine Physiology, Physiology Department, Federal University of São Paulo (UNIFESP), São Paulo 04023-901, Brazil
| | - Marcelo A.S. Mori
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo 13083-862, Brazil
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
- Charité University Medicine Berlin, Berlin, Germany
| | - Ronaldo C. Araujo
- Laboratory of Genetics and Exercise Metabolism, Molecular Biology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
- Laboratory of Genetics and Exercise Metabolism, Nephrology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| |
Collapse
|
3
|
Brock S, Jackson DB, Soldatos TG, Hornischer K, Schäfer A, Diella F, Emmert MY, Hoerstrup SP. Whole patient knowledge modeling of COVID-19 symptomatology reveals common molecular mechanisms. FRONTIERS IN MOLECULAR MEDICINE 2023; 2:1035290. [PMID: 39086962 PMCID: PMC11285600 DOI: 10.3389/fmmed.2022.1035290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/12/2022] [Indexed: 08/02/2024]
Abstract
Infection with SARS-CoV-2 coronavirus causes systemic, multi-faceted COVID-19 disease. However, knowledge connecting its intricate clinical manifestations with molecular mechanisms remains fragmented. Deciphering the molecular basis of COVID-19 at the whole-patient level is paramount to the development of effective therapeutic approaches. With this goal in mind, we followed an iterative, expert-driven process to compile data published prior to and during the early stages of the pandemic into a comprehensive COVID-19 knowledge model. Recent updates to this model have also validated multiple earlier predictions, suggesting the importance of such knowledge frameworks in hypothesis generation and testing. Overall, our findings suggest that SARS-CoV-2 perturbs several specific mechanisms, unleashing a pathogenesis spectrum, ranging from "a perfect storm" triggered by acute hyper-inflammation, to accelerated aging in protracted "long COVID-19" syndromes. In this work, we shortly report on these findings that we share with the community via 1) a synopsis of key evidence associating COVID-19 symptoms and plausible mechanisms, with details presented within 2) the accompanying "COVID-19 Explorer" webserver, developed specifically for this purpose (found at https://covid19.molecularhealth.com). We anticipate that our model will continue to facilitate clinico-molecular insights across organ systems together with hypothesis generation for the testing of potential repurposing drug candidates, new pharmacological targets and clinically relevant biomarkers. Our work suggests that whole patient knowledge models of human disease can potentially expedite the development of new therapeutic strategies and support evidence-driven clinical hypothesis generation and decision making.
Collapse
Affiliation(s)
| | | | - Theodoros G. Soldatos
- Molecular Health GmbH, Heidelberg, Germany
- SRH Hochschule, University of Applied Science, Heidelberg, Germany
| | | | | | | | - Maximilian Y. Emmert
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Berlin, Germany
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
The kallikrein-kinin pathway as a mechanism for auto-control of brown adipose tissue activity. Nat Commun 2020; 11:2132. [PMID: 32358539 PMCID: PMC7195474 DOI: 10.1038/s41467-020-16009-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Brown adipose tissue (BAT) is known to secrete regulatory factors in response to thermogenic stimuli. Components of the BAT secretome may exert local effects that contribute to BAT recruitment and activation. Here, we found that a thermogenic stimulus leads to enhanced secretion of kininogen (Kng) by BAT, owing to induction of kininogen 2 (Kng2) gene expression. Noradrenergic, cAMP-mediated signals induce KNG2 expression and release in brown adipocytes. Conversely, the expression of kinin receptors, that are activated by the Kng products bradykinin and [Des-Arg9]-bradykinin, are repressed by thermogenic activation of BAT in vivo and of brown adipocytes in vitro. Loss-of-function models for Kng (the circulating-Kng-deficient BN/Ka rat) and bradykinin (pharmacological inhibition of kinin receptors, kinin receptor-null mice) signaling were coincident in showing abnormal overactivation of BAT. Studies in vitro indicated that Kng and bradykinin exert repressive effects on brown adipocyte thermogenic activity by interfering the PKA/p38 MAPK pathway of control of Ucp1 gene transcription, whereas impaired kinin receptor expression enhances it. Our findings identify the kallikrein–kinin system as a relevant component of BAT thermogenic regulation that provides auto-regulatory inhibitory signaling to BAT. Brown adipose tissue, known produce heat by metabolizing fat, is also secretes molecules capable of communicating with other organs. Here the authors show that brown adipose tissue secretes kininogen, a component of heat system regulation, that provides auto-regulatory inhibitory signaling in brown adipose tissue.
Collapse
|
5
|
Ji B, Wang Q, Xue Q, Li W, Li X, Wu Y. The Dual Role of Kinin/Kinin Receptors System in Alzheimer's Disease. Front Mol Neurosci 2019; 12:234. [PMID: 31632239 PMCID: PMC6779775 DOI: 10.3389/fnmol.2019.00234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/13/2019] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease characterized by progressive spatial disorientation, learning and memory deficits, responsible for 60%–80% of all dementias. However, the pathological mechanism of AD remains unknown. Numerous studies revealed that kinin/kinin receptors system (KKS) may be involved in the pathophysiology of AD. In this review article, we summarized the roles of KKS in neuroinflammation, cerebrovascular impairment, tau phosphorylation, and amyloid β (Aβ) generation in AD. Moreover, we provide new insights into the mechanistic link between KKS and AD, and highlight the KKS as a potential therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Bingyuan Ji
- Neurobiology Institute, School of Mental Health, Jining Medical University, Jining, China
| | - Qinqin Wang
- Neurobiology Institute, School of Mental Health, Jining Medical University, Jining, China
| | - Qingjie Xue
- Department of Pathogenic Biology, Jining Medical University, Jining, China
| | - Wenfu Li
- Neurobiology Institute, School of Mental Health, Jining Medical University, Jining, China
| | - Xuezhi Li
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Yili Wu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
6
|
Frigolet ME, Thomas G, Beard K, Lu H, Liu L, Fantus IG. The bradykinin-cGMP-PKG pathway augments insulin sensitivity via upregulation of MAPK phosphatase-5 and inhibition of JNK. Am J Physiol Endocrinol Metab 2017; 313:E321-E334. [PMID: 28679626 DOI: 10.1152/ajpendo.00298.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/13/2023]
Abstract
Bradykinin (BK) promotes insulin sensitivity and glucose uptake in adipocytes and other cell types. We demonstrated that in rat adipocytes BK enhances insulin-stimulated glucose transport via endothelial nitric oxide synthase, nitric oxide (NO) generation, and decreased activity of the mitogen-activated protein kinase (MAPK) JNK (c-Jun NH2-terminal kinase). In endothelial cells, NO increases soluble guanylate cyclase (sGC) activity, which, in turn, activates protein kinase G (PKG) by increasing cGMP levels. In this study, we investigated whether BK acts via the sGC-cGMP-PKG pathway to inhibit the negative effects of JNK on insulin signaling and glucose uptake in rat adipocytes. BK augmented cGMP concentrations. The BK-induced enhancement of insulin-stimulated glucose uptake was mimicked by the sGC activator YC-1 and a cell-permeable cGMP analog, CPT-cGMP, and inhibited by the sGC inhibitor ODQ and the PKG inhibitor KT 5823. Transfection of dominant-negative PKG reduced the BK augmentation of insulin-induced Akt phosphorylation. The activation of JNK and ERK1/2 by insulin was attenuated by BK, which was mediated by the sGC-cGMP-PKG pathway. Whereas insulin-stimulated phosphorylation of upstream activators of JNK and ERK, i.e., MKK4 and MEK1/2, was unaffected, BK augmented insulin-mediated induction of MKP-5 mRNA and protein levels. Furthermore, zaprinast, a phosphodiesterase inhibitor, enhanced cGMP and MKP-5 and prolonged the action of BK. These data indicate that BK enhances insulin action by inhibition of negative feedback by JNK and ERK via upregulation of MKP-5, mediated by the sGC-cGMP-PKG signaling pathway.
Collapse
Affiliation(s)
- María E Frigolet
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, Toronto, Ontario, Canada; and
| | - Garry Thomas
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, Toronto, Ontario, Canada; and
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Kristin Beard
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, Toronto, Ontario, Canada; and
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Huogen Lu
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Lijiang Liu
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - I George Fantus
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada;
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, Toronto, Ontario, Canada; and
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Mesquita TRR, Campos-Mota GP, Lemos VS, Cruz JS, de Jesus ICG, Camargo EA, Pesquero JL, Pesquero JB, Capettini LDSA, Lauton-Santos S. Vascular Kinin B 1 and B 2 Receptors Determine Endothelial Dysfunction through Neuronal Nitric Oxide Synthase. Front Physiol 2017; 8:228. [PMID: 28503149 PMCID: PMC5408093 DOI: 10.3389/fphys.2017.00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/31/2017] [Indexed: 01/06/2023] Open
Abstract
B1- and B2-kinin receptors are G protein-coupled receptors that play an important role in the vascular function. Therefore, the present study was designed to evaluate the participation of kinin receptors in the acetylcholine (ACh)-induced vascular relaxation, focusing on the protein-protein interaction involving kinin receptors with endothelial and neuronal nitric oxide synthases (eNOS and nNOS). Vascular reactivity, nitric oxide (NO·) and reactive oxygen species (ROS) generation, co-immunoprecipitation were assessed in thoracic aorta from male wild-type (WT), B1- (B1R−/−), B2- (B2R−/−) knockout mice. Some vascular reactivity experiments were also performed in a double kinin receptors knockout mice (B1B2R−/−). For pharmacological studies, selective B1- and B2-kinin receptors antagonists, NOS inhibitors and superoxide dismutase (SOD) mimetic were used. First, we show that B1- and B2-kinin receptors form heteromers with nNOS and eNOS in thoracic aorta. To investigate the functionality of these protein-protein interactions, we took advantage of pharmacological tools and knockout mice. Importantly, our results show that kinin receptors regulate ACh-induced relaxation via nNOS signaling in thoracic aorta with no changes in NO· donor-induced relaxation. Interestingly, B1B2R−/− presented similar level of vascular dysfunction as found in B1R−/− or B2R−/− mice. In accordance, aortic rings from B1R−/− or B2R−/− mice exhibit decreased NO· bioavailability and increased superoxide generation compared to WT mice, suggesting the involvement of excessive ROS generation in the endothelial dysfunction of B1R−/− and B2R−/− mice. Alongside, we show that impaired endothelial vasorelaxation induced by ACh in B1R−/− or B2R−/− mice was rescued by the SOD mimetic compound. Taken together, our findings show that B1- and B2-kinin receptors regulate the endothelium-dependent vasodilation of ACh through nNOS activity and indicate that molecular disturbance of short-range interaction between B1- and B2-kinin receptors with nNOS might be involved in the oxidative pathogenesis of endothelial dysfunction.
Collapse
Affiliation(s)
| | - Gianne P Campos-Mota
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas GeraisBelo Horizonte, Brazil
| | - Virgínia S Lemos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas GeraisBelo Horizonte, Brazil
| | - Jader S Cruz
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas GeraisBelo Horizonte, Brazil
| | - Itamar C G de Jesus
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas GeraisBelo Horizonte, Brazil
| | - Enilton A Camargo
- Department of Physiology, Federal University of SergipeSão Cristóvão, Brazil
| | - Jorge L Pesquero
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas GeraisBelo Horizonte, Brazil
| | - João B Pesquero
- Department of Biophysics, Federal University of São PauloSão Paulo, Brazil
| | | | | |
Collapse
|
8
|
Talbot S, Dias JP, El Midaoui A, Couture R. Beneficial effects of kinin B1 receptor antagonism on plasma fatty acid alterations and obesity in Zucker diabetic fatty rats. Can J Physiol Pharmacol 2016; 94:752-7. [PMID: 27172260 DOI: 10.1139/cjpp-2016-0063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Kinins are the endogenous ligands of the constitutive B2 receptor (B2R) and the inducible B1 receptor (B1R). Whereas B2R prevents insulin resistance, B1R is involved in insulin resistance and metabolic syndrome. However, the contribution of B1R in type 2 diabetes associated with obesity remains uncertain. The aim of the present study was to examine the impact of 1-week treatment with a selective B1R antagonist (SSR240612, 10 mg/kg per day, by gavage) on hyperglycemia, hyperinsulinemia, leptinemia, body mass gain, and abnormal plasma fatty acids in obese Zucker diabetic fatty (ZDF) rats. Treatment with SSR240612 abolished the body mass gain and reduced polyphagia, polydipsia, and plasma fatty acid alterations in ZDF rats without affecting hyperglycemia, hyperinsulinemia, and hyperleptinemia. The present study suggests that the upregulated B1R plays a role in body mass gain and circulating fatty acid alterations in ZDF rats. However, mechanisms other than B1R induction would be implicated in glucose metabolism disorder in ZDF rats, based on the finding that SSR240612 did not reverse hyperglycemia and hyperinsulinemia.
Collapse
Affiliation(s)
- Sébastien Talbot
- Department of Molecular and Integrative Physiology, Faculty of Medicine, Université de Montréal, P.O. Box 6128, Station City-Center, Montréal, QC H3C 3J7, Canada.,Department of Molecular and Integrative Physiology, Faculty of Medicine, Université de Montréal, P.O. Box 6128, Station City-Center, Montréal, QC H3C 3J7, Canada
| | - Jenny Pena Dias
- Department of Molecular and Integrative Physiology, Faculty of Medicine, Université de Montréal, P.O. Box 6128, Station City-Center, Montréal, QC H3C 3J7, Canada.,Department of Molecular and Integrative Physiology, Faculty of Medicine, Université de Montréal, P.O. Box 6128, Station City-Center, Montréal, QC H3C 3J7, Canada
| | - Adil El Midaoui
- Department of Molecular and Integrative Physiology, Faculty of Medicine, Université de Montréal, P.O. Box 6128, Station City-Center, Montréal, QC H3C 3J7, Canada.,Department of Molecular and Integrative Physiology, Faculty of Medicine, Université de Montréal, P.O. Box 6128, Station City-Center, Montréal, QC H3C 3J7, Canada
| | - Réjean Couture
- Department of Molecular and Integrative Physiology, Faculty of Medicine, Université de Montréal, P.O. Box 6128, Station City-Center, Montréal, QC H3C 3J7, Canada.,Department of Molecular and Integrative Physiology, Faculty of Medicine, Université de Montréal, P.O. Box 6128, Station City-Center, Montréal, QC H3C 3J7, Canada
| |
Collapse
|