1
|
Robert M, Ruffier d'Epenoux L, Paquin A, Boutoille D, Guillouzouic A, Corvec S. Ciprofloxacin-susceptible but levofloxacin-resistant Pseudomonas aeruginosa clinical strains with Vitek ®2: which mechanism involved and consequences in case of fluoroquinolone treatment? Eur J Clin Microbiol Infect Dis 2025; 44:549-558. [PMID: 39704919 DOI: 10.1007/s10096-024-05006-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Abstract
PURPOSE Pseudomonas aeruginosa clinical strains isolated harbored sometimes an atypical phenotype using the automated Vitek2®: ciprofloxacin-susceptibility but levofloxacin-resistance according to 2019 CA-SFM criteria. The aims of this study are to investigate the resistance mechanism(s) involved and to identify the consequences on fluoroquinolone treatment. METHODS Strain resistance profile, patient's data were recovered and reviewed from the database. Minimum inhibitory concentrations of levofloxacin, ciprofloxacin, moxifloxacin and delafloxacin were determined by using a concentration gradient strip. gyrA, gyrB, parC, parE and mexR genes were PCR amplified and sequenced. A PFGE analysis was performed for strains, recovered in a short period of time from the same patient. RESULTS 46 strains were studied. A couple of seldom mutations were detected in gyrA, gyrB, parC and parE genes. Phenotypically, most of the strains (91%) were resistant to ticarcillin/ clavulanic acid combination and aztreonam suggesting a MexAB-OprM efflux-pump overexpression. mexR sequencing demonstrated either a deletion, a mutation or a premature stop codon appearance leading to amino acid substitution for 75% of the strains. Interestingly, four patients presented successively a fully fluoroquinolone susceptible isolate, thereafter a ciprofloxacin-susceptible but levofloxacin-resistant isolate (discordant phenotype) and finally a fluoroquinolone-resistant isolate. Molecular typing of these strains highlighted a strong relatedness between those isolates. CONCLUSION The phenotype detected by the automate Vitek2® is linked to a likely efflux-pump overexpression mechanism and not fluoroquinolone-target mutation. Regarding this discordant phenotype, an alert should be provided to clinicians concerning the high risk of selecting a fluoroquinolone-resistant mutant.
Collapse
Affiliation(s)
- Manon Robert
- Service de Bactériologie et des Contrôles Microbiologiques, CHU Nantes, Nantes, France
| | - Louise Ruffier d'Epenoux
- Service de Bactériologie et des Contrôles Microbiologiques, CHU Nantes, Nantes, France
- INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes Université, Nantes, France
| | - Axelle Paquin
- Service de Bactériologie et des Contrôles Microbiologiques, CHU Nantes, Nantes, France
| | - David Boutoille
- Service des Maladies Infectieuses, Hôtel-Dieu, Centre Hospitalier Universitaire, Nantes, France
- Centre d'Investigation Clinique Unité d'Investigation Clinique, Centre Hospitalier Universitaire, Nantes, France
| | - Aurélie Guillouzouic
- Service de Bactériologie et des Contrôles Microbiologiques, CHU Nantes, Nantes, France
| | - Stéphane Corvec
- Service de Bactériologie et des Contrôles Microbiologiques, CHU Nantes, Nantes, France.
- INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes Université, Nantes, France.
| |
Collapse
|
2
|
Han D, Ma S, He C, Yang Y, Li P, Lu L. Unveiling the genetic architecture and transmission dynamics of a novel multidrug-resistant plasmid harboring bla NDM-5 in E. Coli ST167: implications for antibiotic resistance management. BMC Microbiol 2024; 24:178. [PMID: 38783210 PMCID: PMC11112900 DOI: 10.1186/s12866-024-03333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The emergence of multidrug-resistant (MDR) Escherichia coli strains poses significant challenges in clinical settings, particularly when these strains harbor New Delhi metallo-ß-lactamase (NDM) gene, which confer resistance to carbapenems, a critical class of last-resort antibiotics. This study investigates the genetic characteristics and implications of a novel blaNDM-5-carrying plasmid pNDM-5-0083 isolated from an E. coli strain GZ04-0083 from clinical specimen in Zhongshan, China. RESULTS Phenotypic and genotypic evaluations confirmed that the E. coli ST167 strain GZ04-0083 is a multidrug-resistant organism, showing resistance to diverse classes of antibiotics including ß-lactams, carbapenems, fluoroquinolones, aminoglycosides, and sulfonamides, while maintaining susceptibility to monobactams. Investigations involving S1 pulsed-field gel electrophoresis, Southern blot analysis, and conjugation experiments, alongside genomic sequencing, confirmed the presence of the blaNDM-5 gene within a 146-kb IncFIB plasmid pNDM-5-0083. This evidence underscores a significant risk for the horizontal transfer of resistance genes among bacterial populations. Detailed annotations of genetic elements-such as resistance genes, transposons, and insertion sequences-and comparative BLAST analyses with other blaNDM-5-carrying plasmids, revealed a unique architectural configuration in the pNDM-5-0083. The MDR region of this plasmid shares a conserved gene arrangement (repA-IS15DIV-blaNDM-5-bleMBL-IS91-suI2-aadA2-dfrA12) with three previously reported plasmids, indicating a potential for dynamic genetic recombination and evolution within the MDR region. Additionally, the integration of virulence factors, including the iro and sit gene clusters and enolase, into its genetic architecture poses further therapeutic challenges by enhancing the strain's pathogenicity through improved host tissue colonization, immune evasion, and increased infection severity. CONCLUSIONS The detailed identification and characterization of pNDM-5-0083 enhance our understanding of the mechanisms facilitating the spread of carbapenem resistance. This study illuminates the intricate interplay among various genetic elements within the novel blaNDM-5-carrying plasmid, which are crucial for the stability and mobility of resistance genes across bacterial populations. These insights highlight the urgent need for ongoing surveillance and the development of effective strategies to curb the proliferation of antibiotic resistance.
Collapse
Affiliation(s)
- Dengke Han
- Department of Laboratory Medicine, Zhongshan City People's Hospital, Zhongshan, 528403, Guangdong, China
| | - Suzhen Ma
- Department of Laboratory Medicine, Zhongshan City People's Hospital, Zhongshan, 528403, Guangdong, China
| | - Chenhong He
- Department of Emergency, Zhongshan City People's Hospital, Zhongshan, 528403, Guangdong, China
| | - Yuxing Yang
- Department of Laboratory Medicine, Zhongshan City People's Hospital, Zhongshan, 528403, Guangdong, China
| | - Peng Li
- Chinese PLA Center for Disease Control and Prevention, 20 DongDa Street, Fengtai District, Beijing, 100071, China
| | - Lanfen Lu
- Department of Laboratory Medicine, Zhongshan City People's Hospital, Zhongshan, 528403, Guangdong, China.
| |
Collapse
|
3
|
Strazzulla A, Adrien V, Houngnandan SR, Devatine S, Bahmed O, Abroug S, Hamrouni S, Monchi M, Diamantis S. Characteristics of Pseudomonas aeruginosa infection in intensive care unit before (2007-2010) and after (2011-2014) the beginning of an antimicrobial stewardship program. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2024; 4:e60. [PMID: 38698949 PMCID: PMC11062793 DOI: 10.1017/ash.2024.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 05/05/2024]
Abstract
Objectives To investigate the factors associated with Pseudomonas aeruginosa isolates in intensive care unit (ICU) before and after an antimicrobial stewardship program. Materials Monocentric retrospective cohort study. Patients admitted to the ICU in 2007-2014 were included. Characteristics of P. aeruginosa patients were compared to overall ICU population. Clinical and microbiological characteristics of P. aeruginosa patients before (2007-2010) and after (2011-2014) the beginning of the AMP were compared. Results Overall, 5,263 patients were admitted to the ICU, 274/5,263 (5%) had a P. aeruginosa isolate during their staying. In 2011-2014, the percentage P. aeruginosa isolates reduced (7% vs 4%, P ≤ .0001). Patients with P. aeruginosa had higher rates of in-hospital death (43% vs 20%, P < .0001) than overall ICU population. In 2011-2014, rates of multidrug-resistant (11% vs 2%, P = .0020), fluoroquinolone-resistant (35% vs 12%, P < .0001), and ceftazidime-resistant (23% vs 8%, P = .0009) P. aeruginosa reduced. Treatments by fluoroquinolones (36% vs 4%, P ≤ .0001), carbapenems (27% vs 9%, P = .0002), and third-generation cephalosporins (49% vs 12%, P ≤ .0001) before P. aeruginosa isolation reduced while piperacillin (0% vs 13%, P < .0001) and trimethoprim-sulfamethoxazole (8% vs 26%, P = .0023) increased. Endotracheal intubation reduced in 2011-2014 (61% vs 35%, P < .0001). Fluoroquinolone-resistance was higher in patients who received endotracheal intubation (29% vs 17%, P = .0197). Previous treatment by fluoroquinolones (OR = 2.94, P = .0020) and study period (2007-2010) (OR = 2.07, P = .0462) were the factors associated with fluoroquinolone-resistance at the multivariate analysis. Conclusions Antibiotic susceptibility in P. aeruginosa isolates was restored after the reduction of endotracheal intubation, fluoroquinolones, carbapenems, and third-generation cephalosporins and the increased use of molecules with a low ecological footprint, as piperacillin and trimethoprim-sulfamethoxazole.
Collapse
Affiliation(s)
- Alessio Strazzulla
- Internal and General Medicine Unit, Groupe Hospitalier Sud Ile de France, Melun, France
| | - Vladimir Adrien
- Infectious Diseases Unit, Groupe Hospitalier Sud Ile de France, Melun, France
- Department of Infectious and Tropical Diseases, Avicenne Hospital, AP-HP, Université Sorbonne Paris Nord, Bobigny, France
| | | | - Sandra Devatine
- Infectious Diseases Unit, Groupe Hospitalier Sud Ile de France, Melun, France
| | - Ouerdia Bahmed
- Internal and General Medicine Unit, Groupe Hospitalier Sud Ile de France, Melun, France
| | - Sarra Abroug
- Internal and General Medicine Unit, Groupe Hospitalier Sud Ile de France, Melun, France
| | - Sarra Hamrouni
- Internal and General Medicine Unit, Groupe Hospitalier Sud Ile de France, Melun, France
| | - Mehran Monchi
- Intensive Care Unit, Groupe Hospitalier Sud Ile de France, Melun, France
| | - Sylvain Diamantis
- Internal and General Medicine Unit, Groupe Hospitalier Sud Ile de France, Melun, France
- Infectious Diseases Unit, Groupe Hospitalier Sud Ile de France, Melun, France
- EA 7380 Dynamic, Université Paris Est Créteil, EnvA, USC ANSES, Créteil, France
| |
Collapse
|
4
|
Menon ND, Somanath P, Jossart J, Vijayakumar G, Shetty K, Baswe M, Chatterjee M, Hari MB, Nair S, Kumar VA, Nair BG, Nizet V, Perry JJP, Kumar GB. Comparative molecular profiling of multidrug-resistant Pseudomonas aeruginosa identifies novel mutations in regional clinical isolates from South India. JAC Antimicrob Resist 2024; 6:dlae001. [PMID: 38230352 PMCID: PMC10789591 DOI: 10.1093/jacamr/dlae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024] Open
Abstract
Objectives We sought to analyse the antibiotic susceptibility profiles and molecular epidemiology of MDR clinical Pseudomonas aeruginosa isolates from South India using non-MDR isolates as a reference. Methods We established a comprehensive clinical strain library consisting of 58 isolates collected from patients across the South Indian state of Kerala from March 2017 to July 2019. The strains were subject to antibiotic susceptibility testing, modified carbapenem inactivation method assay for carbapenemase production, PCR sequencing, comparative sequence analysis and quantitative PCR of MDR determinants associated with antibiotic efflux pump systems, fluoroquinolone resistance and carbapenem resistance. We performed in silico modelling of MDR-specific SNPs. Results Of our collection of South Indian P. aeruginosa clinical isolates, 74.1% were MDR and 55.8% were resistant to the entire panel of antibiotics tested. All MDR isolates were resistant to levofloxacin and 93% were resistant to meropenem. We identified seven distinct, MDR-specific mutations in nalD, three of which are novel. mexA was significantly overexpressed in strains that were resistant to the entire test antibiotic panel while gyrA and gyrB were overexpressed in MDR isolates. Mutations in fluoroquinolone determinants were significantly associated with MDR phenotype and a novel GyrA Y100C substitution was observed. Carbapenem resistance in MDR isolates was associated with loss-of-function mutations in oprD and high prevalence of NDM (blaNDM-1) within our sample. Conclusions This study provides insight into MDR mechanisms adopted by P. aeruginosa clinical isolates, which may guide the potential development of therapeutic regimens to improve clinical outcomes.
Collapse
Affiliation(s)
- Nitasha D Menon
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Antimicrobial Resistance, Tata Institute for Genetics and Society (TIGS), Bangalore, India
| | - Priyanka Somanath
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Antimicrobial Resistance, Tata Institute for Genetics and Society (TIGS), Bangalore, India
| | - Jennifer Jossart
- Department of Molecular Diagnostics and Experimental Therapeutics, City of Hope, Duarte, CA, USA
| | - Gayathri Vijayakumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Antimicrobial Resistance, Tata Institute for Genetics and Society (TIGS), Bangalore, India
| | - Kavya Shetty
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Antimicrobial Resistance, Tata Institute for Genetics and Society (TIGS), Bangalore, India
| | - Manasi Baswe
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Antimicrobial Resistance, Tata Institute for Genetics and Society (TIGS), Bangalore, India
| | - Meghna Chatterjee
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Antimicrobial Resistance, Tata Institute for Genetics and Society (TIGS), Bangalore, India
| | - Malavika B Hari
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Antimicrobial Resistance, Tata Institute for Genetics and Society (TIGS), Bangalore, India
| | - Samitha Nair
- Department of Microbiology, DDRC SRL Diagnostic Private Limited, Trivandrum, Kerala, India
| | - V Anil Kumar
- Department of Microbiology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Bipin G Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Antimicrobial Resistance, Tata Institute for Genetics and Society (TIGS), Bangalore, India
| | - Victor Nizet
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - J Jefferson P Perry
- Department of Molecular Diagnostics and Experimental Therapeutics, City of Hope, Duarte, CA, USA
| | - Geetha B Kumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Antimicrobial Resistance, Tata Institute for Genetics and Society (TIGS), Bangalore, India
| |
Collapse
|
5
|
El-Far SW, Abukhatwah MW. Prevalence of Aminoglycoside Resistance Genes in Clinical Isolates of Pseudomonas aeruginosa from Taif, Saudi Arabia-An Emergence Indicative Study. Microorganisms 2023; 11:2293. [PMID: 37764137 PMCID: PMC10537265 DOI: 10.3390/microorganisms11092293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Hospital-acquired infections caused by P. aeruginosa contribute to global distress because of the elevated rates of microbial antibiotic resistance. Aminoglycosides are antipseudomonal agents that are effectively and frequently utilized to eradicate this infection. This current study is a retrospective study investigating plasmid-mediated aminoglycoside resistance by focusing on the prevalence of the genes encoding aminoglycoside-modifying enzymes (AMEs) and 16S rRNA methylase among P. aeruginosa clinical isolates from Taif, Saudi Arabia. A hundred clinical isolates of P. aeruginosa were collected. The isolates were identified from February 2021 to February 2022. Antibiotic susceptibility testing and MICs were determined using (DD) and (BM-MIC) testing, respectively. AMEs and 16S rRNA methylase variants in bacterial isolates were amplified via PCR for genetic detection. A relatively high multiple antibiotic resistance rate corresponding to 10-32% was reported. Eighteen percent of P. aeruginosa isolates were gentamicin-amikacin-tobramycin resistant according to the MIC levels. The aminoglycoside-resistant strains were additionally identified via GyrA gene sequencing. The phylogenic relatedness dendrogram of the sequenced GyrA genes was performed using a neighbor-joining method via MEGAX software version 10.2.6. The most prevalent AME encoding gene was aac(6')-Ib, observed in 94.4% of resistant isolates, while a resistance gene cocktail of [aac(6')-Ib and ant(3″)-I] was a highly frequent combination (27.8%). This study updated the knowledge about aminoglycoside resistance mechanisms in P. aeruginosa, which constitutes an urgent need, especially after the COVID-19 crisis, which was associated with increased antimicrobial use and resistance rates.
Collapse
Affiliation(s)
- Shaymaa W. El-Far
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Mohamed W. Abukhatwah
- Pediatric Nephrology Section of Pediatric Department, Alhada Armed Forces Hospital, Taif 26792, Saudi Arabia;
| |
Collapse
|
6
|
Hussain MA, Mohamed MS, Altayb HN, Mohamed AO, Ashour A, Osman W, Sherif AE, Ghazawi KF, Miski SF, Ibrahim SRM, Mohamed GA, Sindi IA, Alshamrani AA, Elgaml A. Comparative Genomic Analysis of Multi-Drug Resistant Pseudomonas aeruginosa Sequence Type 235 Isolated from Sudan. Microorganisms 2023; 11:1432. [PMID: 37374934 DOI: 10.3390/microorganisms11061432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is known to be associated with resistance to practically all known antibiotics. This is a cross-sectional, descriptive, laboratory-based analytical study in which 200 P. aeruginosa clinical isolates were involved. The DNA of the most resistant isolate was extracted and its whole genome was sequenced, assembled, annotated, and announced, strain typing was ascribed, and it was subjected to comparative genomic analysis with two susceptible strains. The rate of resistance was 77.89%, 25.13%, 21.61%, 18.09%, 5.53%, and 4.52% for piperacillin, gentamicin, ciprofloxacin, ceftazidime, meropenem, and polymyxin B, respectively. Eighteen percent (36) of the tested isolates exhibited a MDR phenotype. The most MDR strain belonged to epidemic sequence type 235. Comparative genomic analysis of the MDR strain (GenBank: MVDK00000000) with two susceptible strains revealed that the core genes were shared by the three genomes but there were accessory genes that were strain-specific, and this MDR genome had a low CG% (64.6%) content. A prophage sequence and one plasmid were detected in the MDR genome, but amazingly, it contained no resistant genes for drugs with antipseudomonal activity and there was no resistant island. In addition, 67 resistant genes were detected, 19 of them were found only in the MDR genome and 48 genes were efflux pumps, and a novel deleterious point mutation (D87G) was detected in the gyrA gene. The novel deleterious mutation in the gyrA gene (D87G) is a known position behind quinolone resistance. Our findings emphasize the importance of adoption of infection control strategies to prevent dissemination of MDR isolates.
Collapse
Affiliation(s)
- Mohamed A Hussain
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, International University of Africa, Khartoum P.O. Box 2469, Sudan
| | - Malik Suliman Mohamed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum 11111, Sudan
| | - Hisham N Altayb
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 23589, Saudi Arabia
| | - Ahmed Osman Mohamed
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, International University of Africa, Khartoum P.O. Box 2469, Sudan
| | - Ahmed Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Wadah Osman
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Khartoum 11115, Sudan
| | - Asmaa E Sherif
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Kholoud F Ghazawi
- Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Samar F Miski
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30078, Saudi Arabia
| | - Sabrin R M Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ikhlas A Sindi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmad A Alshamrani
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Jeddah 22384, Saudi Arabia
| | - Abdelaziz Elgaml
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Microbiology and Immunology Department, Faculty of Pharmacy, Horus University, New Damietta 34511, Egypt
| |
Collapse
|
7
|
Yu Y, Shao C, Gong X, Quan H, Liu D, Chen Q, Chu Y. Antimicrobial Resistance Surveillance of Tigecycline-Resistant Strains Isolated from Herbivores in Northwest China. Microorganisms 2022; 10:microorganisms10122432. [PMID: 36557685 PMCID: PMC9784582 DOI: 10.3390/microorganisms10122432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
There is no doubt that antimicrobial resistance (AMR) is a global threat to public health and safety, regardless of whether it’s caused by people or natural transmission. This study aimed to investigate the genetic characteristics and variations of tigecycline-resistant Gram-negative isolates from herbivores in northwest China. In this study, a total of 300 samples were collected from various provinces in northwest China, and 11 strains (3.67%) of tigecycline-resistant bacteria were obtained. In addition, bacterial identification and antibiotic susceptibility testing against 14 antibiotics were performed. All isolates were multiple drug-resistant (MDR) and resistant to more than three kinds of antibiotics. Using an Illumina MiSeq platform, 11 tigecycline-resistant isolates were sequenced using whole genome sequencing (WGS). The assembled draft genomes were annotated, and then sequences were blasted against the AMR gene database and virulence factor database. Several resistance genes mediating drug resistance were detected by WGS, including fluoroquinolone resistance genes (gyrA_S83L, gyrA_D87N, S83L, parC_S80I, and gyrB_S463A), fosfomycin resistance genes (GlpT_E448K and UhpT_E350Q), beta-lactam resistance genes (FtsI_D350N and S357N), and the tigecycline resistance gene (tetR N/A). Furthermore, there were five kinds of chromosomally encoded genetic systems that confer MDR (MarR_Y137H, G103S, MarR_N/A, SoxR_N/A, SoxS_N/A, AcrR N/A, and MexZ_K127E). A comprehensive analysis of MDR strains derived from WGS was used to detect variable antimicrobial resistance genes and their precise mechanisms of resistance. In addition, we found a novel ST type of Escherichia coli (ST13667) and a newly discovered point mutation (K127E) in the MexZ gene of Pseudomonas aeruginosa. WGS plays a crucial role in AMR control, prevention strategies, as well as multifaceted intervention strategies.
Collapse
Affiliation(s)
- Yongfeng Yu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Changchun Shao
- Lanzhou Institute for Food and Drug Control, Lanzhou 730050, China
| | - Xiaowei Gong
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Heng Quan
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Donghui Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiwei Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Correspondence: (Q.C.); (Y.C.)
| | - Yuefeng Chu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Correspondence: (Q.C.); (Y.C.)
| |
Collapse
|
8
|
Madden DE, McCarthy KL, Bell SC, Olagoke O, Baird T, Neill J, Ramsay KA, Kidd TJ, Stewart AG, Subedi S, Choong K, Fraser TA, Sarovich DS, Price EP. Rapid fluoroquinolone resistance detection in Pseudomonas aeruginosa using mismatch amplification mutation assay-based real-time PCR. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background. Antimicrobial resistance (AMR) is an ever-increasing global health concern. One crucial facet in tackling the AMR epidemic is earlier and more accurate AMR diagnosis, particularly in the dangerous and highly multi-drug-resistant ESKAPE pathogen,
Pseudomonas aeruginosa
.
Objectives. We aimed to develop two SYBR Green-based mismatch amplification mutation assays (SYBR-MAMAs) targeting GyrA T83I (gyrA248) and GyrA D87N, D87Y and D87H (gyrA259). Together, these variants cause the majority of fluoroquinolone (FQ) AMR in
P. aeruginosa
.
Methods. Following assay validation, the gyrA248 and gyrA259 SYBR-MAMAs were tested on 84 Australian clinical
P. aeruginosa
isolates, 46 of which demonstrated intermediate/full ciprofloxacin resistance according to antimicrobial susceptibility testing.
Results. Our two SYBR-MAMAs correctly predicted an AMR phenotype in the majority (83%) of isolates with intermediate/full FQ resistance. All FQ-sensitive strains were predicted to have a sensitive phenotype. Whole-genome sequencing confirmed 100 % concordance with SYBR-MAMA genotypes.
Conclusions. Our GyrA SYBR-MAMAs provide a rapid and cost-effective method for same-day identification of FQ AMR in
P. aeruginosa
. An additional SYBR-MAMA targeting the GyrB S466Y/S466F variants would increase FQ AMR prediction to 91 %. Clinical implementation of our assays will permit more timely treatment alterations in cases where decreased FQ susceptibility is identified, leading to improved patient outcomes and antimicrobial stewardship.
Collapse
Affiliation(s)
- Danielle E. Madden
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Infection Research Network Sunshine Coast, Birtinya, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Kate L. McCarthy
- University of Queensland Centre for Clinical Research, Herston, Queensland, Australia
- Infectious Diseases Unit, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| | - Scott C. Bell
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Chermside, Queensland, Australia
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Olusola Olagoke
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Infection Research Network Sunshine Coast, Birtinya, Queensland, Australia
| | - Timothy Baird
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
- Respiratory Department, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Jane Neill
- Respiratory Department, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Kay A. Ramsay
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
| | - Timothy J. Kidd
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Adam G. Stewart
- Infectious Diseases Unit, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
- University of Queensland Centre for Clinical Research, Herston, Queensland, Australia
| | - Shradha Subedi
- Infectious Diseases Unit, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
- Infection Research Network Sunshine Coast, Birtinya, Queensland, Australia
| | - Keat Choong
- Infectious Diseases Unit, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
- Infection Research Network Sunshine Coast, Birtinya, Queensland, Australia
| | - Tamieka A. Fraser
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Derek S. Sarovich
- Infection Research Network Sunshine Coast, Birtinya, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Erin P. Price
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Infection Research Network Sunshine Coast, Birtinya, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| |
Collapse
|
9
|
Yusof NY, Norazzman NII, Zaidi NFM, Azlan MM, Ghazali B, Najib MA, Malik AHA, Halim MAHA, Sanusi MNSM, Zainal AA, Aziah I. Prevalence of Antimicrobial Resistance Genes in Salmonella Typhi: A Systematic Review and Meta-Analysis. Trop Med Infect Dis 2022; 7:tropicalmed7100271. [PMID: 36288012 PMCID: PMC9611315 DOI: 10.3390/tropicalmed7100271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) that has developed resistance to many antimicrobials poses a serious challenge to public health. Hence, this study aimed to systematically determine the prevalence of antimicrobial resistance (AMR) in S. Typhi isolated from the environment and humans as well as to ascertain the spread of the selected AMR genes in S. Typhi. This systematic review and meta-analysis were performed according to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines, and the study protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO). A total of 2353 studies were retrieved from three databases, of which 42 studies fulfilled the selection criteria. The pooled prevalence of AMR S. Typhi (using a random-effect model) was estimated at 84.8% (95% CI; 77.3−90.2), with high heterogeneity (I2: 95.35%, p-value < 0.001). The high estimated prevalence indicates that control methods should be improved immediately to prevent the spread of AMR among S. Typhi internationally.
Collapse
Affiliation(s)
- Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence: (N.Y.Y.); (I.A.)
| | - Nur Iffah Izzati Norazzman
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nur Fatihah Mohd Zaidi
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Mawaddah Mohd Azlan
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Basyirah Ghazali
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Mohamad Ahmad Najib
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Abdul Hafiz Abdul Malik
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | | | | | - Annur Ashyqin Zainal
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence: (N.Y.Y.); (I.A.)
| |
Collapse
|
10
|
Zhang Y, Rosado-Lugo JD, Datta P, Sun Y, Cao Y, Banerjee A, Yuan Y, Parhi AK. Evaluation of a Conformationally Constrained Indole Carboxamide as a Potential Efflux Pump Inhibitor in Pseudomonas aeruginosa. Antibiotics (Basel) 2022; 11:716. [PMID: 35740123 PMCID: PMC9220351 DOI: 10.3390/antibiotics11060716] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Efflux pumps in Gram-negative bacteria such as Pseudomonas aeruginosa provide intrinsic antimicrobial resistance by facilitating the extrusion of a wide range of antimicrobials. Approaches for combating efflux-mediated multidrug resistance involve, in part, developing indirect antimicrobial agents capable of inhibiting efflux, thus rescuing the activity of antimicrobials previously rendered inactive by efflux. Herein, TXA09155 is presented as a novel efflux pump inhibitor (EPI) formed by conformationally constraining our previously reported EPI TXA01182. TXA09155 demonstrates strong potentiation in combination with multiple antibiotics with efflux liabilities against wild-type and multidrug-resistant (MDR) P. aeruginosa. At 6.25 µg/mL, TXA09155, showed ≥8-fold potentiation of levofloxacin, moxifloxacin, doxycycline, minocycline, cefpirome, chloramphenicol, and cotrimoxazole. Several biophysical and genetic studies rule out membrane disruption and support efflux inhibition as the mechanism of action (MOA) of TXA09155. TXA09155 was determined to lower the frequency of resistance (FoR) to levofloxacin and enhance the killing kinetics of moxifloxacin. Most importantly, TXA09155 outperformed the levofloxacin-potentiation activity of EPIs TXA01182 and MC-04,124 against a CDC/FDA panel of MDR clinical isolates of P. aeruginosa. TXA09155 possesses favorable physiochemical and ADME properties that warrant its optimization and further development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ajit K. Parhi
- TAXIS Pharmaceuticals, Inc., 9 Deer Park Drive, Suite J-15, Monmouth Junction, NJ 08852, USA; (Y.Z.); (J.D.R.-L.); (P.D.); (Y.S.); (Y.C.); (A.B.); (Y.Y.)
| |
Collapse
|
11
|
Kiyaga S, Kyany'a C, Muraya AW, Smith HJ, Mills EG, Kibet C, Mboowa G, Musila L. Genetic Diversity, Distribution, and Genomic Characterization of Antibiotic Resistance and Virulence of Clinical Pseudomonas aeruginosa Strains in Kenya. Front Microbiol 2022; 13:835403. [PMID: 35369511 PMCID: PMC8964364 DOI: 10.3389/fmicb.2022.835403] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of nosocomial infections worldwide. It can produce a range of debilitating infections, have a propensity for developing antimicrobial resistance, and present with a variety of potent virulence factors. This study investigated the sequence types (ST), phenotypic antimicrobial susceptibility profiles, and resistance and virulence genes among clinical isolates from urinary tract and skin and soft tissue infections. Fifty-six P. aeruginosa clinical isolates were obtained from six medical centers across five counties in Kenya between 2015 and 2020. Whole-genome sequencing (WGS) was performed to conduct genomic characterization, sequence typing, and phylogenetic analysis of the isolates. Results showed the presence of globally distributed high-risk clones (ST244 and ST357), local high-risk clones (ST2025, ST455, and ST233), and a novel multidrug-resistant (MDR) clone carrying virulence genes (ST3674). Furthermore, 31% of the study isolates were found to be MDR with phenotypic resistance to a variety of antibiotics, including piperacillin (79%), ticarcillin-clavulanic acid (57%), meropenem (34%), levofloxacin (70%), and cefepime (32%). Several resistance genes were identified, including carbapenemases VIM-6 (ST1203) and NDM-1 (ST357), fluoroquinolone genes, crpP, and qnrVCi, while 14 and 22 different chromosomal mutations were detected in the gyrA and parC genes, respectively. All isolates contained at least three virulence genes. Among the virulence genes identified, phzB1 was the most abundant (50/56, 89%). About 21% (12/56) of the isolates had the exoU+/exoS- genotype, while 73% (41/56) of the isolates had the exoS+/exoU- genotype. This study also discovered 12 novel lineages of P. aeruginosa, of which one (ST3674) demonstrated both extensive antimicrobial resistance and the highest number of virulence genes (236/242, 98%). Although most high-risk clones were detected in Nairobi County, high-risk and clones of interest were found throughout the country, indicating the local spread of global epidemic clones and the emergence of new strains. Thus, this study illustrates the urgent need for coordinated local, regional, and international antimicrobial resistance surveillance efforts.
Collapse
Affiliation(s)
- Shahiid Kiyaga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Cecilia Kyany'a
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
- Center for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Angela W. Muraya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Hunter J. Smith
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
| | - Emma G. Mills
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Caleb Kibet
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya
| | - Gerald Mboowa
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
- The African Center of Excellence in Bioinformatics and Data-Intensive Sciences, Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Lillian Musila
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
- Center for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
12
|
Evaluation of Heterocyclic Carboxamides as Potential Efflux Pump Inhibitors in Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 11:antibiotics11010030. [PMID: 35052908 PMCID: PMC8772707 DOI: 10.3390/antibiotics11010030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022] Open
Abstract
The ability to rescue the activity of antimicrobials that are no longer effective against bacterial pathogens such as Pseudomonas aeruginosa is an attractive strategy to combat antimicrobial drug resistance. Herein, novel efflux pump inhibitors (EPIs) demonstrating strong potentiation in combination with levofloxacin against wild-type P. aeruginosa ATCC 27853 are presented. A structure activity relationship of aryl substituted heterocyclic carboxamides containing a pentane diamine side chain is described. Out of several classes of fused heterocyclic carboxamides, aryl indole carboxamide compound 6j (TXA01182) at 6.25 µg/mL showed 8-fold potentiation of levofloxacin. TXA01182 was found to have equally synergistic activities with other antimicrobial classes (monobactam, fluoroquinolones, sulfonamide and tetracyclines) against P. aeruginosa. Several biophysical and genetic studies rule out membrane disruption and support efflux inhibition as the mechanism of action (MOA) of TXA01182. TXA01182 was determined to lower the frequency of resistance (FoR) of the partner antimicrobials and enhance the killing kinetics of levofloxacin. Furthermore, TXA01182 demonstrated a synergistic effect with levofloxacin against several multidrug resistant P. aeruginosa clinical isolates.
Collapse
|
13
|
Fluoroquinolone resistance contributing mechanisms and genotypes of ciprofloxacin- unsusceptible Pseudomonas aeruginosa strains in Iran: emergence of isolates carrying qnr/aac(6)-Ib genes. Int Microbiol 2021; 25:405-415. [PMID: 34709520 DOI: 10.1007/s10123-021-00220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Fluoroquinolones (FQs) including ciprofloxacin (CIP) are key antibiotics for the treatment of Pseudomonas aeruginosa infections, but resistance to FQs is developing as a result of chromosomal mutations or efflux pump effects. Plasmid-mediated quinolone resistance (PMQR) has been recently reported in the Enterobacteriaceae family. This study aimed to investigate the mechanisms of CIP insusceptibility in P. aeruginosa isolates from ICU patients and to characterize their genotypes. METHODS A total of 40 ciprofloxacin unsusceptible (CIP-US) P. aeruginosa isolates from Tehran hospitals were recruited in this study. A broth microdilution assay was performed to find acquired resistance profiles of the isolates. All isolates were screened for target-site mutations (gyrA and parC), PMQR genes, and efflux pumps (mexB, D, Y, and E) expression. Clonality was determined by random amplified polymorphic DNA (RAPD)-PCR, and genotyping was performed on 5 selected isolates by analyzing 7 loci in the existing multilocus sequence typing scheme. RESULTS Thirty-eight out of 40 CIP-US isolates (95%) were categorized as MDR. Seven (17.5%) had gyrA mutation in codons 83, and no mutation was detected in parC; 77.5% of the isolates were positive for PMQR genes. Among PMQR genes, qnrB (30%), qnrC (35%), and qnrD (30%) predominated, while qnrA, qnrS, and aac(6)-Ib genes were harbored by 20.5%, 12.5%, and 15% of the isolates respectively. Efflux pump protein expression was observed in 35% of the isolates. After RAPD-PCR, 19 different genotypes were yielded, and 5 of them were classified into sequence types (STs): 773, 1160, 2011, 2386, and 359. CONCLUSION In this first-time study on P. aeruginosa CIP-US strains from Iranian ICU patients, three main CIP unsusceptibility mechanisms were investigated. A single mutation in one CIP target enzyme could explain high CIP resistance. qnr genes in the isolates can be considered as a CIP-unsusceptibility mechanism among studied isolates. Efflux pumps have more contribution in multidrug resistance than CIP susceptibility. CIP-US isolates of this study have not spread from distinct clonal strains and probably emerged from different sources. STs identified for the first time in this study in Iran should be considered as emerging MDR strains.
Collapse
|
14
|
Yang F, Liu C, Ji J, Cao W, Ding B, Xu X. Molecular Characteristics, Antimicrobial Resistance, and Biofilm Formation of Pseudomonas aeruginosa Isolated from Patients with Aural Infections in Shanghai, China. Infect Drug Resist 2021; 14:3637-3645. [PMID: 34522106 PMCID: PMC8434892 DOI: 10.2147/idr.s328781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/18/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To investigate molecular characteristics, antimicrobial resistance, and biofilm formation ability of Pseudomonas aeruginosa strains isolated from patients with aural infections. METHODS Isolates (n = 199) were collected from ear discharges of patients with aural infections from January 2019 to December 2020. Antimicrobial susceptibility testing was performed according to the Clinical and Laboratory Standards Institute guidelines. All isolates were subjected to multilocus sequence typing (MLST) with amplification and sequencing of seven housekeeping genes. Biofilm formation and eradication were quantitatively assessed in microtiter plates. Genes associated with biofilm formation and the quinolone-resistance-determining region (QRDR) of genes gyrA and parC were investigated using polymerase chain reaction amplification and sequencing. RESULTS Of the 199 P. aeruginosa strains isolated, 109 (54.77%) were from females and 90 (45.23%) were from males. The isolates exhibited very low rates of resistance to most antibiotics tested, including piperacillin (1.51%), ceftazidime (0.50%), and imipenem (3.52%); however, the quinolones ciprofloxacin (80.40%) and levofloxacin (82.91%) were notable exceptions. The QRDR sequence results of the quinolone-resistant P. aeruginosa isolates showed Thr83Ile (n = 155) was the most common amino acid mutation in gyrA (n = 165), while Ser87Leu (n = 157) was widely detected in parC (n = 165). MLST analysis identified 34 sequence types (STs) with most isolates belonging to ST316 (73.87%). Almost all of the P. aeruginosa isolates (96.98%) produced biofilms and biofilm-forming genes algD (98.49%), pslD (96.98%), and pelF (96.48%) were highly prevalent. CONCLUSION The P. aeruginosa strains isolated from aural discharges in this study exhibited very low rates of resistance to most antibiotics tested, except for the resistance rates to quinolones, which were relatively high. The isolates also exhibited a strong biofilm formation ability and low susceptibility to eradication, indicating that more effective drugs and treatment methods are needed to combat these infections.
Collapse
Affiliation(s)
- Feifei Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Chunhong Liu
- Department of Clinical Laboratory, Eye and ENT Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jian Ji
- Department of Clinical Laboratory, Eye and ENT Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Wenjun Cao
- Department of Clinical Laboratory, Eye and ENT Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Baixing Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| |
Collapse
|
15
|
Esposito F, Cardoso B, Fontana H, Fuga B, Cardenas-Arias A, Moura Q, Fuentes-Castillo D, Lincopan N. Genomic Analysis of Carbapenem-Resistant Pseudomonas aeruginosa Isolated From Urban Rivers Confirms Spread of Clone Sequence Type 277 Carrying Broad Resistome and Virulome Beyond the Hospital. Front Microbiol 2021; 12:701921. [PMID: 34539602 PMCID: PMC8446631 DOI: 10.3389/fmicb.2021.701921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
The dissemination of antibiotic-resistant priority pathogens beyond hospital settings is both a public health and an environmental problem. In this regard, high-risk clones exhibiting a multidrug-resistant (MDR) or extensively drug-resistant (XDR) phenotype have shown rapid adaptation at the human-animal-environment interface. In this study, we report genomic data and the virulence potential of the carbapenemase, São Paulo metallo-β-lactamase (SPM-1)-producing Pseudomonas aeruginosa strains (Pa19 and Pa151) isolated from polluted urban rivers, in Brazil. Bioinformatic analysis revealed a wide resistome to clinically relevant antibiotics (carbapenems, aminoglycosides, fosfomycin, sulfonamides, phenicols, and fluoroquinolones), biocides (quaternary ammonium compounds) and heavy metals (copper), whereas the presence of exotoxin A, alginate, quorum sensing, types II, III, and IV secretion systems, colicin, and pyocin encoding virulence genes was associated with a highly virulent behavior in the Galleria mellonella infection model. These results confirm the spread of healthcare-associated critical-priority P. aeruginosa belonging to the MDR sequence type 277 (ST277) clone beyond the hospital, highlighting that the presence of these pathogens in environmental water samples can have clinical implications for humans and other animals.
Collapse
Affiliation(s)
- Fernanda Esposito
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Brenda Cardoso
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Herrison Fontana
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Bruna Fuga
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Adriana Cardenas-Arias
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Quézia Moura
- Federal Institute of Education, Science and Technology of Espírito Santo, Vila Velha, Brazil
| | - Danny Fuentes-Castillo
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Which missense mutations associated with DNA gyrase and topoisomerase IV are involved in Pseudomonas aeruginosa clinical isolates resistance to ciprofloxacin in Ardabil? GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Rehman A, Jeukens J, Levesque RC, Lamont IL. Gene-Gene Interactions Dictate Ciprofloxacin Resistance in Pseudomonas aeruginosa and Facilitate Prediction of Resistance Phenotype from Genome Sequence Data. Antimicrob Agents Chemother 2021; 65:e0269620. [PMID: 33875431 PMCID: PMC8218647 DOI: 10.1128/aac.02696-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/10/2021] [Indexed: 12/12/2022] Open
Abstract
Ciprofloxacin is one of the most widely used antibiotics for treating Pseudomonas aeruginosa infections. However, P. aeruginosa acquires mutations that confer ciprofloxacin resistance, making treatment more difficult. Resistance is multifactorial, with mutations in multiple genes influencing the resistance phenotype. However, the contributions of individual mutations and mutation combinations to the amounts of ciprofloxacin that P. aeruginosa can tolerate are not well understood. Engineering P. aeruginosa strain PAO1 to contain mutations in any one of the resistance-associated genes gyrA, nfxB, rnfC, parC, and parE showed that only gyrA mutations increased the MIC for ciprofloxacin. Mutations in parC and parE increased the MIC of a gyrA mutant, making the bacteria ciprofloxacin resistant. Mutations in nfxB and rnfC increased the MIC, conferring resistance, only if both were mutated in a gyrA background. Mutations in all of gyrA, nfxB, rnfC, and parC/E further increased the MIC. These findings reveal an epistatic network of gene-gene interactions in ciprofloxacin resistance. We used this information to predict ciprofloxacin resistance/susceptibility for 274 isolates of P. aeruginosa from their genome sequences. Antibiotic susceptibility profiles were predicted correctly for 84% of the isolates. The majority of isolates for which prediction was unsuccessful were ciprofloxacin resistant, demonstrating the involvement of additional as yet unidentified genes and mutations in resistance. Our data show that gene-gene interactions can play an important role in antibiotic resistance and can be successfully incorporated into models predicting resistance phenotype.
Collapse
Affiliation(s)
- Attika Rehman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Julie Jeukens
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, Québec, Canada
| | - Roger C. Levesque
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, Québec, Canada
| | - Iain L. Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
18
|
Yazdi MMK, Ghalavand Z, Yazdi AK, Kodori M, Taheri M, Tabriz MS, Eslami G. Chronic Suppurative Otitis Media: A Case Report. Infect Disord Drug Targets 2020; 20:244-246. [PMID: 32423374 DOI: 10.2174/1871526519666190228162001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND CONTEXT Chronic Suppurative Otitis Media (CSOM) is a common cause of hearing impairment and disability. CSOM caused by Pseudomonas aeruginosa is usually treated with topical ciprofloxacin and resistance to ciprofloxacin in CSOM isolates has rarely been reported. CASE PRESENTATION A 24-year-old male patient with CSOM due to p. aeruginosa was reported. CSOM was prolonged for ten years and physician prescribed topical ciprofloxacin drops, pus suctioning and ear pH alteration. The treatment wasn't effective and the patient came back to the clinic with relapse of suppurative otitis media. P. aeruginosa was isolated as the cause of CSOM and the isolate was resistant to ciprofloxacin, aztreonam, imipenem, gentamicin, doripenem, cefepime, levofloxacin, amikacin and susceptible to colistin and ceftazidime. There were two mutations in gyrA and eight mutations were observed in nfxB genes. Finally, tympanomastoidectomy was done. CONCLUSION Usually topical antibiotics, especially ciprofloxacin, is effective against ear infections but our case was different and the P. aeruginosa isolated from CSOM was resistant to most of the antibiotics. One reason for CSOM recurrence might be surgery failure. The routine and primary treatment for CSOM did not seem sufficient and tympanomastoidectomy is suggested to be the best treatment approach for these patients.
Collapse
Affiliation(s)
- M M Karimi Yazdi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Microbiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Ghalavand
- Department of Microbiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza K Yazdi
- Department of Otorhinolaryngology-Head and Neck Surgery, Imam Khomeini Educational Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoor Kodori
- Department of Microbiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Taheri
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran., Tehran, Iran
| | - Mahboobeh S Tabriz
- Motahhari Burn Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Gita Eslami
- Department of Microbiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Characterization of Putative Virulence Factors of Pseudomonas aeruginosa Strain RBS Isolated from a Saltern, Tunisia: Effect of Metal Ion Cofactors on the Structure and the Activity of LasB. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6047528. [PMID: 32775429 PMCID: PMC7396000 DOI: 10.1155/2020/6047528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/04/2020] [Accepted: 06/27/2020] [Indexed: 11/17/2022]
Abstract
Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium able to survive in diverse environments such as soil, plants, freshwater, and seawater. P. aeruginosa can be an opportunistic pathogen to humans when their immune system is deficient. Its pathogenicity may be linked to the production of virulence factors. We isolated P. aeruginosa strain RBS from the saltern of Sfax in Tunisia. In this study, we characterized the halotolerance, antibiotic susceptibility, and some virulence factors of strain RBS. High NaCl concentrations inhibited growth and motility. However, biofilm formation was enhanced to protect bacteria against salt stress. Among the 18 antibiotics tested, quinolones and tetracycline showed a significant inhibitory effect on growth, motility, and biofilm formation of strain RBS. β-Lactams, however, did not have any inhibitory effect on neither bacterial growth nor motility. In some cases, resistance was due, in part, to biofilm formation. We also showed that RBS produces two proteases, LasB and AprA, which have been shown to be implicated in host infection. LasB was further characterized to study the role of metal ions in enzyme stability. It possesses two distinct metal ion-binding sites coordinating a calcium and a zinc ion. The effect of metal ion chelation was evaluated as well as substitutions of residues involved in metal ion binding. Impairing metal ion binding of LasB led to a loss of activity and a sharp decrease of stability. Our findings suggest that the binding of both metal ions is interdependent as the two metal ions' binding sites are linked via a hydrogen bond network.
Collapse
|
20
|
Feng X, Zhang Z, Li X, Song Y, Kang J, Yin D, Gao Y, Shi N, Duan J. Mutations in gyrB play an important role in ciprofloxacin-resistant Pseudomonas aeruginosa. Infect Drug Resist 2019; 12:261-272. [PMID: 30804676 PMCID: PMC6371945 DOI: 10.2147/idr.s182272] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Purpose To investigate the main molecular resistance mechanisms to fluoroquinolones (FQs) in Pseudomonas aeruginosa and also to investigate the effect of time and concentration on mutations in resistance genes. Materials and methods The clinical isolates of P. aeruginosa which are sensitive to ciprofloxacin (CIP) or levofloxacin (LEV) were collected. The isolates were incubated with different concentrations of CIP or LEV for 5 days and the minimal inhibitory concentrations (MICs) of CIP, LEV and ofloxacin (OFX) were measured. The MIC of FQs to P. aeruginosa was measured by the agar dilution method. FQ resistance determining regions of gyrA, gyrB, parC and parE were amplified by PCR, and mutations in four genes were explored using sequence analysis with the Snapgene software. The relative expression levels of two efflux pumps genes (mexA and mexE) were measured by quantitative reverse transcription PCR. Results A total of eleven isolates were collected from the Second Hospital of Shanxi Medical University. Amino acid alterations in gyrA and gyrB were mainly detected in resistant mutants, and the percentage of strains with amino acid alterations in gyrB was significantly higher than that in gyrA (P<0.001). MICs of strains with mutations both in gyrA and gyrB were not significantly higher than those of strains with mutations only in gyrB (P>0.05). No amino acid alterations were detected in genes of parC and parE. In both gyrA and gyrB, the number of amino acid alterations increased with incubation time prolonged and increased with increasing incubation concentration. Conclusion CIP was more competent than LEV in making P. aeruginosa resistant to in vitro selection. Mutations occurring in gyrB played an important role in FQ resistance of P. aeruginosa in vitro selection.
Collapse
Affiliation(s)
- Xinyuan Feng
- Department of Pharmacy, School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Zhiqi Zhang
- Department of Pharmacy, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Xiaoxia Li
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China,
| | - Yan Song
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China,
| | - Jianbang Kang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China,
| | - Donghong Yin
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China,
| | - Yating Gao
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China,
| | - Nan Shi
- Department of Pharmacy, School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jinju Duan
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China,
| |
Collapse
|