1
|
Bhandari S, Upreti MK, Angbuhang KB, Shrestha B, Thapa Shrestha U. Biofilm formation capacity and Carbapenem-resistance in Acinetobacter-calcoaceticus-baumannii isolated from inpatients in a tertiary care hospital in Nepal. BMC Res Notes 2025; 18:225. [PMID: 40399960 PMCID: PMC12093812 DOI: 10.1186/s13104-025-07211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/27/2025] [Indexed: 05/23/2025] Open
Abstract
OBJECTIVE Acinetobacter calcoaceticus-baumannii complex (ACBC), as an emerging global burden to various clinical infections, has a huge problem in empirical therapy due to the increasing resistance to the majority of antibiotics. The ability of biofilm formation added to its antimicrobial resistance and helped its persistence and survival in the environment. To associate biofilm formation with carbapenem resistance, a hospital-based cross-sectional study was carried out from February 2020 to August 2020 at Kathmandu Model Hospital, Kathmandu, Nepal. ACBC was identified from the clinical samples following standard Microbiological procedures. A modified Kirby-Bauer disk diffusion method was performed to assay the antibiotic susceptibility testing of ACBC isolates to various antibiotic classes. A quantitative adherence assay was used to determine the biofilm assay. A conventional Polymerase Chain Reaction (PCR) method was used to find the targeted biofilm-related genes, Bap, csuE, and blaPER1 using specific primers. RESULTS Out of 665 different clinical samples, bacterial growth was observed in 281 (42.3%) clinical samples. Of these, 32 (11.4%) isolates were identified as ACBC. Out of 32 ACBC isolates, 29 (90.6%) of which were carbapenem-resistant. All carbapenem-resistant ACBC isolates were found to be sensitive to Polymixin B and Colistin. Out of 29 CR-ACBC, 17.2% of isolates were resistant to Tigecycline. The majority of ACBC isolates (93.8%) were multidrug-resistant (MDR) while 13 (40.6%) of isolates were extensively drug-resistant (XDR). A total of 31 ACBC isolates were biofilm producers, out of which 2 were strong biofilm producers followed by 8 moderate, and 21 were weak biofilm producers. The occurrence of biofilm-forming genes; Bap, csuE, and blaPER1 genes were found to be 65.6%, 65.6%, and 56.3% respectively among ACBC clinical isolates. A significant association was observed between carbapenem resistance, biofilm formation, and biofilm-related genes. CONCLUSION The higher rate of MDR and XDR ACBC isolates associated with biofilm formation in the study alarms the ACBC-related infection in clinical settings among inpatients. The hospital environment and clinical equipment are potential sources of biofilm-forming isolates. Hence, the effective sterilization of clinical equipment and hospital environment are utmost and a strong policy should be made to prescribe the proper antibiotic based on antibiogram profile to fight against an emerging threat of ACBC infections.
Collapse
Affiliation(s)
- Shova Bhandari
- GoldenGate International College, Battisputali, Kathmandu, Nepal
| | | | | | | | | |
Collapse
|
2
|
Kakavan M, Gholami M, Ahanjan M, Ebrahimzadeh MA, Salehian M, Roozbahani F, Goli HR. Expression of bap gene in multidrug-resistant and biofilm-producing Acinetobacter baumannii clinical isolates. BMC Microbiol 2025; 25:108. [PMID: 40025431 PMCID: PMC11871766 DOI: 10.1186/s12866-025-03806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/05/2025] [Indexed: 03/04/2025] Open
Abstract
INTRODUCTION Acinetobacter baumannii is a significant biofilm-producer and antibiotic-resistant pathogen associated with various infections caused in humans. This study aimed to investigate the expression level of the bap gene in multidrug-resistant and biofilm-producer clinical isolates of A. baumannii. MATERIALS AND METHODS One Hundred A. baumannii clinical isolates were collected from hospitalized patients and identified by phenotypic and genotypic tests. The antibiotic resistance pattern of the isolates was determined by the disk agar diffusion method. The ability of biofilm production was investigated using the microtiter plate test. This study employed the Real-time PCR method to evaluate the expression level of the bap gene. RESULTS Ninety nine percent A. baumannii isolates were MDR. However, the highest resistance rate was observed against ciprofloxacin (100%), while ceftazidime was the most effective drug. Also, 49%, 49%, and 2% of the isolates were strong, moderate, and weak biofilm-producing, respectively. However, we detected no strain without the ability to produce biofilm. Most strong and moderate biofilm-former isolates were non-susceptible to all tested antibiotics. An increased expression level of the bap gene was detected in 99% of the isolates. The results of the present study suggest a correlation between the bap gene expression level and the development of multidrug resistance and biofilm formation in A. baumannii isolates. CONCLUSION This research emphasizes the importance of biofilm formation in the emergence of multidrug-resistant A. baumannii strains in healthcare settings, making them progressively difficult to control. The bap gene may be a considerable target for the development of novel anti-A. baumannii treatment option and eradication of the biofilm formation by this organism.
Collapse
Affiliation(s)
- Maedeh Kakavan
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehrdad Gholami
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ahanjan
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Salehian
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Roozbahani
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Reza Goli
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
3
|
Fatima K, Naqvi SZH, Ali H, Hassan N, Ansari F, Saleem S, Jahan S, Ahmad M, Nawaz A, Saqib A. Whole-genome evaluation and prophages characterization associated with genome of carbapenem-resistant Acinetobacter baumannii UOL-KIMZ-24-2. Curr Genet 2025; 71:4. [PMID: 39849127 DOI: 10.1007/s00294-024-01307-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/25/2025]
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is an emerging threat to healthcare settings in many countries, principally in South Asia. The current study was aimed to identify, evaluate whole-genome and characterize the prophages in genome of CRAB strain, recovered from patients of Lahore General Hospital, Lahore. More than 200 samples were collected and identified by morphological and biochemical tests. These strains were also subjected to a comprehensive antimicrobial susceptibility evaluation using Kirby-Bauer method and further confirmed as CRAB strains by exploring blaOXA-51. In addition, the whole-genome evaluation of a Acinetobacter baumannii UOL-KIMZ-24-2 was carried out using various Bioinformatics tools. A total of 150 strains of A. baumannii were recovered and identified in the current study. Among them, 49% strains were found resistant to carbapenem. The blaOXA-51 was found prevalent in the genome of A. baumannii recovered from medical ICU (38%). In addition, the UOL-KIMZ-24-2 genome analysis based on multilocus sequence typing (MLST) highlighted that UOL-KIMZ-24-2 belonged to ST2 (Pasteur scheme) sequence type. A total of 29 antimicrobial resistance (AMR) genes were present, importantly, blaOXA-66, blaOXA-23 and blaOXA-25. The mobile genetic elements (MGEs) were identified as transposases and belonged to four classes e.g. IS15d1, ISAba24, ISEc29, and ISEc35. A total of 14 virulence factors encoded by 58 different genes were detected in UOL-KIMZ-24-2. In addition, the phage sequences were identified in genome of UOL-KIMZ-24-2, divided into 3 regions. In conclusion, UOL-KIMZ-24-2 contained a mixture of AMR genes, MGEs. prophages sequences and virulence genes.
Collapse
Affiliation(s)
- Kiran Fatima
- Department of Microbiology, Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, 54000, Pakistan
- Departemnt of Pathology, Rawalpindi Medical University, Rawalpindi, 46000, Pakistan
| | - Syed Zeeshan Haider Naqvi
- Department of Microbiology, Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, 54000, Pakistan.
| | - Hazrat Ali
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad, 44000, Pakistan.
| | - Noor Hassan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad, 44000, Pakistan.
| | - Farheen Ansari
- Department of Microbiology, University of Karachi, Karachi, 75270, Pakistan
| | - Sidrah Saleem
- Department of Microbiology, University of Health Sciences, Lahore, 54000, Pakistan
| | - Shah Jahan
- Allied Health Sciences, University of Health Sciences, Lahore, 54000, Pakistan
| | - Mushtaq Ahmad
- Biomedical Optics, Rawalpindi Medical University, Rawalpindi, 46000, Pakistan
| | - Aniqa Nawaz
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad, 44000, Pakistan
| | - Anam Saqib
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad, 44000, Pakistan
| |
Collapse
|
4
|
Gurung A, Napit R, Shrestha B, Lekhak B. Carbapenem Resistance in Acinetobacter calcoaceticus-baumannii Complex Isolates From Kathmandu Model Hospital, Nepal, Is Attributed to the Presence of bla OXA-23-like and bla NDM-1 Genes. BIOMED RESEARCH INTERNATIONAL 2024; 2024:8842625. [PMID: 39161641 PMCID: PMC11333142 DOI: 10.1155/2024/8842625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/28/2024] [Accepted: 06/11/2024] [Indexed: 08/21/2024]
Abstract
The Acinetobacter calcoaceticus-baumannii (ACB) complex, also known as ACB complex, consists of four bacterial species that can cause opportunistic infections in humans, especially in hospital settings. Conventional therapies for susceptible strains of the ACB complex include broad-spectrum cephalosporins, β-lactam/β-lactamase inhibitors, and carbapenems. Unfortunately, the effectiveness of these antibiotics has declined due to increasing rates of resistance. The predominant resistance mechanisms identified in the ACB complex involve carbapenem-resistant (CR) oxacillinases and metallo-β-lactamases (MBLs). This research, conducted at Kathmandu Model Hospital in Nepal, sought to identify genes associated with CR, specifically blaNDM-1, blaOXA-23-like, and blaOXA-24-like genes in carbapenem-resistant Acinetobacter calcoaceticus-baumannii (CR-ACB) complex. Additionally, the study is aimed at identifying the ACB complex through the sequencing of the 16s rRNA gene. Among the 992 samples collected from hospitalized patients, 43 (approximately 4.334%) tested positive for the ACB complex. These positive samples were mainly obtained from different hospital units, including intensive care units (ICUs); cabins; and neonatal, general, and maternity wards. The prevalence of infection was higher among males (58.14%) than females (41.86%), with the 40-50 age group showing the highest infection rate. In susceptibility testing, colistin and polymyxin B exhibited a susceptibility rate of 100%, whereas all samples showed resistance to third-generation cephalosporins. After polymyxins, gentamicin (30.23%) and amikacin (34.88%) demonstrated the highest susceptibility. A substantial majority (81.45%) of ACB complex isolates displayed resistance to carbapenems, with respiratory and pus specimens being the primary sources. Polymerase chain reaction (PCR) revealed that the primary CR gene within the ACB complex at this hospital was bla OXA-23-like, followed by bla NDM-1. To ensure the accuracy of the phenotypic assessment, 12 samples were chosen for 16s rRNA sequencing using Illumina MiSeq™ to confirm that they are Acinetobacter species. QIIME 2.0 analysis confirmed all 12 isolates to be Acinetobacter species. In the hospital setting, a substantial portion of the ACB complex carries CR genes, rendering carbapenem ineffective for treatment.
Collapse
Affiliation(s)
- Anupama Gurung
- Central Department of MicrobiologyTribhuvan University, Kirtipur, Nepal
| | - Rajindra Napit
- Central Department of BiotechnologyTribhuvan University, Kirtipur, Nepal
| | - Basudha Shrestha
- Department of MicrobiologyKathmandu Model Hospital, Putalisadak, Kathmandu, Nepal
| | - Binod Lekhak
- Central Department of MicrobiologyTribhuvan University, Kirtipur, Nepal
| |
Collapse
|
5
|
Mosaka TBM, Unuofin JO, Daramola MO, Tizaoui C, Iwarere SA. Non-thermal obliteration of critically ranked carbapenem-resistant Acinetobacter baumannii and its resistance gene in a batch atmospheric plasma reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49811-49822. [PMID: 39085689 PMCID: PMC11324781 DOI: 10.1007/s11356-024-34475-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024]
Abstract
Wastewater treatment plants (WWTPs) have been implicated as direct key reservoir of both antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) associated with human infection, as high concentrations of ARBs and ARGs have been detected in recycled hospital wastewater. Among the ARBs, the carbapenem-resistant Acinetobacter baumannii has been ranked as priority 1 (critical) pathogen by the World Health Organization (WHO), due to its overwhelming burden on public health. Therefore, this study is aimed at investigating non-thermal plasma (NTP) technology as an alternative disinfection step to inactivate this bacterium and its ARGs. Culture-based method and PCR were employed in confirming the carbapenem resistance gene blaNDM-1 in A. baumannii (BAA 1605). Suspension of carbapenem-resistant A. baumannii (24 h culture) was prepared from the confirmed isolate and subjected to plasma treatment at varying time intervals (3 min, 6 min, 9 min, 12 min, and 15 min) in triplicates. The plasma-treated samples were evaluated for re-growth and the presence of the resistance gene. The treatment resulted in a 1.13 log reduction after 3 min and the highest log reduction of ≥ 8 after 15 min, and the results also showed that NTP was able to inactivate the blaNDM-1 gene. The log reduction and gel image results suggest that plasma disinfection has a great potential to be an efficient tertiary treatment step for WWTPs.
Collapse
Affiliation(s)
- Thabang B M Mosaka
- Sustainable Energy and Environment Research Group, Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Hatfield, 0002, Pretoria, South Africa
| | - John O Unuofin
- Sustainable Energy and Environment Research Group, Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Hatfield, 0002, Pretoria, South Africa.
| | - Michael O Daramola
- Sustainable Energy and Environment Research Group, Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Hatfield, 0002, Pretoria, South Africa
| | - Chedly Tizaoui
- Water and Resources Recovery Research Lab, Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK
| | - Samuel A Iwarere
- Sustainable Energy and Environment Research Group, Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Hatfield, 0002, Pretoria, South Africa
| |
Collapse
|
6
|
Singh S, Singh S, Trivedi M, Dwivedi M. An insight into MDR Acinetobacter baumannii infection and its pathogenesis: Potential therapeutic targets and challenges. Microb Pathog 2024; 192:106674. [PMID: 38714263 DOI: 10.1016/j.micpath.2024.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Acinetobacter baumannii is observed as a common species of Gram-negative bacteria that exist in soil and water. Despite being accepted as a typical component of human skin flora, it has become an important opportunistic pathogen, especially in healthcare settings. The pathogenicity of A. baumannii is attributed to its virulence factors, which include adhesins, pili, lipopolysaccharides, outer membrane proteins, iron uptake systems, autotransporter, secretion systems, phospholipases etc. These elements provide the bacterium the ability to cling to and penetrate host cells, get past the host immune system, and destroy tissue. Its infection is a major contributor to human pathophysiological conditions including pneumonia, bloodstream infections, urinary tract infections, and surgical site infections. It is challenging to treat infections brought on by this pathogen since this bacterium has evolved to withstand numerous drugs and further emergence of drug-resistant A. baumannii results in higher rates of morbidity and mortality. The long-term survival of this bacterium on surfaces of medical supplies and hospital furniture facilitates its frequent spread in humans from one habitat to another. There is a need for urgent investigations to find effective drug targets for A. baumannii as well as designing novel drugs to reduce the survival and spread of infection. In the current review, we represent the specific features, pathogenesis, and molecular intricacies of crucial drug targets of A. baumannii. This would also assist in proposing strategies and alternative therapies for the prevention and treatment of A. baumannii infections and their spread.
Collapse
Affiliation(s)
- Sukriti Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Sushmita Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Mala Trivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India; Research Cell, Amity University Uttar Pradesh, Lucknow, 226028, India.
| |
Collapse
|
7
|
Girija ASS. Acinetobacter baumannii as an oro-dental pathogen: a red alert!! J Appl Oral Sci 2024; 32:e20230382. [PMID: 38747806 PMCID: PMC11090480 DOI: 10.1590/1678-7757-2023-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/01/2024] [Indexed: 05/19/2024] Open
Abstract
OBJECTIVES This review highlights the existence and association of Acinetobacter baumannii with the oro-dental diseases, transforming this systemic pathogen into an oral pathogen. The review also hypothesizes possible reasons for the categorization of this pathogen as code blue due to its stealthy entry into the oral cavity. METHODOLOGY Study data were retrieved from various search engines reporting specifically on the association of A. baumannii in dental diseases and tray set-ups. Articles were also examined regarding obtained outcomes on A. baumannii biofilm formation, iron acquisitions, magnitude of antimicrobial resistance, and its role in the oral cancers. RESULTS A. baumannii is associated with the oro-dental diseases and various virulence factors attribute for the establishment and progression of oro-mucosal infections. Its presence in the oral cavity is frequent in oral microbiomes, conditions of impaired host immunity, age related illnesses, and hospitalized individuals. Many sources also contribute for its prevalence in the dental health care environment and the presence of drug resistant traits is also observed. Its association with oral cancers and oral squamous cell carcinoma is also evident. CONCLUSIONS The review calls for awareness on the emergence of A. baumannii in dental clinics and for the need for educational programs to monitor and control the sudden outbreaks of such virulent and resistant traits in the dental health care settings.
Collapse
Affiliation(s)
- A S Smiline Girija
- Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Department of Microbiology, Chennai-600077, Tamilnadu, India
| |
Collapse
|
8
|
Sah RK, Dahal P, Parajuli R, Giri GR, Tuladhar E. Prevalence of blaCTX-M and blaTEM Genes in Cefotaxime-Resistant Escherichia coli Recovered from Tertiary Care at Central Nepal: A Descriptive Cross-Sectional Study. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:5517662. [PMID: 38226321 PMCID: PMC10789516 DOI: 10.1155/2024/5517662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024]
Abstract
Urinary tract infections (UTIs) are highly prevalent globally, and various antibiotics are employed for their treatment. However, the emergence of drug-resistant uropathogens towards these antibiotics causes a high rate of morbidity and mortality. This study was conducted at the Microbiology Laboratory of Grande International Hospital from November 2021 to May 2022 and aimed to assess the prevalence of UTI caused by Escherichia coli and their antibiotic susceptibility pattern with a focus on extended-spectrum beta-lactamases (ESBLs) and the prevalence of two genes (blaCTX-M and blaTEM) in cephalosporin-resistant E. coli. Altogether, 1050 urine samples were processed to obtain 165 isolates of E. coli. The isolates were identified by colony morphology and biochemical characteristics. Antimicrobial susceptibility tests (ASTs) were determined by the Kirby-Bauer disk diffusion method, and their ESBL enzymes were estimated by the combined disk method (CDM). Two ESBL genes (blaCTX-M and blaTEM) were investigated by polymerase chain reaction (PCR) in cefotaxime-resistant E. coli. Among the 1050 urine samples that were processed, 335 (31.9%) were culture-positive with 165 (49.2%) identified as E. coli. The age group ≥60 years (30.3%) had greater susceptibility to bacterial infections. AST revealed that meropenem was highly effective (95.7% susceptibility), while ampicillin showed the least sensitivity (42.4%). Among the E. coli isolates, 86 were multidrug resistant (MDR) and 10 were extensively drug resistant (XDR). Of these, 46 MDR (96%) and 2 XDR (4%) were ESBL producers. The prevalence of ESBL genes (blaCTX-M and blaTEM) was 49.3% and 54.8%, respectively. The overall accuracy of CDM as compared to PCR for the detection of the blaCTX-M gene was 55.26%. The prevalence of MDR E. coli harboring the blaCTX-M and blaTEM genes underscores the imperative role of ESBL testing in accurately identifying both beta-lactamase producers and nonproducers.
Collapse
|
9
|
Ren J, Duan S, Wu Y, Wen M, Zhang J, Liu Y, Zhu G. Multidrug-resistant bacterial infection in adult patients following cardiac surgery: clinical characteristics and risk factors. BMC Cardiovasc Disord 2023; 23:472. [PMID: 37735348 PMCID: PMC10512613 DOI: 10.1186/s12872-023-03488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND The prevalence of infections with multidrug-resistant organism (MDRO) pose great challenges for anti-infective therapy. Previous research on MDRO infections after cardiac surgery was limited. Therefore, understanding and mastering the clinical characteristics and risk predictors of MDRO infection after cardiac surgery is of great significance for standardized management of perioperative patients. METHODS The medical records of adult patients with MDRO infection after cardiac surgery from January 2018 to October 2021 were collected, and patients were divided into MDR infection group (n = 176) and non-MDR infection group (n = 233). Univariate and multivariate regression analysis of variables was performed to determine the risk predictors of MDRO infection. RESULTS The incidence of MDRO infection was 8.6%. Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa were the most common, accounting for 37.3%, 23.5% and 18.0%, respectively. The main infection type were lower respiratory tract infection (LTRI = 29.0%). Univariate analysis showed that underwent coronary artery bypass graft (CABG) (P = 0.001) and secondary operation (P = 0.008), pre-infection exposure to vancomycin (P < 0.001) and linezolid (P = 0.002), combination antibiotics (P < 0.001), four antibiotics in combination (P = 0.005), glucocorticoid use (P = 0.029), preoperative hypoalbuminemia (P = 0.003) were risk factors for post-operative MDRO infection. Multivariate regression analysis showed that underwent CABG (OR = 1.228, 95%CI = 1.056∽1.427, P = 0.008), secondary operation (OR = 1.910, 95%CI = 1.131∽3.425, P = 0.015) and pre-infection exposure to linezolid (OR = 3.704, 95%CI = 1.291∽10.629, P = 0.005) were independent risk predictors for MDRO infection. The risk of MDRO infection increased with the length of stay in the ICU (P < 0.001) and the length of stay before diagnosis of infection (P = 0.003), and the difference was statistically significant. Meanwhile, the length of stay after infection (P = 0.005) and the total length of hospital stay (P < 0.001) were significantly longer in the MDRO infection group, and the all-cause mortality was numerically higher in the MDRO infection group (31.3% versus 23.2%). CONCLUSIONS The morbidity and mortality of MDRO infection was high in adult cardiac surgery, and many risk factors influence the occurrence of MDRO infection. In the future, clinicians should focus on high-risk patients, strengthen multidisciplinary collaboration on infection prevention and control measures, reduce the morbidity and mortality of MDRO infection, and improve the prognosis of in-hospital patients.
Collapse
Affiliation(s)
- Jianwei Ren
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Capital Medical University, No.2 Anzhen Road, Beijing, 100029, China
| | - Shengchen Duan
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Capital Medical University, No.2 Anzhen Road, Beijing, 100029, China
| | - Yuanxing Wu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Capital Medical University, No.2 Anzhen Road, Beijing, 100029, China
| | - Mingxiu Wen
- Department of Cardiac Surgery, Beijing Anzhen Hospital Capital Medical University, Beijing, 100029, China
| | - Jianye Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital Capital Medical University, Beijing, 100029, China
| | - Yulei Liu
- Department of Microbiological laboratory, Beijing Anzhen Hospital Capital Medical University, Beijing, 100029, China
| | - Guangfa Zhu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Capital Medical University, No.2 Anzhen Road, Beijing, 100029, China.
| |
Collapse
|
10
|
Almuhayawi MS, Alruhaili MH, Gattan HS, Alharbi MT, Nagshabandi M, Al Jaouni S, Selim S, Alanazi A, Alruwaili Y, Faried OA, Elnosary ME. Staphylococcus aureus Induced Wound Infections Which Antimicrobial Resistance, Methicillin- and Vancomycin-Resistant: Assessment of Emergence and Cross Sectional Study. Infect Drug Resist 2023; 16:5335-5346. [PMID: 37605760 PMCID: PMC10440082 DOI: 10.2147/idr.s418681] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
Background Wound infection is a prevalent concern in the medical field, being is a multi-step process involving several biological processes. Methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) infections often occur in areas of damaged skin, such as abrasions and open wounds. Methods This research aims to light the incidence of MRSA and VRSA in wound swabs, the antimicrobial susceptibility configuration of isolated S. aureus patterns in pus/wound samples collected from Saudi Arabian tertiary hospital. The cross section study, β- lactamase detection, VRSA genotyping, MAR index, D-test and VRSA genotyping are methods, which used for completed this research. Results Patients of several ages and genders delivered specimens from two hospitals in the Al jouf area, in the northern province of Saudi Arabia. S. aureus was found in 188 (34.7%) of the 542 wounds. The traumatized wounds provided 71 isolates (38.8%), surgical wound provided 49 isolates (26.8%) and abscess were represented 16 by isolates (8.7%). In the study, 123 (65.4%) out of 188 were MRSA, 60 (31.9%) were MSSA, and five (2.7%) were VRSA. Linezolid and rifampin were found to be the most effective antimicrobials with 100% in vitro antibacterial activity against S. aureus isolates. The Multiple antimicrobials resistance (MAR) index revealed 73 isolates (38.9%) with a MAR index greater than 0.2, and 115 (61.1%) less than 0.2. The D-test showed that of MLSb phenotypes among S. aureus, 22 (11.7%) strains were D-test positive (MLSbi phenotype), 53 (28.2%) strains were constitutive MLSc phenotypes, and 17 (9%) strains were shown to have MSb phenotypes. All VRSA isolates (n=5) were found to be positive for vanA, and no vanB positive isolates were detected in the study. Conclusion Regular monitoring and an antimicrobials stewardship program should be in place to provide critical information that can be utilized for empirical therapy and future prevention strategies.
Collapse
Affiliation(s)
- Mohammed S Almuhayawi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Mohammed H Alruhaili
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Hattan S Gattan
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohanned Talal Alharbi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, University of Jeddah, Jeddah, 23218, Saudi Arabia
| | - Mohammed Nagshabandi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, University of Jeddah, Jeddah, 23218, Saudi Arabia
| | - Soad Al Jaouni
- Department of Hematology/Oncology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Awadh Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Yasir Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Osama Ahmed Faried
- Medical Microbiology and Immunology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed E Elnosary
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
11
|
Pariyar M, Adhikari S, Regmi RS, Dhungel B, Banjara MR, Rijal BP, Rijal KR, Ghimire P. Beta-Lactamase-Producing Gram-Negative Bacterial Isolates Among the Patients Attending a Tertiary Care Hospital, Kathmandu, Nepal. Microbiol Insights 2023; 16:11786361221150761. [PMID: 36713265 PMCID: PMC9880579 DOI: 10.1177/11786361221150761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/26/2022] [Indexed: 01/26/2023] Open
Abstract
Over the times, carbapenems have been the choice of drug for treating multidrug-resistant (MDR) and extended spectrum beta-lactamase (ESBL)-producing organisms. The current study aimed at determining the occurrence of metallo beta-lactamase (MBL) and AmpC beta-lactamase (ABL) in gram negative bacteria isolated from clinical samples. A cross-sectional study was conducted amongst the patients visiting Manmohan Memorial Medical College and Teaching Hospital (MMTH), Kathmandu, Nepal from August 2017 to January 2018. A total of 4351 samples including urine, pus, wound swab, endotracheal tip, catheter tip, and blood were collected from the patients and processed by standard conventional microbiological methods. Antibiotic susceptibility testing (AST) of the isolates was performed by Kirby-Bauer disk diffusion method. Double disc synergy test was performed on carbapenem resistant organisms to detect production of MBL and inhibitor-based test was used for the detection of ABL production. Of the 4351 samples, 421 bacterial isolates belonging to 16 different genera were recovered, of which 303 (71.97%) were Gram negative bacilli (GNB). E. coli (189/303) and S. aureus (80/118) were the most prevalent among gram negatives and gram positives, respectively. Bacterial incidence was found significantly associated with gender, specimen type, and the department where the patients were enrolled. Colistin-sulfate and polymycin-B were the most effective drug against GNB, whereas imipenem against gram positives. Prevalence of MDR and methicillin-resistant S. aureus (MRSA) was 35.15% and 60%, respectively. The prevalence of MBL and ABL-producing isolate was 11(3.6%) and 13(4.3%), respectively. Pseudomonas aeruginosa (5/11) and E. coli (9/13) were the major MBL and ABL producers, respectively. MBL and ABL production was found to be significantly associated with the age of the patient and the specimen type. A regular antibiotic surveillance activity with screening for MBL and ABL-producing bacterial isolates in the hospital settings to curb the incidence and transmission of such difficult-to-treat pathogens.
Collapse
Affiliation(s)
- Manita Pariyar
- Central Department of Microbiology,
Tribhuvan University, Kirtipur, Nepal
| | - Sanjib Adhikari
- Central Department of Microbiology,
Tribhuvan University, Kirtipur, Nepal
| | | | - Binod Dhungel
- Central Department of Microbiology,
Tribhuvan University, Kirtipur, Nepal
| | - Megha Raj Banjara
- Central Department of Microbiology,
Tribhuvan University, Kirtipur, Nepal
| | | | - Komal Raj Rijal
- Central Department of Microbiology,
Tribhuvan University, Kirtipur, Nepal,Komal Raj Rijal, Central Department of
Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal. Emails:
;
| | - Prakash Ghimire
- Central Department of Microbiology,
Tribhuvan University, Kirtipur, Nepal
| |
Collapse
|
12
|
Clinical and Antimicrobial profile of Acinetobacter Species at a Tertiary Care Teaching Hospital. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter infection with multidrug resistant strains is an emerging infection of global concern as it leads to serious disease. They are also important pathogens causing hospital acquired infections. Information on the prevalence, spectrum of illness and antibiotic sensitivity pattern of Acinetobacter is important for appropriate management of patients. We aimed to determine the prevalence of Acinetobacter species and evaluate the clinical profile and antibiotic sensitivity pattern of Acinetobacter species from various clinical samples. From October 2018 to September 2019, various clinical samples received in the microbiology laboratory were studied from the electronic records and the data on the isolation of Acinetobacter from these samples and its antibiotic sensitivity pattern was collected and analysed. The clinical data was also collected to determine the clinical spectrum. The prevalence of Acinetobacter species from various clinical samples was found to be 8.9%. Isolates were more common in general wards than in ICUs. The Acinetobacter infections occurred significantly in male patients (65.7%) than in female patients (34.3%), with male: female ratio of 1.9:1. The most common infection caused by Acinetobacter species was Wound infection (54.36%) followed by Respiratory tract infection (34.27%). Multidrug resistance was seen in 75 % of the isolates. Significant prevalence of multidrug resistant Acinetobacter infections was noted in our study. The findings emphasize the need for strict hospital infection control practices and the restricted use of antibiotics to prevent the occurrence of these infections.
Collapse
|
13
|
Thapa A, Upreti MK, Bimali NK, Shrestha B, Sah AK, Nepal K, Dhungel B, Adhikari S, Adhikari N, Lekhak B, Rijal KR. Detection of NDM Variants ( bla NDM-1, bla NDM-2, bla NDM-3) from Carbapenem-Resistant Escherichia coli and Klebsiella pneumoniae: First Report from Nepal. Infect Drug Resist 2022; 15:4419-4434. [PMID: 35983298 PMCID: PMC9379106 DOI: 10.2147/idr.s369934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
Background Increasing burden of carbapenem resistance among Enterobacterales is attributable to their ability to produce carbapenemase enzymes like metallo-beta-lactamase (MBL), Klebsiella pneumoniae carbapenemase (KPC), and OXA-type. This study aimed to determine the prevalence of carbapenemases and MBL genes ((blaNDM-1,blaNDM-1 and blaNDM-3) among E. coli and K. pneumoniae isolates. Methods A total of 2474 urine samples collected during the study period (July–December 2017) were processed at the microbiology laboratory of Kathmandu Model Hospital, Kathmandu. Isolates of E. coli and K. pneumoniae were processed for antimicrobial susceptibility testing (AST) by disc diffusion method. Carbapenem-resistant isolates were subjected to Modified Hodge Test (MHT) for phenotypic confirmation, and inhibitor-based combined disc tests for the differentiation of carbapenemase (MBL and KPC). MBL-producing isolates were screened for NDM genes by polymerase chain reaction (PCR). Results Of the total urine samples processed, 19.5% (483/2474) showed the bacterial growth. E. coli (72.6%; 351/483) was the predominant isolate followed by K. pneumoniae (12.6%; 61/483). In AST, 4.4% (18/412) isolates of E. coli (15/351) and K. pneumonia (3/61) showed resistance towards carbapenems, while 1.7% (7/412) of the isolates was confirmed as carbapenem-resistant in MHT. In this study, all (3/3) the isolates of K. pneumoniae were KPC-producers, whereas 66.7% (10/15), 20% (3/15) and 13.3% (2/15) of the E. coli isolates were MBL, KPC and MBL/KPC (both)-producers, respectively. In PCR assay, 80% (8/10), 90% (9/10) and 100% (10/10) of the isolates were positive for blaNDM-1, blaNDM-2 and blaNDM-3, respectively. Conclusion Presence of NDM genes among carbapenemase-producing isolates is indicative of potential spread of drug-resistant variants. This study recommends the implementation of molecular diagnostic facilities in clinical settings for proper infection control, which can optimize the treatment therapies, and curb the emergence and spread of drug-resistant pathogens.
Collapse
Affiliation(s)
- Anisha Thapa
- Department of Microbiology, Golden Gate International College, Kathmandu, Nepal
| | - Milan Kumar Upreti
- Department of Microbiology, Golden Gate International College, Kathmandu, Nepal
| | - Nabin Kishor Bimali
- Department of Microbiology, Golden Gate International College, Kathmandu, Nepal
| | | | - Anil Kumar Sah
- Annapurna Neurological Institute and Allied Sciences, Kathmandu, Nepal
| | - Krishus Nepal
- Department of Microbiology, Golden Gate International College, Kathmandu, Nepal
| | - Binod Dhungel
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Sanjib Adhikari
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Nabaraj Adhikari
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Binod Lekhak
- Department of Microbiology, Golden Gate International College, Kathmandu, Nepal.,Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Komal Raj Rijal
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
14
|
Yang Q, Olaifa K, Andrew FP, Ajibade PA, Ajunwa OM, Marsili E. Assessment of physiological and electrochemical effects of a repurposed zinc dithiocarbamate complex on Acinetobacter baumannii biofilms. Sci Rep 2022; 12:11701. [PMID: 35810245 PMCID: PMC9271062 DOI: 10.1038/s41598-022-16047-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/04/2022] [Indexed: 11/09/2022] Open
Abstract
Acinetobacter baumannii is an infectious agent of global proportion and concern, partly due to its proficiency in development of antibiotic resistance phenotypes and biofilm formation. Dithiocarbamates (DTC) have been identified as possible alternatives to the current antimicrobials. We report here the evaluation of several DTC-metal complexes against A. baumannii planktonic cells and biofilms. Among the DTC-metal complexes and DTCs tested, ZnL1 (N-methyl-1-phenyldithiocarbamato-S,S' Zn(II)), originally designed as an antitumor agent, is effective against biofilm forming A. baumannii. A MIC value of 12.5 µM, comparable to that of Gentamicin (5 µM) was measured for planktonic cells in tryptic soy broth. Spectroscopy, microscopy and biochemical analyses reveal cell membrane degradation and leakage after treatment with ZnL1. Bioelectrochemical analyses show that ZnL1 reduces biofilm formation and decreases extracellular respiration of pre-formed biofilms, as corroborated by microscopic analyses. Due to the affinity of Zn to cells and the metal chelating nature of L1 ligand, we hypothesize ZnL1 could alter metalloprotein functions in the membranes of A. baumannii cells, leading to altered redox balance. Results indicate that the DTC-Zn metal complex is an effective antimicrobial agent against early A. baumannii biofilms under laboratory conditions.
Collapse
Affiliation(s)
- Qing Yang
- Biofilm Laboratory, Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan, 01000, Kazakhstan
| | - Kayode Olaifa
- Biofilm Laboratory, Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan, 01000, Kazakhstan
| | - Fartisincha P Andrew
- Department of Science Laboratory Technology, Modibbo Adama University, Yola, Nigeria
| | - Peter A Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Obinna M Ajunwa
- Biofilm Laboratory, Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan, 01000, Kazakhstan.,Department of Microbiology, Modibbo Adama University, Yola, Nigeria
| | - Enrico Marsili
- Biofilm Laboratory, Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan, 01000, Kazakhstan.
| |
Collapse
|
15
|
Ghaznavi-Rad E, Komijani M, Moradabadi A, Rezaei M, Shaykh-Baygloo N. Isolation of a lytic bacteriophage against extensively drug-resistant Acinetobacter baumannii infections and its dramatic effect in rat model of burn infection. J Clin Lab Anal 2022; 36:e24497. [PMID: 35708005 PMCID: PMC9279972 DOI: 10.1002/jcla.24497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/25/2022] Open
Abstract
Objectives Acinetobacter Baumannii is an opportunistic nosocomial pathogen belonging to the Moraxellaceae family. The emergence of multidrug resistant strains of this pathogen caused many problems for hospitals and patients. The aim of the current study was to isolate, identify, and morphologically, physiologically, and in vivo analyze a new lytic bacteriophage targeting extensively drug‐resistant (XDR) A. baumannii. Materials and Methods Different wastewater samples were tested for isolation of lytic bacteriophage against 19 A. baumannii isolates obtained from patients hospitalized in a hospital in Arak, Iran, from January 2019 to March 2019. The phenotypic and genotypic characteristics of A. baumannii strains (resistance genes including: adeA, adeB, adeC, adeR, adeS, ISAba1, blaOXA‐23, blaOXA‐24) were analyzed. The isolated phage characteristics including adsorption time, pH and thermal stability, host range, one‐step growth rate, electron microscopy examination, and therapeutic efficacy of the phage were also investigated. Therapeutic efficacy of the phage was evaluated in a rat model with burn infection of XDR A. baumannii. The lesion image was taken on different days after burning and infection induction and was compared with phage untreated lesions. Results The results showed unique characteristics of the isolated phage (vB‐AbauM‐Arak1) including high specificity for Acinetobacter baumannii, stability at a relatively wide range of temperatures and pH values, short adsorption time, short latent period, and large burst size. In relation to the therapeutic efficacy of the phage, the lesion area decreased in phage‐treated groups over 14 days than in those untreated, significantly (p < 0.05). Conclusion Our findings demonstrated that isolated lytic phage was able to eliminate burn infections caused by XDR A. baumannii in a rat model. So, it may be recommended as alternative options toward to developing a treatment for extensively drug resistant Acinetobacter infections.
Collapse
Affiliation(s)
- Ehsanollah Ghaznavi-Rad
- Department of Medical Laboratory Science, Faculty of Paramedicine, Arak University of Medical Sciences, Arak, Iran.,Molecular Research Center, Faculty of Medicine, Arak University of medical sciences, Arak, Iran
| | - Majid Komijani
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Alireza Moradabadi
- Molecular and medicine research center, Khomein University of Medical Sciences, Khomein, Iran
| | - Marzieh Rezaei
- Department of Cell, Molecular Biology and Microbiology, Faculty of Biological Sciences and Biotechnology, University of Isfahan, Isfahan, Iran
| | | |
Collapse
|
16
|
Bhandari S, Adhikari S, Karki D, Chand AB, Sapkota S, Dhungel B, Banjara MR, Joshi P, Lekhak B, Rijal KR. Antibiotic Resistance, Biofilm Formation and Detection of mexA/mexB Efflux-Pump Genes Among Clinical Isolates of Pseudomonas aeruginosa in a Tertiary Care Hospital, Nepal. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2021.810863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Efflux-pump system and biofilm formation are two important mechanisms Pseudomonas aeruginosa deploys to escape the effects of antibiotics. The current study was undertaken from September 2019 to March 2020 at a tertiary-care hospital in Kathmandu in order to ascertain the burden of P. aeruginosa in clinical specimens, examine their biofilm-forming ability and determine their antibiotic susceptibility pattern along with the possession of two efflux-pump genes-mexA and mexB. Altogether 2820 clinical specimens were collected aseptically from the patients attending the hospital and processed according to standard microbiological procedures. Identification of P. aeruginosa was done by Gram stain microscopy and an array of biochemical tests. All the P. aeruginosa isolates were subjected to in vitro antibiotic susceptibility testing and their biofilm-forming ability was also examined. Presence of mexA and mexB efflux-pump genes was analyzed by Polymerase Chain Reaction (PCR) using specific primers. Out of 603 culture positive isolates, 31 (5.14%) were found to be P. aeruginosa, of which 55% were multi-drug resistant (MDR). Out of 13 commonly used antibiotics tested by Kirby-Bauer disc diffusion method, greatest resistance was shown against piperacillin-tazobactam 15 (48.4%) and ceftazidime 15 (48.4%), and least against meropenem 6 (19.4%) and ofloxacin 5 (16.2%). Of all 17 MDR isolates subjected to biofilm detection, strong biofilm formation was exhibited by 11 (65%) and 14 (82%) isolates with microtiter plate method and tube method respectively. Out of 17 isolates tested, 12 (70.6%) isolates possessed mexA and mexB genes indicating the presence of active efflux-pump system. Higher number of the isolates recovered from sputum 7 (58.3%) and pus 5 (41.7%) possessed mexA/mexB genes while the genes were not detected at all in the isolates recovered from the urine (p<0.05). This study assessed no significant association between biofilm production and multi-drug resistance (p>0.05). Adoption of stern measures by the concerned authorities to curb the incidence of multi-drug resistant and biofilm-forming isolates is recommended to prevent their dissemination in the hospital settings.
Collapse
|
17
|
AL-Dulaimi M, Algburi A, Abdelhameed A, Mazanko MS, Rudoy DV, Ermakov AM, Chikindas ML. Antimicrobial and Anti-Biofilm Activity of Polymyxin E Alone and in Combination with Probiotic Strains of Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 against Clinical Isolates of Selected Acinetobacter spp.: A Preliminary Study. Pathogens 2021; 10:1574. [PMID: 34959528 PMCID: PMC8707300 DOI: 10.3390/pathogens10121574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 01/23/2023] Open
Abstract
Acinetobacter spp., the nosocomial pathogen, forms strong biofilms and is resistant to numerous antibiotics, causing persistent infections. This study investigates the antibacterial and anti-biofilm activity of polymyxin E alone and in combination with the cell-free supernatants (CFS) of the tested probiotic bacilli, Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 against the selected Acinetobacter spp. starins. Three isolates of Acinetobacter spp., designated as Acinetobacter spp. isolate 1; Acinetobacter spp. isolate 2, and Acinetobacter spp. isolate 3, were collected from patients with burns, wounds, and blood infections, respectively. Bacterial identification and antibiotic susceptibility testing were conducted using the VITEK2 system. Auto-aggregation and coaggregation of the tested bacilli strains with the selected Acinetobacter spp. isolates were evaluated. A disk diffusion assay was used to identify the microorganism's susceptibility to the selected antibiotics, alone and in combination with the CFS of the bacilli. The MIC and MBIC (minimum inhibitory and minimum biofilm inhibitory concentrations) of polymyxin E combined with bacilli CFS were determined. Acinetobacter spp. isolates were (i) sensitive to polymyxin E, (ii) able to form a strong biofilm, and (iii) resistant to the tested antibiotics and the CFS of tested bacilli. Significant inhibition of biofilm formation was noticed when CFS of the tested bacilli were combined with polymyxin E. The bacilli CFS showed synergy with polymyxin E against planktonic cells and biofilms of the isolated pathogens.
Collapse
Affiliation(s)
- Munaf AL-Dulaimi
- Educational Laboratories, Baqubah General Hospital, Baqubah 32001, Iraq;
| | - Ammar Algburi
- Scholarship and Cultural Relations Department, University of Diyala, Baqubah 32001, Iraq;
- Biotechnology Department, College of Science, University of Diyala, Baqubah 32001, Iraq
| | - Alyaa Abdelhameed
- Scholarship and Cultural Relations Department, University of Diyala, Baqubah 32001, Iraq;
| | - Maria S. Mazanko
- Center for Agrobiotechnology, Don State Technical University, 344002 Rostov-on-Don, Russia; (M.S.M.); (D.V.R.); (A.M.E.); (M.L.C.)
| | - Dmitry V. Rudoy
- Center for Agrobiotechnology, Don State Technical University, 344002 Rostov-on-Don, Russia; (M.S.M.); (D.V.R.); (A.M.E.); (M.L.C.)
| | - Alexey M. Ermakov
- Center for Agrobiotechnology, Don State Technical University, 344002 Rostov-on-Don, Russia; (M.S.M.); (D.V.R.); (A.M.E.); (M.L.C.)
| | - Michael L. Chikindas
- Center for Agrobiotechnology, Don State Technical University, 344002 Rostov-on-Don, Russia; (M.S.M.); (D.V.R.); (A.M.E.); (M.L.C.)
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ 08904, USA
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| |
Collapse
|
18
|
Karn M, Bhargava D, Dhungel B, Banjara MR, Rijal KR, Ghimire P. The burden and characteristics of nosocomial infections in an intensive care unit: A cross-sectional study of clinical and nonclinical samples at a tertiary hospital of Nepal. Int J Crit Illn Inj Sci 2021; 11:236-245. [PMID: 35070914 PMCID: PMC8725804 DOI: 10.4103/ijciis.ijciis_7_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/04/2022] Open
Abstract
Background Patients at intensive care units (ICUs) are vulnerable to acquiring nosocomial infections. The main objective of this study was to explore and characterize the burden of nosocomial infections from an ICU of National Medical College and Teaching Hospital (NMCTH), Birgunj, Nepal. Methods A prospective hospital-based study was conducted between April and December 2018 at NMCTH, Birgunj, Province 2, of Nepal. A total of 374 specimens including clinical specimens (n = 190) from patients admitted in an ICU and animate and inanimate environmental samples (n = 184) from the ICU were collected. Collected specimens were cultured in specific microbiological media, and microbial isolates were identified and subjected to antibiotic susceptibility test. Results Altogether, 374 specimens (190 clinical specimens and 184 nonclinical) of an ICU were analyzed. Out of 190 clinical specimens, 51% (97/190) showed bacterial growth. Isolated bacteria were Staphylococcus aureus (33%; 32/97), Escherichia coli (20.6%; 20/97), Klebsiella spp. (15.5%; 15/97), Pseudomonas spp. (11.3%; 11/97), and Acinetobacter spp. (11.3%; 11/97). Out of 184 nonclinical specimens, 51.6% (95/184) of the samples showed microbial growth. Among the isolates, Klebsiella spp. predominated (30.6%; 26/85) the growth, followed by S. aureus (22.4%; 19/85), Acinetobacter spp. (21.2%; 18/85), and Pseudomonas spp. (17.6%; 15/85). Among all clinical and nonclinical isolates, 61.9% (60/97) of the clinical specimens and 65.9% (56/85) of the nonclinical specimens showed multidrug resistance (MDR). Conclusion Two-thirds of the specimens from both clinical and nonclinical specimens showed MDR. Urgent actions are required to address the augmented rate of nosocomial infections and MDR bacteria among ICUs in Nepal.
Collapse
Affiliation(s)
- Manisha Karn
- Department of Microbiology, Central Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Dipak Bhargava
- National Medical College & Teaching Hospital, Birgunj, Nepal
| | - Binod Dhungel
- Department of Microbiology, Central Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Megha Raj Banjara
- Department of Microbiology, Central Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Komal Raj Rijal
- Department of Microbiology, Central Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Prakash Ghimire
- Department of Microbiology, Central Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
19
|
Thapa S, Adhikari N, Shah AK, Lamichhane I, Dhungel B, Shrestha UT, Adhikari B, Banjara MR, Ghimire P, Rijal KR. Detection of NDM-1 and VIM Genes in Carbapenem-Resistant Klebsiella pneumoniae Isolates from a Tertiary Health-Care Center in Kathmandu, Nepal. Chemotherapy 2021; 66:199-209. [PMID: 34515078 DOI: 10.1159/000518256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 07/04/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Klebsiella pneumoniae is one of the leading causes of nosocomial infections. Carbapenems are used as the last resort for the treatment of multidrug resistant Gram-negative bacterial infections. In recent years, resistance to these lifesaving drugs has been increasingly reported due to the production of carbapenemase. The main objective of this study was to detect the carbapenem-resistant genes blaNDM-1 and blaVIM in K. pneumoniae isolated from different clinical specimens. METHODS A total of 585 clinical specimens (urine, pus, sputum, blood, catheter tips, and others) from human subjects attended at Annapurna Neurological Institute and Allied Sciences, Kathmandu were obtained in the period between July 2018 and January 2019. The specimens were isolated and identified for K. pneumoniae. All K. pneumoniae isolates were processed for antimicrobial susceptibility testing (AST) using the disk diffusion method. The isolates were further phenotypically confirmed for carbapenemase production by the modified Hodge test (MHT) using imipenem (10 μg) and meropenem (10 μg) discs. Thus, confirmed carbapenemase-producing isolates were further screened for the production of blaNDM-1 and blaVIM using conventional polymerase chain reaction (PCR). RESULTS Among the clinical isolates tested, culture positivity was 38.29% (224/585), and the prevalence of K. pneumoniae was 25.89% (58/224). On AST, K. pneumoniae exhibited resistance toward carbapenems including ertapenem, meropenem, and imipenem, while it showed the highest susceptibility rate against to tigecycline (93.1%; 54/58). Overall, AST detected 60.34% (35/58) carbapenem-resistant isolates, while the MHT phenotypically confirmed 51.72% (30/58) isolates as carbapenemase-producers and 48.28% (28/58) as carbapenemase nonproducers. On subsequent screening for resistant genes among carbapenemase-producers by PCR assay, 80% (24/30) and 3.33% (1/30) isolates were found to be positive for blaNDM-1 and blaVIM, respectively. In the same assay among 28 carbapenem nonproducing isolates, 9 (32.14%) isolates were positive for blaNDM-1 gene while none of them were tested positive for blaVIM gene. CONCLUSIONS Molecular detection of resistant genes provides greater specificity and sensitivity than those with conventional techniques, thus aiding in accurate identification of antimicrobial resistance and clinical management of the disease.
Collapse
Affiliation(s)
- Sabita Thapa
- Kantipur College of Medical Sciences, Kathmandu, Nepal
| | - Nabaraj Adhikari
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Anil Kumar Shah
- Annapurna Neurological Institute and Allied Sciences, Kathmandu, Nepal
| | | | - Binod Dhungel
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | | | - Bipin Adhikari
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Megha Raj Banjara
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Prakash Ghimire
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Komal Raj Rijal
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
20
|
Gurung R, Adhikari S, Adhikari N, Sapkota S, Rana JC, Dhungel B, Thapa Shrestha U, Banjara MR, Ghimire P, Rijal KR. Efficacy of Urine Dipstick Test in Diagnosing Urinary Tract Infection and Detection of the blaCTX-M Gene among ESBL-Producing Escherichia coli. Diseases 2021; 9:diseases9030059. [PMID: 34562966 PMCID: PMC8482205 DOI: 10.3390/diseases9030059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 01/24/2023] Open
Abstract
A urine dipstick test used for prompt diagnosis of urinary tract infection (UTI) is a rapid and cost-effective method. The main objective of this study was to compare the efficacy of the urine dipstick test with culture methods in screening for UTIs along with the detection of the blaCTX-M gene in extended spectrum β-lactamase (ESBL)-producing Escherichia coli. A total of 217 mid-stream urine samples were collected from UTI-suspected patients attending Bharatpur Hospital, Chitwan, and tested by dipstick test strip (COMBI-10SL, Germany) prior to the culture. E. coli isolates were identified by standard microbiological procedures and subjected to antimicrobial susceptibility testing by Kirby Bauer disc diffusion method following CLSI guideline. Primary screening of ESBL-producing E. coli isolates was conducted using ceftriaxone, cefotaxime and ceftazidime discs and phenotypically confirmed by combined disk diffusion test. Plasmid DNA of ESBL-producing strains was extracted by phenol-chloroform method and subjected to PCR for detection of the blaCTX-M gene. Out of 217 urine samples, 48 (22.12%) showed significant bacteriuria. Among 46 (21.20%) Gram negative bacteria recovered, the predominant one was E. coli 37 (77.08%) of which 33 (89.19%) were multidrug resistant (MDR). E. coli isolates showed a higher degree of resistance towards cefazolin (62.16%) while 81.08% of the isolates were sensitive towards amikacin followed by nitrofurantoin (70.27%). Among 14 (37.84%) phenotypically confirmed ESBL isolates, only eight (21.62%) isolates carried the blaCTX-M gene. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of urine dipstick test were 43.75%, 77.51%, 35.59% and 82.91%, respectively. Besides, the use of dipstick test strip for screening UTI was associated with many false positive and negative results as compared to the gold standard culture method. Hence, dipstick nitrite test alone should not be used as sole method for screening UTIs.
Collapse
Affiliation(s)
- Rubina Gurung
- Central Department of Microbiology, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal; (R.G.); (S.A.); (N.A.); (B.D.); (U.T.S.); (M.R.B.); (P.G.)
| | - Sanjib Adhikari
- Central Department of Microbiology, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal; (R.G.); (S.A.); (N.A.); (B.D.); (U.T.S.); (M.R.B.); (P.G.)
| | - Nabaraj Adhikari
- Central Department of Microbiology, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal; (R.G.); (S.A.); (N.A.); (B.D.); (U.T.S.); (M.R.B.); (P.G.)
| | - Sanjeep Sapkota
- Department of Microbiology, Birendra Multiple Campus, Tribhuvan University, Bharatpur 44200, Chitwan, Nepal;
| | - Jid Chani Rana
- Department of Microbiology, Bharatpur Hospital, Bharatpur 44200, Chitwan, Nepal;
| | - Binod Dhungel
- Central Department of Microbiology, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal; (R.G.); (S.A.); (N.A.); (B.D.); (U.T.S.); (M.R.B.); (P.G.)
| | - Upendra Thapa Shrestha
- Central Department of Microbiology, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal; (R.G.); (S.A.); (N.A.); (B.D.); (U.T.S.); (M.R.B.); (P.G.)
| | - Megha Raj Banjara
- Central Department of Microbiology, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal; (R.G.); (S.A.); (N.A.); (B.D.); (U.T.S.); (M.R.B.); (P.G.)
| | - Prakash Ghimire
- Central Department of Microbiology, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal; (R.G.); (S.A.); (N.A.); (B.D.); (U.T.S.); (M.R.B.); (P.G.)
| | - Komal Raj Rijal
- Central Department of Microbiology, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal; (R.G.); (S.A.); (N.A.); (B.D.); (U.T.S.); (M.R.B.); (P.G.)
- Correspondence: or
| |
Collapse
|
21
|
Biofilm Formation and Phenotypic Detection of ESBL, MBL, KPC and AmpC Enzymes and Their Coexistence in Klebsiella spp. Isolated at the National Reference Laboratory, Kathmandu, Nepal. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12030049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Klebsiella spp. are associated with several nosocomial and opportunistic infections. Increasing antimicrobial resistance of Klebsiella species is aggravated by a number of intrinsic and extrinsic factors. The main aim of this study is to determine antimicrobial resistance due to production of β-lactamase enzymes, extended spectrum beta-lactamase (ESBL), metallo-beta-lactamase (MBL) and AmpC and Klebsiella pneumoniae carbapenemase (KPC) and biofilm formation in Klebsiella isolates. A total of 2197 non-duplicate specimens of urine, sputum and pus were obtained from the National Public Health Laboratory (NPHL), Kathmandu, Nepal, between February and August 2019. Klebsiella species were isolated, identified and screened for antimicrobial susceptibility testing with the disk diffusion method. Phenotypic detection of ESBL, MBL, KPC and AmpC production was observed and biofilm production was detected by the microtiter plate method. Out of a total of 2197 clinical specimens, bacterial growth was detected in 8% (175/2197) of the specimens. Of the total isolates, 86.3% (151/175) were Gram-negative bacteria and 37.7% (57/151) were Klebsiella spp. Of the total Klebsiella spp., 56% (32/57) were multi drug resistant (MDR), 16% (9/57) were ESBL, 26% (15/57) were MBL, 4% (2/57) were KPC (class A carbapenemase), 16% (9/57) were AmpC producers and 95% (54/57) were biofilm producers. Gentamicin was the most effective antibiotic, followed by cotrimoxazole, as 68% (39/57) and 47% (27/57) of the Klebsiella isolates were susceptible towards these drugs, respectively. The study results show evidence of β-lactamase production, high prevalence of MDR and biofilm producing Klebsiella species. Integrating the test parameters for phenotypic confirmation of ESBL, MBL, AmpC β lactamase and KPC in routine diagnostic procedures can help in the early detection and management of these resistant strains.
Collapse
|
22
|
Karki D, Dhungel B, Bhandari S, Kunwar A, Joshi PR, Shrestha B, Rijal KR, Ghimire P, Banjara MR. Antibiotic resistance and detection of plasmid mediated colistin resistance mcr-1 gene among Escherichia coli and Klebsiella pneumoniae isolated from clinical samples. Gut Pathog 2021; 13:45. [PMID: 34225805 PMCID: PMC8256586 DOI: 10.1186/s13099-021-00441-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The prevalence of antimicrobial resistance (AMR) among Gram-negative bacteria is alarmingly high. Reintroduction of colistin as last resort treatment in the infections caused by drug-resistant Gram-negative bacteria has led to the emergence and spread of colistin resistance. This study was designed to determine the prevalence of drug-resistance among beta-lactamase-producing strains of Escherichia coli and Klebsiella pneumoniae, isolated from the clinical specimens received at a tertiary care centre of Kathmandu, Nepal during the period of March to August, 2019. METHODS A total of 3216 different clinical samples were processed in the Microbiology laboratory of Kathmandu Model Hospital. Gram-negative isolates (E. coli and K. pneumoniae) were processed for antimicrobial susceptibility test (AST) by using modified Kirby-Bauer disc diffusion method. Drug-resistant isolates were further screened for extended-spectrum beta-lactamase (ESBL), metallo-beta-lactamase (MBL), carbapenemase and K. pneumoniae carbapenemase (KPC) production tests. All the suspected enzyme producers were processed for phenotypic confirmatory tests. Colistin resistance was determined by minimum inhibitory concentration (MIC) using agar dilution method. Colistin resistant strains were further screened for plasmid-mediated mcr-1 gene using conventional polymerase chain reaction (PCR). RESULTS Among the total samples processed, 16.4% (529/3216) samples had bacterial growth. A total of 583 bacterial isolates were recovered from 529 clinical samples. Among the total isolates, 78.0% (455/583) isolates were Gram-negative bacteria. The most predominant isolate among Gram-negatives was E. coli (66.4%; 302/455) and K. pneumoniae isolates were 9% (41/455). In AST, colistin, polymyxin B and tigecycline were the most effective antibiotics. The overall prevalence of multidrug-resistance (MDR) among both of the isolates was 58.0% (199/343). In the ESBL testing, 41.1% (n = 141) isolates were confirmed as ESBL-producers. The prevalence of ESBL-producing E. coli was 43% (130/302) whereas that of K. pneumoniae was 26.8% (11/41). Similarly, 12.5% (43/343) of the total isolates, 10.9% (33/302) of E. coli and 24.3% of (10/41) K. pneumoniae were resistant to carbapenem. Among 43 carbapenem resistant isolates, 30.2% (13/43) and 60.5% (26/43) were KPC and MBL-producers respectively. KPC-producers isolates of E. coli and K. pneumoniae were 33.3% (11/33) and 20% (2/10) respectively. Similarly, 63.6% (21/33) of the E. coli and 50% (5/10) of the K. pneumoniae were MBL-producers. In MIC assay, 2.2% (4/179) of E. coli and 10% (2/20) of K. pneumoniae isolates were confirmed as colistin resistant (MIC ≥ 4 µg/ml). Overall, the prevalence of colistin resistance was 3.1% (6/199) and acquisition of mcr-1 was 16.6% (3/18) among the E. coli isolates. CONCLUSION High prevalence of drug-resistance in our study is indicative of a deteriorating situation of AMR. Moreover, significant prevalence of resistant enzymes in our study reinforces their roles in the emergence of drug resistance. Resistance to last resort drug (colistin) and the isolation of mcr-1 indicate further urgency in infection management. Therefore, extensive surveillance, formulation and implementation of effective policies, augmentation of diagnostic facilities and incorporation of antibiotic stewardship programs can be some remedies to cope with this global crisis.
Collapse
Affiliation(s)
- Deepa Karki
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Binod Dhungel
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Srijana Bhandari
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Anil Kunwar
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | | | - Basudha Shrestha
- Department of Microbiology, Kathmandu Model Hospital, Kathmandu, Nepal
| | - Komal Raj Rijal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Prakash Ghimire
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Megha Raj Banjara
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal.
| |
Collapse
|
23
|
Rijal KR, Banjara MR, Dhungel B, Kafle S, Gautam K, Ghimire B, Ghimire P, Dhungel S, Adhikari N, Shrestha UT, Sunuwar DR, Adhikari B, Ghimire P. Use of antimicrobials and antimicrobial resistance in Nepal: a nationwide survey. Sci Rep 2021; 11:11554. [PMID: 34078956 PMCID: PMC8172831 DOI: 10.1038/s41598-021-90812-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/18/2021] [Indexed: 01/21/2023] Open
Abstract
Nepal suffers from high burden of antimicrobial resistance (AMR) due to inappropriate use of antibiotics. The main objective of this study was to explore knowledge, attitude and practices of antibiotics uses among patients, healthcare workers, laboratories, drug sellers and farmers in eight districts of Nepal. A cross-sectional survey was conducted between April and July 2017. A total of 516 individuals participated in a face-to-face interview that included clinicians, private drug dispensers, patients, laboratories, public health centers/hospitals and, livestock and poultry farmers. Out of 516 respondents, 62.8% (324/516) were patients, 16.9% (87/516) were clinicians, 6.4% (33/516) were private drug dispensers. A significant proportion of patients (42.9%; 139/324) thought that fever could be treated with antibiotics. Majority (79%; 256/324) of the patients purchased antibiotics over the counter. The knowledge of antibiotics used among patients increased proportionately with the level of education: literate only [AOR = 1.4 (95% Cl = 0.6-4.4)], versus secondary education (8-10 grade) [AOR = 1.8 (95% Cl = 1.0-3.4)]. Adult patients were more aware of antibiotic resistance. Use of antibiotics over the counter was found high in this study. Knowledge, attitude and practice related to antibiotic among respondents showed significant gaps and need an urgent effort to mitigate such practice.
Collapse
Affiliation(s)
- Komal Raj Rijal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal.
| | - Megha Raj Banjara
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Binod Dhungel
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Samarpan Kafle
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Kedar Gautam
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Bindu Ghimire
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | | | | | - Nabaraj Adhikari
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | | | - Dev Ram Sunuwar
- Department of Public Health, Asian College for Advance Studies, Purbanchal University, Lalitpur, Nepal
| | - Bipin Adhikari
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Prakash Ghimire
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal.
| |
Collapse
|
24
|
Detection of TEM and CTX-M Genes in Escherichia coli Isolated from Clinical Specimens at Tertiary Care Heart Hospital, Kathmandu, Nepal. Diseases 2021; 9:diseases9010015. [PMID: 33562276 PMCID: PMC7931013 DOI: 10.3390/diseases9010015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/19/2021] [Accepted: 02/04/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Antimicrobial resistance (AMR) among Gram-negative pathogens, predominantly ESBL-producing clinical isolates, are increasing worldwide. The main aim of this study was to determine the prevalence of ESBL-producing clinical isolates, their antibiogram, and the frequency of ESBL genes (blaTEM and blaCTX-M) in the clinical samples from patients. Methods: A total of 1065 clinical specimens from patients suspected of heart infections were collected between February and August 2019. Bacterial isolates were identified on colony morphology and biochemical properties. Thus, obtained clinical isolates were screened for antimicrobial susceptibility testing (AST) using modified Kirby–Bauer disk diffusion method, while ESBL producers were identified by using a combination disk diffusion method. ESBL positive isolates were further assessed using conventional polymerase chain reaction (PCR) to detect the ESBL genes blaTEM and blaCTX-M. Results: Out of 1065 clinical specimens, 17.8% (190/1065) showed bacterial growth. Among 190 bacterial isolates, 57.4% (109/190) were Gram-negative bacteria. Among 109 Gram-negative bacteria, 40.3% (44/109) were E. coli, and 30.2% (33/109) were K. pneumoniae. In AST, 57.7% (n = 63) Gram-negative bacterial isolates were resistant to ampicillin and 47.7% (n = 52) were resistant to nalidixic acid. Over half of the isolates (51.3%; 56/109) were multidrug resistant (MDR). Of 44 E. coli, 27.3% (12/44) were ESBL producers. Among ESBL producer E. coli isolates, 58.4% (7/12) tested positive for the blaCTX-M gene and 41.6% (5/12) tested positive for the blaTEM gene. Conclusion: Half of the Gram-negative bacteria in our study were MDR. Routine identification of an infectious agent followed by AST is critical to optimize the treatment and prevent antimicrobial resistance.
Collapse
|
25
|
Aryal SC, Upreti MK, Sah AK, Ansari M, Nepal K, Dhungel B, Adhikari N, Lekhak B, Rijal KR. Plasmid-Mediated AmpC β-Lactamase CITM and DHAM Genes Among Gram-Negative Clinical Isolates. Infect Drug Resist 2020; 13:4249-4261. [PMID: 33262619 PMCID: PMC7699442 DOI: 10.2147/idr.s284751] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/06/2020] [Indexed: 12/25/2022] Open
Abstract
Background Antibiotic resistance mediated by the production of extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases is posing a serious threat in the management of the infections caused by Gram-negative pathogens. The aim of this study was to determine the prevalence of two AmpC β-lactamases genes, blaCITM and blaDHAM, in Gram-negative bacterial isolates. Materials and Methods A total of 1151 clinical samples were obtained and processed at the microbiology laboratory of Annapurna Neurological Institute and Allied Science, Kathmandu between June 2017 and January 2018. Gram-negative isolates thus obtained were tested for antimicrobial susceptibility testing (AST) using Kirby–Bauer disk diffusion method. AmpC β-lactamase production was detected by disk approximation method using phenylboronic acid (PBA). Confirmed AmpC β-lactamase producers were further screened for blaCITM and blaDHAM genes by conventional polymerase chain reaction (PCR). Results Out of 1151 clinical specimens, 22% (253/1152) had bacterial growth. Of the total isolates, 89.3% (226/253) were Gram-negatives, with E. coli as the most predominant species (n=72) followed by Pseudomonas aeruginosa (n=41). In the AST, 46.9% (106/226) of the Gram-negative isolates were multidrug resistant (MDR). In disk diffusion test, 113 (50%) isolates showed resistance against cefoxitin, among which 91 isolates (83 by disk test and Boronic acid test, 8 by Boronic test only) were confirmed as AmpC β-lactamase-producers. In PCR assay, 90.1% (82/91) and 87.9% (80/91) of the isolates tested positive for production of blaCITM and blaDHAM genes, respectively. Conclusions High prevalence of AmpC β-lactamase-producers in our study is an alarming sign. This study recommends the use of modern diagnostic facilities in the clinical settings for early detection and management which can optimize the treatment therapies, curb the growth and spread of the drug-resistant pathogens.
Collapse
Affiliation(s)
| | | | - Anil Kumar Sah
- Annapurna Neurological Institute and Allied Sciences, Kathmandu, Nepal
| | - Meharaj Ansari
- Shi-Gan Int'l College of Science and Technology (SICOST), Kathmandu, Nepal
| | | | - Binod Dhungel
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Nabaraj Adhikari
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Binod Lekhak
- Golden Gate International College, Kathmandu, Nepal.,Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Komal Raj Rijal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
26
|
Muktan B, Thapa Shrestha U, Dhungel B, Mishra BC, Shrestha N, Adhikari N, Banjara MR, Adhikari B, Rijal KR, Ghimire P. Plasmid mediated colistin resistant mcr-1 and co-existence of OXA-48 among Escherichia coli from clinical and poultry isolates: first report from Nepal. Gut Pathog 2020; 12:44. [PMID: 32963589 PMCID: PMC7499862 DOI: 10.1186/s13099-020-00382-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Background Plasmid-mediated resistance to the last-resort drugs: carbapenems and colistin is an emerging public health threat. The studies on the prevalence and co-expression of resistant genes among livestock and human pathogens are rare in Nepal. This is the first study in Nepal exploring the prevalence and co-existence of colistin resistance gene, mcr-1 along with carbapenemase resistance gene, OXA-48 in Escherichia coli isolated from poultry and clinical specimens. Methods A total of 240 rectal swabs from chickens of five different poultry farms of Kathmandu valley and 705 mid-stream urine samples from human subjects attending Kantipur Hospital, Kathmandu were collected between August, 2018 and March, 2019. Rectal swabs and urine specimens were cultured. E. coli isolated from the specimens were screened for antimicrobial susceptibility testing (AST) using disk diffusion method’. Minimum inhibitory concentration (MIC) of colistin was determined by agar dilution method using 0.5 µg/ml to 32 µg/ml. The E. coli isolates were first screened for mcr-1 followed by screening for OXA-48 genes using conventional Polymerase chain reaction (PCR). Results Of the total samples analyzed, E. coli was isolated from 31.7% (76/240) of poultry and 7.9% (56/705) of clinical specimens. In AST, 80% (61/76) of E. coli from poultry and 79% (44/56) from clinical specimens were MDR. The phenotypic prevalence of colistin resistance in poultry specimens were 31.6% (24/76) and clinical specimens were 21.4% (12/56). In PCR assay, 27.6% (21/76) of poultry and 19.6% (11/56) of clinical isolates had colistin resistant mcr-1 gene. MICs value of E. coli isolates ranged from 4 to 32 (µg/ml) in both clinical and poultry isolates. Prevalence of co-existing carbapenem resistance gene, OXA-48, among colistin resistant mcr-1 positive isolates was 38% (8/21) in poultry specimens and 18.2% (2/11) in clinical specimens. Conclusions The high prevalence of colistin and carbapenem resistant genes, and their co-existence in plasmid DNA of E. coli isolates in this study suggests the possible spread to other animal, human and environmental pathogens. Molecular methods in addition to the conventional diagnostics in laboratories can help in early diagnosis, effective management and control of their potential transmission.
Collapse
Affiliation(s)
- Bijaya Muktan
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | | | - Binod Dhungel
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | | | - Nabaraj Shrestha
- Central Veterinary Laboratory, Ministry of Agriculture, Land Management and Cooperatives, Government of Nepal, Tripureshwor, Kathmandu, Nepal
| | - Nabaraj Adhikari
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Megha Raj Banjara
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Bipin Adhikari
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Komal Raj Rijal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Prakash Ghimire
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
27
|
Gurung S, Kafle S, Dhungel B, Adhikari N, Thapa Shrestha U, Adhikari B, Banjara MR, Rijal KR, Ghimire P. Detection of OXA-48 Gene in Carbapenem-Resistant Escherichia coli and Klebsiella pneumoniae from Urine Samples. Infect Drug Resist 2020; 13:2311-2321. [PMID: 32765007 PMCID: PMC7369300 DOI: 10.2147/idr.s259967] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/24/2020] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Resistance to carbapenem in Gram-negative bacteria is attributable to their ability to produce carbapenemase enzymes. The main objective of this study was to detect the presence of blaOXA-48 genes in carbapenem-resistant uropathogenic Escherichia coli and Klebsiella pneumoniae isolated from urine samples from patients attending Alka Hospital, Jawalakhel, Lalitpur, Nepal. METHODS A total of 1013 mid-stream urine samples were collected from patients with suspected urinary tract infection (UTI) between April and September 2018. The identified isolates underwent antibiotic susceptibility testing using the modified Kirby-Bauer disc-diffusion method. Phenotypic carbapenemase production was confirmed by the modified Hodge test, and the blaOXA-48 gene was detected using conventional polymerase chain reaction. RESULTS Out of 1013 urine samples, 15.2% (154/1013) had bacterial growth. Among the isolates, 91.5% (141/154) were Gram-negative bacteria, and E. coli was the most common bacterial isolate (62.9%; 97/154), followed by K. pneumoniae 15.6% (24/154). Among 121 bacterial isolates (97 E. coli isolates and 24 K. pneumoniae isolates), 70.3% (52/121) were multidrug-resistant E. coli and 29.7% (22/121) were multidrug-resistant K. pneumoniae. In addition, 9.1% (11/121) were carbapenem resistant (both imipenem and meropenem resistant). Development of multidrug resistance and development of carbapenem resistance were significantly associated (p<0.05). Of the 11 carbapenem-resistant isolates, only seven were carbapenemase producers; of these, 28.6% (2/7) were E. coli, 72.4% (5/7) were K. pneumoniae and 42.8% (3/7) had the blaOXA-48 gene. Of the three bacterial isolates with the blaOXA-48 gene, 33.3% (1/3) were E. coli and 66.7% (2/3) were K. pneumoniae. CONCLUSION One in ten isolates of E. coli and K. pneumoniae were carbapenem resistant. Among carbapenem-resistant isolates, one-third of E. coli and two-thirds of K. pneumoniae had the blaOXA-48 gene. OXA-48 serves as a potential agent to map the distribution of resistance among clinical isolates.
Collapse
Affiliation(s)
- Sushma Gurung
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | | | - Binod Dhungel
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Nabaraj Adhikari
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | | | - Bipin Adhikari
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Megha Raj Banjara
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Komal Raj Rijal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Prakash Ghimire
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|