1
|
Kong FH, Ye QF, Miao XY, Liu X, Huang SQ, Xiong L, Wen Y, Zhang ZJ. Current status of sorafenib nanoparticle delivery systems in the treatment of hepatocellular carcinoma. Theranostics 2021; 11:5464-5490. [PMID: 33859758 PMCID: PMC8039945 DOI: 10.7150/thno.54822] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer and one of the leading causes of cancer-related death worldwide. Advanced HCC displays strong resistance to chemotherapy, and traditional chemotherapy drugs do not achieve satisfactory therapeutic efficacy. Sorafenib is an oral kinase inhibitor that inhibits tumor cell proliferation and angiogenesis and induces cancer cell apoptosis. It also improves the survival rates of patients with advanced liver cancer. However, due to its poor solubility, fast metabolism, and low bioavailability, clinical applications of sorafenib have been substantially restricted. In recent years, various studies have been conducted on the use of nanoparticles to improve drug targeting and therapeutic efficacy in HCC. Moreover, nanoparticles have been extensively explored to improve the therapeutic efficacy of sorafenib, and a variety of nanoparticles, such as polymer, lipid, silica, and metal nanoparticles, have been developed for treating liver cancer. All these new technologies have improved the targeted treatment of HCC by sorafenib and promoted nanomedicines as treatments for HCC. This review provides an overview of hot topics in tumor nanoscience and the latest status of treatments for HCC. It further introduces the current research status of nanoparticle drug delivery systems for treatment of HCC with sorafenib.
Collapse
Affiliation(s)
- Fan-Hua Kong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Centre of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Qi-Fa Ye
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Centre of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Xiong-Ying Miao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Liu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Si-Qi Huang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Xiong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Wen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zi-Jian Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Recent advances of sorafenib nanoformulations for cancer therapy: Smart nanosystem and combination therapy. Asian J Pharm Sci 2020; 16:318-336. [PMID: 34276821 PMCID: PMC8261086 DOI: 10.1016/j.ajps.2020.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/01/2020] [Accepted: 07/25/2020] [Indexed: 12/21/2022] Open
Abstract
Sorafenib, a molecular targeted multi-kinase inhibitor, has received considerable interests in recent years due to its significant profiles of efficacy in cancer therapy. However, poor pharmacokinetic properties such as limited water solubility, rapid elimination and metabolism lead to low bioavailability, restricting its further clinical application. Over the past decade, with substantial progress achieved in the development of nanotechnology, various types of smart sorafenib nanoformulations have been developed to improve the targetability as well as the bioavailability of sorafenib. In this review, we summarize various aspects from the preparation and characterization to the evaluation of antitumor efficacy of numerous stimuli-responsive sorafenib nanodelivery systems, particularly with emphasis on their mechanism of drug release and tumor microenvironment response. In addition, this review makes great effort to summarize the nanosystem-based combination therapy of sorafenib with other antitumor agents, which can provide detailed information for further synergistic cancer therapy. In the final section of this review, we also provide a detailed discussion of future challenges and prospects of designing and developing ideal sorafenib nanoformulations for clinical cancer therapy.
Collapse
|
3
|
Banstola A, Pham TT, Jeong JH, Yook S. Polydopamine-tailored paclitaxel-loaded polymeric microspheres with adhered NIR-controllable gold nanoparticles for chemo-phototherapy of pancreatic cancer. Drug Deliv 2019; 26:629-640. [PMID: 31237149 PMCID: PMC6598510 DOI: 10.1080/10717544.2019.1628118] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Chemotherapeutic drugs often used as a first-line treatment of pancreatic cancer (PC) exhibit challenges due to resistance development, lack of selectivity, and tumor heterogeneity. Currently, combination chemo-photothermal therapy is known to enhance the therapeutic efficacy of chemotherapeutic drugs in PC. In this study, we develop adherent gold nanoparticles (GNPs) and paclitaxel (PTX)-loaded PLGA microspheres for the treatment of PC. Polydopamine (pD) was used as a linker to adhere GNPs to the surface of PLGA-Ms and characterized using TEM. Short-term cytotoxicity of GNPs-pD-PTX-PLGA-Ms with or without NIR treatment was evaluated using CCK-8 assays. ROS and western blot assay were performed to determine the intensity of ROS following the treatment of GNPs-pD-PTX-PLGA-Ms with or without NIR in Panc-1 cell line. Successful adhesion of GNPs on the microspheres was confirmed by TEM. CCK-8 assay revealed that GNPs-pD-PTX-PLGA-Ms with NIR showed three-fold higher cytotoxicity, compared to the group without NIR. Furthermore, ROS and western blot assay suggest that GNPs-pD-PTX-PLGA-Ms with NIR showed more ROS generation, followed by downregulation of the expression levels of antioxidant enzyme (SOD2 and CATALASE). These results suggest that the GNPs-pD-PTX-PLGA-Ms in combination with NIR irradiation can provide a synergistic chemo-photothermal therapy for the treatment of PC.
Collapse
Affiliation(s)
- Asmita Banstola
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Tung Thanh Pham
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu, South Korea
| |
Collapse
|
4
|
Yang W, Deng X, Huang W, Qing X, Shao Z. The Physicochemical Properties of Graphene Nanocomposites Influence the Anticancer Effect. JOURNAL OF ONCOLOGY 2019; 2019:7254534. [PMID: 31354821 PMCID: PMC6636583 DOI: 10.1155/2019/7254534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 12/23/2022]
Abstract
Graphene nanocomposite is an inorganic nanocomposite material, which has been widely used in the treatment of tumor at present due to its ability of drug loading, modifiability, photothermal effect, and photodynamic effect. However, the application of graphene nanocomposite is now limited due to the fact that the functions mentioned above are not well realized. This is mainly because people do not have a systematic understanding of the physical and chemical properties of GO nanomolecules, so that we cannot make full use of GO nanomolecules to make the most suitable materials for the use of medicine. Here, we are the first to discuss the influence of the physicochemical properties of graphene nanocomposite on the various functions related to their antitumor effects. The relationship between some important physicochemical properties of graphene nanocomposite such as diameter, shape, and surface chemistry and their functions related to antitumor effects was obtained through analysis, which provides evidence for the application of related materials in the future.
Collapse
Affiliation(s)
- Wenbo Yang
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangyu Deng
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Huang
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangcheng Qing
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zengwu Shao
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
5
|
Zhang T, Zhu GY, Yu CH, Xie Y, Xia MY, Lu BY, Fei X, Peng Q. The UV absorption of graphene oxide is size-dependent: possible calibration pitfalls. Mikrochim Acta 2019; 186:207. [DOI: 10.1007/s00604-019-3329-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/16/2019] [Indexed: 12/31/2022]
|
6
|
Xie X, Song J, Hu Y, Zhuang S, Wang Y, Zhao Y, Lu Q. Tailor-made PL-UC-C3 nanoparticles for fluorescence/computed tomography imaging-guided cascade amplified photothermal therapy. Int J Nanomedicine 2018; 13:7633-7646. [PMID: 30538448 PMCID: PMC6251438 DOI: 10.2147/ijn.s188169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Development of the burgeoning number of photothermal therapy (PTT) agents has drawn a huge amount of interest, since PTT treatment is a powerful and effective alternative to traditional treatments. Optimal PTT agents should integrate some essential preconditions including negligible systemic toxicity, deep penetration into tumor tissues, and maximum laser energy absorbance. Unfortunately, only few of the PTT agents reported could meet all of the above mentioned conditions. METHODS Here, we report a brand new PTT agent through the encapsulation of NaGdF4:Yb,Tm@ NaGdF4:Yb (UCNPs) and an organic compound (C3) into poly-e-caprolactone-polyethylene-polyglycol (PCL-PEG) (PL-UC-C3 NPs). RESULTS UCNPs as an up-conversion material and C3 as a PTT agent both feature low cytotoxicity, and most importantly, UCNPs with superior conversion efficiency could efficiently absorb the energy of a 980 nm laser, transform the near-infrared laser light into visible light, and translate the palingenetic visible light to C3. The usage of a 980 nm laser ensures a deeper penetration and lower energy, while the highly efficient absorption and transformation process confers a cascade amplified hyperthermia for tumor treatment. CONCLUSION In this regard, our research provides a powerful and robust breakthrough for florescence/computed tomography imaging-guided PTT treatment, lighting up the clinical application in cancer treatment.
Collapse
Affiliation(s)
- Xinhui Xie
- Department of Orthopedics, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210093, China,
| | - Jialei Song
- Department of Orthopedics, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210093, China,
| | - Yili Hu
- Department of Orthopedics, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210093, China,
| | - Suyang Zhuang
- Department of Orthopedics, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210093, China,
| | - Yuntao Wang
- Department of Orthopedics, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210093, China,
| | - Yunlei Zhao
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China,
| | - Qian Lu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China,
| |
Collapse
|
7
|
Ye J, Zhang R, Chai W, Du X. Low-density lipoprotein decorated silica nanoparticles co-delivering sorafenib and doxorubicin for effective treatment of hepatocellular carcinoma. Drug Deliv 2018; 25:2007-2014. [PMID: 30799656 PMCID: PMC6319454 DOI: 10.1080/10717544.2018.1531953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023] Open
Abstract
Combinational therapy is usually considered as a preferable approach for effective cancer therapy. Especially, combinational chemotherapies targeting different molecular targets are of particular interest due to its high flexibility as well as efficiency. In our study, the surface of silica nanoparticles (SLN) was modified with low-density lipoprotein (LDL) to construct platform (LDL-SLN) capable of specifically targeting low-density lipoprotein receptors (LDLRs) that overexpressing in hepatocellular carcinoma (HCC). In addition, the versatile drug loading capacity of LDL-SLN was employed to fabricate a preferable drug delivery system to co-deliver sorafenib (Sor) and doxorubicin (Dox) for combinational chemotherapy of HCC. Our results revealed that the LDL-SLN/Sor/Dox nanoparticles with size around 100 nm showed preferable stability in physiological environments. Moreover, the LDL-SLN/Sor/Dox could target LDLR overexpressed HepG2 cells. More importantly, both in vitro and in vivo experiments demonstrated that the LDL-SLN/Sor/Dox exerted elevated antitumor efficacy compared to Sor or Dox alone, which indicated that LDL-SLN/Sor/Dox could be a powerful tool for effective combinational chemotherapy of HCC.
Collapse
Affiliation(s)
- Junfeng Ye
- Department of Hepato-Biliary-Pancreatic Surgery, First Hospital of Jilin University, Changchun, PR China
| | - Ruoyan Zhang
- Department of Hepato-Biliary-Pancreatic Surgery, First Hospital of Jilin University, Changchun, PR China
| | - Wengang Chai
- Department of Hepato-Biliary-Pancreatic Surgery, First Hospital of Jilin University, Changchun, PR China
| | - Xiaohong Du
- Department of Hepato-Biliary-Pancreatic Surgery, First Hospital of Jilin University, Changchun, PR China
| |
Collapse
|
8
|
Sheng J, Ma B, Yang Q, Zhang C, Jiang Z, Borrathybay E. Tailor-made PEG-DA-CuS nanoparticles enriched in tumor with the aid of retro Diels-Alder reaction triggered by their intrinsic photothermal property. Int J Nanomedicine 2018; 13:4291-4302. [PMID: 30087561 PMCID: PMC6061216 DOI: 10.2147/ijn.s169189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Introduction In recent years, near-infrared laser-induced photothermal therapy is being considered as a promising approach to kill tumors owing to its noninvasive nature and excellent antitumor efficiency. However, the lack of ideal photothermal agents hinders further development of this technology. Materials and methods Aiming at solving this long-standing obstacle, we report here about the polyethylene glycol (PEG)-DA modified copper sulfide (CuS) nanoparticles (NPs) (PEG-DA-CuS NPs), a kind of semiconductor photothermal agents that show excellent photothermal stability and high heat conversion efficiency. Results and discussion Owing to the surrounding PEG, the water solubility of CuS NPs was significantly improved when circulating in blood in the body. When the NPs reached the tumors and were irradiated by a 1,064 nm laser (1 W/cm2, 10 minutes), the local temperature increased above 90°C, triggering the retro Diels–Alder reaction. After the release of PEG chain, CuS NPs soon formed aggregates and enriched the tumor via the enhanced permeability and retention effect, promoting the efficacy of photothermal therapy. Conclusion Therefore, we believe PEG-DA-CuS NPs are able to serve as a kind of cytotoxic and efficient photothermal agent to kill cancer.
Collapse
Affiliation(s)
- Jie Sheng
- College of Electronic and Information Engineering, Yili Normal University, Micro-nano Electric Sensing Technology and Bionic Devices Key Laboratory, Yining 835000, China, .,Physics School of Nanjing University, Laboratory of Solid State Microstructures, Nanjing 210093, China,
| | - Beibei Ma
- College of Electronic and Information Engineering, Yili Normal University, Micro-nano Electric Sensing Technology and Bionic Devices Key Laboratory, Yining 835000, China,
| | - Qian Yang
- College of Electronic and Information Engineering, Yili Normal University, Micro-nano Electric Sensing Technology and Bionic Devices Key Laboratory, Yining 835000, China,
| | - Chao Zhang
- Physics School of Nanjing University, Laboratory of Solid State Microstructures, Nanjing 210093, China,
| | - Zhongying Jiang
- College of Electronic and Information Engineering, Yili Normal University, Micro-nano Electric Sensing Technology and Bionic Devices Key Laboratory, Yining 835000, China, .,Physics School of Nanjing University, Laboratory of Solid State Microstructures, Nanjing 210093, China,
| | - Entomack Borrathybay
- College of Biology and Geography Sciences, Yili Normal University, Yining 835000, Xinjiang, China,
| |
Collapse
|
9
|
Wu JY, Wang ZX, Zhang G, Lu X, Qiang GH, Hu W, Ji AL, Wu JH, Jiang CP. Targeted co-delivery of Beclin 1 siRNA and FTY720 to hepatocellular carcinoma by calcium phosphate nanoparticles for enhanced anticancer efficacy. Int J Nanomedicine 2018; 13:1265-1280. [PMID: 29551896 PMCID: PMC5842779 DOI: 10.2147/ijn.s156328] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose FTY720, known as fingolimod, is a new immunosuppressive agent with effective anticancer properties. Although it was recently confirmed that FTY720 inhibits cancer cell proliferation, FTY720 can also induce protective autophagy and reduce cytotoxicity. Blocking autophagy with Beclin 1 siRNA after treatment with FTY720 promotes apoptosis. The objective of this study was to enhance the anticancer effect of FTY720 in hepatocellular carcinoma (HCC) by targeted co-delivery of FTY720 and Beclin 1 siRNA using calcium phosphate (CaP) nanoparticles (NPs). Materials and methods First, the siRNA was encapsulated within the CaP core. To form an asymmetric lipid bilayer structure, we then used an anionic lipid for the inner leaflet and a cationic lipid for the outer leaflet; after removing chloroform by rotary evaporation, these lipids were dispersed in a saline solution with FTY720. The NPs were analyzed by transmission electron microscopy, dynamic light scattering and ultraviolet–visible spectrophotometry. Cancer cell viability and cell death were analyzed by MTT assays, fluorescence-activated cell sorting analysis and Western blotting. In addition, the in vivo effects of the NPs were investigated using an athymic nude mouse subcutaneous transplantation tumor model. Results When the CaP NPs, called LCP-II NPs, were loaded with FTY720 and siRNA, they exhibited the expected size and were internalized by cells. These NPs were stable in systemic circulation. Furthermore, co-delivery of FTY720 and Beclin 1 siRNA significantly increased cytotoxicity in vitro and in vivo compared with that caused by treatment with the free drug alone. Conclusion The CaP NP system can be further developed for co-delivery of FTY720 and Beclin 1 siRNA to treat HCC, enhancing the anticancer efficacy of FTY720. Our findings provide a new insight into HCC treatment with co-delivered small molecules and siRNA, and these results can be readily translated into cancer clinical trials.
Collapse
Affiliation(s)
- Jun-Yi Wu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhong-Xia Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Guang Zhang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xian Lu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Guang-Hui Qiang
- Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Hu
- Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - An-Lai Ji
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun-Hua Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Chun-Ping Jiang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Liu CC, Zhao JJ, Zhang R, Li H, Chen B, Zhang LL, Yang H. Multifunctionalization of graphene and graphene oxide for controlled release and targeted delivery of anticancer drugs. Am J Transl Res 2017; 9:5197-5219. [PMID: 29312477 PMCID: PMC5752875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
Among various nanomaterials, graphene and its derivatives have attracted considerable research interest in diverse application areas-including nanomedicine-because of their extraordinary physical, chemical, and optical properties. Intensive research is underway to investigate the biomedical application of graphene and graphene-based nanosystems as drug-delivery vehicles for cancer therapy, and this is considered as one of the novel therapeutic approaches for performing on-demand chemotherapy coupled with photothermal therapy or photodynamic therapy. Here, we systematically summarize recent progress in the synthesis and functionalization of graphene by using a vast range of materials, including small molecules, polymers, and biomolecules, in order to overcome the inherent drawbacks of graphene oxide (GO) nanocarriers and thereby make these nanocarriers suitable for delivering chemotherapeutic agents, genes, and short interfering RNAs. Moreover, we address the opportunities and challenges associated with future clinical application of GO for cancer therapy.
Collapse
Affiliation(s)
- Cui-Cui Liu
- Translational Medicine Center, Hong-Hui Hospital, Xi’an Jiaotong University College of MedicineXi’an 710054, China
| | - Jing-Jing Zhao
- Translational Medicine Center, Hong-Hui Hospital, Xi’an Jiaotong University College of MedicineXi’an 710054, China
| | - Rui Zhang
- Translational Medicine Center, Hong-Hui Hospital, Xi’an Jiaotong University College of MedicineXi’an 710054, China
| | - Hui Li
- Joint Surgery, Hong-Hui Hospital, Xi’an Jiaotong University College of MedicineXi’an 710054, China
| | - Bo Chen
- Translational Medicine Center, Hong-Hui Hospital, Xi’an Jiaotong University College of MedicineXi’an 710054, China
| | - Ling-Ling Zhang
- Translational Medicine Center, Hong-Hui Hospital, Xi’an Jiaotong University College of MedicineXi’an 710054, China
| | - Hao Yang
- Translational Medicine Center, Hong-Hui Hospital, Xi’an Jiaotong University College of MedicineXi’an 710054, China
| |
Collapse
|
11
|
Thapa RK, Byeon JH, Choi HG, Yong CS, Kim JO. PEGylated lipid bilayer-wrapped nano-graphene oxides for synergistic co-delivery of doxorubicin and rapamycin to prevent drug resistance in cancers. NANOTECHNOLOGY 2017; 28:295101. [PMID: 28614069 DOI: 10.1088/1361-6528/aa7997] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nano-graphene oxide (nGO) is a carbon allotrope studied for its potential as carrier for chemotherapeutic delivery and its photoablation effects. However, interaction of nGO with blood components and the subsequent toxicities warrant a hybrid system for effective cancer drug delivery. Combination chemotherapy aids in effective cancer treatment and prevention of drug resistance. Therefore, in this study, we attempted to prepare polyethylene glycosylated (PEGylated) lipid bilayer-wrapped nGO co-loaded with doxorubicin (DOX) and rapamycin (RAPA), GOLDR, for the prevention and treatment of resistant cancers. Our results revealed a stable GOLDR formulation with appropriate particle size (∼170 nm), polydispersity (∼0.19) and drug loading. Free drug combination (DOX and RAPA) presented synergistic anticancer effects in MDA-MB-231, MCF-7, and BT474 cells. Treatment with GOLDR formulation maintained this synergism in treated cancer cells, which was further enhanced by the near infrared (NIR) laser irradiation-induced photothermal effects of nGO. Higher chromatin condensation and apoptotic body formation, and enhanced protein expression of apoptosis-related markers (Bax, p53, p21, and c-caspase 3) following GOLDR treatment in the presence of NIR laser treatment clearly suggests its superiority in effective chemo-photothermal therapy of resistant cancers. The hybrid nanosystem that we developed provides a basis for the effective use of GOLDR treatment in the prevention and treatment of resistant cancer types.
Collapse
Affiliation(s)
- Raj Kumar Thapa
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | | | | | | |
Collapse
|
12
|
Ghadari R, Kashefi A. A computational study on the usability of amino acid-functionalised nitrogen-doped graphene oxides as temperature-responsive drug delivery systems. Int J Hyperthermia 2017; 33:785-795. [DOI: 10.1080/02656736.2017.1308020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|